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1 Background

Traditional alignment methods for large language models (LLMs) such as GPT-3 and GPT-4 primarily
use Reinforcement Learning from Human Feedback (RLHF) to optimize behavior. These methods,
however, often rely on broad and simplistic reward categories like “usefulness” and “toxicity.”
While effective for basic alignment, this limited framework fails to capture the complexity needed
to align LLMs with nuanced human preferences[1], especially in sophisticated applications such
as dialogue systems, customer service automation, and multi-step problem-solving. Additionally,
existing methods use Process Reward Models (PRMs) to evaluate intermediate steps in the reasoning
process, but they lack mechanisms to dynamically adapt or utilize past information efficiently.

To address these limitations, we propose three key enhancements: diversifying reward metrics,
introducing another LLM for automated feedback evaluation, and incorporating a working
memory mechanism. We expand the reward model to include metrics like “contextual coherence,”
“logical consistency,” and “goal alignment.” This approach enhances adaptability and reduces manual
annotation costs, enabling real-time, task-specific evaluations. The memory mechanism dynamically
updates to manage information flow effectively during multi-step reasoning.

2 Definition

We aim to develop a model that leverages reinforcement learning (RL), a process reward model
(PRM), and a memory mechanism to dynamically optimize the inference process of large language
models (LLMs). The problem is defined as follows:

Let M denote the large language model, and T represent a task requiring multiple reasoning steps
{s1, s2, . . . , sn}. An RL agent’s policy πθ guides the action at at each step st, influenced by
evaluations from the PRM and the memory state WMt.

The model function is expressed as:

M(X) = f(X,WMt)

where WMt is the memory state at time t, updated based on PRM evaluations and RL feedback.

The reward function is:

R(st, at) =

k∑
i=1

βi · PRMi(st, at) + γ · g(WMt),

where PRMi(st, at) denotes the score from the i-th PRM module evaluating criteria such as logic,
coherence, and goal alignment; βi are the weights assigned to each PRM component; g(WMt)
represents the memory utility at time t; and γ adjusts its influence within the reward function.
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3 Related Work

Several studies have investigated the integration of RL and PRM in the context of large language
models (LLMs).

Ziegler et al. (2019) [2] introduced Reinforcement Learning from Human Feedback (RLHF), where
an RL agent optimizes LLM behavior based on human-provided feedback. Although effective, this
approach relies on basic reward functions like “usefulness” and “toxicity,” lacking the granularity
needed for more complex tasks.

OpenAI employs a Process Reward Model (PRM) to evaluate each reasoning step [3], ensuring
intermediate step consistency. However, this model does not incorporate memory mechanisms for
recalling prior states, limiting its effectiveness in handling multi-step reasoning.

Memory-augmented networks have also been explored. Graves et al. (2016) [4] introduced Differ-
entiable Neural Computers (DNCs), incorporating memory modules to efficiently store and recall
information. However, these models lack the integration of RL for dynamic, task-specific adaptation.
Similarly, Weston et al. (2014) [5] and Santoro et al. (2018) [6] explored Memory Networks and Re-
lational Memory Networks, respectively, but did not integrate reinforcement learning or fine-grained
reward modeling.

Our approach builds on these works by combining RL, PRM for step-by-step evaluation, and a
memory mechanism for dynamic adaptation, addressing the limitations in handling complex multi-
step tasks.

4 Proposed Method

Our approach addresses the limitations of traditional RLHF by enhancing reward modeling and inte-
grating memory mechanisms to support complex reasoning tasks. We introduce fine-grained reward
metrics such as “contextual coherence” and “logical consistency,” allowing for more comprehensive
and adaptive evaluation beyond simple “usefulness” and “toxicity” criteria. By utilizing another
LLM as an automated evaluator, our system reduces manual labeling costs and adapts dynamically to
diverse tasks, improving model performance across various applications.

The incorporation of a working memory module further enhances our method. This module, guided
by a gating mechanism, dynamically manages the storage, recall, or update of information based
on task complexity, allowing effective multi-step reasoning and improving inference accuracy and
efficiency.

To validate our approach, we use the following datasets: SQuAD 2.0 for testing question-answering
capabilities, NarrativeQA for assessing coherence in long-form narratives, and bAbI Tasks for
evaluating multi-step and memory-dependent reasoning.

Our method will be compared against baselines such as:

• Traditional RLHF: Uses basic criteria and manual labels.
• PRM-Only Framework: Evaluates steps without memory integration.
• Memory-Augmented Models: Such as Differentiable Neural Computers (DNCs) without

RL integration.

To implement our method, the PRM modules will evaluate multiple dimensions such as logic,
coherence, and goal alignment. The memory module will be designed to store intermediate results,
guided by a gating mechanism to determine when information should be recalled or updated. An
RL agent, trained using Proximal Policy Optimization (PPO), will utilize feedback from both PRM
and the memory module to optimize its actions at each step, maximizing cumulative rewards over
the reasoning sequence. Additionally, we introduce an iterative self-reward mechanism, where the
evaluation and feedback cycle is repeated over multiple rounds, refining the RL strategy through
experience replay, allowing the model to learn from past memory usage and PRM evaluations, thus
ensuring more robust and adaptive learning.
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