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ABSTRACT

We introduce Value Sign Flip (VSF), a simple and efficient method for incor-
porating negative prompt guidance in few-step (1-8 steps) diffusion and flow-
matching image and video generation models. Unlike existing approaches such
as classifier-free guidance (CFG), NASA, and NAG, VSF dynamically suppresses
undesired content by flipping the sign of attention values from negative prompts.
Our method requires only a small computational overhead and integrates effec-
tively with MMDiT-style architectures such as Stable Diffusion 3.5 Turbo and
Flux Schnell, as well as cross-attention-based models like Wan. We validate VSF
on a challenging dataset, NegGenBench, with complex prompt pairs. Experimen-
tal results on our proposed dataset show that VSF significantly improves negative
prompt adherence (reaching 0.420 negative score for quality settings and 0.545
for strong settings) compared to prior methods in few-step models (scored 0.320-
0.380 negative score) and even CFG in non-few-step models (scored 0.300 nega-
tive score), while maintaining competitive image quality and positive prompt ad-
herence. Our method is also a suppressed generate-then-edit pipeline, while also
having a much faster runtime. Code, ComfyUI node, and dataset will be released.

Figure 1: Original image without negative guidance and image generated using our VSF negative
guidance on Stable Diffusion 3.5 Large Turbo. The green prompt is the positive prompt, and the
red one is the negative prompt. These examples have significant challenges as they are removing
essential parts of an object. The “hands” in the last image mean clock hands.

1 INTRODUCTION

Diffusion models (including flow matching models) have demonstrated their ability to produce di-
verse and high-quality images (Black Forest Lab, 2025; Woolf, 2022; Stability AI, 2024) and videos
(Wan Team et al., 2025; Yin et al., 2025). However, a longstanding issue remains: the challenge
of effectively applying negative guidance in image and video generation. Addressing this problem
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is crucial for improving content control, moderation (Schramowski et al., 2023), quality assurance,
and reducing biases when generating general concepts (Chen et al., 2025a). However, vision lan-
guage models (VLMs) have difficulties interpreting negations (Park et al., 2025; Alhamoud et al.,
2025; Singh et al., 2025; 2024), rendering prompts containing negations ineffectively or made the
negative prompt appears even more (e.g., a prompt like “a scientist who is not wearing glasses” will
often generate a scientist with glasses—sometimes even more frequently than a simple prompt like
“a scientist”). Classifier-free guidance (CFG) (Ho & Salimans, 2022) can be used to address this
issue when substituting unconditional generation with negative guidance.

Figure 2: An example of
forcefully applying CFG to a
step-distilled model is shown
using a guidance scale of
2.8 and only 4 steps on SD-
3.5-Large Turbo. The posi-
tive prompt describes a Cana-
dian winter landscape, while
the negative prompt includes
the word “lake.” The result-
ing image does not cancel the
lake and exhibits severe over-
saturation artifacts (trees in
the background).

However, to enhance efficiency in image and video generation, nu-
merous models have been distilled to support inference in just a few
steps (1-8 steps), such as Flux Schnell (Black Forest Lab, 2025),
Stable Diffusion 3.5 Large Turbo (Stability AI, 2024), SDXL Light-
ing (Lin et al., 2024), SNOOPI (Nguyen et al., 2024), and CausVid
(Seppanen; Yin et al., 2025). However, CFG is incompatible with
these models. These models are usually distilled and run in CFG-
disabled mode, which means only the positive guidance is used,
and there is no extrapolation. When CFG is applied forcefully, the
resulting image often becomes oversaturated, particularly when the
CFG scale is set high enough to suppress unwanted concepts. More-
over, if the number of diffusion steps is too low, the output may re-
flect features from both the positive and negative prompts (Nguyen
et al., 2024), rather than excluding the negative prompt entirely.
This occurs due to a divergence between the positive and negative
guidance signals (Chen et al., 2025a). An example is shown in Fig-
ure 2. Additionally, even if CFG works, it requires two forward
passes, one for positive guidance and one for negative guidance,
which doubles the run time.

To address this, two methods, Negative Steer Away Attention
(NASA) (Nguyen et al., 2024) and Normalized Attention Guidance
(NAG) (Chen et al., 2025a), have been introduced, employing neg-
ative guidance within attention final output space rather than the
output space. NASA is currently limited to cross-attention models
(though it can be re-implemented into other models), while NAG
primarily targets quality control rather than negative prompt avoid-
ance. Both methods calculate positive and negative attentions separately and subtract them using
a prefixed scale (same as CFG), resulting in a fixed guidance strength throughout the generation,
across different areas of the image, and at different layers of the model. This approach lacks adapt-
ability to various time steps, layers, or image regions, limiting effectiveness in negative prompt
adherence compared to a more adaptive method (Schramowski et al., 2023; Koulischer et al., 2025;
Ban et al., 2024).

In this study, we introduce Value Sign Flip (VSF), a method that dynamically adjusts the guidance
strength by flipping the sign of negative prompt values within the attention calculation (i.e., not the
attention output). This enables the model to steer away from negative concepts adaptively based on
their current presence strength, similar to the approach of Koulischer et al. (2025). VSF has a small
computational overhead and, when combined with few-step models, facilitates extremely fast image
or video generation (¡3 seconds). Our contributions in this work are: (1) we proposed a new method
for better negative guidance; (2) we constructed a dataset, NegGenBench, consisting of challenging
positive-negative prompt pairs; (3) we collected images generated using these three methods (VSF,
NAG, NASA) and labeled their negative and quality score. We further fine-tuned a VLM on it for
future work to better evaluate negative prompt following.

2 RELATED WORK

2.1 CLASSIFIER FREE GUIDANCE

Vision language models struggle to understand negation (Yuksekgonul et al., 2023; Singh et al.,
2024; Alhamoud et al., 2025; Park et al., 2025) (We discussed more about this in the Appendix).
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Original classifier-free guidance (CFG) (Ho & Salimans, 2022) generates a conditioned noise pre-
diction and an unconditioned noise prediction. In flow matching (Lipman et al., 2023), the predicted
targets are the velocity (ut). Thus, the original flow matching CFG prediction can be written as

ut = f(∅, xt+1, t) + λ(f(p+, xt+1, t)− f(∅, xt+1, t)), (1)

where p+ is the positive prompt, xt is the latent at time t (where higher t means more torward the
noise distribution), f(·) is the trained model, and λ is the guidance scale. Later, the community
finds out that by replacing the unconditional generation with a negative prompt (e.g., description of
an unwanted image), the model will avoid the prompt due to the negative sign. This is the common
implementation of a negative prompt. This turns the above equation into

ut = f(p−, xt+1, t) + λ(f(p+, xt+1, t)− f(p−, xt+1, t)), (2)

where p− is the negative prompt.

