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Abstract
The information within Large Language Mod-001
els (LLMs) quickly becomes outdated, prompt-002
ing the development of various techniques to003
perform knowledge editing with new facts.004
However, existing knowledge editing meth-005
ods often overlook the interconnected nature006
of facts, failing to account for the ripple ef-007
fects caused by changing one piece of informa-008
tion. In our study, we present GMeLLo (Graph009
Memory-based Editing for Large Language010
Models), a simple yet effective memory-based011
method that transitions the Multi-hop Question012
Answering for Knowledge Editing (MQuAKE)013
task into a Knowledge-based Question Answer-014
ing (KBQA) framework. GMeLLo stores all015
relevant facts externally in a Knowledge Graph016
(KG) and directs the language model to engage017
in semantic parsing. This involves translating018
natural language questions into formal queries019
to extract information from the KG. Notably,020
our method eliminates the need to fine-tune021
LLMs, ensuring that edited facts do not cor-022
rupt other information. In our experimental023
findings, we noted a noteworthy enhancement024
of GMeLLo in comparison to state-of-the-art025
model editors on the MQuAKE benchmark—a026
dataset tailored for multi-hop question answer-027
ing, particularly evident when editing multiple028
facts simultaneously.029

1 Introduction030

As the widespread deployment of Large Language031

Models (LLMs) continues, the imperative to main-032

tain their knowledge accuracy and currency, with-033

out incurring extensive retraining costs, becomes034

increasingly evident (Sinitsin et al., 2020). Several035

approaches have been proposed in prior works to036

address this challenge, with some focusing on the037

incremental injection of new facts into language038

models (Rawat et al., 2020; De Cao et al., 2021;039

Meng et al., 2022; Mitchell et al., 2022a). Inter-040

estingly, certain methodologies in the literature di-041

verge from the conventional path of updating model042

weights, opting instead for an innovative strategy 043

involving the use of external memory to store the 044

edits (Mitchell et al., 2022b; Zhong et al., 2023). 045

As LLMs operate as black boxes, modifying one 046

fact might inadvertently alter another, making it 047

challenging to guarantee accurate revisions. In 048

light of this challenge, opting for an external mem- 049

ory system, rather than directly editing the LLMs, 050

emerges as a prudent choice. On a different note, 051

even though information undergoes rapid evolution, 052

the patterns of sentences—various ways to convey 053

meaning—tend to change at a comparatively slower 054

rate. LLMs, trained on extensive sentence corpora 055

(Brown et al., 2020; Rae et al., 2022; Chowdhery 056

et al., 2023), are anticipated to encapsulate a broad 057

spectrum of commonly used sentence structures. 058

Consequently, they serve as invaluable tools for an- 059

alyzing complex relation chains within sentences. 060

This paper introduces GMeLLo, an innovative 061

approach designed to synergize the strengths of 062

LLMs and KG in addressing the multi-hop ques- 063

tion answering task after knowledge editing (Zhong 064

et al., 2023). An illustrative example is presented 065

in Figure 1. Following an update regarding the in- 066

formation of the British Prime Minister, it becomes 067

evident that the corresponding spouse information 068

should also be modified. 069

Specifically, we utilize LLMs to analyze ques- 070

tion sentences, extracting the underlying relation 071

chain. Simultaneously, we employ the KG as an 072

external memory to maintain up-to-date informa- 073

tion, encompassing both the modified and unaltered 074

facts. Ultimately, we translate the relation chain 075

into a formal query using heuristic rules and search 076

for information within the KG. Using LLMs for 077

question analysis ensures coverage of diverse pat- 078

terns, thanks to their extensive training on large 079

datasets, enabling them to understand various rep- 080

resentations of the same meaning. Once the correct 081

relation chain is returned, using a formal query to 082

interrogate the KG ensures precision. Through ex- 083
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Boris Johnson Rishi Sunak

Carrie Symonds Akshata Murty

Who is the current British Prime 
Minister?

Who is married to the British Prime 
Minister?

1-hop QA

2-hop QA

Information evolves over time

Before 2022

Akshata 
Murty

head of 
government

spouse

Rishi 
Sunak UK

Boris 
Johnson

Carrie
Symonds

After 2022

Akshata 
Murty

Rishi 
Sunak UK

Boris 
Johnson

Carrie
Symonds

Figure 1: Dynamic nature of information: Changes over time may trigger subsequent modifications. For instance, a
transition in the British Prime Minister, such as from Boris Johnson to Rishi Sunak, necessitates corresponding
adjustments, like the change in the British Prime Minister’s spouse.

perimentation, GMeLLo demonstrates significantly084

enhanced performance compared to current base-085

line models on the MQuAKE benchmark-multi-086

hop question answering dataset for knowledge edit-087

ing, affirming its effectiveness.088

2 Related Work089

The primary focus of this paper is on knowledge090

editing for multi-hop question answering, with our091

predominant methodology being semantic pars-092

ing. Consequently, we delve into the related work093

within both research domains.094

2.1 Knowledge Editing095

As highlighted in Yao et al. (2023), two paradigms096

exist for editing LLMs: preserving model parame-097

ters and modifying model parameters. In the case098

of preserving model parameters, the introduction of099

additional parameters or external memory becomes100

necessary. The paradigm of additional parameters,101

as presented in (Dong et al., 2022; Hartvigsen et al.,102

2022; Huang et al., 2022), incorporates extra train-103

able parameters into the language model. These104

parameters are trained on a modified knowledge105

dataset, while the original model parameters re-106

main static. On the other hand, memory-based107

models (Mitchell et al., 2022b; Zhong et al., 2023)108

explicitly store all edited examples in memory and109

employ a retriever to extract the most relevant edit110

facts for each new input, guiding the model in gen- 111

erating the edited output. 112

In the case of modifying model parameters, this 113

can be further categorized into meta-learning or 114

locate-and-edit approaches. Meta-learning meth- 115

ods, as discussed in (De Cao et al., 2021; Mitchell 116

et al., 2022a), utilize a hyper network to learn 117

the necessary adjustments for editing LLMs. The 118

locate-then-edit paradigm, as demonstrated in (Dai 119

et al., 2022; Meng et al., 2022, 2023; Li et al., 2023; 120

Gupta et al., 2023), involves initially identifying 121

parameters corresponding to specific knowledge 122

and subsequently modifying them through direct 123

updates to the target parameters. 124

While previous evaluation paradigms have pri- 125

marily focused on validating the recall of edited 126

facts, Zhong et al. (2023) proposed MQuAKE, a 127

benchmark dataset comprising multi-hop questions. 128

This dataset assesses whether edited models cor- 129

rectly answer questions where the response should 130

change as a consequence of edited facts. 131

2.2 Knowledge-based Question Answering 132

Knowledge-based Question Answering (KBQA) 133

(Cao et al., 2023) seeks to provide answers to natu- 134

ral language questions using a knowledge base as 135

its primary information source. Recently, the ad- 136

vent of LLMs has spurred the development of LLM- 137

based KBQA systems. For instance, KB-Coder 138

(Nie et al., 2024) proposes a code-style in-context 139
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learning approach for KBQA, which transforms140

