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Abstract

Stability is a central property in learning and statis-
tics promising the output of an algorithm A does
not change substantially when applied to similar
datasets S and S′. It is an elementary fact that any
sufficiently stable algorithm (e.g. one returning
the same result with high probability, satisfying
privacy guarantees, etc.) must be randomized.
This raises a natural question: can we quantify
how much randomness is needed for algorithmic
stability? We study the randomness complexity
of two influential notions of stability in learning:
replicability (which promises A usually outputs
the same result when run over samples from the
same distribution), and differential privacy (which
promises the output distribution of A remains
similar under neighboring datasets). In particu-
lar, building on the ideas of (Dixon, Pavan, Van-
der Woude, and Vinodchandran ICML 2024) and
(Cannone, Su, and Vadhan ITCS 2024), we prove
a ”weak-to-strong” boosting theorem for stability
in these settings: the randomness complexity of a
task M is tightly controlled by the best replication
probability of any deterministic algorithm solv-
ing M, a parameter known as M’s ”global sta-
bility” (Chase, Moran, Yehudayoff FOCS 2023).
Finally, we use this connection to characterize
the randomness complexity of PAC Learning: a
class has bounded randomness complexity iff it
has finite Littlestone dimension, and moreover
scales at worst logarithmically in the excess error
of the learner. As a corollary, we resolve a ques-
tion of (Chase, Chornomaz, Moran, and Yehu-
dayoff STOC 2024) about the error-dependent
list-replicability of agnostic learning.
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1. Introduction
Stability is a central property in learning and statistics
promising the output of an algorithm A remains similar
when applied to similar datasets S and S′. It is an ele-
mentary fact that any sufficiently stable algorithm (e.g. one
returning the same result with high probability, or one satis-
fying differential privacy) is either randomized, or constant.1

This raises a natural question: how much randomness is
needed for algorithmic stability?

In this work, we study the role of randomness in two fun-
damental notions of stability: replicability, and differential
privacy. Replicability is the core scientific and algorithmic
tenet that an experiment, run twice on data from the same
underlying distribution, should produce the same output
with high probability. Given a statistical task M and an
algorithm for the task A (e.g. hypothesis selection, classifi-
cation), one might reasonably define the replicability of A
to be its (worst-case) collision probability over independent
samples, that is:

min
D

{
Pr

S∼Dn
[A(S) = A(S′)]

}
where D ranges over the possible data distributions of M.
To achieve true replicability, we’d hope to construct an al-
gorithm with collision probability near 1. Unfortunately,
it turns out this is unachievable. The best such parameter,
called the global stability of M (Bun et al., 2020), is univer-
sally capped at 1

2 for any non-trivial statistical task (Chase
et al., 2023). Motivated by this fact, (Impagliazzo et al.,
2022) recently proposed an elegant relaxation of global
stability allowing shared internal randomness, calling an
algorithm A ρ-replicable if over independent samples S, S′

and a shared random string r:

∀D : Pr
S,S′∼Dn,r

[A(S; r) = A(S′; r)] > 1− ρ.

Global stability is then exactly the best replicability parame-
ter achieved by any deterministic algorithm solving M.2

1Why? This depends on the model of stability. A deterministic
DP algorithm, for instance, must have exactly the same output over
all neighboring samples. Since one can always construct a path of
neighbors between any inputs S and S′, A is inherently constant.
In replicability a similar argument is possible but one interpolates
between underlying distributions rather than samples.

2Traditionally a globally stable algorithm isn’t assumed to be
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In (Dixon et al., 2023), the authors introduce certificate
complexity, the smallest number of random bits needed to
achieve ρ-replicability. They prove tight bounds on the cer-
tificate complexity of several basic d-dimensional tasks, as
well as showing near-matching bounds on the global sta-
bility.3 Intuitively, it is reasonable to think there should
be a general connection between the certificate complexity
of a task and its global stability — the better the global
stability, the better replication we can achieve using no ran-
dom bits, so the easier it should be to achieve any particular
replication threshold ρ. Our first main result confirms this
intuition, proving a sort of ‘weak-to-strong’ boosting theo-
rem for replicability: the number of random bits needed to
beat 1

2 -replication probability is (up to a single bit) exactly
inverse log of the global stability. Furthermore, as one might
suspect, this can be amplified to any ρ-replicability using an
additional log(1/ρ) random bits.

While replicability and global stability are important notions
in their own right, they have perhaps been most impactful
in their close relation to the widely influential notion of
differential privacy (Dwork et al., 2006b). An algorithm
for a statistical task is called differentially private if its out-
put distribution remains similar under any two neighboring
datasets. Like replicability, differentially private algorithms
are inherently randomized, leading to the analogous notion
of DP complexity (Canonne et al., 2024) measuring the
smallest number of internal random bits required to achieve
privacy. Our second main result is an analogous ‘weak-to-
strong’ boosting theorem for differential privacy, closely
tying DP Complexity to a task’s underlying global stability.
However, due to privacy’s multiple parameters and nuanced
dependence on sample complexity, our results in this context
cannot be said to give an exact equivalence as above, and
it remains an interesting open problem to fully characterize
the relation between them.

Boosting in hand, we turn to look at the randomness com-
plexity of one of the best studied tasks in learning: binary
classification. We focus on the classical PAC model (Vap-
nik & Chervonenkis, 1974; Valiant, 1984), where a learner,
given sample access to a distribution of labeled examples D,
must produce a labeling from some fixed class H that is
close to the best possible option with high probability. The
global stability of PAC learning is quite well studied (Bun
et al., 2020; Ghazi et al., 2021a; Bun et al., 2023; Chase
et al., 2023). In the ‘realizable setting’, where the data is
assumed to be consistent with some h ∈ H , it is known how
to construct a 2−2O(d)

-globally stable algorithm indepen-
dent of the learner’s error, for d the Littlestone dimension

deterministic, but one can always de-randomize such an algorithm
and achieve the same collision probability. See Appendix B.

3Formally, (Dixon et al., 2023) study a slightly different pa-
rameter called list-replicability, which is essentially equivalent to
global stability (Chase et al., 2023).

of the class. Recently, (Chase et al., 2024) proved this result
does not extend to the general ‘agnostic’ setting and ask
whether it is instead possible to prove a bound that decays
with the excess error α. We resolve this problem: a class H
has bounded error-dependent global stability (and therefore
also certificate complexity) if and only if it has finite Lit-
tlestone dimension. Moreover, the randomness complexity
suffers only mild dependence on the error, scaling at worst
as O(log 1

α ).

2. Main Results
We briefly overview our main setting of study. A statistical
task M consists of a data domain X , an output domain Y ,
and, for every distribution D over X , a family GD ⊂ Y of
‘accepted solutions’ for the task. An algorithm A : X ∗ → Y
‘solves’ the task M if for any β > 0, given sufficiently many
samples n(β) from any D over X , A outputs y ∈ GD with
probability at least 1− β. At a parametrized level, for fixed
β and n(β), we say the algorithm solves M with confidence
β and sample complexity n(β).

A randomized algorithm A : X ∗ × {0, 1}∗ → Y is called
ρ-replicable if, for all large enough n, ℓ ≥ 0, over two inde-
pendent samples S, S′ ∼ Dn and the same shared random
string r ∼ {0, 1}ℓ, A returns the same output with high
probability:

∀D : Pr
r∼{0,1}m,S,S′∼Dn

[A(S; r) = A(S′; r)] ≥ 1− ρ.

The (parameter-free) certificate complexity of a task M,
denoted CRep, is the smallest ℓ such that there exists a bet-
ter than 1

2 -replicable algorithm solving M using at most
ℓ random bits, or, more explicitly, the smallest ℓ such that
for every β > 0 there exists n(β) ∈ N and a better than
1
2 -replicable algorithm on n(β)-samples and ℓ random bits
solving M with confidence β (c.f. Definition A.4).

The global stability of a task M is the best replicability
that can be achieved using no internal randomness. In par-
ticular, an algorithm A is called η-globally stable if over
independent samples S, S′:

∀D : Pr
S,S′∼Dn

[A(S) = A(S′)] ≥ η.

The globally-stable complexity (g-stable complexity), de-
noted CGlob, is log 1

ηM
, where ηM > 0 is the supremum

across η for which there is a deterministic η-globally sta-
ble algorithm solving M (c.f. Definition A.2). Note that
any η-globally stable algorithm automatically has an output
which is an η-heavy-hitter, that is some y ∈ Y for which
Pr[A(S) = y] ≥ η. The traditional notion of global stabil-
ity (Bun et al., 2020) only requires this latter condition. In
Appendix B we show our variant is equivalent up to minor
differences in sample complexity (meaning in particular the
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g-stable complexity does not depend on which definition
you take).

With this in mind, our first main result is a weak-to-strong
boosting lemma for replicability: the number of random bits
needed to achieve high probability replicability is exactly
controlled by the best replication probability of any deter-
ministic algorithm, i.e. g-stable and certificate complexity
are (essentially) equivalent.
Theorem 2.1 (Stability vs Replicability (Theorem C.1)).
Let M be any statistical task. Then:

CGlob ≤ CRep ≤ CGlob + 1.

Moreover, the number of random bits required to achieve
ρ-replicability is at most ⌈CGlob + log(1/ρ)⌉.

Replicability and global stability have played an important
role in recent work constructing efficient differentially pri-
vate algorithms in learning and statistics (Bun et al., 2020;
Ghazi et al., 2021b; Bun et al., 2023; Kalavasis et al., 2023).
An algorithm A is said to be (ε, δ)-differentially private if
for any two datasets S, S′ ∈ Xn differing in only one coordi-
nate, the output distribution of A is nearly indistinguishable
in the following sense. For any measurable event O ⊂ Y:

Pr[A(S) ∈ O] ≤ eε Pr[A(S′) ∈ O] + δ.

In recent work, (Canonne et al., 2024) introduce the DP
complexity of a task M, denoted CDP (n, β, ε, δ), measur-
ing the minimum number of random bits required to con-
struct an (ε, δ)-DP algorithm on n samples solving M with
β-confidence. Unlike our prior notions, DP complexity is
parametrized due to the fact that there is no clear ‘threshold’
to set for the privacy parameters (ε, δ) as in the replicabil-
ity setting (i.e. ρ = 1/2). Furthermore, (ε, δ)-privacy is
only meaningful when the parameters are taken as functions
of the sample complexity n (and therefore confidence β),
leading to the somewhat cumbersome CDP (n, β, ε, δ).

