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ABSTRACT

Multi-view 3D reconstruction is the base for many other ap-
plications in computer vision. Video provides multi-view im-
ages and temporal information, which can help us better com-
plete the reconstruction goal. Redundant information han-
dling in video and multi-view feature extraction and fusion
become the key issues in the shape prior extraction for recon-
struction. In this paper, inspired by the recent great success
in Transformer models, we propose a transformer-based 3D
reconstruction network. We formulate the multi-view 3D re-
construction into three parts: frame encoder, fusion module,
and shape decoder. We apply several special used tokens and
perform the fusion progressively in the encoder phase, called
patch-level progressive fusion module. These tokens describe
which part of the object the frame should focus on and the
local structural detail progressively. Then we further design
a transformer fusion module to aggregate the structure infor-
mation. Finally, multi-head attention is utilized to build the
transformer-based decoder to reuse the shallow features from
encoder. In experiments not only can ours method achieve
competitive performance, but it also has low model complex-
ity and computation cost.

Index Terms— Multi-view 3D reconstruction, Sequential
modeling, Transformer-based model

1. INTRODUCTION

Image-based 3D reconstruction is a long-standing and impor-
tant problem in computer vision, and it is also the key to
computer perception of the real world [1, 2]. Many recent
works focus on reconstruction tasks using only a single im-
age [3, 4], but there is a serious ambiguity in a single image.
So single-image 3D reconstruction has long been an ill-posed
problem [5]. Another part of the works is based on the input
of multiple images to extract the shape prior for 3D recon-
struction, where how to fuse the information from different
images and accomplish the final shape prediction is the core
of each method. We consider video sequences as a special
form of multiple images, in which the temporal information
can help us to better complement and interact with frames.
And at the same time the video will also bring a lot of re-
dundant information. Therefore, how to make full use of
the video sequences and complete the information fusion
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Fig. 1. Extracting the shape prior from multi-view images is
split into three important parts.

between images and how to deal with the redundant infor-
mation in the video to complete the reconstruction task ef-
ficiently are two main issues in our extraction of shape prior.

We divide the whole process of shape prior extraction into
three processes, as shown in Fig. 1. First, a video encoder en-
codes the image sequences to obtain the embedding vectors
for each frames. Then a fusion module follows to obtain the
embedding, which describes the 3D shape, for the input ob-
ject based on the complementary information of all images.
Finally, the shape decoder finishes the prediction of the shape
to get the three-dimensional output.

For the first step of encoding the input images, existing
methods [6, 7] usually apply a shared encoder to encode each
image independently, and the the information fusion is com-
pletely dependent on the subsequent fusion module. The bias
and loss of information generated in this step will have an im-
pact on the next processing. There are also methods that use a
large encoder to encode all input images at once [8, 9], which
performs sufficient information interaction but also results in
a large amount of redundant computation. They do not handle
redundant information in image sequences properly. In this
paper, we propose an efficient multi-image encoder to pro-
cess input video. Recently Transformer has shown its great
advantage in various tasks in computer vision [10, 11, 12],
and its ability to capture long-range dependence is of great
help to multi-view 3D reconstruction. The information inter-
action between images is mainly reflected in the fact that a
part of the object may appear only in one view point and
is not visible in another view. The Tokens (patches) sliced
from the image in Visual Transformer are also well suited for
local information completion in our task. And the use of task-
wise tokens can well reduce the model size and the amount of
computation. Thus, we propose a transformer-based patch-
level progressive fusion (PLPF) module. The Frame Tokens
in it extracts the information of each frame after the initial fu-
sion, making them focus on the parts that can be accurately



predicted under their respective perspectives. Then Structure
Tokens extracts the embedding of the object part of interest in
each frame and they are used for subsequent fusion module.