the unfamiliar logical form generation process into141

a more familiar code generation process for LLMs.142

The disparity between the MQuAKE task and143

the KBQA task lies in: 1) MQuAKE does not pro-144

vide a predefined knowledge base, necessitating the145

creation of one from scratch or the identification146

of a suitable existing knowledge base; and 2) Com-147

plex questions in KBQA entail multi-hop reasoning148

over the KB, constrained relations, and numerical149

operations, whereas MQuAKE questions primarily150

revolve around multi-hop reasoning (up to 4-hop).151

Consequently, in our study, we exploit LLMs to152

generate a relation chain instead of tasking them153

with generating a more intricate logical form. This154

approach obviates the need for extensive exper-155

tise, enabling even smaller LLMs like GPT-J-6B to156

effectively analyze linguistic patterns and extract157

relation chains.158

3 GMeLLo: Graph Memory-based159

Editing for Large Language Models160

In this section, we explore the intricacies of our161

innovative knowledge editing method, GMeLLo,162

leveraging the combined strengths of LLMs and163

KGs. Drawing inspiration from memory-based164

knowledge-editing approaches (Mitchell et al.,165

2022b; Zhong et al., 2023), GMeLLo preserves166

the foundational language model in a frozen state167

while storing all edits in an explicit memory. Figure168

2 provides a visual representation of the GMeLLo169

framework.170

3.1 Extracting the Relation Chain of a171

Question Sentence Using LLMs172

Given the rapid pace of change in the world, LLMs’173

training data may become quickly outdated. There-174

fore, we recommend employing LLMs for sentence175

analysis rather than relying on them for direct an-176

swers. This approach is justified by the relatively177

slower evolution of patterns compared to the in-178

tricate details. In this paper, we employ LLMs to179

extract the relation chain from a sentence, encom-180

passing the mentioned entity and relations with181

other unidentified entities. To mitigate varied repre-182

sentations of the same relation, we task LLMs with183

selecting a relation from a predefined list. Take a184

question sentence from the MQuAKE dataset as an185

example,186

• Question: What is the capital of the country187

of citizenship of the child of the creator of188

Eeyore? 189

• Relation Chain: Eeyore->creator->?x->child- 190

>?y->country of citizenship->?z->capital- 191

>?m 192

The presented question necessitates a 4-hop reason- 193

ing process. With "Eeyore" as the known entity in 194

focus, the journey to the final answer involves iden- 195

tifying its creator, moving on to the creator’s child, 196

obtaining the child’s country of citizenship, and 197

culminating with the retrieval of the country’s cap- 198

ital. The relation chain encapsulates all essential 199

information for arriving at the conclusive answer. 200

To ensure that LLMs comprehend the task of ex- 201

tracting the relation chain and generate output in a 202

structured template, we employ in-context learning 203

(Dong et al., 2023). This technique involves pro- 204

viding LLMs with a set of examples in the prompt, 205

guiding them through the desired output format. 206

3.2 Utilizing KGs for Storing Correlated 207

Facts to Enhance Multi-hop Reasoning 208

KGs play a pivotal role in enhancing the capabil- 209

ities of LLMs by offering external knowledge for 210

improved inference and interpretability, as demon- 211

strated by recent studies (Pan et al., 2023; Rawte 212

et al., 2023). Unlike conventional approaches 213

that rely on question templates for each relation 214

type (Petroni et al., 2019; Meng et al., 2022), and 215

then store the updated information in an external 216

memory as a list of separated sentence statements 217

(Zhong et al., 2023), we represent information as a 218

graph to preserve inherent connections. 219

In our approach, we consolidate all relevant in- 220

formation within a KG. Rather than constructing a 221

new external memory specifically for updated data, 222

we opt for a more efficient strategy—directly up- 223

dating the existing KG. This not only simplifies the 224

information storage process but also leverages the 225

inherent connectivity within the graph, providing a 226

more cohesive and context-rich representation of 227

correlated facts. 228

Our mechanism offers an additional advantage 229

by storing both updated and unchanged facts. This 230

approach facilitates the identification of conflicts 231

between facts. In contrast, if only updated facts 232

are explicitly stored, detecting inconsistencies be- 233

tween updated facts and unchanged ones becomes 234

challenging, as the latter are not explicitly recorded. 235

We provide further details on this matter in Section 236

4.5.2. 237
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capital

Chris

UK London

John

country of citizenship

Forster
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Howards
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Knowledge Graph as
External Memory

PREFIX ent: <http://www.kg/entity/>
PREFIX rel: <http://www.kg/relation/>
SELECT DISTINCT ?ml WHERE {   
ent:E0 rel:R0 ?x.   
?x rel:R1 ?y.   
?y rel:R2 ?z.   
?z rel:R3 ?m.   
?m rdfs:label ?ml.
}

Formal Query

Multi-hop question: 
What is the capital of the country of 
citizenship of the child of the creator of 
Eeyore?

Eeyore ?x

creator child
country of 
citizenship capital

?y ?z ?m

Relation Chain

Multi-hop QA Dataset

…………………………
…………………………
…………………………
………………………..