As a result of the above, the connection between DP com-
plexity and global stability is somewhat more nuanced than
the parameter-free equivalence in Theorem 2.1. We will con-
sider two variants of the connection. In the first, we compare
DP complexity to analogously defined parametrized g-stable
and certificate complexities CGlob(n, β) and CRep(n, β) (see
Appendix A.2 for formal definition).
Theorem 2.2 (Stability vs DP (Informal Theorem D.1)).
There exists a universal constant c > 0 such that for any
statistical task M:

1. (Stability to DP): CDP (n, β, ε, δ) ≤ CGlob(n
′, β′) +

log(1/ε) + log(1/δ) + Õ(1)

for any n ≥ n′ · exp(CGlob(n
′, β′))

log( 1
δ ) log(

1
β )

ε

and β ≥ β′ · exp(CGlob(n
′, β′))

log( 1
δ )

ε

2. (DP to Stability): CGlob(n, β) ≤ CDP (n
′, β′, ε, δ) +

O(1),

for any (n′, ε, δ) satisfying ε ≤ c√
n′ log(n′)

and δ ≤ c
n′ ,

n ≥ n′ exp(CGlob(n, β)), and β ≥ β′ exp(CGlob(n, β))

Qualitatively, Theorem 2.2 (Item 1) simply states that
given an η-globally stable (deterministic) algorithm, we can
‘boost’ it into an (ε, δ)-DP algorithm using only log(1/η) +
log(1/ε) + log(1/δ)-random bits, where the new algorithm
may have somewhat higher failure probability (β vs β′)
and sample complexity (n vs n′) than the original. This
should be compared to the analogous statement in replica-
bility (Theorem 2.1), which roughly stated an η-globally
stable algorithm can be boosted to a ρ-replicable one using
log(1/η) + log(1/ρ) random bits. Theorem 2.2 (Item 2)
states the (weak) converse also holds: given a good enough
DP algorithm on log(1/η) random bits, we can ‘reverse-
engineer’ a deterministic η-globally stable algorithm from
it, again paying in the sample size and confidence.

We remark the blowup in sample complexity and confidence
in Theorem 2.2 is typically mild — while the exponential
dependence on CGlob looks large, CGlob is log-scale, so the
blowup is only polynomial in stability similar to prior works
in the area (Bun et al., 2020; 2023). Furthermore, almost all
learning algorithms have logarithmic sample dependence
on the failure probability β (indeed in most cases one can
amplify a constant success algorithm to confidence β simply
by repeating it log(1/β) times—in this sense the loss in
confidence only results in paying a log log factor in the
global stability. Nevertheless, we emphasize the core focus
of our work is on one specific computational resource—
randomness. As a result, we sometimes compromise on
other resources (as we do here) to better understand the
fundamental limits of the main one.

Nevertheless, since the quantitative statement of Theo-
rem 2.2 is fairly cumbersome otherwise, it is still worth
taking a minute to explain the various dependencies before
moving on. Recall our goal: given an η-globally stable algo-
rithm Aglobal on n′ samples that succeeds with probability
1−β′, we wish to use Aglobal as a subroutine to construct an
(ε, δ)-DP algorithm solving the same problem with slightly
worse probability 1−β and using slightly more (n) samples.
As in prior work, the key to doing this is to build a large
database of Aglobal’s η-heavy-hitters, outputs of Aglobal that
appear with probability at least η. By standard concentra-
tion bounds, this can be done by running Aglobal roughly

O
(

log 1
β

η2

)
times and looking at empirical output probabili-

ties. Outputting one of these heavy-hitters privately actually
requires us to run this estimation process O

(
log 1

δ

ηε

)
times

to ensure the resulting ‘dataset’ of heavy hitters isn’t too
strongly affected by changing any single input sample in the
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process. In total, the above uses n = n′ · log( 1
δ ) log(

1
β )

η3ε total
samples and setting η to be the best achievable replication
probability (2−CGlob(n

′,β′)) gives the stated dependence. The
decay of the success probability β can similarly be thought
of as coming from bounding the probability any individ-
ual subroutine Aglobal fails, though we give a better bound
through more careful analysis in the main body.

Of course the basic procedure described above, which is
similar to prior DP-to-stability reductions in the literature
(Bun et al., 2023), is not randomness-efficient (indeed it
may even use an unbounded number of random bits!) As
we discuss in Section 4.2, our randomness-efficient variant
relies on carefully discretizing this type of transform to
optimize the number of random bits without sacrificing
correctness and privacy.

In the reverse direction (Item 2), we directly prove any suffi-
ciently private algorithm (i.e. one with the stated dependen-
cies on (n, ε, δ)) that uses k random bits automatically has
a heavy-hitter of weight roughly exp(−k). We then show
how to transform any β′-correct randomized algorithm A
on n′ samples with an η-heavy-hitter into a deterministic
η-globally stable algorithm at the cost of running A roughly
log(1/β)

η2 times, resulting in similar parameter blowups as in
Item 1. We remark that the constraints on (n, ε, δ) are also in
general fairly mild. The assumption on δ is extremely weak
(an algorithm is not considered private unless δ ≤ n−ω(1)).
The assumption on ε is more restrictive, but is satisfied by
many basic DP mechanisms, and, moreover, it is almost
always possible to amplify a weak DP algorithm to one sat-
isfying this constraint (though it may cost many additional
random bits). We discuss this further in Section 3.

Moving on from Theorem 2.2, we’d also like a way to
compare randomness complexity in DP to our original
parameter-free variants of CGlob and CRep. It turns out
this is possible by considering a slight generalization of
vanilla differential privacy called user-level DP. In user-
level DP there are T ‘users’, each of whom contributes a
(sub)-dataset Si. Neighboring datasets are defined with re-
spect to swapping an entire user rather than a single example.
In other words, in user-level DP we view the total size-n
dataset S as being comprised of T components (‘users’)
(S1, . . . , ST ) ∈ (Xn/T )T , and must maintain (ε, δ)-privacy
under swapping out an entire Si subsample. Critically,
in this setting (ε, δ) are now functions of T rather than
of n. This allows us to define the user-level DP complexity,
CDP (T, ε, δ), in a way that is independent of sample com-
plexity and confidence as the smallest number of random
bits such that there exists a T -user (ε, δ)-DP algorithm solv-
ing M. We then get the following cleaner ‘parameter-free’
version of Theorem 2.2:

Theorem 2.3 (Stability vs User-Level DP (Informal Theo-
rem D.2)). There exist universal constants c1, c2 > 0 such

that for any statistical task M:

1. (Stability to DP): CDP

(
2CGlob c1 log 1

δ

ε , ε, δ
)
≤ CGlob +

log(1/ε) + log(1/δ) + Õ(1).

2. (DP to Stability): CGlob ≤ CDP (T, ε, δ) +O(1),

where the latter holds for any (T, ε, δ) satisfying ε ≤
c2√

T log(T )
and δ ≤ c2

T .

We remark that the parameter dependencies here follow
exactly the same explanation as in Theorem 2.2, with T =

2CGlob c1 log 1
δ

ε in (Item 1) appearing due to finding heavy
hitters of Aglobal, and the (T, ε, δ) dependency in (Item 2)
needed to imply the corresponding DP algorithm has a heavy
hitter.

2.0.1. THE STABLE COMPLEXITY OF PAC LEARNING

Having established our stability boosting theorems, we turn
to the randomness complexity of binary classification. We
focus on the standard PAC Learning model (Valiant, 1984;
Vapnik & Chervonenkis, 1971). A PAC Learning classifica-
tion problem consists of a data domain X and a hypothesis
class H = {h : X → {0, 1}} of potential labelings of X .
Given a distribution D over labeled samples X×{0, 1}, the
classification error of a hypothesis h is

errD(h) := Pr
(x,y)∼D

[h(x) ̸= y].

An algorithm is said to (agnostically) PAC learn the class
(X,H) if for every α, β > 0 there exists n = n(α, β) ∈ N
such that given n samples, A outputs an α-optimal hypothe-
sis with probability at least 1− β:

∀D : Pr
S∼Dn

[errD(A(S)) > min
h∈H

errD(h) + α] ≤ β.

In our framework, PAC Learning can be viewed as a se-
quence of statistical tasks {Mα} parameterized by the er-
ror α, where X = X × {0, 1}, Y is the set of all labelings
of X , and GD is the set of α-optimal labelings.

Due to its close connection with differential privacy, sta-
bility is quite well studied in the PAC setting. In (Bun
et al., 2020), the authors show that under the assumption
that minh∈H errD(h) = 0 (called the ‘realizable setting’),
the g-stable complexity of {Mα} can be universally upper
bounded by 2O(d) for any class (X,H) with finite Little-
stone dimension d. In the error-dependent setting, the best
known bound is of (Ghazi et al., 2021a;b) who improve the
g-stable complexity to poly(d) +O(log( 1

α )).

Contrary to the above, (Chase et al., 2024) show the for-
mer type of error-independent bound is impossible in the
agnostic setting, and ask whether an error-dependent bound
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like (Ghazi et al., 2021a) can be extended to this case.4 We
resolve this problem: not only is such a bound possible, the
complexity scales essentially as in the realizable setting up
to a factor in the VC dimension.
Theorem 2.4 (The Certificate Complexity of Agnostic
Learning (Theorem E.1)). Let (X,H) be a hypothesis class
with Littlestone dimension d. Then (X,H) has a better than
1
2 -replicable learner with

1. Sample Complexity:

exp(poly(d)) poly(α−1, log(1/β))

2. Certificate Complexity:

poly(d) +O(V C(H) log(
1

α
))

Conversely if d = ∞, then CRep(α) = ∞ for any α < 1
2 . In

other words, there is no globally stable, DP, or replicable
algorithm for (X,H) better than random guessing.

While we defer the definition of Littlestone dimension itself
to Appendix A (the notion is not needed for our arguments
which use prior work to this end as a black box), it is use-
ful to mention a few concrete examples for intuition. For
instance, the class of k-dimensional affine subspaces of Rd

has Littlestone dimension k + 1, and the class of γ-margin
halfspaces in Rd has Littlestone dimension at most 1

γ2 . In
both cases Theorem 2.4 gives the first randomness-efficient
replicable algorithm for learning these classes (and in fact
the first globally stable algorithm for the problem at all).

We remark if all one wants is heavy-hitter global stability,
the sample complexity of Theorem 2.4 can be improved
to poly(d, α−1, log(1/β)) while maintaining (poly(d) +
O(V C(H) log( 1

α )))-g-stable complexity. It is an interest-
ing question whether poly(d, α−1, log(1/β)) samples is
achievable in the replicable case while maintaining good
certificate complexity. This cannot be achieved using cur-
rent sample-efficient methods which all rely on correlated
sampling (Ghazi et al., 2021b; Bun et al., 2023) and have
certificate size scaling with |H|. Simultaneously achieving
randomness and sample efficiency therefore seems to re-
quire new ideas in the theory of replicable algorithm design.

