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POPULATION DESCENT HYPER-PARAMETER TUNING

ABSTRACT

Gradient descent is currently the algorithm of choice for optimizing neural net-
works. However, much of its performance is dependent on the chosen hyperpa-
rameters for the optimizer as well as the model (e.g., learning rate, regulariza-
tion rate, etc...). Traditional hyperparameter tuning techniques are computation-
ally costly and disregard a model’s current progress, diminishing their effective-
ness. With these limitations in mind, we therefore present the first memetic al-
gorithm specifically designed to tune gradient descent’s hyperparameters using a
population-based evolution scheme. PopDescent leverages an m-elitist selection
strategy and a normalized fitness-based randomization scheme, both of which fa-
cilitate more sophisticated hyperparameter optimization. Our experiments demon-
strate that PopDescent surpasses existing hyperparameter tuning methods, boost-
ing performance by as much as 13%. We also demonstrate PopDescent’s insensi-
tivity to changes to its own hyperparameters, a key requirement for hyperparame-
ter tuning not satisfied by state-of-the-art memetic algorithms.

1 INTRODUCTION

Today’s machine learning methods almost entirely rely on gradient descent as a core optimization
technique. Many recent deep learning tasks, whether it is supervised learning, or unsupervised,
include Neural Network (NN) optimization with ever-growing parameter spaces. However, these
methods have multiple hyperparameters (e.g., learning rate, regularization rate, batch size, model
weights, etc...), all of which may affect training results significantly Dauphin et al. (2014); Brea
et al. (2019). Furthermore, the set of optimal hyperparameters depends on the task at hand, and
manually searching for them is both time-consuming and computationally expensive. Thus, the
creation of hyperparameter tuning frameworks is an extensive research topic, and numerous hyper-
parameter tuning and meta-learning methods have been proposed to solve this problem Akiba et al.
(2019); Rogachev & Melikhova (2020). Meta-learning methods focus on finding generalized models
allowing faster convergence when trained across similar tasks, instead of optimal hyperparameter se-
lection for each problem, making meta-learning techniques tangential to this paper Patacchiola et al.
(2023).

Existing hyperparameter-tuning literature falls into three main categories. 1) They fully train mod-
els, evaluating the final results on a single hyperparameter combination; this is computationally
wasteful Liashchynskyi & Liashchynskyi (2019) 2) They select hyperparameters based on the first
few training epochs (making them ineffectual choices later on during training) Rogachev & Me-
likhova (2020). 3) They adjust hyperparameters based on a predetermined schedule Wu et al. (2019).
One important limitation shared across these methods is the lack of ”active” hyperparameter opti-
mization, meaning they adjust hyperparameters without taking into account the model’s current
progress throughout the duration of training. Thus, they have no knowledge of the current loss
space, and have no means of exploring the loss function outside of the model’s current gradient.

Instead of dealing with fine-tuning hyperparameters, global optimization methods, usually
population-based, employ non-differentiable optimization. Evolutionary/genetic algorithms Bäck
(1996); Liashchynskyi & Liashchynskyi (2019) are one of the most popular methods that utilize
mutations; differential evolution Storn & Price (1995) is a subset that uses differentiable mutations
for faster convergence Karaboga & Cetinkaya (2005). Still, evolutionary algorithms suffer the curse
of dimensionality, and are often not comparable to fine-tuned gradient-based solutions in terms of
efficiency and performance Bhattacharya (2013).

Memetic algorithms combine evolutionary algorithms with a local search process (usually gradient
descent) D’Angelo & Palmieri (2021); Moscato (1999); Xue et al. (2021). They bridge the gap
between exploring more space based on random noise (evolutionary step), and efficiently exploiting
the gradient (local step). Memetic algorithms are not currently utilized for hyperparameter search,
but rather are used for specialized optimization problems.
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Thus, we propose Population Descent (POPDESCENT), the first memetic algorithm purposed for
local hyperparameter optimization. The key idea in POPDESCENT is actively choosing how much to
explore the parameter and hyperparameter space or exploit a specific location on the loss curve. This
decision is taken based on a normalized fitness score representing each model’s progress after each
iteration of local updates, and an m-elitist selection process to choose which models to keep, and
which models to mutate. Inspired by using global population-based evolution to tune local search
hyperparameters, we add a constantly adaptive learning and regularization rate for each iteration of
gradient steps, helping accelerate or decelerate learning and generalization of each NN based on
current progress. Non-differential based mutations for these rates allow for simple randomization
by adding Gaussian noise; we also add Gaussian noise to NN weights.