LLM-based Extraction of 
Entities and Relations

Format Transformation

Answer
London

Explicit Representation 
of Information

KBQA

Figure 2: The illustration delineates our proposed method, GMeLLo. Commencing the process, we establish a KG
either by extracting information from the QA dataset or by utilizing an existing KG as the foundational external
memory. If there are updates to the information, we directly modify the KG. Simultaneously, we leverage LLMs to
extract the primary relation chain from a given multi-hop question, capturing the known entity and its relationships
with other unidentified entities. Following the acquisition of the relation chain, we transform it into a formal
query format, such as SPARQL. Armed with the KG and the formal query, we employ Knowledge-based Question
Answering (KBQA) (Lan et al., 2022) to deduce the final answer.

3.3 Converting the Relation Chain into a238

Formal Query for Retrieving Updated239

Information from KGs240

Once the relation chain is obtained, the next step241

involves extracting the known entity and the re-242

lations from the relation chain, integrating them243

into a formal query template. To optimize the re-244

trieval process from a KG, we enhance efficiency245

by initially mapping entity and relation strings to246

their corresponding identifiers within the KG. This247

mapping information is conveniently stored in a248

separate file.249

For instance, consider a KG represented in RDF1250

format and a corresponding SPARQL2 query. The251

relation chain elucidated in Section 3.1 should be252

represented as follows, underscoring the seamless253

integration of the obtained information into a struc-254

tured query framework.255

PREFIX ent: <http://www.kg/entity/>256

PREFIX rel: <http://www.kg/relation/>257

SELECT DISTINCT ?ml WHERE {258

ent:E0 rel:R0 ?x.259

?x rel:R1 ?y.260

1https://www.w3.org/RDF/
2https://www.w3.org/TR/sparql11-query/

?y rel:R2 ?z. 261

?z rel:R3 ?m. 262

?m rdfs:label ?ml. 263

} 264

In this context, "ent" and "rel" serve as prefixes 265

for entity and relation, respectively. The identifier 266

"E0" uniquely represents "Eeyore" within the KG, 267

while the identifiers for "creator," "child," "country 268

of citizenship," and "capital" are denoted as "R0", 269

"R1", "R2", and "R3" respectively. After identify- 270

ing the entity "?m", we retrieve its string label "ml" 271

as the final answer. 272

In conclusion, we harness the powerful capa- 273

bilities of LLMs to analyze the question sentence 274

and extract the relation chain—the foundation of 275

a formal query. We systematically store all perti- 276

nent information, encompassing both updated and 277

unchanged facts, within a KG. Armed with the for- 278

mal query and the KG, our approach empowers 279

us to conduct multi-hop question answering in a 280

Knowledge-based Question Answering (KBQA) 281

(Lan et al., 2022) fashion. Beyond efficiency, our 282

GMeLLo approach stands out by offering explain- 283

ability, a facet that will be elaborated upon in the 284

next section. 285
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#Edited instances
MQuAKE-CF MQuAKE-T

1 100 1000 3000 1 100 500 1868

Base Model Method

GPT-J MEMIT 12.3 9.8 8.1 1.8 4.8 1.0 0.2 0.0
GPT-J MEND 11.5 9.1 4.3 3.5 38.2 17.4 12.7 4.6
GPT-J MeLLo 20.3 12.5 10.4 9.8 85.9 45.7 33.8 30.7
GPT-J GMeLLo 30.0 30.0 30.0 30.0 74.3 74.3 74.3 74.3

Vicuna-7B MeLLo 20.3 11.9 11.0 10.2 84.4 56.3 52.6 51.3
Vicuna-7B GMeLLo 30.4 30.4 30.4 30.4 65.6 65.6 65.6 65.6

GPT-3 MeLLo 68.7 50.5 43.6 41.2 91.1 87.4 86.2 85.5
GPT-3 GMeLLo 67.6 67.6 67.6 67.6 85.7 85.7 85.7 85.7

Table 1: Performance results of GMeLLo (ours) on MQuaKE-CF and MQuaKE-T using GPT-J, Vicuna-7B, or
GPT-3 (text-davinci-003) as the base language model. Following the approach of Zhong et al. (2023), we group
instances in batches of size k, where k takes values from 1, 100, 1000, 3000 for MQuaKE-CF and 1, 100, 500, 1868
for MQuaKE-T. The metric is multi-hop accuracy.

4 Experiment286

Within our GMeLLo framework, we harness the287

analytical capabilities of LLMs to interpret sen-288

tences rather than tasking them with direct question-289

answering. In the upcoming section, we will con-290

duct experiments to demonstrate the effectiveness291

and superiority of employing our GMeLLo method-292

ology.293

4.1 Experiment Setup294

4.1.1 Dataset295

Our experiment centers on the multi-hop question-296

answering dataset, MQuAKE (Zhong et al., 2023).297

This dataset comprises MQuAKE-CF3, designed298

for counterfactual edits, and MQuAKE-T, tailored299

for temporal knowledge updates. These datasets300

enable the evaluation of model editors under sce-301

narios involving counterfactual changes and real-302

world temporal updates.303

Table 2 provides a summary of the statistics for304

the MQuAKE-CF and MQuAKE-T datasets. The305

MQuAKE-CF dataset comprises 3,000 N-hop ques-306

tions (N ∈ {2, 3, 4}), each linked to one or more307

edits. This dataset functions as a diagnostic tool308

for examining the effectiveness of knowledge edit-309

ing methods in handling counterfactual edits. The310

MQuAKE-T dataset consists of 1,868 instances,311

each associated with a real-world fact change. Its312

3Due to constrained computational resources, our experi-
ments on MQuAKE-CF are carried out on a randomly sam-
pled subset of the complete dataset, comprising 3000 instances
(1000 instances for each of 2, 3, 4-hop questions), aligning
with the experiments outlined in Zhong et al. (2023).