In recent independent work, (Blonda et al., 2025) also prove
a variant of Theorem 2.4 for global stability with g-stable
complexity exp(d)+poly(α−1). Their work also addresses
a second open problem of (Chase et al., 2024) which we do
not consider. See Section 3.1 for further discussion.

4Again, we note (Chase et al., 2024) is phrased in terms of ‘list-
replicability’, but (Chase et al., 2023) prove the α-dependent (log)
list-size CList(α) satisfies CGlob(α) ≤ CList(α) ≤ CGlob(α/2), so
it is asympotically equivalent to characterize CGlob(α). We refer
the reader to Section 5 of (Chase et al., 2023) and Section 2.3.1 of
(Chase et al., 2024) for details and the formal definitions.

3. Discussion and Open Problems
Before moving to the formal details, we take some space
to further discuss the parameter restrictions in Theorem 2.2
and Theorem 2.3, related open problems, and provide some
further justification why counting internal random bits is
sensible for statistical tasks where ‘external’ randomness is
also available via samples.

DP Complexity and the Pareto Frontier: Recall both
Theorem 2.2 and Theorem 2.3 require a variant of the fol-
lowing guarantee on the privacy parameters (T, ε, δ)

ε ≲
1√

T log(T )
, δ ≲

1

T
(1)

where T is the number of users (in the vanilla DP setting,
T = n is then just the number of samples). Our first main
question is to what extent such a requirement is necessary.
Can we characterize for what triples (T, ε, δ) the inequality
CGlob ≤ CDP (T, ε, δ) +O(1) holds?

Toward this end, it is worth briefly discussing why this con-
straint occurs, and to what extent it is normally achievable.
Regarding the first, Equation (1) are exactly the constraints
required to achieve a strong notion of stability called perfect
generalization (Cummings et al., 2016; Bassily & Freund,
2016), which promises that on most input datasets S, A(S; ·)
is actually statistically close to the distribution A(·; ·). All
known transforms between DP and replicability go through
perfect generalization (Bun et al., 2023; Kalavasis et al.,
2023) (we note prior transforms combine this with a method
called correlated sampling which ruins the certificate size, so
do not recover our results). At a high level, it would be inter-
esting to give a transform between DP and list-replicability
without going through perfect generalization, potentially
bypassing this barrier. In some sense such a transformation
is actually possible in the PAC Learning setting using the
fact that Littlestone dimension characterizes learning, but
this results in tower-type dependence5 in the certificate size.

Regarding the achievability of Equation (1), in most cases
such constraints are fairly mild. In fact, normally Equa-
tion (1) is hardly a barrier at all since it is always possi-
ble to amplify a T -user (O(1), 1/ poly(T ))-DP algorithm
to a T

ε -user (ε, 1/ poly(T ))-DP algorithm simply by ap-
plying the former on a random size-T sub-sample of the
latter’s users (Balle et al., 2018). Setting ε ≪ 1

T then
satisfies Equation (1). The catch here is that this pro-
cess uses T log(1/ε) additional random bits, a heavy cost
when known settings seem to only require logarithmically
many bits in T (Canonne et al., 2024). This leads to an
interesting question: is it possible to derandomize subsam-
pling techniques in differential privacy? Can we amplify

5I.e. a dependence of type T (n) = 2T (n−1).
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an (O(1), 1/ poly(T ))-DP algorithm to (ε, 1/ poly(T ))-
DP using only O(log(T/ε)) additional random bits?

Measuring Randomness in Statistics: Certificate and
DP complexity count the number of internal random bits
used by an algorithm solving a fixed statistical task M.
Unlike the empirical setting (as studied e.g. in (Canonne
et al., 2024)), algorithms in the statistical setting also have
access to external randomness in the form of i.i.d samples
from the underlying data distribution D. It is reasonable to
then ask: why do such algorithms need internal randomness
at all, and (assuming they do) why does it make sense to
measure it?

For certificate complexity, this question was naturally ad-
dressed in the seminal works of (Impagliazzo et al., 2022;
Dixon et al., 2023). Recall that in replicability, the internal
randomness of A plays a special role apart from the sample
because it is shared between the two runs of the algorithm.
It is not hard to argue that most natural problems (namely
any problem where there is a continuous path between two
distributions D and D′ with disjoint solution sets) require
at least one shared random bit to achieve better than 1/2
replication probability.6 Another natural interpretation of
the certificate complexity is as a measure of the ‘communi-
cation complexity’ of a statistical task — it is the number
of bits that must be published publicly to ensure external
parties can verify the result of the algorithm.

In differential privacy, the situation is more nuanced. In
(Canonne et al., 2024), the authors focus on empirical tasks,
meaning the dataset is fixed (not drawn i.i.d from some
distribution) and the only source of randomness is internal.
In this case it is obvious that any non-trivial DP algorithm
must be randomized, and there is strong motivation to bound
the extra number of random bits required since 1) clean
randomness is expensive, and 2) prior implementations of
DP in practice such as the U.S. Census used an astronomical
number of clean random bits, thought to be upwards of 90
terabytes (Garfinkel & Leclerc, 2020). Understanding to
what extent this cost can be mitigated is then a question of
significant theoretical and practical interest.

In the statistical setting, we argue that despite our additional
access to external randomness, any useful notion of dif-
ferential privacy must still inherently rely only on internal
randomness to protect user data. This is because differential
privacy should always protect users in the worst-case, even
for average-case problems studied in statistics. In partic-
ular, since the algorithm has no control over the sample

6The argument is simply that if the algorithm is correct, it must
be outputting different solutions on D and D′, but then there is
some interior distribution on the path which is non-replicable. See
(Dixon et al., 2023; Impagliazzo et al., 2022; Chase et al., 2023)
for more detailed examples.

oracle, relying on its output to ensure privacy leaves it open
to attacks corrupting the oracle, or even to privacy failure
stemming from benign issues such as light failure of the i.i.d
assumption in real-world data (see e.g. discussion in (Gold-
wasser et al., 2022) regarding possible breaches in security
from corruption of a learning algorithm’s randomness). To
avoid such scenarios, when defining differential privacy for
statistical tasks we always apply privacy at the level of the
fixed sample, so the same motivation and context as in the
empirical case holds.

3.1. Further Related Work

Stability and Replicability: Global stability was intro-
duced in (Bun et al., 2020) to upper bound the sample
complexity of private PAC Learning. Replicability was
introduced independently in (Impagliazzo et al., 2022) and
(Ghazi et al., 2021b) as a relaxation of global stability, in
the former towards addressing the crisis of replicability in
science, and in the latter towards achieving upper bounds on
the sample complexity of user-level private learning. Since
these works, a great deal of effort has gone into understand-
ing what statistical tasks admit replicable algorithms (Kar-
basi et al., 2023; Esfandiari et al., 2024; Eaton et al., 2024;
Esfandiari et al., 2022; Komiyama et al., 2024; Hopkins
et al., 2024; Kalavasis et al., 2024), as well as their connec-
tion to other notions of stability such as differential privacy
(Ghazi et al., 2021b; Bun et al., 2023; Kalavasis et al., 2023;
Moran et al., 2023; Chase et al., 2023). Our work is most
related to this latter line, especially Theorem 2.2 and Theo-
rem 2.3 which rely on new randomness-efficient variants of
the transforms introduced in these works.

Replicability is substantially stronger than classical stability
notions in the literature (see e.g. (Bousquet & Elisseeff,
2002)) which generally require that similar inputs result in
close rather than equivalent outputs. While this may seem
too strong a guarantee to ask for in statistical analysis, it’s
worth highlighting that requiring true equivalence comes
with a host of benefits not enjoyed by prior notions. This is
discussed extensively in prior work (see e.g. (Impagliazzo
et al., 2022; Bun et al., 2023)), and we will mention just a
few such examples here:

1. Replicability is closely related to other ‘strong’ no-
tions of stability in computer science (DP, adaptive
data analysis, and more). Several open problems in
DP (sample-efficient user-level DP, amplification of
DP) were only resolved through studying replicability
(Ghazi et al., 2021b; Bun et al., 2023).

2. Replicability is testable. It is not always easy to test
whether an algorithm is stable (e.g. testing DP is known
to be computationally hard (Gaboardi et al., 2020)). By
requiring equivalence, replicability is trivially verifi-
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able.

3. Replicability is preserved under arbitrary post-
processing. Even applying a very sensitive function to
the output of a replicable algorithm remains replicable,
while such a procedure will not preserve weak stability.

4. Replicability is easily amplified. Given a constantly
replicable algorithm, there is a simple and computa-
tionally efficient procedure to amplify it to arbitrarily
high replication probability.

5. Replicability is model independent. Different statis-
tical tasks naturally have different notions of weak
stability and closeness, or, in the case of testing prob-
lems with binary outputs, may have no natural notion
of weak stability (see (Hopkins et al., 2024) for further
discussion). Replicability gives a unified definition for
studying stability for all statistical tasks.

In general, it is interesting to understand the tradeoffs in-
herent between weaker classical notions and replicability.
If one wants very high probability stability or is handling
very high dimensional data, weaker notions will be com-
putationally and statistically cheaper. On the other hand in
low-dimensional settings ensuring strong replicability of-
ten has little to no asymptotic overhead (Impagliazzo et al.,
2022), and when safety, testability, or privacy is paramount,
it is necessary to use such a strong notion. Developing a
better understanding of both is critical to help us decide
when each should be used in practice.

Certificate and DP Complexity: Certificate complexity
was introduced in (Dixon et al., 2023), where the authors
prove essentially tight bounds for the basic task of estimat-
ing the bias of d coins and learning classes via non-adaptive
statistical queries. Related to our results, (Dixon et al., 2023)
observe (at least implicitly) the basic connection that any
ρ-replicable algorithm on ℓ(ρ) bits has a 2−ℓ(ρ)-heavy-hitter,
a basic component of the (replicability → global stability)
direction of Theorem 2.1. They also use discretized round-
ing, which is the core component of the reverse direction,
but focus in particular on d-dimensional space while we
give a generic discretized rounding scheme based on access
to a ‘weakly replicable’ subroutine over any domain.

DP complexity was introduced recently in (Canonne et al.,
2024), where the authors study the number of random bits re-
quired to perform counting queries under (ε, δ)-differential
privacy on a fixed empirical dataset. The authors lower
bound techniques use similar methods to those used to
bound certificate complexity in (Dixon et al., 2023), but
they do not give any generic connection between the two.