We show in our evaluations that our memetic framework, uniquely designed to tune local search
hyperparameters, yields better results compared to existing hyperparameter tuning methods such as
grid search, while also outperforming state-of-the-art memetic algorithms such as ESGD Cui et al.
(2018). To demonstrate POPDESCENT’s ability to more effectively traverse the loss landscape on
real deep-learning workloads, we apply the algorithm to the FMNIST, CIFAR-10, and CIFAR-100
classification benchmarks Xiao et al. (2017); Krizhevsky et al. (2009). We also conduct ablation
studies justifying the effectiveness of the choices made in POPDESCENT. POPDESCENT achieves
better test and training loss on every experiment we performed, while taking a lower number of total
gradient steps (making it more efficient as well). We claim the following contributions:

• The first memetic algorithm specifically designed to tune local search hyperparameters
• A more active tuning framework compared to existing tuning methods through the use of an

evolutionary step: learning/regularization rates, and NN weights are proportionally perturbed by
Gaussian noise after each local search step for the duration of training

• A simplified memetic framework that is not sensitive to its own hyperparameters, a key require-
ment for hyperparameter tuning

• An open source reference implementation based on TensorFlow 2 which can be used directly in
machine learning tasks.

2 POPULATION DESCENT

POPDESCENT is a memetic algorithm, meaning it combines both meta-optimization and gradient-
based optimization into a single scheme. We define the pseudocode of POPDESCENT in Algorithm 1
which we hereafter describe in detail.

2.1 ALGORITHM DEFINITION

The goal of POPDESCENT is to find an optimal set of parameters forming what we term an
individual. An individual is constructed from sets of parameters θ, and hyperparameters α. We
search for individuals which maximize a user-provided FITNESS function. These individuals are
maximized on batches from a held-out Test distribution that remains unseen during the procedure.
Namely

individual∗ = ⟨θ∗, α∗⟩ = sup
⟨θ,α⟩∈Individuals

Ebatch∼Test [FITNESS(⟨θ, α⟩, batch)]

However, since the Test distribution must remain unseen, we are forced to make use of available
proxy data in the form of a Training distribution and a CrossValidation distribution. This is standard
in machine learning workloads. We do not make assumptions on the differentiability of the provided
FITNESS function. This allows one to use of common metrics of performance such as accuracy.
Since the dimensionality of the parameter space can be exceedingly large (such as with Neural
Networks), we make use of a LOCAL UPDATE function which can efficiently update the bulk of
the parameters held in the θ of every individual. We assume that invocations of LOCAL UPDATE
maximizes the individual’s expected FITNESS over the Training set. An example of such a function
is Stochastic Gradient Descent (SGD) as defined in Algorithm 2. SGD makes use of gradient-
backpropagation to update θ in linear time. LOCAL UPDATE minimizes a differentiable LOSS as a
proxy for maximizing FITNESS with respect to θ. However, the LOCAL UPDATE function does not
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modify the α hyperparameters. This can for example be the learning rate in SGD, and it can also be
the regularization magnitude.

In order to find the best hyperparameters, POPDESCENT takes an m-elitist approach by holding onto
a candidate set of individuals called a Population. In each iteration, The m fittest individuals from
the Population are kept untouched (m-elite), while the weakest (|Population| −m) individuals are
always replaced. We then pick replacements from the Population but bias our choices towards fitter
individuals. These replacements then go through a MUTATE operation provided by the user. The
mutation magnitude depends on the fitness of the individual. That is, we mutate individuals more
when they perform poorly. In a sense, the normalized FITNESS value allows the algorithm to be
aware of progress made during optimization, and explore more space when that is more beneficial.
Throughout the algorithm, |Population| remains an invariant.