#Edits 2-hop 3-hop 4-hop Total

MQuaKE-CF

1 513 356 224 1,093
2 487 334 246 1,067
3 - 310 262 572
4 - - 268 268
All 1,000 1,000 1,000 3,000

MQuaKE-T 1 (All) 1,421 445 2 1,868

Table 2: Data statistics of MQuAKE

purpose is to evaluate the efficacy of knowledge 313

editing methods in updating obsolete information 314

with contemporary, factual data. 315

4.1.2 Language Models 316

Similar to MeLLo, we broaden our investigation 317

by integrating three robust language models into 318

our framework. This expansion allows for a com- 319

prehensive comparison with baseline models, pro- 320

viding a more nuanced evaluation of our approach. 321

Specifically, we leverage GPT-J (6B) (Wang and 322

Komatsuzaki, 2021), vicuna-7B (Chiang et al., 323

2023), and text-davinci-003 (Ouyang et al., 2022). 324

4.1.3 Baseline Models 325

To demonstrate the effectiveness of our approach, 326

we conduct comparisons with the following state- 327

of-the-art knowledge editing methodologies. 328

• MEND (Mitchell et al., 2022a). It trains a 329

hypernetwork to generate weight updates by 330

transforming raw fine-tuning gradients based 331

on an edited fact. 332
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• MEMIT (Meng et al., 2023). It updates feed-333

forward networks across various layers to in-334

corporate all relevant facts.335

• MeLLo (Zhong et al., 2023). It employs a336

memory-based approach for multi-hop ques-337

tion answering, storing all updated facts in an338

external memory. In contrast to our GMeLLo,339

their approach retains only the updated facts,340

with each fact stored as a separate sentence.341

4.1.4 Evaluation Metric342

Building upon the framework proposed by Zhong343

et al. (2023), our evaluation employs the following344

metrics to assess the effectiveness of edits:345

• Edit-wise success rate: gauging the successful346

recall of facts.347

• Instance-wise accuracy: assessing the model’s348

ability to recall all individual single-hop facts349

within multi-hop instances.350

• Multi-hop accuracy: evaluating the model’s351

accuracy in answering multi-hop questions.352

Given our paper’s primary focus on multi-hop ques-353

tion answering, we employ "multi-hop accuracy"354

as the main metric to assess the accuracy of both355

the original and edited language models in handling356

multi-hop questions.357

4.2 Implementation Details and Key Findings358

Given that the MQuAKE datasets provide both359

triples information and rewrite information, we360

construct a knowledge graph by connecting all the361

triples information. Subsequently, we modify the362

triple information based on the provided rewrite in-363

formation to generate an updated knowledge graph.364

Due to constrained computational resources, we365

opted to evaluate only the first multi-hop question366

in the MQuAKE dataset for our GMeLLo, rather367

than testing all three. To improve the understanding368

of this task by LLMs and ensure outputs conform369

to a specified format, we default to employing a370

3-shot learning approach. This involves presenting371

the model with one 2-hop question sample, one372

3-hop question sample, and one 4-hop question373

sample. To achieve comparable performance, we374

supplied Vicuna-7B with an additional set of 4-375

hop question sample. The reason will be discussed376

in Section 4.5.1. Due to GPT-J and Vicuna-7B’s377

limitation in adhering to the desired output format,378

we establish a heuristic rule to extract essential379

information, outlined as follows:380

0

5

10

15

20

25

30

35

1 100 1000 3000

MEMIT MEND MeLLo GMeLLo

Figure 3: Multi-hop performance comparison of GPT-
J before and after editing on MQuAKE-CF, utilizing
different knowledge editing methods. The evaluation is
conducted with varying numbers of edited instances (k)
selected for editing, where k ranges from 1 to 3000.

• Narrow the attention to the output sentence 381

containing the "->" indicator. 382

• Divide the sentence based on the "->" delim- 383

iter. 384

• Consider the initial segment as the predicted 385

entity, and subsequently, process the follow- 386

ing segments sequentially if they correspond 387

to relations in the predefined relation list. 388

As illustrated in Table 1, our GMeLLo demon- 389

strates significantly superior performance com- 390

pared to state-of-the-art models on the MQuAKE- 391

CF dataset, exhibiting an approximately 20% im- 392

provement when editing 3000 instances simultane- 393

ously. The sole source of error stems from the 394

extraction of relation chains using LLMs. The 395

recording of all fact edits in the KG eliminates 396

the possibility of errors during fact retrieval. It is 397

important to note that the relation chain remains 398

consistent regardless of information updates. This 399

confers a distinct advantage to our GMeLLo. As 400

depicted in Figure 3, the integration of the latest in- 401

formation into our KG allows GMeLLo to sustain 402

a consistent performance, even with an increasing 403

number of edits. Nevertheless, in MeLLo, the ex- 404

pansion of external memory alongside a growing 405

number of edited facts may result in slower and 406

less accurate comparisons with the retriever (Izac- 407

ard et al., 2022). 408

4.3 Breakdown Results on MQuAKE-CF 409

Tables 3 and 4 display the detailed results for 410

MQuAKE-CF when employing GPT-J as the foun- 411

dational model. Our analysis reveals that 412
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2-hop 3-hop 4-hop All

MEND 13.9 11.3 9.5 11.5
MEMIT 22.5 6.0 8.4 12.3

GMeLLo 54.8 27.0 8.2 30.0

Table 3: Multi-hop performance breakdown on
MQuAKE-CF for 2,3,4-hop questions using GPT-J as
the base model.

# Edits= 1 2 3 4 All

MEND 16 11 7.3 4.4 11.5
MEMIT 20.5 9.8 5.5 2.6 12.3

GMeLLo 34.5 34.4 24.8 5.2 30.0

Table 4: Breakdown of multi-hop performance on
MQuAKE-CF for questions with 1, 2, 3, 4 edits, utiliz-
ing GPT-J as the base model in this experiment.

• In 2-hop and 3-hop question answering, our413

method, GMeLLo, demonstrates twice the414

performance of the next best baseline. Fur-415

thermore, in 4-hop question answering, our416

method achieves comparable performance417

with the other two baseline models.418

• In question answering with various edits, our419

model, GMeLLo, significantly outperforms420

the other two baseline models.421

4.4 Performance in Addressing Single-Hop422

Questions423

Although GMeLLo is primarily tailored for multi-424

hop question answering, it is adept at handling425

single-hop questions as well. As evidenced in Ta-426

ble 5, GMeLLo attains performance levels compa-427

rable to those of other approaches, even under the428

rigorous evaluation criteria of an exact match. In429

future iterations, we plan to implement semantic430

matching instead of relying on exact matches to431

extract more correct responses from LLMs. This432

involves identifying semantic equivalences, such433

as recognizing that "founder" which conveys the434

same meaning as "founded by" as correct output.435

4.5 Futher Analyais436

This subsection presents additional analyses con-437

ducted to identify errors in our experiments, show-438

case the advantages of employing GMeLLo, and439

explore potential applications.440

Base Model Method Edit-wise Instance-wise

GPT-J
MEND 72.8 59.6

MEMIT 97.4 94.0
GMeLLo 87.7 69.6

Vicuna-7B
MEND 65.2 47.6

MEMIT 96.6 84.0
GMeLLo 95.4 84.9

Table 5: Performance results for both edit-wise and
instance-wise evaluations on MQuAKE-CF (with a max-
imum of 4 edits) are presented for baseline knowledge
editing methods and our GMeLLo, utilizing two base
models: GPT-J and Vicuna-7B. Each instance’s associ-
ated edits are considered independently.