2.2 RECENT WORKS ON DYNAMIC NEGATIVE GUIDANCE

The studies on dynamic negative guidance are very limited (only (Ban et al., 2024; Koulischer
et al., 2025; Schramowski et al., 2023)). Ban et al. (Ban et al., 2024) found that the negative
prompts affect the model by delayed effects and neutralization. After the model has generated
unwanted contents, the negative guided output (up− ) will neutralize the content. They also observed
the reverse activation effect, where the negative prompt introduced early in the diffusion processes
could actually induce the unwanted concepts. To address this, they proposed applying the negative
guidance later in the diffusion process and found it effective.

Schramowski et al. (2023) used a very similar idea as CFG to avoid unwanted (NSFW) content.
They generate an unsafe vector and purposely avoid it by subtracting it from the predicted noise.
They also added a pixel-level guidance scale that depends on the pixel-wise distance between the
positive predicted noise and the unwanted noise, making it adaptive to different regions in the image.

Koulischer et al. (2025) used similar ideas of both and proposed a temporal dynamic guidance scale
method. They calculate a probability that the generated concept contains negative content and adjust
the guidance scale accordingly. However, their adaptive scale only changes throughout the steps and
does not adapt to different regions in the image.

2.3 FEW-STEP IMAGE GENERATION MODELS

Traditional diffusion or flow-matching image generation models typically require many inference
steps. However, with improved sampler, this can be reduced to around 20 steps. Recent approaches
go further by using step distillation to reduce the number of steps to fewer than 8, or even a single
step, as demonstrated in Flux Schnell (Black Forest Lab, 2025), SDXL Lightning (Lin et al., 2024),
CausVid (Seppanen; Yin et al., 2025), SNOOPI (Nguyen et al., 2024), and Stable Diffusion 3.5
Turbo (Stability AI, 2024). Since these models are distilled, they generally do not use classifier-
free guidance (CFG) during inference; when CFG is forcibly applied, the results are significantly
degraded to the point that it is completely unusable (Nguyen et al., 2024), see Figure 2 for an
example.

2.4 RECENT WORKS ON NEGATIVE GUIDANCE IN FEW-STEP MODELS

Recently, two approaches have specifically targeted negative guidance techniques for few-shot mod-
els: Negative-Away Steer Attention (NASA) (Nguyen et al., 2024) and Normalized Attention Guid-
ance (NAG) (Chen et al., 2025a). Although they both focused on avoiding unwanted content and
improving quality (using a negative prompt that describes bad quality), NASA mainly focused on
avoiding unwanted content, while NAG focused on improving quality.

The authors of the NASA study found that neither standard CFG nor CFG applied directly to text
embeddings yields desirable results in few-step scenarios, particularly in single-step settings. Specif-
ically, the regular CFG independently computes positive and negative guidance signals, preventing
the negative guidance from effectively neutralizing unwanted concepts. As a result, the produced
images merely appear as a mixture of both positive and negative prompts unnaturally (an average
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image of the positive prompt generated image and the negative prompt independently generated im-
age) rather than excluding negative prompt elements. Furthermore, the authors noted that applying
CFG to text embeddings produces minimal benefits. For detailed examples and further illustration,
readers could refer to the original paper introducing NASA (Nguyen et al., 2024).

NASA applies the guidance in intermediate states (attention outputs) instead of the final predicted
noise or velocity. Specifically, they calculate a positive attention output Z+ and a negative attention
output Z−, and the final attention ZNASA is obtained by subtracting the two with a factor α, as
shown in Equation 3. The alpha value is usually between 0 and 1.

ZNASA = Z+ − αZ− (3)

Figure 3: The attention mechanism of our method.
We pass in image tokens (I), positive prompt to-
kens (P ), and negative prompt tokens (N ) into at-
tention. For key and values, N is duplicated, with
values of one copy (N (1)) scaled by −α. Some
areas are masked to avoid interference. An bias
−β is added to I → N (1) attention.

Normalized Attention Guidance (NAG) used a
similar approach. But instead of subtracting
the negative attention map from the positive, it
uses a similar extrapolation approach as CFG,
as shown in Equation 4. The starting point Z+

could also be replaced with Z−; they are equiv-
alent if ϕ is increased by 1.

Z̃NAG = Z+ + ϕ(Z+ − Z−) (4)

However, to maintain the stability of the atten-
tion output space, they also applied normaliza-
tion to Z̃NAG to limit its norm relative to Z+

with scale τ per token, resulting in Ẑ. Then
it used a blending factor α to blend it with
the positive attention result, as shown in Equa-
tion 5.

ZNAG = αẐ + (1− α)Z+ (5)

The normalization and blending ensure the attention output of the NAG does not drift away from
what the model usually sees during training, improving the quality of generated images. However,
if the constraint is set to be too tight (i.e., high α and low τ ), it might also limit the model’s ability
to follow negative prompts.

2.5 OTHER RELATED WORKS

There is previous work that controls attention to mainlutplate images. Attend-and-Excite (Chefer
et al., 2023) forces the attention on all key tokens to avoid the generation missing some terms in the
prompt. Self-Guidance (Epstein et al., 2023) mantluplate attention to changing elements’ properties
in the image. BoxDiff (Xie et al., 2023) controls the attention map such that the object appears on
the desired location in the image. However, our work is different in that we used it in a way to cancel
unwanted elements by simply flipping the sign of values in the negative prompt.

Our work is also related to debiasing in image generation, since it can be used as a way to move away
from learned associations (which could be about demography bias or object pairings). Previous work
mainly targeted on the input, such as using reference images as input (Zhang et al., 2023) or using a
learned prompt. FairQueue (Teo et al., 2024). Our method is different such that we control the value
in the negative prompt. Additionally, our method can work against very strong associations like a
bike without wheels.