For the second fusion step, some methods [13] use global
pooling operations to get a simple global feature, but such op-
erations cause the loss of a large amount of information. And
they default to the same weight for each frame, while in fact
the information presented in different views contributes dif-
ferently to the final shape predictions. Some methods [14, 15]
again use recurrent neural networks (RNN) to process image
sequences, but this results in the overall network not being
able to execute in parallel and is less efficient. In addition
RNN favors short-range dependence and is difficult to handle
long-range relationships. For video input, the information at
shorter intervals is more redundant, and the overall shape of
the object can only be observed when the difference in view-
point increases, making long-range dependence more impor-
tant in our task. Thus, we propose a transformer-based fusion
module. We use several task-wise tokens to stand for the final
fusion results, which represent the shape of the target object,
to achieve efficient and accurate integration.

For the final decoding step, the simplest way is to finish
the prediction directly using multi-layer perceptron (MLP),
which leads to low quality because a single global feature that
has lost detail information. PSG [16] proposed an hourglass
decoding approach that introduces multi-scale features from
the encoding phase. However it is only designed for single
image input. There are also many methods [6, 17] that add re-
fine modules to refine the predicted shapes after the common
encode-decode network to improve the accuracy. Such meth-
ods are only able to obtain small enhancement because they
do not solve the essential problem in the feature encoding and
fusion stages, making the extracted features with more infor-
mation about the shape of the object. According to this, we
propose a transformer-based decoder module with the help of
previous mentioned Frame Token, Structure Token, and Task-
wise Token. In addition to the simple decoding of task-wise
tokens by using MLP, we add two branches to optimize them
using the multi-head attention module. We use tokens from
encoder as key and query and task-wise tokens as value to fur-
ther dig the valid information for the shape prediction from
the video input. The small number of tokens ensures that no
large computational cost is incurred in this process.

2. METHOD

In this section, we explain our proposed transformer-based
multi-view 3D reconstruction method. We describe frame en-
coder, fusion module, and the decoder in detail, respectively.

2.1. Patch-level Progressive Fusion Encoder

The structure of the commonly used encoder type and our
proposed encoder can be seen in Fig. 2. A shared convolu-
tional neural network (CNN) is popularly used as a backbone
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Fig. 2. Different ways to encode the input video sequence.
Ours patch-level progressive fusion encoder is shown in (d).

in multi-view 3D reconstruction, as shown in Fig. 2(a). Re-
cently, Transformer demonstrates its powerful encoding ca-
pabilities. We also try on a shared vision transformer back-
bone [18, 19], as shown in Fig. 2(b). They simply stack sev-
eral convolution layers or transformer blocks, so this encod-
ing type does not take advantage of multiple images input and
represents an image with only a single feature which loses
lots of information and local details. Some works [20, 21]
have also used the Transformer architecture for multi-image
or video encoding, which can be seen in Fig. 2(c), so we also
try to use this type of encoder structure to observe its infor-
mation interaction performance for 3D reconstruction task. It
is worth noting that they always have large number of pa-
rameters. In Fig. 2(d), for more efficient feature extraction
and interaction, we propose a patch-level progressive fusion
(PLPF) encoder. In different stages of our proposed encoder,
we use special tokens to deal with the redundant information
and also apply different fusion strategies.

Let {I1, I2, · · · , In} denote the input video sequences
which contains n frames, where Ii represents a single image.
Then we can get the tokens Ti = {T 1

i , T
2
i , · · · , Tm

i } of i-th
frame, where m = HW/p2 and T j

i ∈ R3p2

. H and W
represent the height and the width of input images. p means
the size of a patch to construct a token. In order to make each
frame individually focus on the parts that can be more accu-
rately predicted from its own perspective, we add a Frame
Token Fi for each frame. Then we perform a global temporal
transformer to interact with all input frames and conduct the
first-time fusion. This operation can be considered as:

Gout = Φglobal([T1, F1;T2, F2; · · · ;Tn, Fn]), (1)

where Φglobal means the global transformer and Gout has
the same size of the input features. At this point we get
the embedding of each frame Fi, which contains informa-
tion about each frame itself as well as auxiliary information
about that perspective from other perspectives. Thus we only
use {Fi}ni=1 for the subsequent process, which also reduces
the computation cost. Then we can work on each frame to
get a shape embedding for each frame for its part of inter-
est. Specifically, we add several Structure Token Si for each
frame and use a shared local spatial transformer to handle the
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Fig. 3. Different ways to fuse the information from images.

shape structure inside each frame, which can be described as:

Lout = [Φlocal(F1, S1); · · · ; Φlocal(Fn, Sn)], (2)

where Φlocal means the local transformer and Lout has the
same size of the input in this stage. Finally, we achieve the
features of different parts of the objects and {Si}ni=1 in Lout

is considered as the input of the next fusion module.

2.2. Transformer Fusion Module
As shown in Fig. 3(a), a normal fusion approach flattens the
features of each frame into one-dimension and concatenates
them. Then a global pooling operation is used to obtain a
uniform feature representation of the input object. This ap-
proach results in the loss of local details and does not take
into account the difference between frames. RNN (Fig. 3(b))
becomes a sound alternative solution. The output of the recur-
rent unit in the last frame is considered as the final fusion fea-
ture. However, it operates inefficiently and is more difficult
to capture long-range dependence. To solve this problem, we
propose a transformer fusion module with several additional
task-wise tokens for reconstruction in Fig. 3(c).

First, we add the position embedding on the input Si of
each frame to emphasize the frame order. Then, we add sev-
eral task-wise tokens Wi for each frame and use a k-layers
transformer for information fusion and interaction. In the fi-
nal output, we discard Si of each frame and use only task-wise
tokens Wi for subsequent process to achieve higher efficiency.

2.3. Transformer-based Decoder
Decoding in 3D reconstruction is usually performed using
MLP or 3D deconvolution layers, as shown in Fig. 4(a). They
can no longer use shallow features to guide the prediction
process. Using only a single global feature for prediction
also leads to a decrease in accuracy. Thus, PSG [16] pro-
posed hourglass decode structure, which conducts the encode-
decode operations recurrently. It has stronger representation
power and can mix global and local information evidences.
However, this structure cannot be applied directly here as the
multi-image encoder has multiple output features. So, we de-
sign a transformer-based decoder combined with the output
of our previous network.

To use the guidance of shallow features, we take out the
Frame Token Ti and Structure Token Si. The multi-head at-
tention mechanism is very effective in interacting with fea-
tures and updating the input features. Therefore, we use the
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Fig. 4. Different ways to decode the final shape prediction.

previously extracted T = {Ti}ni=1 and S = {Si}ni=1 to guide
and interact with the Task-wise Token W = {Wi}ni=1 which
is responsible for the final reconstruction. We consider the
guidance tokens as key and query in multi-head attention to
update W as the value. A single head in the vanilla multi-
head attention (MHA) can be written as:

Attention(Q,K, V ) = softmax(QKT )V. (3)

In our proposed decoder, it can be considered as:

Attention(S, S,W ) = (softmax(STS)WT )T , (4)

where S ∈ Rn×d and W ∈ Rk×d, where d is feature dimen-
sion and k is the number of tokens. We perform the same
on T . This operation further allows each token to enhance
the object part it focuses on. Finally, we concatenate all the
output tokens to predict the 3D shape by using several fully
connected layers, as shown in Fig. 3(c).