4.5.1 Error Analysis 441

Through our comprehensive comparative analysis, 442

it became evident that GMeLLo consistently out- 443

performs existing models in this specific task, es- 444

pecially when editing multiple instances. Among 445

the three base models, Vicuna-7B demonstrates 446

inferior performance compared to the other two, 447

despite being provided with an additional 4-hop 448

question answering sample in the prompt. 449

Following an in-depth error analysis, we iden- 450

tified that Vicuna exhibits more unconventional 451

behavior. Instead of selecting a relation from the 452

predefined list, it tends to create its own defined 453

relations. For instance, it prefers using "citizen" 454

to convey meaning rather than simply outputting 455

"country of citizenship." This highlights the im- 456

portance of prioritizing the consideration of mean- 457

ing over strict exact matches in the mapping pro- 458

cess—an aspect we plan to address in our future 459

work. Another concern arises from the fact that, 460

while Vicuna consistently identifies relations ac- 461

curately—examples include "head of state" and 462

"country of citizenship"—it frequently makes er- 463

rors in their sequencing. 464

Moreover, our analysis uncovered some incon- 465

sistencies in the MQuAKE dataset. For instance, 466

• Question_1: Who founded The Christian Sci- 467

ence Monitor? 468

• Multi-hop Relation in MQuAKE-CF: The 469

Christian Science Monitor->headquaters 470

location->?x->founded by->?y 471

• Prediction of Multi-hop Relations by Vicuna- 472

7B: The Christian Science Monitor->founded 473

by->?x 474
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• Question_2: Who is the head of state of the475

country where the child of Kyle Reese has476

citizenship?477

• Multi-hop Relation in MQuAKE-T: Kyle478

Reese->Spouse->?x->child->?y->country of479

citizenship->?z->head of state->?m480

• Prediction of Multi-hop Relations by Vicuna-481

7B: Kyle Reese->child->?x->country of482

citizenship->?y->head of state->?z483

While LLMs may accidentally provide correct484

answers, discerning the "headquarters location"485

from the first question and the "spouse" relation486

from the second question based solely on the ques-487

tion sentences is challenging.488

4.5.2 Detection of Factual Inconsistencies489

Throughout our experiments, we observed that si-490

multaneous editing of numerous instances could491

lead to factual inconsistencies. For instance, the492

capital relationship might be exist in multiple ques-493

tions. In a scenario from the counterfactual dataset,494

an edit changes the capital of one country to another495

city. However, to accurately answer the subsequent496

question, knowledge of the correct capital for that497

country is essential.The utilization of explicit ex-498

ternal memory for storing all pertinent information,499

encompassing both updated and unchanged facts,500

clearly underscores these issues. Moreover, estab-501

lishing rules, such as defining that a country should502

only have one capital, proves effective in prevent-503

ing and addressing these types of inconsistencies.504

4.5.3 Explainability505

Illustrated by the yellow node path in Figure 2, our506

GMeLLo not only delivers answers but also offers507

traceability. This implies that we can retrieve the508

path leading to the obtained answer. Utilizing the509

clarity inherent in KG, GMeLLo is interpretable510

to a certain degree, providing a transparent under-511

standing of the basis behind its responses.512

4.5.4 Domain-specific Application513

In the MQuAKE dataset, we establish direct con-514

nections among all triples to construct the KG. In515

cases where no triples are available, we can lever-516

age the capabilities of LLMs to map diverse sen-517

tence representations into relation triples, as illus-518

trated in Table 6. This process aligns with our519

endeavors in extracting relation chains.520

Questions Relation

Where did x graduate from?
educated_at(x,y)In which university did x study?

What is x’s alma mater?

What did x do for a living?
occupation(x, y)What is x’s job?

What is the profession of x?

Who is x’s spouse?
spouse(x, y)Who did x marry?

Who is x married to?

Table 6: Mapping natural language sentences to
knowledge-base relations, illustrating the inverse pro-
cess discussed by Levy et al. (2017) and Zhong et al.
(2023), which can be implemented similarly to the rela-
tion chain extraction in our GMeLLo.