Stability in Agnostic Learning: In recent independent
work, (Blonda et al., 2025) also resolve (Chase et al., 2024)’s

question on error-dependent global stability in agnostic PAC-
learning, proving a variant of Theorem 2.4 with randomness
complexity exp(d) + poly(α−1). Beyond this, (Blonda
et al., 2025) also prove impossibility for error-independent
global stability when OPT is bounded above by some known
constant γ, generalizing the error-independent stability im-
possibility result of (Chase et al., 2024). We do not consider
the latter model in our work.

4. Technical Overview
In this section we overview of the main ideas in the proofs
of Theorem 2.1, Theorem 2.2 and Theorem 2.3, and Theo-
rem 2.4 respectively. We emphasize the below are not full
proofs, and refer the reader to Appendix C, Appendix D,
and Appendix E for the full details.

4.1. Global Stability and Certificate Complexity

We start with the forward direction: given a ( 12 + γ)-
replicable algorithm ARep for M on ℓ = CRep random bits,
we transform it into a deterministic η-globally stable algo-
rithm for M for any η < 2−ℓ. Since the g-stable complexity
of M is the infinum of log 1

η for all achievable η-globally
stable algorithms, this implies CGlob ≤ CRep.

Our first step is to use ARep to build a (randomized) algo-
rithm with a nearly 2−ℓ-heavy-hitter. We will then trans-
form this algorithm into a deterministic one with nearly 2−ℓ

replication probability. Toward this end, observe that by av-
eraging for every distribution D there exists a random string
rD such that ARep has a ‘canonical solution’ hD occurring
with probability at least 1

2 + γ:

Pr
S∼Dn

[ARep(S; rD) = hD] ≥ 1/2 + γ.

By running ARep(·; r) roughly log(1/τ)
γ2 times over fresh sam-

ples and taking the majority output, we therefore get an
algorithm Amaj with a nearly 2−ℓ-heavy hitter

Pr
r∼{0,1}ℓ,S∼Dn2

[Amaj(S; r) = hD] ≥ 2−ℓ(1− τ),

since r = rD with probability 2−ℓ, and conditioned on this
event Amaj almost always outputs hD by Chernoff.

We now transform Amaj into a deterministic algorithm with
nearly 2−ℓ replication probability. This follows in two steps.
First, we construct a new randomized algorithm AHH

maj which
runs Amaj 2

O(ℓ) times (over fresh samples and random-
ness) and output the most common response. Standard
concentration then ensures the output of AHH

maj(S; r) is a
nearly 2−ℓ-heavy-hitter of Amaj with very high probability
over S and r. Second, we derandomize AHH

maj(S; r) by tak-
ing AHH-det

maj (S) to be the plurality response of AHH
maj(S; r)

over all random strings. A simple Markov-type argument

7



The Role of Randomness in Stability

Figure 1. Thresholding procedure for CGlob = 2 and T = 7. Blue
dots denote the 4 heavy hitters, one of which p(y1) is known to be
far from any threshold. This leaves 4 (green) thresholds with no
nearby heavy-hitters out of 7, so ρ ≈ 4/7 > 1

2
, and CRep ≤ 3.

shows that AHH-det
maj (S) also almost always outputs a nearly

2−ℓ-heavy-hitter of Amaj over the randomness of S, and
since there are at most 2ℓ such heavy hitters this implies
AHH-det

maj (S) is (nearly) 2−ℓ-globally stable as desired.

We remark that correctness is maintained throughout all
the above transforms so long as our initial confidence β ≤
2−O(ℓ) was sufficiently small, since then any heavy hitters
of the original algorithm must have been correct in the first
place, and we almost always output such a hypothesis.

To prove the reverse direction, we need to show how to am-
plify an η-globally stable algorithm Aglobal to a ρ-replicable
one using log 1

η + log 1
ρ random bits. The key is again to

look at the set of heavy-hitters of Aglobal. For y ∈ Y , let p(y)
denote the probability Aglobal outputs y. Running Aglobal suf-
ficiently many times, we get empirical estimates p̂(y) such
that |p̂(y)− p(y)| < γ

3 with very high probability for some
small γ ≪ poly(ρη).

Fix T ≈ 1
ηρ and consider the set of thresholds {η − γ, η −

2γ, . . . , η − Tγ}. Our final algorithm simply selects one of
the T thresholds t at random, and outputs the first y (with
respect to some fixed order on Y) satisfying p̂(y) ≥ t.

We now argue the above procedure is ρ-replicable. To see
this, observe that because Aglobal only has 1

η heavy hitters
of weight more than η − Tγ (and moreover one of weight
at least η), it must be the case that at most 1

η − 1 of these
thresholds are within γ/3 of some p(y) for any y ∈ Y . On
the other hand, conditioned on the fact |p̂(y)−p(y)| < γ/3,
choosing any of the T − 1

η + 1 thresholds t without such a
nearby heavy hitter results in a completely replicable output,
since the list of y with p̂(y) > t is always the same. The

probability of selecting such a threshold is
T− 1

η+1

T > 1− ρ,
so taking the failure probability of our empirical estimates
sufficiently small gives a ρ-replicable algorithm as desired.
See Figure 1 for an example diagram of this procedure.

Similar to before, correctness is also maintained as long
as our original algorithm is β ≤ O(η) confident, as then
every heavy hitter must be correct and the algorithm almost
always outputs a heavy hitter of Aglobal.

4.2. Global Stability and Differential Privacy

We now overview the main ideas behind Theorem 2.2 and
Theorem 2.3 in more detail. We start with the forward
direction: given an η-globally stable algorithm, we’d like to
construct an (ε, δ)-DP algorithm using roughly log(1/η) +
log(1/ε) + log(1/δ) random bits. The key to doing this is
to first construct an (ε, δ/2)-DP-algorithm ADP satisfying
the following properties

1. Bounded Support:

∀S : |Supp(ADP (S))| ≤ Õ

(
1

ηε

)
,

2. Strong Correctness:

Pr
S
[Supp(ADP (S)) ⊂ GD] ≥ 1− β.

In other words, the algorithm should always have small sup-
port, and that support should almost always be completely
correct. The only issue is that ADP might use too many
random bits. We address this via an elegant observation
of (Canonne et al., 2024): any distribution of support T
can be δ/2-approximated (i.e. we can produce another dis-
tribution within δ/2 in total variation distance) using only
log(T )+ log(2/δ) random bits and without adding any new
elements to the support. Given the above conditions, this
results in a β-confident (ε, δ)-DP algorithm as desired.

Building on prior work, we construct our base DP algorithm
using the ‘DP Selection’ primitive of (Korolova et al., 2009;
Bun et al., 2016; 2018), which, roughly, given a dataset M ,
provides an (ε, δ)-DP procedure to output some y ∈ Y that
appears no fewer than log(1/δ)

ε times less than the most fre-
quent element in M . As discussed in the previous sections,
given Aglobal we can build such a dataset M by 1) build-
ing an algorithm that outputs one of Aglobal’s heavy hitters

with high probability 2) running this procedure O(
log 1

δ

ηε )
times. To ensure bounded support of the algorithm over
all possible inputs, we additionally add log(1/δ)/ε copies
of some fixed ‘dummy hypothesis’ y ∈ Y to the dataset,
so DP selection always outputs something in M by design.
While this dummy hypothesis y may not be correct, strong
correctness still holds because the only way y ends up in
the support is if many non-heavy hitters lie in M as well, a
low probability event as long as the initial heavy-hitter sub-
routine succeeds with high probability. Finally, we remark
the entire procedure is user-level private since swapping out
a full sample to the heavy-hitter estimation procedure (one
user) only changes one element in the database M .

In the reverse direction, we are given a (T, ε, δ)-user-level
DP algorithm ADP on ℓ random bits which, by (Ghazi
et al., 2024), we may also assume is (.5, .5, .5)-perfectly
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generalizing. We refer the reader to Definition D.6 for
the exact definition, and for now note this implies the
existence of a sample S such that for all O ⊂ Y we
have Prr[ADP (S; ·) ∈ O] ≤ e1/2 PrS′,r[ADP (·, ·) ∈
O]+1/2. Since ADP (S) has support size at most 2ℓ, setting
O = Supp(ADP (S)) (and therefore the LHS to 1) implies
PrS′,r[A(·, ·) ∈ Supp(ADP (S))] ≥ Ω(1), or equivalently,
that ADP has a O(2−ℓ)-heavy-hitter. We may then use the
same procedure as in Section 4.1 to transform this into a
deterministic O(2−ℓ)-globally stable algorithm as desired.

4.3. The Stability of Agnostic Learning

Our agnostic globally stable learner is based on the agnostic-
to-realizable reduction framework of (Hopkins et al., 2022),
in particular a variant for replicable algorithms in (Bun et al.,
2023). In other words, starting with an η-globally stable
learner APAC for the ‘realizable setting’ (where it is assumed
the underlying distribution is labeled by a hypothesis in H),
we will build a globally stable agnostic learner AAgn for
arbitrary distributions. Our starting point is therefore the
realizable setting, where we rely on the following result
of (Ghazi et al., 2021a): every class (X,H) with finite
Littlestone dimension d has an η = 2poly(d)α−O(1)-globally
stable learner on n(α, β) = poly(d, α, log(1/β)) samples
in the realizable setting.

The core idea behind the reduction is simple: we draw a
large unlabeled sample SU of size n(α, β) and run APAC
across all possible labelings of SU in the class, then output
a random hypothesis in the resulting set of outputs with
low empirical error (tested across a fresh batch of labeled
samples from the underlying agnostic distribution). This is
an agnostic learner because the first stage always runs APAC
over the labeled sample (SU , hOPT (SU )) for some optimal
hypothesis hOPT by design, and therefore with high prob-
ability has an output that is close to the best hypothesis in
H . Moreover, because APAC is globally stable, there is even
some fixed good hypothesis hD close to hOPT that appears
in the set with probability at least η, and therefore is given
as the final output with probability η/|SU |O(V C(H)), where
V C(H) is the VC dimension and the divisor |SU |O(V C(H))

is an upper bound on the number of possible labelings of
SU by H (see Lemma A.13).

This procedure almost works, but it has a core issue: to
achieve confidence β, we have to set |SU | scaling with β, but
then the global stability depends on β as well which is not
allowed. We fix this by running APAC only with confidence
roughly η, ensuring at least its heavy hitter is an α-optimal
hypothesis. Unfortunately, this means we are no longer guar-
anteed the resulting set of outputs will have an α-optimal
hypothesis with high probability, breaking the argument. We
fix this by running the procedure over T = log(1/β)

η indepen-
dent unlabeled samples, which ensures the nearly-optimal

heavy hitter hD occurs in the set with probability at least
1− β. Naively we are then back at the same problem, since
the output set has size Tn(α, η)O(V C), but the key is to re-
alize that hD not only occurs with high probability, it occurs
at least Ω(ηT ) times with high probability. This means we
can prune all hypotheses from the resulting list that don’t oc-
cur Ω(ηT ) times, cutting the total number down to at most
1
ηn(α, η)

O(V C(H)). This results in an agnostic learner with
a 1

ηn(α, η)
O(V C(H))-heavy-hitter, which can be converted

into a globally-stable learner by our prior procedure.