3. EXPERIMENT

3.1. Experimental setup

Dataset. We evaluate our method on 3D models from the
commonly used ShapeNet [22]. We use a subset of it, which
contains 13 shape classes. The dataset split strategy follow
the setup of [14]. We use random lighting to render 30 frames
of motion sequence at random initial position.
Evaluation metric. We use the Chamfer distance (CD) as
our main evaluation metric, since it has been shown to be
well correlated with human judgment of shape similarity.
Implementation details. In this paper, we use the popular
PyTorch framework to implement our method. We use the
Adamw optimizer. The weight decay is set to 0.05 for loss
optimization. The learning rate is set to 5e-4. We apply the
warmup and cosine learning rate strategy. The batch size is
set to 24 and the input images are resized to 64× 64.
Compared methods. For the CNN backbone, we apply the
ResNet [23] series. For the image Transformer backbone,
we apply the PVT [18] and PVT-v2 [19] series. For the
video Transformer backbone, we apply the ViViT [20] and
MViT [21] series. For the RNN, we use the LSTM unit.

3.2. Comparison experiments

The improvement not only come from Transformer. As
can be seen in Table 1, we find that in each series as the



Table 1. Chamfer Distance for different encoder backbone. All the experiments are with Pooling fusion and MLP decoder. The
best of each backbone series are in underline. The best of all results are in bold. The values are reported multiplied by 100.

Encoder airplane bench cabinet car chair lamp monitor rifle sofa speaker table telephone vessel Mean Param. FLOPs

ResNet-18 2.69 6.79 8.08 3.94 5.76 10.38 7.33 3.23 6.99 10.01 9.97 5.00 3.44 6.43 34.52M 4.52G
ResNet-34 2.68 6.84 7.95 3.93 5.79 10.25 7.33 3.22 7.03 10.01 9.58 4.99 3.44 6.39 44.63M 9.05G
ResNet-50 2.69 6.79 8.10 3.93 5.79 9.43 7.37 3.21 7.04 10.10 9.59 4.95 3.43 6.34 47.64M 10.24G

PVT-tiny 2.73 6.78 7.96 3.98 5.76 9.90 7.46 3.31 7.05 9.96 9.91 5.03 3.46 6.41 36.06M 4.59G
PVT-small 2.69 6.77 7.98 3.93 5.76 9.42 7.56 3.28 7.01 10.04 9.90 5.01 3.45 6.37 47.31M 9.03G
PVT-medium 2.77 6.79 8.02 3.94 5.99 9.74 7.41 3.24 7.05 10.01 9.96 5.30 3.51 6.44 67.04M 15.81G

PVT-v2-b0 2.69 6.83 8.03 3.94 5.76 9.42 7.45 3.22 6.96 9.90 9.57 5.06 3.46 6.33 26.62M 1.34G
PVT-v2-b1 2.71 6.75 8.10 3.95 5.73 9.45 7.37 3.23 6.97 9.93 9.70 5.04 3.44 6.34 36.84M 5.04G
PVT-v2-b2-li 2.69 6.72 7.96 3.94 5.74 9.40 7.43 3.24 6.98 10.06 9.59 5.02 3.44 6.32 48.19M 9.59G

Table 2. Chamfer Distance for different ways of fusion and decoder. The best results other than our method are in underline.
The best results are in bold. The values are reported multiplied by 100.

Encoder Fusion Decoder airplane bench cabinet car chair lamp monitor rifle sofa speaker table telephone vessel Mean Param. FLOPs

ResNet-18
Pooling MLP 2.69 6.79 8.08 3.94 5.76 10.38 7.33 3.23 6.99 10.01 9.97 5.00 3.44 6.43 34.52M 4.52G
RNN MLP 2.64 6.75 8.03 3.91 5.60 9.32 7.29 3.21 6.87 9.75 9.61 4.98 3.41 6.26 47.12M 4.96G
Trans MLP 2.61 6.71 8.00 3.83 5.54 9.12 7.26 3.17 6.84 9.72 9.41 4.96 3.34 6.19 34.54M 4.58G

PVT-tiny
Pooling MLP 2.73 6.78 7.96 3.98 5.76 9.90 7.46 3.31 7.05 9.96 9.91 5.03 3.46 6.41 36.06M 4.59G
RNN MLP 2.61 6.76 7.79 3.86 5.69 8.91 7.33 3.23 6.82 9.57 9.85 4.97 3.32 6.21 48.66M 5.03G
Trans MLP 2.60 6.62 7.73 3.82 5.50 8.90 7.00 3.15 6.81 9.51 9.40 4.90 3.31 6.10 36.07M 4.65G