Although LLMs contain a wealth of informa- 521

tion, they may not be privy to certain domain- 522

specific confidential details. Moreover, the avail- 523

able domain-specific data might fall short for 524

training an LLM from the ground up, adding to 525

the substantial resources required. Nevertheless, 526

domain-specific databases should be able to sup- 527

port knowledge graph construction. In such cases, 528

our GMeLLo approach serves as a crucial bridge, 529

allowing the harnessing of LLMs’ formidable capa- 530

bilities without the necessity of revealing sensitive 531

information. 532

5 Conclusion 533

In this paper, we present a memory-based knowl- 534

edge editing approach tailored for multi-hop ques- 535

tion answering. This method leverages the capa- 536

bilities of LLMs to analyze question sentences and 537

generate a relation chain, rather than providing 538

direct answers to the questions. The rationale be- 539

hind this lies in the observation that linguistic pat- 540

terns change more slowly than specific information. 541

We construct the KG directly from the dataset and 542

transform the relation chain, extracted by LLMs, 543

into a formal query to retrieve information from 544

the KG. This approach capitalizes on the strengths 545

of both LLMs and KGs—leveraging the high cov- 546

erage of LLMs and the precision of using KGs. By 547

utilizing LLMs to comprehend most sentences and 548

KBQA to provide accurate and explainable results, 549

we achieve a synergy between the two methodolo- 550

gies. 551
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Limitations552

Nevertheless, it’s important to note that this inves-553

tigation is still in its early stages. Although our554

performance surpasses that of baseline approaches,555

especially the multi-hop question answering when556

editing multiple facts simultaneously, we recognize557

the potential for further improvement. Looking558

ahead, our future plans involve enhancing GMeLLo559

in the following key areas:560

• Experiment with more sophisticated prompts,561

such as Chain of Thought (CoT) (Wei et al.,562

2022), to elevate performance.563

• Emphasize the identification of semantically564

similar relations, aiming to mitigate potential565

confusion between them and thereby enhance566

overall performance.567

• Contrast the output of LLMs with the golden568

relations in terms of semantics, prioritiz-569

ing meaningful matches over exact verbatim570

matches, to yield more correct responses.571

• Pioneering the integration of the strengths in-572

herent in both LLMs and KGs, we aim to573

extend their application to diverse research574

endeavors.575

References576

Tom Brown, Benjamin Mann, Nick Ryder, Melanie577
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind578
Neelakantan, Pranav Shyam, Girish Sastry, Amanda579
Askell, Sandhini Agarwal, Ariel Herbert-Voss,580
Gretchen Krueger, Tom Henighan, Rewon Child,581
Aditya Ramesh, Daniel Ziegler, Jeffrey Wu, Clemens582
Winter, Chris Hesse, Mark Chen, Eric Sigler, Ma-583
teusz Litwin, Scott Gray, Benjamin Chess, Jack584
Clark, Christopher Berner, Sam McCandlish, Alec585
Radford, Ilya Sutskever, and Dario Amodei. 2020.586
Language models are few-shot learners. In Ad-587
vances in Neural Information Processing Systems,588
volume 33, pages 1877–1901. Curran Associates,589
Inc.590

Yong Cao, Xianzhi Li, Huiwen Liu, Wen Dai, Shuai591
Chen, Bin Wang, Min Chen, and Daniel Hershcovich.592
2023. Pay more attention to relation exploration for593
knowledge base question answering. In Findings of594
the Association for Computational Linguistics: ACL595
2023, pages 2119–2136, Toronto, Canada. Associa-596
tion for Computational Linguistics.597

Wei-Lin Chiang, Zhuohan Li, Zi Lin, Ying Sheng,598
Zhanghao Wu, Hao Zhang, Lianmin Zheng, Siyuan599
Zhuang, Yonghao Zhuang, Joseph E. Gonzalez, Ion600

Stoica, and Eric P. Xing. 2023. Vicuna: An open- 601
source chatbot impressing gpt-4 with 90%* chatgpt 602
quality. 603

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin, 604
Maarten Bosma, Gaurav Mishra, Adam Roberts, Paul 605
Barham, Hyung Won Chung, Charles Sutton, Sebas- 606
tian Gehrmann, et al. 2023. Palm: Scaling language 607
modeling with pathways. Journal of Machine Learn- 608
ing Research, 24(240):1–113. 609

Damai Dai, Li Dong, Yaru Hao, Zhifang Sui, Baobao 610
Chang, and Furu Wei. 2022. Knowledge neurons in 611
pretrained transformers. In Proceedings of the 60th 612
Annual Meeting of the Association for Computational 613
Linguistics (Volume 1: Long Papers), pages 8493– 614
8502, Dublin, Ireland. Association for Computational 615
Linguistics. 616

Nicola De Cao, Wilker Aziz, and Ivan Titov. 2021. Edit- 617
ing factual knowledge in language models. In Pro- 618
ceedings of the 2021 Conference on Empirical Meth- 619
ods in Natural Language Processing, pages 6491– 620
6506, Online and Punta Cana, Dominican Republic. 621
Association for Computational Linguistics. 622

Qingxiu Dong, Damai Dai, Yifan Song, Jingjing Xu, 623
Zhifang Sui, and Lei Li. 2022. Calibrating factual 624
knowledge in pretrained language models. In Find- 625
ings of the Association for Computational Linguistics: 626
EMNLP 2022, pages 5937–5947, Abu Dhabi, United 627
Arab Emirates. Association for Computational Lin- 628
guistics. 629

Qingxiu Dong, Lei Li, Damai Dai, Ce Zheng, Zhiyong 630
Wu, Baobao Chang, Xu Sun, Jingjing Xu, Lei Li, and 631
Zhifang Sui. 2023. A survey on in-context learning. 632

Anshita Gupta, Debanjan Mondal, Akshay Sheshadri, 633
Wenlong Zhao, Xiang Li, Sarah Wiegreffe, and Niket 634
Tandon. 2023. Editing common sense in transform- 635
ers. In Proceedings of the 2023 Conference on Empir- 636
ical Methods in Natural Language Processing, pages 637
8214–8232. 638

Thomas Hartvigsen, Swami Sankaranarayanan, Hamid 639
Palangi, Yoon Kim, and Marzyeh Ghassemi. 2022. 640
Aging with grace: Lifelong model editing with dis- 641
crete key-value adaptors. In NeurIPS 2022 Workshop 642
on Robustness in Sequence Modeling. 643

Zeyu Huang, Yikang Shen, Xiaofeng Zhang, Jie Zhou, 644
Wenge Rong, and Zhang Xiong. 2022. Transformer- 645
patcher: One mistake worth one neuron. In The 646
Eleventh International Conference on Learning Rep- 647
resentations. 648

Gautier Izacard, Mathilde Caron, Lucas Hosseini, Sebas- 649
tian Riedel, Piotr Bojanowski, Armand Joulin, and 650
Edouard Grave. 2022. Unsupervised dense informa- 651
tion retrieval with contrastive learning. Transactions 652
on Machine Learning Research. 653

Yunshi Lan, Gaole He, Jinhao Jiang, Jing Jiang, 654
Wayne Xin Zhao, and Ji-Rong Wen. 2022. Complex 655
knowledge base question answering: A survey. IEEE 656
Transactions on Knowledge and Data Engineering. 657