As written, the above has exponential sample complexity in
the Littlestone dimension – this can be fixed in the heavy-
hitter setting by exploiting a stronger guarantee of (Ghazi
et al., 2021a)’s algorithm which in reality outputs a list
of exp(poly(d))α−O(1) hypotheses such that some hD ap-
pears in the list with probability at least Ω( 1d ). We can then
perform the same procedure about but set T = poly(d, β)
to get the same result with improved sample complexity.
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The Role of Randomness in Stability

A. Preliminaries
We now cover our notions of stability and general setting in more formality. Most of our results are proved for the following
standard and widely applicable notion of a statistical task (see e.g. (Bun et al., 2023)):

Definition A.1 (Statistical tasks). A statistical task M consists of:

1. A data domain X

2. An output domain Y

3. For every distribution D over X , a subset GD ⊂ Y of ‘accepted solutions’

An algorithm solving M is a (possibly randomized) mapping A : X ∗ → Y such that for all β > 0 (the ‘confidence’), there
is a function n = n(β) (the ‘sample complexity’) such that

∀D : Pr
S∼Dn

[A(S) ∈ GD] ≥ 1− β.

We remark that in some statistical tasks (e.g. realizable PAC Learning), one only considers a restricted family of distributions
D over the data domain. All our results extend immediately to this generalized setting—we have chosen to focus on the
distribution-free definition only for simplicity of exposition.

A.1. The Stability Zoo

We now overview the main notions of stability studied in this work. We remark that our definitions differ slightly from some
prior works studying stability in learning, which typically comes with an additional accuracy parameter. We discuss this
distinction further in Appendix A.4.

We start with the core notion of global stability, which measures the best replication probability achieved by any determinstic
algorithm solving the task.

Definition A.2 (Global stability). Let M be a statistical task. An algorithm A solving M is said to be η-globally stable if
for large enough n and every distribution D

Pr
S,S′∼Dn

[A(S) = A(S′)] ≥ η.

The g-stable complexity of M, denoted CGlob(M), is the infinum of log( 1η ) taken over all deterministic η-globally stable
algorithms solving M. If the set of such algorithms is empty, we write CGlob = ∞.

As mentioned previously, this differs from the ‘traditional’ notion of global stability in (Bun et al., 2020), which only
requires A to have an η-heavy-hitter (and may use unshared internal randomness), a seemingly weaker requirement. We
show these notions are fully equivalent in Appendix B.

Global stability can never achieve replication probability beyond 1/2 for any non-trivial statistical task (Chase et al., 2023).
Motivated by this fact, (Impagliazzo et al., 2022) introduced replicability, allowing the use of shared internal randomness to
boost replication success beyond the 1

2 barrier.

Definition A.3 (Replicability). Let M be a statistical task. An algorithm A solving M is said to be ρ-replicable if for all
distributions D:

Pr
r,S,S′∼Dn

[A(S; r) = A(S′; r)] ≥ 1− ρ.

In (Dixon et al., 2023), the authors introduce certificate complexity measuring the least number of shared random bits
required to achieve ρ-replicability. Since we are interested in comparing certificate complexity to global stability, we will
instead work mostly with a natural ‘parameter-free’ version of this definition. In particular, we will study the number of
random strings required to achieve replicability strictly better than 1

2 . This is the natural threshold at which many random
strings are forced to have a unique ‘canonical’ hypothesis, and can be easily amplified to arbitrary ρ.

12



The Role of Randomness in Stability

Definition A.4 (Certificate Complexity). The certificate complexity of a statistical task M, denoted CRep(M), is the
smallest number of shared random bits over which there exists a > 1

2 -replicable algorithm solving M, i.e. some A satisfying:

Pr
r∼{0,1}CRep ,S,S′∼Dn

[A(S; r) = A(S′; r)] > 1/2

If no such algorithm exists for any finite CRep, we write CRep = ∞.

We remark that once one has achieved > 1
2 replicability, Theorem 2.1 implies an amplification procedure to achieve any

ρ-replicability parameter using an additional log 1
ρ random bits.

For the rest of the work, we usually omit M and just write CGlob and CRep when clear from context.

A.2. Differential Privacy

Global stability (Bun et al., 2020) and replicability (Ghazi et al., 2021b) (known as ‘pseudo-global stability’ in this context)
were both introduced as a tool to study the widely influential notion of differential privacy, a powerful algorithmic guarantee
promising an algorithm has similar output distributions over neighboring samples.

Definition A.5 (Differential Privacy ((Dwork et al., 2006b;a))). Let M be a statistical task, and ε, δ > 0. Two samples
S, S′ ∈ (Xn) are said to be neighboring if they differ in exactly one coordinate. An algorithm A solving M is said to be
(ε, δ)-differentially private if for any neighboring samples S, S′ and measurable events O ⊂ Y:

Pr[A(S) ∈ O] ≤ eε Pr[A(S′) ∈ O] + δ

We will sometimes use the notation A(S)
(ε,δ)
= A(S′) to denote the above closeness guarantee.

In early works (Bun et al., 2020; Ghazi et al., 2021a;b; 2024; Bun et al., 2023), global stability and its variants played a
key role in bounding the sample complexity of differentially private PAC learning. Quite recently, (Canonne et al., 2024)
expanded this connection by using techniques developed for certificate complexity (Dixon et al., 2023; Woude et al., 2023)
to bound the number of random bits needed to achieve differential privacy, a parameter we’ll call DP complexity.

Definition A.6 (Parametrized DP Complexity). The (n, β, ε, δ)-DP Complexity of a statistical task M is the smallest
integer CDP (n, β, ε, δ) such that there exists an (ε, δ)-DP algorithm on n samples solving M with confidence β using only
CDP (n, β, ε, δ) random bits. If no such algorithm exists for any finite CDP (n, β, ε, δ), we write CDP (n, β, ε, δ) = ∞.

Unlike certificate complexity, it is not clear there is a natural ‘parameter-free’ variant of DP complexity, especially since
the concept frequently is used at many different scales of (ε, δ) in theory and practice, themselves dependent on n and β.
As such, we will focus mostly on parameter-dependent translations in this setting, and define the following ‘parametrized’
variants of g-stable and certificate complexity.

Definition A.7 (Parametrized g-Stable Complexity). The (n, β)-g-stable complexity of a task M, denoted CGlob(n, β), is
log 1

η where η is the largest global stability achieved by any β-confident algorithm on n samples solving M. If no such
algorithm exists, we write CGlob(n, β) = ∞.

Definition A.8 (Parametrized Certificate Complexity). The (n, β)-certificate complexity of a task M, denoted CRep(n, β),
is the smallest number of random bits such that there is a β-confident, better than 1

2 -replicable algorithm on n samples
solving M. If no such algorithm exists, we write CRep(n, β) = ∞.

A.3. User Level Privacy

In (Ghazi et al., 2021b; Bun et al., 2023), the authors take advantage of the strong stability guarantees of replicability
to build ‘user-level’ private algorithms (Levy et al., 2021), a stronger notion of privacy in which each user is thought of
as providing many data points and the goal is to protect against an adversary swapping out a single user’s entire dataset.
Formally, the input dataset S is actually split into subsets S1, . . . , ST coming from T -separate users, and we bound the
algorithms deviation upon switching out one such Si:

Definition A.9 (User-Level Differential Privacy). Let M be a statistical task, n, T ∈ N such that T divides n, and call
samples (S1, . . . , ST ), (S

′
1, . . . , S

′
T ) ∈ (Xn/T )T neighboring if S′

j = Sj for all but one j ∈ [T ]. We call an algorithm A

solving M T -user (ε, δ)-DP if A(S)
(ε,δ)
= A(S′) for all such neighboring data-sets S, S′

13
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User-level DP allows us to tighten the connection between DP complexity and certificate complexity, giving a tight
transformation between the two up to constants for reasonable regimes of ε and δ.

Definition A.10 (User-Level DP Complexity). The (T, ε, δ)-user-level-DP Complexity of a statistical task M is the smallest
integer CDP (T, ε, δ) such that there exists a T -user (ε, δ)-DP algorithm solving M using only CDP (T, ε, δ) random bits.
If no such algorithm exists for any finite CDP (T, ε, δ), we write CDP (T, ε, δ) = ∞.

A.4. PAC Learning

Having established close quantitative connections between globally stable, certificate, and DP complexity, our second focus
is to concretely determine the randomness complexity of a fundamental statistical task: binary classification. We will focus
on the standard PAC framework, in which we have a data domain X and a hypothesis class H = {h : X → {0, 1}}, a
collection of possible labelings of X . Let D be a distribution over labeled samples (X × {0, 1}) and h : X → {0, 1} a
potential labeling. The error of h under D is

errD(h) = Pr
(x,y)∼D

[h(x) ̸= y].

Similarly the empirical error of h on a labeled sample S is

errS(h) = Pr
(x,y)∈S

[h(x) ̸= y].

We write the best possible error achieved over H as

OPTD := inf
h∈H

errD(h).

We call a hypothesis h α-optimal if it achieves error at most OPT + α. An algorithm is said to (agnostic) PAC learn the
class (X , H) if for every α, β > 0, on sufficiently many samples A outputs an α-optimal hypothesis with probability at
least 1− β.

Definition A.11 ((Agnostic) PAC Learning). We say a class (X,H) is PAC-Learnable if ∀α, β > 0 there exists n = n(α, β)
and a (possibly randomized) algorithm A : Xn → P (X ) satisfying

Pr
S∼Dn

[errD(A(S)) > OPTD + α] < β.

Note that PAC-Learning, as formalized above, corresponds to an infinite sequence of statistical tasks {M(X,H)(α)}α>0

parametrized by the accuracy α, namely where the data domain is X = X ×{0, 1}, the output space is all possible labelings
Y = {h : X → {0, 1}}, and the set of accepted solutions is GD := {h ∈ H : errD(H) ≤ OPT + α}. With this in mind,
we may therefore define the ‘error-dependent’ stable/certificate/DP-complexity of a class (X,H) as

CGlob(α) = CGlob(M(α)),

and likewise for certificate and DP complexity. We emphasize this differs from prior works (Bun et al., 2020; Chase et al.,
2024) that focus on g-stable complexity bounds that are independent of the excess error α (a distinction we will discuss
further shortly).