3 PROPOSED METHODS

Our proposed method is built on top of NASA (Nguyen et al., 2024), Koulischer et al. (2025), and
Schramowski et al. (2023). NASA has a fixed guidance for every attention calculation, Koulischer
et al. (2025) does not have token-level modulation, and Schramowski et al. (2023)’s approach of
taking the differences between the positive and negative noise predictions is too simple for complex
situations, as mentioned in Koulischer et al. (2025). In NAG’s (Chen et al., 2025a) future work
section, they also mentioned the possibility of token-level modulation but they did not propose a
specific solution.
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3.1 VALUE SIGN FLIP ADAPTIVE ATTENTION

We propose to expand Koulischer et al. (2025) idea to token-level modulation in few-step models.
Let W be a per-token weight at each attention calculation for how strongly the token is associated
with a positive concept compared to the negative one. We can modify the NASA attention to Eq. 7.
W is obtained by a function with a positive prompt, a negative prompt, and an image as input.

W = g(p+, p−, I), (6)
then we can rewrite the equation in NASA as

ZW = WZ+ − α(1−W )Z− (7)

An intuitive method to calculate W involves using the model’s attention map: when the image
attends more to the negative prompt compared to the positive one, it should be steered away strongly
accordingly. Thus, we can calculate the attention map between the image and the positive tokens
A+ and the image and the negative tokens A− before softmax calculation, then calculate their ratios
to their sum. Q is the image query tokens and K+ and K− are the positive and negative prompt
keys.

A+ = exp(
Q(K+)T√

d
), A− = exp(

Q(K−)T√
d

),W =

∑
A+∑

(A+ +A−)
(8)

This approach involves complex attention calculation and two attention passes, but it can be imple-
mented by a simpler approach. We can concatenate the values and keys of the positive and negative
prompts, then flip the sign of the negative prompt values. This enables that when the image attends
to the negative prompt, the flipped value of the negative prompt can cancel the unwanted content.
The equation of our method in cross attention models, written in the matrix calculation, is shown
in Equation 9, where ⊕ means matrix concatenation on the sequence length dimension, σ is the
softmax function on the sequence length dimension, and V + and V − are the positive and negative
prompt values.

ZV SF = σ(
Q(K+ ⊕K−)T√

d
)(V + ⊕−αV −) (9)

This is similar to noise-canceling headphones, where a “flipped” wave is played to cancel the noise.
Note that the key of the negative prompt is not flipped to keep the original meaning of the unwanted
concept to match image patches. Mathematically, this is equivalent to ZW . Proof is in the Appendix.

This approach gives a dynamic weight for the positive and negative prompts, and it varies for differ-
ent layers, steps, and tokens.

3.2 ATTENTION MASKING AND DUPLICATION OF NEGATIVE EMBEDDING

The above method works well for cross-attention-based methods, where attention only exists be-
tween image-to-image in self-attention layers and image-to-text in cross-attention layers. However,
it requires modification, including masking and duplication, to work in MMDiT-style models such as
SD3.5 (Stability AI, 2024), where all image and text tokens are concatenated into a single sequence
before attention.

In the standard MMDiT-style setup without our method (e.g., using CFG, NASA, or NAG), the
sequence inputs for the attention module are: [I, P] and [I, N]. If we concatenate all tokens into a
single sequence without any modification, we will get: [I, P, N], where I represents image tokens,
P represents positive prompt tokens, and N is the negative prompt. During attention, queries, keys,
and values are all projected from this combined sequence.

If we apply a sign flip to the negative prompt values by scaling VN = VN with −α (where V is
the value projection), this flipped content affects all attention paths involving VN. That includes not
only the intended interaction between image and negative prompt (I → N)1, but also undesired

1The arrow direction is the attention direction, or the opposite direction of the information flow
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Figure 4: Attention maps and intermediate images during the diffusion process. The leftmost column
shows the final generated image (top) and an image generated without applying VSF scaling (α = 0,
bottom). The top row on the right side displays the unnormalized attention values between image
tokens and negative prompt tokens, while the bottom row shows the corresponding intermediate
images at each timestep. The negative prompt is “umbrella.”

interactions such as positive-to-negative (P → N) and negative-to-negative (N → N) (in which
the value will cancel itself). These unintended interactions can distort the behavior of the model
since the flipped signal influences more than just the image.

To address this, we introduce a duplication of the negative prompt. One copy remains unflipped and
unscaled, denoted by N(0), and the value (and only value) of the other is flipped and scaled, denoted
by VN(1) = −α · VN(1) . The sequence becomes: [I, P, N(0), N(1)], where N(1) does not act as
query in attention calculation.

Additionally, inspired by Wang et al. (2025), where blocking some attention directions could im-
prove quality, we apply attention masks to isolate the effect of N(1) to only I. Specifically, N(0) is
only allowed to attend to I and to itself, while N(1) is only attended to by I. Figure 3 shows the
attention mask. Since N(1) does not act as a key or value in any attention query, it doesn’t produce
associated output. Instead, N(0) serves as the negative prompt tokens passed to the subsequent MLP
layer and into the next attention layer, where it will be flipped again. It acts as an information collec-
tor from images to collect unwanted elements and also keeps updating itself from attention to itself,
matching the prompt updating in a positive prompt.

This setup allows updates to the negative prompt based on attention from the image and from itself,
and keeps the unflipped form active in the MLP path. It also prevents interference between positive
and negative prompts and ensures that the flipped negative content affects only the intended image-
to-negative attention path.

To preserve the high quality of generated images, we also applied attention bias (−β) to I → N(1)

(also shown in Figure 3) and we removed the padding tokens from the negative prompt. Details and
pseudo-code of our method are in the Appendix.

4 EXPERIMENTS

4.1 DATASET

Following Park et al. (2025), we use ChatGPT o3 (Open AI) to generate pairs of prompts and nega-
tive prompts to construct our dataset NegGenBench. Unlike prior work, our prompts are intention-
ally more challenging: the negative prompt is typically related to the positive one, and as a critical
component—e.g., the positive prompt of a bike could have a negative prompt of “wheels”. However,
the positive prompt sometimes also uses a non-negation method to imply the item is missing, such
as using terms like “empty” and “exposed” to make it more natural. Besides prompts, two questions
are generated at the same time for later evaluation, one question asking if the image has the main
object, either with or without the negative element, and the other one queries if the negative prompt
element is missing. Prompts are generated in batches. There are 200 prompts generated, and we run
them with 2 different seeds for the main results.
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+: A painting of starry night from 1890s
-: Vincent van Gogh style

+: Mona Lisa oil painting
-: Leonardo da Vinci style

+: Mona Lisa oil painting
-: colorful oil painting style

+: a old photo from 1900s of house with beautiful wall and garden
-: monochrome

Normal Ours

+: an abstract painting of car
-: car

Figure 5: (Left) Style Avoidance Tests, (Right) (Semi)-abstract art generated by mentioning the
main object “car” in a negative prompt. The car is semi-canceled and thus still present but in an
abstract form.