9

https://proceedings.neurips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://doi.org/10.18653/v1/2023.findings-acl.133
https://doi.org/10.18653/v1/2023.findings-acl.133
https://doi.org/10.18653/v1/2023.findings-acl.133
https://lmsys.org/blog/2023-03-30-vicuna/
https://lmsys.org/blog/2023-03-30-vicuna/
https://lmsys.org/blog/2023-03-30-vicuna/
https://lmsys.org/blog/2023-03-30-vicuna/
https://lmsys.org/blog/2023-03-30-vicuna/
https://doi.org/10.18653/v1/2022.acl-long.581
https://doi.org/10.18653/v1/2022.acl-long.581
https://doi.org/10.18653/v1/2022.acl-long.581
https://doi.org/10.18653/v1/2021.emnlp-main.522
https://doi.org/10.18653/v1/2021.emnlp-main.522
https://doi.org/10.18653/v1/2021.emnlp-main.522
https://doi.org/10.18653/v1/2022.findings-emnlp.438
https://doi.org/10.18653/v1/2022.findings-emnlp.438
https://doi.org/10.18653/v1/2022.findings-emnlp.438
http://arxiv.org/abs/2301.00234
https://openreview.net/forum?id=jKN1pXi7b0
https://openreview.net/forum?id=jKN1pXi7b0
https://openreview.net/forum?id=jKN1pXi7b0


Omer Levy, Minjoon Seo, Eunsol Choi, and Luke Zettle-658
moyer. 2017. Zero-shot relation extraction via read-659
ing comprehension. In Proceedings of the 21st Con-660
ference on Computational Natural Language Learn-661
ing (CoNLL 2017), pages 333–342.662

Xiaopeng Li, Shasha Li, Shezheng Song, Jing Yang, Jun663
Ma, and Jie Yu. 2023. Pmet: Precise model editing664
in a transformer.665

Kevin Meng, David Bau, Alex Andonian, and Yonatan666
Belinkov. 2022. Locating and editing factual asso-667
ciations in gpt. In Advances in Neural Information668
Processing Systems, volume 35, pages 17359–17372.669
Curran Associates, Inc.670

Kevin Meng, Arnab Sen Sharma, Alex Andonian,671
Yonatan Belinkov, and David Bau. 2023. Mass edit-672
ing memory in a transformer. The Eleventh Inter-673
national Conference on Learning Representations674
(ICLR).675

Eric Mitchell, Charles Lin, Antoine Bosselut, Chelsea676
Finn, and Christopher D Manning. 2022a. Fast model677
editing at scale. In International Conference on678
Learning Representations.679

Eric Mitchell, Charles Lin, Antoine Bosselut, Chelsea680
Finn, and Christopher D. Manning. 2022b. Memory-681
based model editing at scale. In International Con-682
ference on Machine Learning.683

Zhijie Nie, Richong Zhang, Zhongyuan Wang, and684
Xudong Liu. 2024. Code-style in-context learning685
for knowledge-based question answering.686

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida,687
Carroll Wainwright, Pamela Mishkin, Chong Zhang,688
Sandhini Agarwal, Katarina Slama, Alex Ray, John689
Schulman, Jacob Hilton, Fraser Kelton, Luke Miller,690
Maddie Simens, Amanda Askell, Peter Welinder,691
Paul F Christiano, Jan Leike, and Ryan Lowe. 2022.692
Training language models to follow instructions with693
human feedback. In Advances in Neural Information694
Processing Systems, volume 35, pages 27730–27744.695
Curran Associates, Inc.696

Shirui Pan, Linhao Luo, Yufei Wang, Chen Chen, Ji-697
apu Wang, and Xindong Wu. 2023. Unifying large698
language models and knowledge graphs: A roadmap.699
arXiv preprint arXiv:2306.08302.700

Fabio Petroni, Tim Rocktäschel, Sebastian Riedel,701
Patrick Lewis, Anton Bakhtin, Yuxiang Wu, and702
Alexander Miller. 2019. Language models as knowl-703
edge bases? In Proceedings of the 2019 Confer-704
ence on Empirical Methods in Natural Language Pro-705
cessing and the 9th International Joint Conference706
on Natural Language Processing (EMNLP-IJCNLP),707
pages 2463–2473, Hong Kong, China. Association708
for Computational Linguistics.709

Jack W. Rae, Sebastian Borgeaud, Trevor Cai, Katie710
Millican, Jordan Hoffmann, Francis Song, John711

Aslanides, Sarah Henderson, Roman Ring, Susan- 712
nah Young, Eliza Rutherford, Tom Hennigan, Ja- 713
cob Menick, Albin Cassirer, Richard Powell, George 714
van den Driessche, Lisa Anne Hendricks, Mari- 715
beth Rauh, Po-Sen Huang, Amelia Glaese, Jo- 716
hannes Welbl, Sumanth Dathathri, Saffron Huang, 717
Jonathan Uesato, John Mellor, Irina Higgins, Anto- 718
nia Creswell, Nat McAleese, Amy Wu, Erich Elsen, 719
Siddhant Jayakumar, Elena Buchatskaya, David Bud- 720
den, Esme Sutherland, Karen Simonyan, Michela Pa- 721
ganini, Laurent Sifre, Lena Martens, Xiang Lorraine 722
Li, Adhiguna Kuncoro, Aida Nematzadeh, Elena 723
Gribovskaya, Domenic Donato, Angeliki Lazaridou, 724
Arthur Mensch, Jean-Baptiste Lespiau, Maria Tsim- 725
poukelli, Nikolai Grigorev, Doug Fritz, Thibault Sot- 726
tiaux, Mantas Pajarskas, Toby Pohlen, Zhitao Gong, 727
Daniel Toyama, Cyprien de Masson d’Autume, Yujia 728
Li, Tayfun Terzi, Vladimir Mikulik, Igor Babuschkin, 729
Aidan Clark, Diego de Las Casas, Aurelia Guy, 730
Chris Jones, James Bradbury, Matthew Johnson, 731
Blake Hechtman, Laura Weidinger, Iason Gabriel, 732
William Isaac, Ed Lockhart, Simon Osindero, Laura 733
Rimell, Chris Dyer, Oriol Vinyals, Kareem Ayoub, 734
Jeff Stanway, Lorrayne Bennett, Demis Hassabis, Ko- 735
ray Kavukcuoglu, and Geoffrey Irving. 2022. Scaling 736
language models: Methods, analysis & insights from 737
training gopher. 738

Ankit Singh Rawat, Chen Zhu, Daliang Li, Felix Yu, 739
Manzil Zaheer, Sanjiv Kumar, and Srinadh Bhojana- 740
palli. 2020. Modifying memories in transformer 741
models. In International Conference on Machine 742
Learning (ICML) 2021. 743