Algorithm 1 POPDESCENT

Require: individual : θ × α
Require: FITNESS : individual× Batch→ [0, 1]
Require: CONVERGED : individual→ {0, 1}
Require: LOCAL UPDATE : individual× Batch→ individual
Require: MUTATE : individual× [0, 1]→ individual
Require: Training : Distr[Batch]
Require: CrossValidation : Distr[Batch]
Require: Population : {individual, . . .}
Require: m : N

1: while ¬ CONVERGED(Population) do
2: batchTraining ∼ Training
3: Optimized← {LOCAL UPDATE(individual, batchTraining) | individual ∈ Population}
4: batchCV ∼ CrossValidation
5: FITNESSCV(x) = FITNESS(x, batchCV)

6: WeightedMultinomial← Pr(X = x) =

{
x ∈ Optimized FITNESSCV(x)∑

o∈Optimized FITNESSCV(o)

x ̸∈ Optimized 0
7: Mutated← ∅
8: Strong← Optimized
9: for 1 . . . (|Population| −m) do

10: weak← MINIMUM
FITNESSCV

(Strong)

11: Strong← Strong/{weak}
12: replacement ∼ WeightedMultinomial
13: Mutated←Mutated ∪ {MUTATE(replacement, 1− FITNESSCV(replacement))}
14: end for
15: Population← Strong ∪Mutated
16: end while
17: return MAXIMUM

FITNESSCV
(Population)

POPDESCENT terminates when the user-defined CONVERGED function outputs 1 (line 1). Then, at
each iteration:

1. Lines 2-3: The individuals in the Population all take a LOCAL UPDATE step over a batch sampled
form the Training distribution. This produces a set of Optimized individuals;

2. Lines 4-5: A batch is sampled from the CV distribution, upon which we build FITNESSCV, i.e.,
the fitness function for that batch;

3. Line 6: We use FITNESSCV to build a WeightedMultinomial probability distribution whose sam-
ples are individuals from the Optimized set. The probability of each individual is defined by
normalizing their fitness values, so that the probabilities sum to 1. This distribution is biased
towards choosing fitter replacements;
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4. Line 7-14: We iterate (|Population| −m) times replacing the (|Population| −m) lowest fitness
individuals by a mutated replacement. We find replacement individuals via sampling from the
WeightedMultinomial distribution (Line 12). Then the replacement is mutated by an amount
dependent on its fitness: the lower the fitness, the more it will be mutated;

5. Line 15: Population is now updated to include the m Strong individuals and the (|Population|−
m) mutated replacements;

6. Line 17: Finally, we return the individual in the Population with the largest fitness.

Algorithm 2 Example function implementations

Require: LOSS : individual× Batch→ R
Require: β1, β2 : R

function LOCAL UPDATE(individual,Batch)
optimized← individual
optimizedθ ← individualθ + individualα∇individualθ LOSS(individual,Batch)
return optimized

end function

function MUTATE(individual,magnitude)
mutated← individual
mutatedθ ∼ Gaussian(individualθ, β1magnitude)
mutatedα ∼ LogNormal(individualα, β2magnitude)
return mutated

end function

In the example function implementations in Algorithm 2, we also show a sample MUTATE function
where we randomize the θ parameters via a Gaussian distribution whose standard deviation is de-
fined by the mutation magnitude. We opt to modify the learning rate geometrically via a LogNormal
distribution so that multiplying the learning rate by 0.1 and 10 is equally as likely with a standard
deviation of 1. Note that when the magnitude is at 0, none of the parameters would change.

2.2 KEY POINTS IN POPDESCENT’S DESIGN

• We designed POPDESCENT to naturally select individuals which generalize well to a dataset not
seen during local updates. We hypothesize that this would allow proper selection of regularization
values rather than using ad-hoc techniques such as early stopping. This is evaluated in Section 3.3.

• If we remove the selection and mutation procedure then POPDESCENT simply becomes the ran-
dom hyperparameter search algorithm, since after initialization, the individuals will be undergoing
only iterations of SGD.

• POPDESCENT is also amenable to parallelization and the only synchronization required occurs in
the replacements step.

• POPDESCENT has a few hyperparameters itself (depending on the implementation of MUTATE),
but we have left these values constant across our experiments to showcase the effectiveness of the
method and its low sensitivity to specific values of these parameters.

2.3 LIMITATIONS

Due to the no free lunch theorem Wolpert & Macready (1997), there will always be a case where this
algorithm will be worse than a purely random approach at maximizing our FITNESS. For example, if
the learning rate is initialized too high, too many randomization steps would be needed for making
progress, due to the random walk nature of the mutation method used. Another limitation is that
the algorithm does not take into account the best individual ever observed, meaning there is no
guarantee that the algorithm will always improve in performance with more iterations. This is due
to the decision to always take a LOCAL UPDATE with respect to the Population.