The sample complexity of PAC learning (with no stability constraints) is tightly controlled by a combinatorial parameter
called the VC-dimension:

Definition A.12 (VC Dimension). We say a subset S = {x1, . . . , xd} is shattered by (X,H) if all possible 2d labelings of
S can be achieved by H . The VC dimension of (X,H) is the size of the largest shattered set.

We will need the following classical lemma bounding the number of labelings of any subset of data as a function of the VC
dimension.

Lemma A.13 (The Sauer-Shelah-Perles Lemma (Vapnik & Chervonenkis, 1974; Sauer, 1972; Shelah, 1972)). Let (X,H)
be a hypothesis class. For any n ∈ N and S ⊂ X of size n, the number of labelings of S by hypotheses in H is at most
nO(V C(H)).
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Unlike standard learning, learning under replicability or DP constraints is not possible for every VC class. Instead, these
notions are characterized by a stronger definition arising from online learning called the Littlestone dimension (Bun et al.,
2020; 2023). The notion is based on mistake trees, complete binary trees in which every internal node is labeled by an
element x ∈ X . Every root to leaf path in a depth d+ 1 mistake tree then corresponds to a sequence (x1, y1), . . . , (xd, yd),
where yi ∈ {0, 1} indicates whether the right or left path is taken down the tree. A hypothesis class (X,H) shatters the tree
if for every such path there exists a hypothesis h ∈ H such that h(xi) = yi for all i ≤ d. The Littlestone dimension is the
largest depth of any shattered mistake tree:

Definition A.14 (Littlestone Dimension). The Littlestone dimension of a class (X,H) is the largest depth of any mistake
tree shattered by H .

We note that the Littlestone dimension is always at least as large as the VC dimension.

In (Bun et al., 2020), the authors prove that any class with finite Littlestone dimension d has a universal upper bound on the
g-stable complexity of 2O(d) under the assumption that OPT = 0. (Chase et al., 2024) showed this result cannot extend in
the full agnostic setting, and indeed that no error-independent bound is possible for any infinite class. They ask whether it is
possible to give an error-dependent bound, a question we resolve in the positive in Theorem 2.4.

B. Global Stability: Replication vs Heavy-Hitters
In this section we prove that Definition A.2 (replication global stability) is equivalent to the traditional randomized ‘heavy-
hitters’ variant studied in (Bun et al., 2020; Chase et al., 2023). Given a distribution D over some domain X , an element
x ∈ X is called an η-heavy-hitter if the measure of x in D is at least η. Traditional global stability promises the existence of
a heavy hitter over the output distribution of the algorithm.

Definition B.1 (Heavy-Hitter Global stability (Bun et al., 2020)). Let M be a statistical task. An algorithm A solving M is
said to be η-heavy-hitter globally stable if for large enough n and every distribution D there exists hD such that:

Pr
S,S′∼Dn

[A(S) = hD] ≥ η.

The HH-stable complexity of M, denoted CGlob-HH is the infinum of log( 1η ) taken over all (possibly randomized) η-heavy-
hitter globally stable algorithms solving M.

In (Chase et al., 2023), the authors observe that HH-global stability and global stability as in Definition A.2 differ by at most
a quadratic factor. We prove they are actually the same quantity, a fact we will use later both to move between randomized
and deterministic algorithms, and to move from heavy-hitter bounds to global stability.

Theorem B.2 (Global Stability vs HH-Global Stability). For any statistical task M: CGlob-HH = CGlob

Proof. We remark that any η-globally stable algorithm is automatically η-heavy-hitter globally stable, so CGlob-HH ≥ CGlob
is immediate. Thus it remains to prove CGlob ≥ CGlob-HH.

Write η = 2−CGlob-HH . For any γ, β > 0, we are promised a β-correct, possibly randomized algorithm A such that for any
distribution D there exists a hypothesis hD satisfying

Pr
r,S∼Dn

[A(S) = hD] ≥ η − γ

Naively, A only has replication probability approaching η2. To improve this, the idea is to build a new algorithm that outputs
one of A’s (η − 2γ)-heavy-hitters with probability at least 1− γ. By standard concentration bounds (see e.g. (Kontorovich
& Painsky, 2024)) this can be done simply by running A on O( log(1/γ)η2 ) fresh samples and outputting the most common
hypothesis in the list (breaking ties arbitrarily). Toward this end, denote the list of (η − 2γ)-heavy-hitters by LD, and
observe that for small enough γ ≤ O(η), |LD| ≤ 1

η .

Taking β ≤ O(η) sufficiently small, we can also ensure all elements of LD are correct solutions, i.e. that LD ⊂ GD. We
have therefore arrived at an algorithm AList with the following property: for any distribution D, there exists a list LD ⊂ GD

of size at most 1
η such that

Pr
r,S∼Dn

[AList(S; r) ∈ LD] ≥ 1− γ
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We note algorithms satisfying this guarantee are called ‘|LD|-list-replicable’ (Chase et al., 2023; Dixon et al., 2023).

We are now almost done since conditioned on landing in LD in both runs, the replication probability of AList is at least
1

|LD| ≥ η, and the probability of being outside the list can be taken to arbitrarily small. The only issue is that AList is
randomized. Thus it is sufficient to argue we can de-randomize AList at the cost of increasing the list-failure probability γ to
some corresponding γ′ also arbitrarily small.

We do this simply by passing to the most likely output of AList. Namely define Adet by

Adet(S) := argmax
y∈Y

{Pr[AList(S) = y]},

and note that Adet(S) can be easily computed by simply running AList(S; r) for all choices of internal randomness r and
outputting the most common result (breaking ties arbitrarily). We claim:

Pr
S
[Adet(S) ∈ LD] = Pr

S

[
argmax
y∈Y

{Pr[AList(S) = y]} ∈ LD

]
≥ 1− 2γ

η
.

This follows from the observation that for any sample S whose maximal output is not in LD, the probability of outputting
an element outside of LD is then at least η

2 (either the maximum probability, by assumption achieved by an element outside
of LD is at least η

2 in which case we are done, or is at most η
2 in which case the list elements make up only 1/2 the mass by

assumption). Finally since we may take γ arbitrarily small with respect to η, taking a large enough sample we may make
Adet η − γ′ globally stable for any γ′ > 0, implying CGlob ≥ log 1

η = CGlob-HH as desired.

It will also be useful to have a parametrized version of the above transform:

Corollary B.3. For any statistical task M and η, β > 0, given an η-HH globally stable, β-confident algorithm for M on n
samples, the transform in Theorem B.2 gives an O(η)-globally stable β′-confident algorithm for M on n′ samples, where

β′ ≤ O(β/η) and n′ ≤ n · Õ
(

log 1
β

η2

)
.

Proof. Note that the statement is trivial if β > η, and take γ, γ′ ≤ O(βη) in the proof of Theorem B.2. For such parameters

Adet runs A at most Õ
(

log 1
β

η2

)
times, and has confidence β′ ≤ 2γ/η ≤ β/η (since it outputs an element in LD with at least

this probability, which are correct by the assumption on β).

C. Global Stability and Certificate Complexity
In this section, we prove Theorem 2.1, the (near) equivalence of g-stable and certificate complexity. We repeat the main
result of the section here for convenience.

Theorem C.1 (Global Stability vs Certificate Complexity). For any statistical task M:

CGlob ≤ CRep ≤ CGlob + 1.

Moreover, the number of random bits required to achieve ρ-replicability is at most ⌈CGlob + log(1/ρ)⌉

We start with the easy direction: certificate complexity to global stability. It is easy to see that any better-than-half replicable
algorithm on ℓ-bits is automatically 2−ℓ−1-globally stable (albeit randomized), since there must exist some r ∈ {0, 1}ℓ
which has > 1

2 replication probability. This can be amplified to probability 2−ℓ − η for any η > 0 simply by running the
algorithm many times and taking majority, then made deterministic by Theorem B.2.

Proof of Theorem C.1 (Lower Bound). Recall by Theorem B.2, it is enough to prove for any τ > 0 the existence of a
randomized algorithm A solving M such that for any distribution D

Pr
S,S′∼D,r,r′

[A(S; r) = A(S′; r′)] ≥ 2−CRep − τ

where r and r′ are independent random strings.
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Now by assumption there exists a ( 12 + γ)-replicable algorithm solving M using CRep random bits. By averaging, we then
have that for any distribution D, there exists a string rD ∈ {0, 1}CRep such that

Pr
S,S′∼Dn

[A(S; r) = A(S′; r)] ≥ 1

2
+ γ

and therefore that there exists a ‘canonical hypothesis’ hD such that

Pr
S,S′∼Dn

[A(S; r) = hD] ≥ 1

2
+ γ

Given this, consider the ‘majority amplified’ algorithm Amaj-T on nT samples and the same internal randomness defined as

Amaj-T (S1, . . . , ST ; r) = plurality{A(Si; r)}

breaking ties arbitrarily. Taking T = O
(

log 1
τ

γ2

)
large enough, Chernoff promises

Pr
S∼DnT

[Amaj-T (S; r) = hD] ≥ 1− τ

2
,

so the total collision probability over two runs on independent strings is at least

Pr[A(S; r) = A(S′; r′)] ≥ Pr[r = r′ = rD] · Pr[A(S; rD) = A(S′; rD) | r = r′ = rD]

≥ 2−CRep(1− τ)

as desired.

We now prove the reverse direction, which follows from a careful discretization of (Impagliazzo et al., 2022)’s random
thresholding method. We first give the algorithm in pseudocode.

Algorithm 1 Global Stability → Certificate Complexity

Result: (ρ− τ ′)-replicable, β-confident algorithm on ⌈ 2CGlob−1
ρ ⌉ random strings

Input: (2−CGlob − τ)-globally stable and O(2−CGlob)-confident algorithm A, total ordering ϕ of Y .
Parameters:

• Threshold number T = ⌈ 2CGlob−1
ρ ⌉

• Heavy-Hitter parameter η = 2−CGlob

• Threshold offset τ ≪ γ ≪ η

• Amplification parameter N(γ, β, τ ′)

Algorithm:

1. Run A across N fresh samples S ∼ Dn and let p̂h denote the empirical density of each h ∈ Y

2. Select i ∈ [T ] uniformly at random, and let

Hi := {h : p̂h ≥ η − iγ}

Return argmin
Hi

p̂h (breaking ties via ϕ) or ⊥ if Hi = ∅

Proof of Theorem C.1 (Upper Bound). We prove a slightly stronger result: for any τ ′ > 0, there is a (ρ − τ ′)-replicable
learner using T = ⌈ 2CGlob−1

ρ ⌉ random strings. Achieving ρ > 1
2 + 1

2O(CGlob)
can therefore be done in CGlob + 1 random bits,
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and general ρ may be achieved using ⌈CGlob + log(1/ρ)⌉ bits as desired.7

To prove the stronger statement, first observe that by standard concentration inequalities (see e.g. (Kontorovich & Painsky,

2024)), for large enough T1 ≤ O(
log( 1

βτ′ )

γ2 ) with probability at least 1 − βτ ′ all empirical estimates p̂h in Step (1) of
Algorithm 1 satisfy

|p̂h − p| < γ/3. (2)

Condition on Equation (2) occurring. Choosing τ ≤ O(γ) ≤ O(T−1) sufficiently small, there are at most 1
η hypotheses

of empirical weight greater than η − Tγ. Since A must have an (η − τ)-heavy hitter, there also exists at least one
p̂ ≥ η − τ − γ/3 > η − 2γ/3, so the set of empirical heavy hitters Hi (defined in Algorithm 1 Step 2) is non-empty for any
i and Algorithm 1 will not output ⊥.