Vipula Rawte, Amit Sheth, and Amitava Das. 2023. A 744
survey of hallucination in large foundation models. 745
arXiv preprint arXiv:2309.05922. 746

Anton Sinitsin, Vsevolod Plokhotnyuk, Dmitry Pyrkin, 747
Sergei Popov, and Artem Babenko. 2020. Editable 748
neural networks. In International Conference on 749
Learning Representations. 750

Ben Wang and Aran Komatsuzaki. 2021. GPT-J- 751
6B: A 6 Billion Parameter Autoregressive Lan- 752
guage Model. https://github.com/kingoflolz/ 753
mesh-transformer-jax. 754

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten 755
Bosma, brian ichter, Fei Xia, Ed Chi, Quoc V Le, 756
and Denny Zhou. 2022. Chain-of-thought prompt- 757
ing elicits reasoning in large language models. In 758
Advances in Neural Information Processing Systems, 759
volume 35, pages 24824–24837. Curran Associates, 760
Inc. 761

Yunzhi Yao, Peng Wang, Bozhong Tian, Siyuan Cheng, 762
Zhoubo Li, Shumin Deng, Huajun Chen, and Ningyu 763
Zhang. 2023. Editing large language models: Prob- 764
lems, methods, and opportunities. In Proceedings 765
of the 2023 Conference on Empirical Methods in 766
Natural Language Processing, pages 10222–10240, 767
Singapore. Association for Computational Linguis- 768
tics. 769

10

http://arxiv.org/abs/2308.08742
http://arxiv.org/abs/2308.08742
http://arxiv.org/abs/2308.08742
https://proceedings.neurips.cc/paper_files/paper/2022/file/6f1d43d5a82a37e89b0665b33bf3a182-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/6f1d43d5a82a37e89b0665b33bf3a182-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/6f1d43d5a82a37e89b0665b33bf3a182-Paper-Conference.pdf
https://openreview.net/forum?id=0DcZxeWfOPt
https://openreview.net/forum?id=0DcZxeWfOPt
https://openreview.net/forum?id=0DcZxeWfOPt
https://arxiv.org/pdf/2206.06520.pdf
https://arxiv.org/pdf/2206.06520.pdf
https://arxiv.org/pdf/2206.06520.pdf
http://arxiv.org/abs/2309.04695
http://arxiv.org/abs/2309.04695
http://arxiv.org/abs/2309.04695
https://proceedings.neurips.cc/paper_files/paper/2022/file/b1efde53be364a73914f58805a001731-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/b1efde53be364a73914f58805a001731-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/b1efde53be364a73914f58805a001731-Paper-Conference.pdf
https://doi.org/10.18653/v1/D19-1250
https://doi.org/10.18653/v1/D19-1250
https://doi.org/10.18653/v1/D19-1250
http://arxiv.org/abs/2112.11446
http://arxiv.org/abs/2112.11446
http://arxiv.org/abs/2112.11446
http://arxiv.org/abs/2112.11446
http://arxiv.org/abs/2112.11446
https://openreview.net/forum?id=HJedXaEtvS
https://openreview.net/forum?id=HJedXaEtvS
https://openreview.net/forum?id=HJedXaEtvS
https://github.com/kingoflolz/mesh-transformer-jax
https://github.com/kingoflolz/mesh-transformer-jax
https://github.com/kingoflolz/mesh-transformer-jax
https://proceedings.neurips.cc/paper_files/paper/2022/file/9d5609613524ecf4f15af0f7b31abca4-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/9d5609613524ecf4f15af0f7b31abca4-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/9d5609613524ecf4f15af0f7b31abca4-Paper-Conference.pdf
https://aclanthology.org/2023.emnlp-main.632
https://aclanthology.org/2023.emnlp-main.632
https://aclanthology.org/2023.emnlp-main.632


Zexuan Zhong, Zhengxuan Wu, Christopher Manning,770
Christopher Potts, and Danqi Chen. 2023. MQuAKE:771
Assessing knowledge editing in language models via772
multi-hop questions. In Proceedings of the 2023773
Conference on Empirical Methods in Natural Lan-774
guage Processing, pages 15686–15702, Singapore.775
Association for Computational Linguistics.776

A Appendix777

A.1 Comparison between existing KBQA778

methods and our GMeLLo779

We evaluate the performance of existing KBQA ap-780

proaches, such as KB-Coder (Nie et al., 2024). Our781

findings indicate that, when provided with similar782

prompts, our approach yields more accurate results.783

For example, when presented with a 4-hop sam-784

ple in the prompt and parsing the question "What785

is the capital of the country of citizenship of the786

child of the creator of Eeyore?" KB-Coder yields787

the following results:788

expression = START(’Eeyore’)789

expression = JOIN(’child of’, expression)790

expression = JOIN(’creator’, expression)791

expression = JOIN(’country of citizenship’, ex-792

pression)793

expression = JOIN(’child’, expression)794

expression = STOP(expression)795

However, the resulting relation chain given by796

our GMeLLo is notably more accurate:797

"Eeyore -> creator -> ?x -> child of -> ?y ->798

country of citizenship -> ?z -> capital -> ?m"799

11

https://aclanthology.org/2023.emnlp-main.971
https://aclanthology.org/2023.emnlp-main.971
https://aclanthology.org/2023.emnlp-main.971
https://aclanthology.org/2023.emnlp-main.971
https://aclanthology.org/2023.emnlp-main.971

	Introduction
	Related Work
	Knowledge Editing
	Knowledge-based Question Answering

	GMeLLo: Graph Memory-based Editing for Large Language Models
	Extracting the Relation Chain of a Question Sentence Using LLMs
	Utilizing KGs for Storing Correlated Facts to Enhance Multi-hop Reasoning
	Converting the Relation Chain into a Formal Query for Retrieving Updated Information from KGs

	Experiment
	Experiment Setup
	Dataset
	Language Models
	Baseline Models
	Evaluation Metric

	Implementation Details and Key Findings
	Breakdown Results on MQuAKE-CF
	Performance in Addressing Single-Hop Questions
	Futher Analyais
	Error Analysis
	Detection of Factual Inconsistencies
	Explainability
	Domain-specific Application


	Conclusion
	Appendix
	Comparison between existing KBQA methods and our GMeLLo