4



Under review as a conference paper at ICLR 2024

3 EVALUATIONS

In this section, we demonstrate that 1) POPDESCENT’s active tuning framework achieves better
performance than existing tuning and memetic algorithms on the FMNIST, CIFAR-10, nd CIFAR-
100 benchmarks; 2) While significantly simpler, POPDESCENT converges at rates similar to the
state-of-the-art memetic algorithm in a fair comparison; 3) POPDESCENT’s specific randomization
scheme contributes to its results; and 4) POPDESCENT is notably insensitive to changes in its own
hyperparameters, allowing it to tune target parameters without having to tune the framework itself.

3.1 BENCHMARKS

We compare POPDESCENT against 1) grid search, due to its prevalence, 2) KerasTuner (KT): Ran-
domSearch, due to its popularity (KT Rogachev & Melikhova (2020), and 3) Evolutionary stochastic
gradient descent (ESGD) Cui et al. (2018), as it is the state-of-the-art memetic algorithm for bench-
mark machine learning workloads.

For clarification, KT’s RandomSearch algorithm does not just randomly sample a subset of hyperpa-
rameters that would be explored during a grid search. Sampling is not limited to discrete rates (i.e. it
can choose from continuous distributions), differentiating it from grid search. Also, RandomSearch
chooses the ”best” hyperparameters after testing parameter combinations on the first few (in our
case, two) epochs of training, then resetting the model again, seeing which combination has the best
validation loss early on. Thus, it can test more parameter combinations in fewer gradient steps.

Some notes on benchmarks. For the FMNIST and CIFAR-10 benchmarks, we opted to train mod-
els (4,575,242 and 186,250 parameters respectively) that are capable of overfitting. This makes
these problems well-suited to evaluate these tuning frameworks. The ”With Regularization” models
use the same model with l2 kernel regularization added. To compare fairly against the available
implementation of ESGD which does not implement regularization, we exclude comparisons with
regularization. All algorithms use cross-validation loss as the metric for evaluating model fitness
during training. All algorithms use the Adam optimizer for local search, except for ESGD, which
uses SGD. Grid search ”Without Regularization” trains five models each with a unique learning rate
([0.01, 0.001, 0.0001, 0.00001, 0.000001]). For ”With Regularization,” we let grid search enumerate
the cartesian product of the five aforementioned learning rates and five different regularization rates
producing 25 trained models. We use KT RandomSearch with 25 trials (# of combinations it tests).
It samples learning rates from the continuous range of [0.01−0.0001], and regularization rates from
[0.1 − 0.000001]. RandomSearch and ESGD train over the whole dataset, and POPDESCENT and
grid search sample portions of the data. A gradient step is defined by a single step taken by a local
optimizer over one batch. We calculate the total number of gradients steps taken by every algorithm
via total = iterations × number of models × batches. We choose how many gradient steps to run
each algorithm by observing when they converge. Our objective is minimizing the final test loss.

FMNIST Benchmark. We tested each algorithm on the Fashion MNIST image classification
dataset in Figure 1, containing a 60k image training-set and a 10K image test-set (we split the
test-set into two halves for a validation-set for all methods except ESGD, which uses the full test-set
for validation). Each image is size 28x28, with 1 color channel. An identical Convolutional NN was
used for each test (4,575,242 parameters), with three convolutional layers and two fully connected.
Batch size is set to 64, and ESGD/POPDESCENT are initialized with learning rates of 0.001.

CIFAR-10/100 Benchmark. We tested each algorithm on the CIFAR-10 and CIFAR-100 image
classification dataset in Figure 1, containing a 50k image training-set and a 10K image test-set,
splitting test/validation loss exactly the same as for FMNIST. Each image is size 32x32 with 3 color
channels. An identical Convolutional Neural Net was used for each test (186,250 parameters), with
four convolutional layers and two fully connected. Batch size is set to 64, except for ESGD where
we set it to 8, as is done in Masters & Luschi (2018). ESGD’s learning rate is initialized to 0.01, and
POPDESCENT to 0.001 (we found ESGD performs much better with 0.01 over 0.001).