4.2 BASELINE AND METRICS

We chose NAG (Chen et al., 2025a) and NASA (Nguyen et al., 2024) as our baseline for few-step
models. We also used a base model without negative guidance as a vanilla baseline, aiming to show
the lower bound of the dataset. (i.e., how likely the positive prompt alone will help avoid negative
concepts, if there is no negative guidance. This could happen either because the model is following
the implication in the positive prompt, such as the word ‘missing’, or simply by chance.) Because
NASA’s original source code was not publicly available at the time of writing, we reimplemented it
based on NAG’s codebase. Specifically, we replaced the guidance equation from NAG (Eq. 4) with
NASA’s equation (Eq. 3), removed normalization and blending, and enabled guidance when the
scale is greater than 0 (instead of 1). Additionally, we compared our method in non-few-step models
with CFG and used other models as external baselines (External baseline results are in Table 1, but
the experiment details are in the Appendix). We included Flux Kontext Labs et al. (2025) as an
image-editing baseline. We first generate an image using SD-3.5-Large-Turbo, and then edit the
image with Flux Kontext using the prompt Remove [negative prompt]. Since NAG was
focused on quality instead of negative prompt avoidance, we re-tuned its hyperparameter such that
it has stronger negation following in trade-off of quality and positive prompt following. We name
this variance as NAG Strong. Same for our VSF method, we provided two different variations with
different hyperparameters, focusing on quality (VSF Quality) and negative prompt following (VSF
Strong). Hyperparameter details are in the Appendix.

Following Park et al. (2025); Wei et al. (2025), we used multimodal large language models (MLLM),
specifically llama-4-maverick-17b-128e-instruct-fp8, to evaluate if the generated
image follows the positive prompt and the negative prompt using the two questions generated during
prompt generation. We did not use previous negation-aware CLIP-based work because they do not
focus on missing an essential component, but simple meaning (e.g., a dog that is not on the grass).
We did not use HPSv2 (Wu et al., 2023) or ImageReward (Xu et al., 2023) because they might give a
low quality score for unusual objects (essential part being removed). Instead, MLLM is used to rate
the image quality at the same time. At the end of our experiment, we also fine-tuned a Qwen-2.5-
VL (Bai et al., 2025) model using data we generated by VSF, NAG, and NASA for better negation
understanding. More details about the metrics and comparison with human validation are in the
Appendix.

5 RESULTS

Quantitative results from using LLaMA as a judge evaluation are shown in Table 2, and qualitative
results are shown in Figure 13 in the Appendix. Human validation is shown in Table 3. Auto-
matic evaluation using the better negation-aware MLLM Qwen-2.5-VL is shown in Table 8 in the
Appendix. Both the human validation and Qwen-2.5-VL results are aligned with our LLaMA evalu-
ation relative ranking. It is important to highlight that the LLaMA assigns relatively generous quality
scores; a score lower than 90 usually means the image already has degraded quality. Examples are
in the Appendix Figure 12.

Based on the quantitative results, VSF Strong shows a significantly higher negative score than other
methods, while maintaining comparable or better quality scores. Our more conservative method,
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Tree House Dog Laptop Cat

House Snowy Mountains Soda Bottle Lunch City

Bed Living Room Crowd Of Families Locomotive Car

Figure 6: More Semi-Abstract Images Generated

Table 1: External Baselines Comparsion
Positive Score (↑) Negative Score (↑) Quality Score (↑) ∼Runtime (↓)

Open-weight Models
VSF Strong 0.870 0.545 0.952 3s
VSF Quality 0.980 0.420 0.986 3s

Generate+Edit 0.875 0.488 0.958 55s
Janus-4o 0.925 0.225 0.944 20s

Qwen-Image NP 0.973 0.190 0.935 110s
Qwen-Image Negation 0.990 0.100 0.937 110s
Closed-weight Models

GPT-4o 0.978 0.705 0.954 47s
Nano Banana 0.985 0.498 0.980 14s

VSF Quality, still achieved the second-highest negative score, with the highest quality score. Both
VSF Strong and VSF Quality even achieve a higher negative score than traditional CFG in non-
few-step models, demonstrating a stronger ability to avoid negative elements, even relative to the
established strong baseline. When compared with the external baseline, VSF also gets the high-
est performance in open source methods and only lags behind GPT-4o and achieves comparable
performance with Nano Banana.

We also tested concepts/style avoidance, as shown in Figure 5 left. In the Starry Night example,
VSF completely removed any signature elements in Vincent van Gogh’s style, including the town,
and generated a generic starry night image. Figure 5 also illustrates how our method can produce
abstract art, which is typically discouraged during a model’s finetuning since reward models favor
realism. This is achieved through using the same word as the main object for both positive and
negative scores in VSF, as detailed in the Appendix. VSF also has the ability to generate “anti-
aesthetics” (unconventional, including abstract) art. Details of these results are provided in Figure 6
and Figure 18 (in the Appendix).

6 DISCUSSION

6.1 TRADE OFF CURVE

To systematically evaluate how effectively each model balanced positive prompt adherence, negative
prompt adherence, and image quality, we conducted a hyperparameter sweep across each model.
Specifically, we performed 66 runs for VSF and 287 runs for NAG, and 10 runs for NASA, with
respect to their hyperparameter counts (2 for VSF, 3 for NAG, and 1 for NASA). A random sweep
was executed besides for NASA, on which a single variable “grid” search is used, and evaluations
were conducted using LLaMA, following the same criteria as previously described. Due to the large
volume of runs, we limited our evaluation to the first 100 prompts with a single generation seed,
potentially resulting in minor differences from earlier outcomes. Results are shown in Figure 7 Left.
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Figure 7: (Top) Trade-off plot of positive-negative score and quality-negative score. Both axies
follows “higher is better.” (Down) Trade-off plot of the ablation study.