Now consider the set of T thresholds {η − γ, η − 2γ, . . . , η − Tγ}. By assumption, at most 1
η − 1 of these thresholds have

a hypothesis with true weight within γ/3 of their value. Thus choosing a random threshold, the probability we select one

with no nearby hypothesis is at least 1 −
1
η−1

T . Conditioned on selecting such a threshold t and Equation (2), the set of
hypotheses with empirical measure greater than t is always the same, so the algorithm always outputs the smallest such
element in the list according to ϕ as desired. In total, it follows the algorithm is

(
2CGlob−1

⌈ρ−1(2CGlob−1)⌉ − τ ′
)

-replicable

Finally, since the algorithm is assumed to be O(2−CGlob)-confident, any true Ω(η)-heavy hitter must also be correct.
Conditioned on Equation (2) Algorithm 1 always outputs such a heavy hitter, so the final algorithm is β-confident as
well.

We note that in the setting of achieving strictly greater than 1
2 replicability, the sample overhead in Theorem C.1 can be

taken as at worst 2O(CGlob), since all parameters τ, τ ′, γ can be set to 2−O(CGlob) and still achieve the desired replicability. We
will use this fact in proving Theorem 2.4.

D. Stability and Differential Privacy
We now prove Theorem 2.2 and Theorem 2.3 connecting global stability and the randomness complexity of differential
privacy. We restate the results in more formality.

Theorem D.1 (Stability Boosting (DP)). There exists a universal constant c > 0 such that for any statistical task M:

1. (Stability to DP): CDP (n, β, ε, δ) ≤ CGlob(n
′, β′) + log(1/ε) + log(1/δ) + log log(1/δ) +O(1)

for any n ≥ n′ ·O(
23CGlob(n,β) log 1

β log 1
δ

ε ), β′ ≥ 2CGlob(n,β) log
1
δ

cε (β2CGlob(n,β)+1)O(
log 1

δ
ε ), and

2. (DP to Stability): CGlob(n, β) ≤ CDP (n
′, β′, ε, δ) +O(1)

for any ε ≤ c√
n′ log(n′)

and δ ≤ c
n′ , n ≥ n′ · Õ

(
22CDP (n,β,ε,δ) log 1

β

)
, and β′ ≥ O(β2CDP (n,β,ε,δ)).

Theorem D.2 (Stability Boosting (User-Level DP)). There exist universal constants c1, c2 > 0 such that for any statistical
task M:

1. (Stability to DP): CDP

(
2CGlob c1 log 1

δ

ε , ε, δ
)
≤ CGlob + log(1/ε) + log(1/δ) + log log(1/δ) +O(1)

2. (DP to Stability): CGlob ≤ CDP (T, ε, δ) +O(1)

where the latter holds for any (T, ε, δ) satisfying ε ≤ c2√
T log(T )

and δ ≤ c2
T .

7Formally, we note there is some discrepancy here in sampling a random threshold for T not a power of 2 when r is a bit-string.
However, in the argument below increasing the number of random strings/thresholds to the nearest power of 2 only helps replicability, so
this is not an actual issue.
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Both Theorem D.1 and Theorem D.2 follow as corollaries of the same underlying stability to DP and DP to stability
transformations. We start by proving the forward direction: a randomness efficient stability-to-DP transform. The key to
achieving low randomness is the following useful observation of (Canonne et al., 2024): any distribution with small support
can be approximately sampled using few random bits.

Lemma D.3 ((Canonne et al., 2024), Lemma 2.10 (rephrased)). For any randomized algorithm M : Xn → Y and η > 0,
there exists an algorithm M ′ using maxx log(|Supp(M(x))|) + log(1/η) random bits such that for every input x, M ′

satisfies:

1. (Closeness): dTV (M(x),M ′(x)) ≤ η

2. (Subset Support): Supp(M ′(x)) ⊆ Supp(M(x))

The result will now follow if we can prove a stability-to-DP transformation with two key properties

1. For every S, the support of A(S) is small

2. With high probability over S, Supp(A(S)) ⊂ GD,

where we recall GD is the set of correct solutions for the task M. The stronger correctness property is needed since applying
Lemma D.3 might otherwise ruin the correctness of our algorithm.

To build such a transformation, we will use the following DP Selection algorithm also used as the main subroutine in the
standard stability-to-DP transformation of prior works (Bun et al., 2020; Ghazi et al., 2021b; Bun et al., 2023).

Theorem D.4 (DP Selection (Korolova et al., 2009; Bun et al., 2016; 2018), as stated in (Bun et al., 2023)). There exists
some c > 0 such that for every ε, δ > 0 and m ∈ N, there is an (ε, δ)-DP algorithm that on input S ∈ Xm, outputs with
probability 1 an element x ∈ X that occurs in S at most c log δ−1

ε fewer times than the mode of S.

We can now state and prove our bounded support, strong correctness stability-to-DP transform:

Lemma D.5. Let M be a statistical task, η, ε, δ > 0, and T = O
(

log(1/δ)
ηε

)
. Given an η-globally stable algorithm A for

M on n = n(β) samples, there exists a T -user (ε, δ)-DP algorithm ADP on n′ = n(ε, δ, β) samples satisfying:

1. Bounded Support: ∀S : |Supp(ADP (S; ))| ≤ T

2. Strong Correctness: PrS∼Dn [Supp(ADP (S; )) ⊂ GD] > 1− β′

for β′ ≤ T ( 2βη )O(
log 1

δ
ε ) and n′ ≤ n(β) ·O

(
log(1/β) log(1/δ)

η3ε

)
Proof. By assumption we are given access to a β-confident algorithm A on n = n(β) samples that has an η-heavy hitter h∗.
In order to ensure strong correctness, we will first need to transform A into a so-called ‘list-replicable’ algorithm AList, that
is one such that there exists a small list L ⊂ GD of correct hypotheses such that for a large enough m:

Pr
S∼Dm

[AList(S) ∈ L] ≥ 1− β.

Assume β ≤ η/2 (else the Lemma statement is trivial as β′ > 1). Then every η/2-heavy-hitter of A must lie in GD.

We build AList by simply running A on O
(

log( 1
β )

η2

)
fresh samples and outputting the most common result. By standard

concentration (Kontorovich & Painsky, 2024), the probability that the output of this procedure is not an η/2-heavy hitter of
A (of which there are at most 2

η ) is at most β as desired, and the algorithm uses at most m = O(n log(1/β)
η2 ) samples.

We will now use AList to generate a dataset of output hypotheses on which to apply DP selection. More formally, fix some
arbitrary ‘dummy’ output y ∈ Y (we use this to ensure the end support is bounded) and consider the following procedure
generating a dataset to run DP-Selection:

1. Draw T = O
(

log(1/δ)
ηε

)
independent size-m samples from D
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2. Add the output of AList on every sample in T to the dataset

3. Add c log 1
δ

ε copies of y for c as in Theorem D.4.

Finally, define ADP (S) to be the algorithm that outputs the result of DP-Selection on the above dataset.

We first analyze correctness. Note it is enough to argue that with probability at least 1− β′, the support is contained in L,
since L ⊂ GD. By Theorem D.4, the only way the support of ADP (S) contains a hypothesis outside L is if AList outputs
h /∈ L in Step 2 at least O(log(1/δ)/ε) times. Since the samples are independent, the probability of this occurring is at most

T∑
j=O(log(1/δ)/ε)

(
T

j

)
βj ≤ T ·

(
2β

η

)O(log(1/δ)/ε)

,

as desired.

It is left to bound the (user-level) differential privacy and support. It is clear the algorithm is T -user (ε, δ)-DP by construction,
taking each user’s data to be a full sample given to AList in Step 2. Furthermore, because the generated dataset always has
a hypothesis appearing more than c log 1

δ

ε times by construction, Theorem D.4 promises the output lies in the constructed
dataset8 which has size at most T + 1 as desired.

The forward direction of both Theorem D.1 and Theorem D.2 are now essentially immediate:

Proof of Theorem D.1 and Theorem D.2 (Item 1). Write C = CGlob(n, β) for notational simplicity, and let A be the
promised 2−C+1-globally stable algorithm. By Lemma D.5, we can convert A into a T -user (ε, δ/2)-DP algorithm
ADP on n samples with T ≤ O

(
2CGlob · log(1/δ)

ε

)
such that for all S, |Supp(A(S; ·))| ≤ T , and with probability at least

1 − β, Supp(ADP (S; ·)) ⊂ GD. Applying Lemma D.3 with η = δ/2 then gives the desired result, where correctness is
maintained since the output of the algorithm on any sample S where Supp(ADP (S; ·)) ⊂ GD remains entirely inside GD

by the subset support property.

We now move on to the reverse direction of both results, which follows from the equivalence of approximate differential
privacy with another strong notion of stability known as perfect generalization (Cummings et al., 2016; Bassily & Freund,
2016; Bun et al., 2023; Ghazi et al., 2024).

Definition D.6 (Perfect Generalization ((Cummings et al., 2016; Bassily & Freund, 2016))). Fix β, ε, δ > 0. An algorithm
A : Xn → Y is called (β, ε, δ)-perfectly-generalizing if for any distribution D over X , there exists a ‘canonical distribution’
SIMD s.t.

Pr
S∼Dn

[A(S)
(ε,δ)
= SIMD] ≥ 1− β

In (Ghazi et al., 2024), the authors show any sufficiently DP algorithm is automatically perfectly generalizing.

Theorem D.7 ((Ghazi et al., 2024) (Theorem 31, rephrased)). There exists a universal constant c > 0 such that if A is
T -user ( c√

T log(T )
, c
T )-DP, then A is (.5, .5, .5)-perfectly generalizing. Moreover SIMD can be taken to be the distribution

A(·, ·), taken over samples and internal randomness.