Benchmark Results. POPDESCENT finds models with the lowest overall test loss across the board.
It is also always taking the fewest or near fewest gradient steps. Both grid search and RandomSearch
cannot adjust their parameters on-line, thus their convergence rates suffer. ESGD is our closest
comparison to POPDESCENT as a memetic algorithm, but does not tune any hyperparameters. These
results show ESGD’s mutations perform well, but ESGD relies on either a static learning rate or
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Figure 1: Benchmark Tests

a schedule, both of which struggle to keep up with POPDESCENT. On models that are capable
of overfitting, POPDESCENT’s ability to constantly monitor a model’s performance on the cross-
validation set and accelerate or decelerate its learning/regularization proves to be performant.

3.2 CONVERGENCE

Memetic algorithms like ESGD often rely on mutation lenghts, reproductive factors, mixing num-
bers, etc.; their genetic schemes are complex, and thus difficult to implement.

On the other hand, POPDESCENT’s mutation step only adds independent noise to parameters, and
uses a simple rank-based (m-elitist) recombination step. Still, when comparing convergence of
the highest fitness model in the population, Figure 2 shows POPDESCENT converges to a lower
validation loss faster than existing tuning methods and memetic algorithms.

We train each algorithm on six random seeds, running them for more iterations than optimal to show
convergence/divergence over time (Grid Search: 100 iterations, KT RandomSearch: 25, POPDE-
SCENT 115, and ESGD: 15). We plot the mean exponential moving average (bold line) of the
cross-validation loss of the best model for each algorithm across all seeds, with the standard devia-
tion (shading) for each algorithm’s trials, as a function of gradient steps taken.

In Figure 2, RandomSearch is flat until about 46K gradients steps because it takes gradient steps
to test which parameters are best without actually training the final model; it only trains the model
after 25 trails (46K steps). Grid search and RandomSearch both overfit and struggle to reach a
low loss due to non-dynamic tuning. POPDESCENT and ESGD are most succesful during training,
though POPDESCENT achieves better final test loss with lower standard deviation, and requires
fewer tunable hyperparameters to implement its global step.

3.3 ABLATION STUDY

This section analyzes how 1) the randomization scheme of NN weights/learning rate/regularization
rate, and 2) the use of cross-validation loss to evaluate the fitness of individuals affects POPDES-
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Figure 2: FMNIST validation loss progress.

CENT’s performance. To emphasize the differences, we add l2 kernel regularization to every layer
in the benchmark FMNIST model, and reduced the training set size to 10K. All tests are initialized
with a default learning and regularization rate of 0.001. We choose |Population| = 10 and m = 5.

Table 1: Ablation study FMNIST

Randomization CV Selection Regularization Test Loss± σ Train Loss± σ

Ablation Study Over POPDESCENT Randomization
✓ ✓ ✓ 0.345± 0.006 0.139± 0.028
✗ ✓ ✓ 0.412± 0.005 0.118± 0.077

Ablation Study Over Cross-Validation Fitness
✓ ✓ ✗ 0.356± 0.009 0.163± 0.019
✓ ✗ ✗ 1.140± 0.147 0.0003± 0.0002

The top half of Table 1 shows how POPDESCENT’s randomization (NN weights, learning, and reg-
ularization rates) lowers test loss by 25%. Adding noise and choosing models that perform well
on cross-validation loss helps the models explore more space while selecting models that prevent
overfitting, as see with a lower test loss. The bottom half shows how deciding between training or
cross-validation loss as the fitness function acts as a substantial heuristic when minimizing test loss,
genetically ”forcing” a model without regularization to still achieve decent test loss. We present the
most pronounced differences in Table 1 to best highlight POPDESCENT’s features.

3.4 HYPERPARAMETER SENSITIVITY

In this section, we show that varying local search parameters affect ESGD (a state-of-the-art memetic
algorithm) more than POPDESCENT on the CIFAR-10 dataset. We run each algorithm with a con-
stant seed and constant hyperparameters except one (either learning rate or the number of iterations).
One iteration defines one local and global update together. A gradient update is taken each time be-
fore performing a mutation. POPDESCENT defaults to a batch size of 64, a learning rate of 0.001
with Adam, and 30 iterations for the FMNIST benchmark. ESGD defaults to a batch size of 8, a
learning rate of 0.01 with SGD, and 3 iterations for the FMNIST benchmark (POPDESCENT trains
over 128 batches per iteration, ESGD over the whole training set).