From both plots, we observe that as the negative score increases, NAG and NASA both exhibit
a significantly steeper and earlier decline compared to VSF in both positive and quality scores.
In terms of positive score, VSF maintains scores above 90 even when the negative score rises to
approximately 60. Regarding image quality, VSF similarly retains scores above 90 until a negative
score of around 60, after which quality declines. In contrast, NAG and NASA both experience
a sharp and early decline, with their quality score rapidly dropping to nearly 60 even before the
negative score reaches 50. Keep in mind that a quality score under 90 means the image is already
degraded, and if an image is rated 60, it is usually completely distorted. See Figure 12 in the
Appendix for example.

Additionally, VSF demonstrates a broader operational range in negative scores. When necessary, it
can achieve negative scores exceeding 70 while still preserving acceptable positive prompt adher-
ence and image quality. Conversely, NAG and NASA become unacceptable in quality at negative
scores below 50, limiting their practical effectiveness.

6.2 ATTENTION MAPS

Since our proposed method performs adaptive steering based on a negative attention map, we visual-
ize the attention maps generated during the diffusion process in Figure 4. Extracting the full attention
maps is difficult because efficient implementations, such as FlashAttention, do not explicitly store
these maps, and storing and computing them will require a large amount of memory. Therefore, we
computed only the unnormalized attention values between the image tokens and negative prompt
tokens. Figure 4 demonstrates that when the scale is set to 0, umbrellas appear, whereas setting the
scale to 3 effectively avoids them. As indicated in the attention maps, image tokens corresponding to
regions where umbrellas might exist (e.g., above human heads) exhibit higher attention toward the
negative prompt tokens. Specifically, in steps 4 and 5, regions above the individuals on the left and
right show strong negative attention, aligning with areas visually identified as umbrellas in α = 0
image. In the final image, these highlighted regions no longer contain umbrellas, confirming that
our method effectively suppresses the presence of undesired objects at specific locations.

6.3 ABLIATION STUDY

To evaluate the effectiveness of each component of our approach, we conducted an ablation study
using the following settings. For each setting, we scanned across scales for all 200 prompts using
the same seed. Similar to before, we plotted the trade-off curve for each setting.
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Table 2: Positive scores (how well the model follows the positive prompts) and negative scores (how
well the model avoids the negative prompts) of our model (VSF), NAG (Chen et al., 2025a), and
NAG with hyperparameter re-tuned (NAG Strong).

Positive Score (↑) Negative Score (↑) Quality Score (↑)
VSF Strong 0.870 0.545 0.952
VSF Quality 0.980 0.420 0.986

NAG (Chen et al., 2025a) 0.993 0.220 0.968
NAG Strong 0.975 0.320 0.901

NASA(Nguyen et al., 2024) 0.970 0.380 0.867
None 0.990 0.195 0.968

CFG (Ho & Salimans, 2022) (28 steps) 1.000 0.300 0.956

Table 3: Human Labelled Metric For 10 Selected Prompts with 2 Seeds

·

Positive Score (↑) Negative Score (↑) Quality Score (↑)
NAG Strong 0.950 0.250 0.675
NAG 1.000 0.100 0.895
NASA 0.950 0.150 0.685
VSF Quality 0.900 0.550 0.823

Rather than altering the attention values, we explored a simpler and more intuitive approach: flipping
the text embedding prior to input into the DiT (Whole Embedding Flip, WEF). This is similar to
applying the CFG on text embeddings studied in Nguyen et al. (2024), but keeps the positive and
negative tokens separated. Specifically, the negative text embedding is scaled by −α, concatenated
with the positive prompt embedding in the sequence length dimension, and used as the prompt
embedding for the DiT. We did not remove the padding for the negative prompt, as we found out
that removing it causes the negative prompts to have no effect at all.

We also tested our approach with no bias, no mask (but still duplication), and no duplication no
mask. The trade-off plot is shown in Figure 7 Right. The simpler and more intuitive WEF approach
appears to have almost no effect at all. We hypothesize that this is because it is similar to flipping
both the key and the value, causing regions most similar to the flipped key (i.e., least similar to the
original negative prompt) to be pushed away, rather than pushing away regions most similar to the
original negative prompt (i.e., unflipped key). From the figure, we can see that the configurations
without masking have a sharp positive score drop as the negative score increases. The WEF has a
very limited range of negative scores. Our methods and the one without attention bias have similar
results; this could be due to the MLLM not being sensitive enough to see the minor changes in
quality.

Ablation study on hyperparameters is shown in the Appendix.

7 CONCLUSION

In this paper, we introduced VSF, a novel approach for enhancing negative prompt adherence in
image and video generation models. Our method involves flipping the sign of attention values
and duplicating negative prompts and attention masking, effectively suppressing unwanted content.
Experimental results indicate that VSF significantly outperforms previous methods, NAG (Chen
et al., 2025a), NASA (Nguyen et al., 2024), and even CFG in terms of negative prompt adherence,
with much lower trade-offs in overall quality and positive prompt following. We also showed that
VSF can be applied to create more creative (by style avoidance, abstract images, and anti-aesthetics
styles) images. VSF also only has one main hyperparameter and one minor hyperparameter, making
it easier to tune them in downstream tasks. Future work directions are discussed in the Appendix.

8 REPRODUCIBILITY STATEMENT

All code, dataset, and fine-tuned models (NegAwareQwen) will be released after publication.
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APPENDIX

A NEGATION IN VISION LANGUAGE MODELS

Much previous work has shown that existing vision language models (VLM) struggle to understand
negation (Yuksekgonul et al., 2023; Singh et al., 2024; Alhamoud et al., 2025; Park et al., 2025).
In classification tasks, the model cannot correctly understand text with negation in it, e.g. “a dog
running” vs “a dog not running” might have very close embeddings, even though they are opposite.
In our test using a CLIP-ViT-Base-32, the cosine similarity between “a dog running” and “a dog not
running” is 0.9243, where the similarity between “a dog” and “a dog running” is only 0.8710. In
Figure 8, we show 4 prompts “a photo of a bike”, “a photo of a bike without wheels”, “a photo of a
bike with wheels”, and “a photo of a car with wheels”. We can see that the bike with wheels and the
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Figure 8: PCA plot of the 3 different prompts with a negation prompt.

bike without wheels have extremely close embeddings. This problem has been introduced into text-
to-image generation tasks, making it hard for the model to generate images without certain concepts
(examples in Figure 1 of Singh et al. (2025) and Figure 5 of Park et al. (2025)). Thus, classifier-
free guidance (CFG) was used to introduce a negative prompt to the image generation process.
More details in the next section. Several studies have attempted to tackle this issue by employing
alternative training strategies, such as incorporating harder samples in the training data designed for
negation tasks (Yuksekgonul et al., 2023; Singh et al., 2024; 2025; Alhamoud et al., 2025; Park et al.,
2025). Some of these methods have shown improvements in image generation tasks. For instance,
Park et al. (2025) reported gains in Neg Score—measuring whether the model retains the primary
subject while correctly omitting the negated object—for both SD-1.4 and SDXL-1.0, by replacing
the default CLIP encoder with their NegationCLIP on their dataset, without additional T2I training.