PVT-v2-b0
Pooling MLP 2.69 6.83 8.03 3.94 5.76 9.42 7.45 3.22 6.96 9.90 9.57 5.06 3.46 6.33 26.62M 1.34G
RNN MLP 2.65 6.81 7.86 3.89 5.68 8.94 7.33 3.21 6.80 9.48 9.47 4.90 3.42 6.19 39.22M 1.78G
Trans MLP 2.62 6.69 7.81 3.85 5.54 8.84 7.31 3.20 6.78 9.47 9.36 4.87 3.39 6.13 26.64M 1.41G

MViT-base Trans - 2.61 6.68 7.85 3.84 5.58 8.97 7.24 3.17 6.88 9.65 9.44 4.95 3.34 6.17 59.52M 8.70G
ViViT-Model1 Trans - 2.63 6.68 7.79 3.84 5.59 9.19 7.24 3.15 6.81 9.70 9.43 4.92 3.33 6.18 26.05M 1.56G
ViViT-Model2 Trans - 2.63 6.73 7.77 3.83 5.59 9.14 7.20 3.16 6.85 9.71 9.43 4.97 3.34 6.18 28.94M 1.65G

Ours Trans MLP 2.51 6.58 7.66 3.71 5.39 8.82 6.86 3.13 6.63 9.34 9.26 4.73 3.21 5.99 12.37M 1.26G
Ours Trans Trans 2.40 6.44 7.57 3.66 5.24 8.63 6.70 3.05 6.47 9.16 9.13 4.61 3.09 5.86 15.00M 1.32G

depth of the network increases, the performance improve-
ment is very limited, although it is probable to be improved.
Comparing the CNN with Transformer encoder, we find that
the great encoding power of Transformer structure for single-
image tasks is not fully demonstrated at this point. So a sim-
ple application of Transformer will not meet our needs. Con-
sidering the model complexity, we use the network with the
smallest version in each series in the other experiments.
The need for fusion in the encoding phase. We conduct ex-
periments on recent video Transformer network. The results
are shown in the fourth part of Table 2. It can be seen that
the use of encoders designed for video sequences has resulted
in a significant performance improvement. This also shows
that it is necessary to perform feature fusion at the encoding
phase. And ViViT and MViT are not designed for the 3D re-
construction task we are targeting.
Different fusion module. In Table 2, we replace the fusion
method with RNN and our proposed Transformer fusion mod-
ule for our experiments. Instead of a simple fusion approach
(Pooling), uniquely designed fusion modules can often be
found to achieve substantial performance gains. Our proposed
module use less computation cost to get better fusion perfor-
mance compared to RNN. This benefits from capturing the
long-range dependence and the task-wise tokens.
Our proposed Transformer-based model. Benefit from our
proposed PLPF encoder, Transformer fusion module, and the

Transformer-based decoder, we achieve a state-of-the-art per-
formance against current methods with low computation cost
and model complexity. The results can be seen in Table 2.

4. CONCLUSION

In this paper, we divide the shape prior extraction for multi-
view 3D reconstruction into three important parts: frame en-
coder, fusion module, and shape decoder. And we build an ef-
ficient Transformer-based model for video input. Specifically,
we propose PLPF encoder, a transformer fusion module, and
a transformer decoder. The frame tokens and structure tokens
in PLPF describe which part of the object the frame should fo-
cus on and the local structural detail progressively. And these
tokens minimize model complexity. The task-wise tokens in
transformer fusion module aggregate the shape information
of the object from structure tokens. The decoder applies
the multi-head attention to utilize the local information from
encoder. Experiments show the great sequential modeling
ability with fewer parameters of our proposed method.
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