Table 3 shows how changes in local training parameters affect ESGD’s test loss results more than
POPDESCENT’s in Table 2 (almost 275% higher standard deviation of results). POPDESCENT also
has a much lower test loss across trials (avg. 19.2% lower). Complex memetic algorithms such
as ESGD have a high number of adjustable hyperparameters, and their performance depends sig-
nificantly on their specific values. As long as the parameters chosen are not extreme values, the
specificity of POPDESCENT’s hyperparameters is not particularly important.
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Table 2: Population Descent training with variable local parameters

Learning Rate Iterations Test Loss± σ Across Trials σ as % of Test Loss

All Hyperparameters Constant Except Learning Rate
[0.01, 0.05, 0.001] 30 1.049± 0.172 16.35%

All Hyperparameters Constant Except Total Iterations
0.001 [10, 30, 50] 0.958± 0.191 19.94%

Table 3: ESGD training with variable local parameters

Learning Rate Iterations Test Loss± σ Across Trials σ as % of Test Loss

Everything Constant Except Training Learning Rate
[0.01, 0.05, 0.001] 3 1.325± 0.582 43.95%

Everything Constant Except Total Iterations
0.001 [1, 3, 5] 1.159± 0.455 39.22%

Another important note is how we do not need to tune POPDESCENT over different problems, while
still yielding the best model. All tests for POPDESCENT across this entire paper (except the ablation
tests) use the same population size (5) and randomization scheme (same Gaussian noise distribu-
tions) for the global step, and the same default learning rate (0.001), regularization rate (0.001), and
batch size (64) for the local step (except when they are changed for this experiment).

Discussion on learning rate schedules. Learning rate schedules (adjusting the learning rate over
the number of gradient steps taken) are one of the most common way to ”actively” adjust hyperpa-
rameters during training. However, most schedules are only a function of the number of gradient
steps taken, which are only a prediction of training rather than analyzing real time how a model
is performing like POPDESCENT does. Specifially, Table 3 shows how non-dynamic optimization
algorithms (most existing methods) rely on problem-specific hyperparameters to be pre-determined.
Modifications to the idea of learning rate schedules do exist, in order to pay attention to a model’s
progress Wu et al. (2019), though they are very complex and have many hyperparameters, running
into sensitivity issues like ESGD.

4 RELATED WORKS

Gradient-Based Optimizers. Stochastic Gradient Descent (SGD) offers quick convergence on
complex loss spaces Kleinberg et al. (2018). As an improvement to SGD, momentum-based op-
timizers like Adam Goh (2017); Zeiler (2012) better traverse loss functions via utilizing momen-
tum with the learning rate to more quickly escape plateaus or slow down learning as to not skip
a minima. Adam’s weight decay term also limits exploding gradients, and acts as a regularizer
preventing overfitting. Other options like the newer Sharpness-Awareness Minimization (SAM) or
Shampoo optimizer, which use ”preconditioning matrices,” promise even faster convergence Gupta
et al. (2018). POPDESCENT tunes hyperparameters for any local optimizer, including SGD, Adam,
SAM, or Shampoo. Hence, such works are orthogonal.

Existing Tuning Frameworks. Grid search is the most commonly used method for searching the
hyperparameter space due to its simplicity and generally acceptable performance for NN training.
Essentially, it is an exhaustive search of the Cartesian product of hyperparameters. It takes ex-
ponentially more gradient steps to train over more parameter options, making grid search a more
inefficient, brute-force way of tuning. Popular hyperparameter tuning frameworks like KerasTuner
(KT) and Optuna employ more efficient alternatives to grid search Rogachev & Melikhova (2020);
Akiba et al. (2019). This includes bayesian search (uses Gaussian probabilities to check the ”best”
combination) Mockus (1989), random search (randomly samples the search space) Bergstra et al.
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(2011), or hyperband tuning (a variation of random search that chooses better individuals after half
of the iterations) Rogachev & Melikhova (2020). They can sample different batches, batch sizes,
learning/regularization rates, and even NN layers/units in order to find the best architecture for the
task at hand. They often find a good set of hyperparameters within a constant amount of time as op-
posed to grid search’s brute force method Liashchynskyi & Liashchynskyi (2019). However, these
methods do not allow for dynamic hyperparameter optimization; each run is independent of progress
made in previous runs, and most algorithms simply return hyperparameters that the model should be
initialized with during training. Performance deteriorates during later training epochs, and the risk
of overfitting is higher due to not adjusting parameters. Models trained with these tuners explore
less of the loss space compared to evolutionary algorithms that mutate NN weights as well.