These methods generally require re-training the text encoder (usually a CLIP-like model) with con-
trastive learning, which poses challenges for models that do not use contrastively pre-trained en-
coders, such as T5 (Raffel et al., 2023) in Stable Diffusion 3 (Stability AI, 2024; Esser et al., 2024)
and Flux (Black Forest Lab, 2025). Moreover, each model using a different text encoder would
require a separate, dedicated adaptation. Additionally, even if the text encoder understands the
negation, the diffusion model might still fail to avoid certain items because of their strong associa-
tion.

B PROOF THAT OUR METHOD IS THE SAME AS TOKEN-WEIGHTED
SUBTRACTION

In this section, we prove that our method ZV SF is equivalent to token-weighted subtraction, denoted
ZW .

Proof. We define

A+ = exp(
Q(K+)T√

d
), A− = exp(

Q(K−)T√
d

).

Then

W =

∑
A+∑

A+ +
∑

A− .

Substituting into the expression for ZW :

ZW = W · σ(Q(K+)T )V + − (1−W ) · α · σ(Q(K−)T )V −,

and using the softmax definitions

σ(Q(K+)T ) =
A+∑
A+

, σ(Q(K−)T ) =
A−∑
A− ,

we obtain
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Figure 9: The left image is the original image, and the right image is generated by GPT-4o, where
piano keys are removed. When scored using HPSv2, the left image got a score of 0.330 while the
right image got a score of 0.319 using prompt of “A grand piano dominates an empty concert hall, a
smooth ebony board stretching across the front.” and the left get a score of 0.330 and the right got a
score of 0.324 if we mention “no keys” in the promps.

Canceling the sums:

ZW =
A+∑

A+ +
∑

A−V + − αA−∑
A+ +

∑
A−V −.

This matches
ZV SF = σ(Q(K+ ⊕K−)T )(V + ⊕−αV −),

since

σ(Q(K+ ⊕K−)T ) =
A+ ⊕A−∑
A+ +

∑
A− ,

and therefore

ZV SF =
A+∑

A+ +
∑

A−V ++
A−∑

A+ +
∑

A− (−αV −) =
A+∑

A+ +
∑

A−V +− αA−∑
A+ +

∑
A−V −.

Hence, ZW = ZV SF .

C ATTENTION BIAS AND PADDING REMOVAL

We observe that even when the scaling factor α = 0, including the negative prompt in the sequence
still sometimes reduces image quality. This could be because the negative prompt “distracts” the
image tokens’ attention from the image tokens or positive prompts. To mitigate this effect, we
introduce a negative bias −β into the attention I → N(1), thereby reducing the influence of the
negative prompt.

In most models from Huggingface Diffusers (von Platen et al.), padding tokens in the text input
are typically not masked during attention. This is likely because the models have learned to ignore
padding, and masking them would add unnecessary overhead (due to some attention implementa-
tions like FlashAttention-2 (Dao, 2023) that do not support arbitrary masking). However, when we
invert the sign of the padding tokens, it degrades output quality significantly. This could be because,
although these tokens carry no semantic meaning, the sign-flipping introduces unseen states into the
attention mechanism. To mitigate this, we remove padding tokens from the negative prompt embed-
dings. For the positive prompt, we retain padding tokens, as they do not introduce novel tokens and
can improve generation quality. This aligns with training conditions and may allow the model to use
padding positions as registers for auxiliary information.

D DETAILS ABOUT THE METRICS

To evaluate the scores of the generated images, we used LLaMA 4 Maverick, which has a very high
image reasoning MMMU (Yue et al., 2024) score, higher than Gemma 3 and even GPT-4o. We
avoided using the same model (o3) for both evaluation and generation for cost control and to avoid
bias within a model. We did not evaluate the quality of the generated images using models like
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Table 4: Reliability Metric For Human And MLLM Evaluation Results
Negative Score Positive Score

F1 0.667 0.974
Accuracy 0.850 0.950

ImageReward (Xu et al., 2023) or HPSv2 (Wu et al., 2023) as in NASA or NAG, as current quality
or human preference assessment models do not account for negative prompts; traditional methods
usually aim for real-world generations (Ye et al., 2025). Removing a key element from the positive
prompt (e.g., removing the roof from a house) is likely to reduce perceived quality, since the result
deviates from what is considered “normal,” even though that is the intended outcome. An example
is shown in Figure 9 where removing the keys from the piano results in a much lower quality score,
even though other parts of the image look the same. Both ImageReward and HPSv2 are built on
top of image-text alignment models (CLIP (Radford et al., 2021) or BLIP (Li et al., 2022)), which
will likely lead to a decreased score when the main object is missing a critical part. Thus, we also
let the MLLM rate the image quality from 0-1 for each image and told it to ignore the abnormality
of following the negative prompt. We did observe that MLLM can make mistakes, especially when
there is ambiguity or when the unwanted element is hard to see. However, we believe that in general,
under 400 images, the mistakes are minor. To compensate for this, we also did a human evaluation
and a more negotiation-aware MLLM evaluation to cross-validate the LLaMA evaluation. Due to
model provider stability issues, we used different MLLM providers for different portions of the
experiment for the same model under the same config; this could have some limited impact on the
stability of metrics.