We remark that as written Theorem 31 in (Ghazi et al., 2024) is only stated for item-level DP, but the result follows
immediately from viewing the user-level DP guarantee as standard DP over input space Xn/T . Combined with Theorem B.2,
it is then elementary to move from DP to global stability:

Proof of Theorem D.1 and Theorem D.2 (Item 2). The proof is exactly the same for Theorem D.1 and Theorem D.2, with
the exception that we do not need to handle sample and confidence decay in the latter. We therefore argue just the former.

By assumption, we are given a β′-confident (ε, δ)-DP algorithm A on ℓ = CDP (n
′, β′, ε, δ) random bits and n′ samples

whose privacy parameters meet the requirements of Theorem D.7. A is therefore (.5, .5, .5)-perfectly generalizing with

8Formally there may be some other measure 0 set of outputs given the exact statement of Theorem D.4, but these can be safely
removed with no loss in parameters since we are in the approximate DP setting.
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respect to A(·, ·). Fix an input sample S where A(S, ·) is (.5, .5)-close to A(·, ·). Write L = Supp(A(S, ·)), and observe
we have the trivial bound |L| ≤ 2ℓ. On the other hand, distributional closeness implies

1 = Pr[A(S, ·) ∈ L] ≤ e1/2 Pr
S∼Dn,r

[A(S, r) ∈ L] +
1

2
,

and re-arranging, that

Pr
S∼Dn,r

[A(S, r) ∈ L] ≥ 1

2e1/2
.

Thus A has a 1
2|L|e1/2 -heavy-hitter. We may now apply our parametrized heavy-hitter to globally stable conversion

(Corollary B.3) to convert A to a β′-confident deterministic globally stable algorithm on n = n′ · Õ( log(1/β)|L|2 ) samples for
β ≤ O(β′|L|) as desired.

E. The Stable Complexity of Agnostic Learning
In this section we bound the certificate complexity of PAC-Learning, resolving a main open question of (Chase et al., 2024)
(stated in the equivalent language of global-stability/list-replicability). We restate the theorem here for convenience.

Theorem E.1 (Certificate Complexity of Agnostic Learning). Let (X,H) be a hypothesis class of Littlestone dimension d.
There exists a β-confident better than 1

2 -replicable learner with

1. Sample Complexity: m(α, β) ≤ exp(poly(d)) poly(α, log(1/β))

2. Certificate Complexity: CRep(α) ≤ poly(d) +O(V C(H) log 1
α )

Moreover, if d = ∞, CRep(α) = ∞ for every α < 1
2 .

Our proof is inspired by (Bun et al., 2023)’s version of (Hopkins et al., 2022)’s realizable-to-agnostic reduction for replicable
learners. (Bun et al., 2023) cannot be used directly due to its substantial reliance on additional randomness (indeed they
actually have randoness scaling not only with confidence β, but with the size of the concept class H which may be infinite
in our case). Nevertheless, we build off the core idea, which uses the following realizable-case ‘list-stable’ learner of (Ghazi
et al., 2021a;b):9

Theorem E.2 (Realizable List-Stable Learning (Ghazi et al., 2021a;b)). Let (X,H) be a hypothesis class of Littlestone
dimension d. There exists a algorithm on n(α, β) ≤ poly(d, α, log(1/β)) samples which outputs a list of α-accurate
hypotheses of size at most exp(poly(d))α−O(1) with probability at least 1− β. Moreover, for every distribution D, the list
has a Ω(1/d)-heavy-hitter, i.e. some hypothesis hD such that

Pr
S
[hD ∈ A(S)] ≥ Ω

(
1

d

)
.

Given the above, the core idea is to run this list-stable learner over all possible labelings of a large enough unlabeled data
sample and return a commonly appearing element with high accuracy over the agnostic distribution. This results in a
randomized learner with a good heavy hitter, which can then be converted to a globally stable learner by Theorem B.2 and
finally a replicable learner with good certificate complexity by Theorem C.1.

Proof of Theorem E.1. Fix β′ = exp(poly(d))α−O(1) to be sufficiently smaller than the list size from Theorem E.2 and let
A be the corresponding promised learner. Consider the following process generating a list of potential hypotheses from A:

1. Draw T = poly(d, log(1/β)) unlabeled samples of size n(α/8, β′) from D, denoted S
(i)
U .

2. Run A over all labelings of each S
(i)
U in the class and denote the resulting hypothesis (multi)set as

C(SU ) := {A(S
(i)
U , h(S

(i)
U )) : h ∈ H, i ∈ [T ]}

9We remark this is not quite as stated in (Ghazi et al., 2021b), which only claims exponential dependence on α. However, polynomial
dependence as stated here is immediate from (Ghazi et al., 2021a)
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Note that by Lemma A.13, the size of C(SU ) as a multiset is at most

|C(SU )| ≤ Tn(α/8, β′)O(V C(H)) exp(poly(d)) ≤ T poly(d, α−O(1))V C(H) exp(poly(d)).

The idea is now that C(SU ) should contain many copies of a heavy hitter from the output list of some optimal labeling
hOPT (which furthermore must be α/2-correct by our confidence assumption). The only issues are 1) C(SU ) may also
contain many bad hypotheses, and 2) |C(SU )| currently depends on T (which depends on the confidence β), so is too large
for our purposes. We can fix both of these problems via a pruning step that removes any high error or non-heavy-hitter
hypotheses. Denote by w(h) the number of times h appears in C(SU ), and consider the following procedure:

1. Draw a new labeled sample SL of
log |C(SU )|+log 1

β

α2 samples

2. Remove any hypothesis h ∈ C(SU ) with high error or low empirical probability:

Pruned(C(SU )) :=

{
h ∈ C(SU ) : errSL

(h) ≤ min
h′∈C(SU )

errSL
(h′) +

3

4
α and w(h) ≥ c′

T

d

}

3. Output a random hypothesis in Pruned(C(SU ))

where c′ > 0 is some constant to be chosen. Note that now, by construction, Pruned(C(SU )) has at most
poly(d/α)V C(H) exp(poly(d)) hypotheses since at most this many can appear Ω(T/d) times.

We now argue correctness and (heavy-hitter) global stability of the procedure (certificate complexity will then follow from
Theorem B.2 and Theorem C.1). By standard uniform convergence bounds, we have that with probability at least 1− β/2
the empirical and true error of every h ∈ C(SU ) are close:

|errD(h)− errSL
(h)| ≤ α

8
.

Conditioned on the above, correctness follows as long as C(SU ) actually contains a good hypothesis:

min
h′∈C(SU )

errSL
(h′) ≤ OPTD +

α

8

since pruning then only keeps hypotheses with empirical error at most 7
8α and therefore of true error at most α as desired.

In fact we will argue not just that this event occurs with probability at least 1− β/2, but that there exists a fixed α/8-optimal
hypothesis hD that appears with this probability. Since our final algorithm outputs a random hypothesis in Pruned(C(SU )),
this implies both our desired accuracy and global stability. To see this, fix some optimal hypothesis hOPT in the class, and
observe that the original set C(SU ) contains T independent runs of A on samples labeled by hOPT (since we run over all
labelings). A is promised to have an α/8-optimal Ω(1/d)-heavy-hitter hD with respect to the distribution DX × hOPT

where the marginal over data is given by D and the labeling is given by hOPT . As a result hD itself is 1
8α-optimal with

respect to the true distribution D. Moreover, since T = poly(d, log(1/β)), a standard Chernoff bound implies hD appears
at least c′T/d times with probability at least 1− β/2 for the appropriate choice of constant c′ > 0, completing the argument.

The above analysis promises the given algorithm is β-correct and has an Ω(exp(poly(d))α−O(1))-heavy hitter. We can
convert this into the desired replicable learner using Theorem B.2 and Theorem C.1 with sample overhead at worst
polynomial in the stability parameter as desired.

It is left to show that when d = ∞, there is no replicable (equivalently, globally stable) learner with better than 1
2 error. To

see this, first observe that a replicable agnostic learner with better than 1
2 error implies a replicable learner in the realizable

case with better than 1
2 error. By (Impagliazzo et al., 2022), this can be boosted to a replicable realizable learner with

arbitrary error α, then transformed to a differentially private one by standard stability-to-privacy reductions (e.g. (Bun et al.,
2020) or the transforms presented in this work). The existence of this final learner then violates the impossibility of private
realizable learning of infinite Littlestone classes (Alon et al., 2019), completing the proof.
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F. Amplifying Replicability
A particularly useful property of replicability is that it can be easily amplified. In the main body, we implicitly gave a
randomness-efficient procedure to amplify better than 1

2 replicability to any ρ based on converting to and from global stability.
Here, we give a randomness inefficient but sample-efficient transform with the added benefit of starting from any starting
replicability parameter ν. The transform is similar to that in (Kalavasis et al., 2023) for so-called ‘TV-indistinguishable’
algorithms, but has improved sample complexity.

Lemma F.1 (Generic Amplification of Replicability). Fix ν, β > 0, and let A be an (1− ν)-replicable, β-correct algorithm
on n = n(ν, β) samples. For any ρ > 0, there exists an efficient blackbox procedure amplifying A to a ρ-replicable,

β′-correct algorithm A′ on Õ
(
n · log(1/β)

ρ2ν2

)
samples for β′ ≤ Õ

(
β log(1/β)

ρ2ν3

)
.

Proof. Since A is (1− ν)-replicable, by Markov’s inequality there must be at least a ν/2-fraction of A’s random strings for
which the distribution A; r) has an O(ν/2)-heavy-hitter. Draw a set T of O

(
log(1/ρ)

ν

)
random strings. The probability that

at least one drawn string has a O(ν/2)-heavy-hitter is at least 1− (1− ν/2)O(log(1/ρ)/ν) ≥ 1− ρ/2.

Condition on this event and consider the algorithm which, given a sample S, outputs a list containing the result of A on S
across all random strings in T :

M(S) := {A(S; r) : r ∈ T}

By assumption, M satisfies the following properties, together called “list-stability” (Ghazi et al., 2021b; Bun et al., 2023):

1. M(S) Outputs a list of size |T |

2. ∃h s.t. h ∈ M(S) with probability at least O(ν).

3. With probability at least β′ = |T |β, all h ∈ T are correct.

We now appeal to Theorem 6.7 in (Bun et al., 2023), which gives a ρ/2-replicable procedure that runs M on

m = Õ

(
log(1/β)

ρ2ν2

)
independent size-n samples,10 and outputs some hypothesis lying in one the resulting M(S) with probability at least 1− β.
By a union bound, all such hypotheses are correct except with probability |T |mβ, and the entire procedure is ρ-replicable as
desired.

10Here Õ hides (at most cubic) logarithmic factors in ρ and ν.

23