One common approach for adding dynamicity to hyperparameters is the use of schedules Li &
Arora (2019). Learning rate schedules, for example, are often defined by three to five parameters
that transition during training, and have been proposed to improve convergence speed Dauphin et al.
(2015); Darken et al. (1992). These approaches are fundamentally limited as they are based on
predictions about training, rather than a model’s actual loss. Multiple works also explore cyclical,
cosine-based, random-restart schedules adjusting the learning rate at every epoch Wu et al. (2019).
They introduce extra hyperparameters that need to be tuned, causing many researchers to instead
use static schedules.

Meta-Learning. Meta-learning is another topic that aims to find generalized models and hyperpa-
rameters that can improve the speed of convergence on future tasks. They therefore attack a different
problem formulation than that of hyperparameter search, and have their limitations Gad (2022); Pat-
acchiola et al. (2023). The body of work on hyper-parameter tuning, and therefore POPDESCENT,
remains relevant even with the existence of meta-learning.

Memetic Algorithms. Memetic algorithms take advantage of both global and local learning, and are
increasingly being used for supervised learning benchmarks D’Angelo & Palmieri (2021); Moscato
(1999); Borna & Hashemi (2014); Xue et al. (2021); Yuenyong & Nishihara (2014). Evolution-
ary stochastic gradient descent (ESGD) Cui et al. (2018) is the state-of-the-art memetic algorithm
that utilizes Gaussian mutations for model parameters using an m-elitist average strategy to choose
the best models after randomization, and SGD optimization for local search. Performing well on
CIFAR-10 classification tests, ESGD is a prime example of how adding stochastic noise benefits
a strong local optimizer, because models explore more of the loss function. Nonetheless, memetic
algorithms are not currently used for hyperparameter tuning. Also, state-of-the-art memetic algo-
rithms like ESGD suffer from having an extensive amount of training hyperparameters, both global
(ie. mutation strength, population size, etc.) and local (ie. batch size, learning rate, etc.). Thus, mo-
tivated by how stochastic noise can force models to explore more space, and how population-based
methods can be used to globally optimize models, POPDESCENT instead investigates how it is pos-
sible use the evolutionary step in the memetic framework to tune local search hyperparameters much
more dynamically than existing tuners or schedules. With a straightforward randomization scheme,
our memetic framework is much simpler than existing algorithms, allowing higher efficiency during
training. The simplicity also ensures our algorithm does not have to be tuned nearly as much for each
specific problem. POPDESCENT is a new application of memetic algorithms specifically for hyper-
parameter tuning, so existing tuning frameworks are a more suitable comparison to POPDESCENT
than memetic algorithms.

5 CONCLUSION

In this paper, we propose POPDESCENT, a memetic algorithm that acts as a hyperparameter tuning
framework using a simple population-based evolution methodology. Our tuning framework helps
local search methods explore more space on the loss function. In turn, it more effectively traverses a
non-convex search-space compared to methods relying only on static momentum terms or schedules.
POPDESCENT performs better than existing tuning frameworks which do not adapt to a model’s cur-
rent progress. Four extensive experiments over common supervised learning benchmarks FMNIST
and CIFAR-10 show the effectiveness of POPDESCENT.
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6 REPRODUCIBILITY STATEMENT

We take many efforts to make sure that our experiments can be reevaluated effectively:

• We use the number of gradient steps as our metric of ”time”, so that these values remain indepen-
dent of the computational hardware available

• We always seed every experiment taken, and those seeds are available in our source-code.
• We provide versioned source code with specific commits referenced for each test taken, and pro-

vide a README of instructions to follow to replicate our results
• We provide our reference anonymized implementation of POPDESCENT and

supplementary material at https://github.com/anonymous112234/
anonymousPopulationDescent.git

• We provide a flake.nix file which exactly pins the versions of all the packages used in our tests
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