E HYPER-PARAMETER TUNNING

Although NAG (Chen et al., 2025a) also targeted negative concept avoidance, its primary focus was
on its effects on improving generation quality (using words like “blurry” or “low quality” as a neg-
ative prompt). We believe the hyperparameters reported in their work were tuned with an emphasis
on quality rather than negation handling. Therefore, we re-tuned their hyperparameters moderately
and manually on guidance scale (ϕ), blending factor (α), and normalization factor (τ ). We will re-
port experimental results on both original NAG (noted as NAG) and the improved hyperparameter
version (noted as NAG Strong). The final hyperparameters used are ϕ = 11, α = 0.5, τ = 5 for
NAG Strong and ϕ = 4, α = 0.125, τ = 2.5 for original NAG. This pushes the NAG to the edge of
acceptable visual quality.

Similarly, for our VSF, we used two set of hyperparameters, VSF Quality (α = 3.3, β = 0.2)
maintained high quality and positive prompt alignment, while VSF Strong (α = 3.8, β = 0.2)
pushes it to the limit, reaching higher negative prompt alignment in trade of positive and quality
score.

F HUMAN VALIDATION

To verify the results of the MLLM evaluation, we selected 10 prompts (with 2 seeds each) for
VSF, NASA, NAG, and NAG Strong and manually labeled them with positive, negative, and quality
scores. The human-labeled results are presented in Table 3. We validated MLLM performance
by computing the binary F1 score and accuracy between MLLM outputs and human annotations.
Cohen’s kappa was not applied due to the highly imbalanced class distribution. The reliability
metrics are summarized in Table 4. We observed that quality ratings from MLLM and human labels
were uncorrelated in high-quality regions. To investigate this further, we evaluated quality scores
over a broader set of conditions. With a large sample size, we found that correlation emerges in a
wider range: when scores are close to 1, small fluctuations carry little meaning, but substantially
lower scores (e.g., < 0.9) may indicate degraded quality. The correlation is shown in Figure 10.
This supports the observation in Figure 12, where MLLM tends to overestimate quality. From the
scatter plot and regression, we can see that the MLLM score is usually higher than the human score,
and although they are not linearly correlated, they are monotonically correlated.
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Listing 1: Pseudocode implementation of the Value Sign Flip (VSF) attention process
# prep for embeddings
pos_embeds = get_embed(prompt)
neg_embeds = get_embed(neg_prompt, padding=False)
pos_len, neg_len, img_len = pos_embeds.shape[1], neg_embeds.shape[1], IMG_LEN

# concat positive and negative prompts (N0)
prompt_embeds = torch.cat([pos_embeds, neg_embeds], dim=1)

# prep for attention mask and bias (N1 never acts as query)
total_len = img_len + prompt_embeds.shape[1]
attn_mask = torch.zeros((1, total_len, total_len + neg_len))

# block P and N0 from attending to N1
attn_mask[:,-(pos_len+neg_len):,-neg_len:] = -torch.inf

# block image and P from attending to N0
attn_mask[:,:-neg_len,-(2*neg_len):-neg_len] = -torch.inf

# block N0 and N1 from attending to P
attn_mask[:,-neg_len:,img_len:img_len+pos_len] = -torch.inf

# bias image->N1 connections
attn_mask[:,:img_len,-neg_len:] -= offset

class VSFAttnProcessor(AttnProcessor):
def __init__(self, attn_mask, neg_prompt_length):

self.attn_mask = attn_mask
self.neg_prompt_length = neg_prompt_length

def forward(self, hidden_states, encoder_hidden_states, attention_mask):
# get qkv projection for image tokens
q = self.get_q(hidden_states)
k = self.get_k(encoder_hidden_states)
v = self.get_v(encoder_hidden_states)

# get qkv projection for encoder tokens

q_enc = self.get_q_encoder(encoder_hidden_states)
k_enc = self.get_k_encoder(encoder_hidden_states)
v_enc = self.get_v_encoder(encoder_hidden_states)

query = torch.cat([q, q_enc], dim=2)

# append P, N0 (in k_enc and v_enc) and N1 (the last portion of k_enc and v_enc) at the end
k = torch.cat([k, k_enc, k_enc[:,:,-self.neg_prompt_length:]], dim=2)
v = torch.cat([v, v_enc, v_enc[:,:,-self.neg_prompt_length:]], dim=2)

# sign-flip values of N1
v[:,:,-self.neg_prompt_length:] *= -scale

hidden_states = F.scaled_dot_product_attention(
query, k, v,
dropout_p=0.0, is_causal=False,
attn_mask=self.attn_mask.to(query.dtype)

)
hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim)
return self.out_proj(hidden_states)

for block in model.transformer.blocks:
block.attn1.processor = VSFAttnProcessor(attn_mask, neg_len)

# diffusion process continues

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Figure 10: Correlation Between the Human-rated quality score and MLLM-rated quality score

Table 5: Comparsion of Flux Schnell VSF and Original Schnell (Black Forest Lab, 2025)
Method Positive Score Negative Score Quality Score

Flux Schnell 1.00 0.22 0.99
Flux Schnell VSF 0.97 0.41 0.99

G ADAPTING TO OTHER DIT MODELS

In this paper, we primarily use SD-3.5 (Stability AI, 2024) due to simplicity and elegant archi-
tecture. However, our method can theoretically be adapted to any transformer-based diffusion or
flow-matching model. To demonstrate this adaptability, we implemented our method on Wan 2.1
with CausVid LoRA (Yin et al., 2025; Seppanen) and Flux Schnell (Black Forest Lab, 2025).

For Wan 2.1, which uses cross-attention between image and text, duplication and masking are un-
necessary and not used. Because our approach does not perform extrapolation and solely provides
negative guidance, it cannot enhance overall quality significantly or replace CFG sampling in non-
disstilled models, making it incompatible with the original Wan 2.1 model. Instead, we utilize
CausVid (Yin et al., 2025), which enables Wan to function effectively without classifier-free guid-
ance in few-step settings. Specifically, we used a LoRA distilled from the original CausVid that can
be directly applied on top of Wan 2.1 (Seppanen). For qualitative results from Wan, please see the
appendix.

We also tested our method on Flux Schnell (Black Forest Lab, 2025). However, due to the model
likely being trained to associate items with their associated items that often appear together strongly,
we need to make some modifications. Before the negative prompt was fed into the model, we did a
CFG-like extrapolation on the negative prompt, with a mean padding embedding as a null condition.
This follows the implementation of the Compel package. Noted as:

p− = p− + λ · (p− − p∅), (10)

we used λ = 8 in this case. Quantitative results are shown in Table 5. We can observe that even
without any negative guidance, the Flux Schnell model can slightly better avoid the items solely
based on the positive prompts (since the positive prompts implied the item is missing using terms
like “empty”), but with the help of VSF, it further increases the negative score without compromising
the positive and quality score.

H COMPUTATIONAL COST

Since our method does not require two passes through the entire model (as in CFG) or the atten-
tion module (as in NAG or NASA), and only slightly increases the sequence length (< 0.2%), its
theoretical computational cost is significantly lower, close to that of a single pass. However, due
to implementation limitations (specifically, FlashAttention-2’s lack of support for arbitrary attention
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Table 6: The computation cost of each model. Time is measured in total runtime per sample, and
VRAM is the peak RAM during the 25 samples generation. Since VSF Wan does not require a
mask, and it is only used for bias, we also tested it without the bias. The SD3.5 model used is
SD-3.5-Large-Turb,o and the Wan model used is Wan-2.1-T2V-1.3B.

Wan SD3.5
Time VRAM Time VRAM

Baseline 23.10s 22.05GB 2.14s 28.49GB
NASA - - 2.89s 28.50GB
NAG 25.58s 22.06GB 2.98s 28.50GB
CFG (Theroatical) 46.20s - 4.28s -
VSF 22.70s 23.05GB 3.00s 28.53GB
VSF (No mask/bias) 22.70s 22.05GB - -

Figure 11: Effects of guidance scale (α) and attention bias (β) in image generation. Positive prompt
is “a cat making a cake in the kitchen, the cat is wearing a chef’s apron...” and negative prompt is
“chef hat.”

masking), the actual runtime of our method is higher than the original single-pass MM-DiT models,
and similar to NAG or NASA, but still lower than CFG.

To accurately measure the computational cost, we evaluate the runtime of 25 identical prompts
under four settings: no guidance, NAG, NASA, and our proposed guidance, VSF, and then report
the average runtime and peak memory usage for each setting. We also reported the theoretical CFG
time as double the one without guidance. To avoid GPU thermal throttling affecting the results, we
pause for at least 5 minutes between each set of tests. The tests are done on NVIDIA A100 40GB on
Google Colab, as this is the most accessible option for high-end GPUs for users. Stable-Diffusion-
3.5-Large-Turbo is generated in 8 steps for 1024x1024 resolution, Wan is generated in 8 steps with
480x832 resolution, and 81 frames. The results are shown in Table 6.

From the table, VSF requires marginally more time and memory than NAG in SD3.5, while they
are both significantly faster than theoretical CFG time, which would be twice the baseline. In Wan,
VSF outperforms NAG and is even slightly better than the baseline (likely due to nature variation or
noise) in terms of compute time, though it consumes 1GB more memory, likely due to the attention
bias being stored. Since this bias is optional, we tested VSF Wan’s performance with it removed,
which results in an improvement in VRAM usage such that it uses the same amount of VRAM as
baseline and NAG, and no change in runtime.
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Figure 12: An example of a completely distorted image gets a relatively high quality score. The
left one has a score of 70, the middle one has a score of 90, and the right one is a slightly distorted
image, but still rated for 100.

I EXTERNAL BASELINES

In addition to other guidance methods applied to SD-3.5-turbo, we evaluated several external base-
lines. The first baseline employs a generate-then-edit approach, loosely inspired by Generate-Plan-
Edit (GraPE) (Goswami et al., 2025), but omitting the planning stage as our goal is straightforward
(removing unwanted elements). Specifically, we first generated images using SD-3.5-Large-Turbo
without a negative prompt, and subsequently edited out the unwanted elements automatically us-
ing Flux Knoest (Labs et al., 2025), an image editing model, using prompt Remove [negative
prompt].

The second baseline utilizes GPT-4o’s native image generation capability. GPT-4o has demon-
strated strong prompt-following performance(Wei et al., 2025), including in handling negation tasks.
As GPT-4o lacks explicit negative prompt functionality, we formatted prompts as [Positive
prompt], but with no [negative prompt]. Since our focus is on evaluating negation
rather than image quality, we adopted the “low” generation setting. Besides GPT-4o, we also added
the newly released Nano Banana from Google. It is also a language model-based image generation
model and has received a good reputation in the image generation community.

The third baseline we included is Janus-4o (Chen et al., 2025b), a model distilled from GPT-4o
onto the Janus-Pro base architecture (Chen et al., 2025c). Given GPT-4o’s strong prompt-following
performance, we anticipated competitive results from Janus-4o. We provided negative prompts
directly as negations within the positive prompts, same as GPT-4o.

Finally, we tested Qwen-Image (Wu et al., 2025) using two configurations: one employing separate
positive-negative prompt pairs using CFG (labeled as Qwen-Image NP), and another embedding
negative prompts as negations within the positive prompt itself (labeled as Qwen-Image Negation),
while still using CFG with an empty negative prompt. Qwen is run under DFloat-11.

All measure time is measured on Google Colab 40GB A100 GPU, and for Qwen-Image and Gener-
ate+Edit, model CPU offloading is enabled.

The results are presented in Table 1 in the main text. The table indicates that VSF Strong achieves
the second-best negative score, only behind GPT-4o, while also demonstrating a significantly faster
runtime compared to all other methods, outperforming even the generate-then-edit pipeline. The
GPT-4o distilled model, Janus-4o, has an unexpectedly low negative score, which could be because
they did not have enough negation-included prompts in the distillation data. The VSF Quality had a
lower negative score compared to Generate+Edit, while having a much higher positive and quality
score, and shorter runtime.

J SD3.5-LARGE-TURBO QUALITATIVE RESULTS

Selected qualitative results are shown in Figure 13. The positive prompt is condensed for spacing.
For the glasses without lens images, both NAG and NAG Strong generated classes clearly have a
lens. For the VSF-generated image, we can see the lens is missing, even though the frames are
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Figure 13: Selected Results for Comparison. Positive promtes are condensed for spacing.
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floating. However, this issue was also presented in NAG Strong’s image, even though it still has
glasses. For a sailboat without sails, all other methods generated smaller but still existing sails,
while VSF successfully avoided sails. In the third image of a lighthouse without a lamp, both VSF
and NASA have no visible lamp, while the images from NAG and NAG Strong have a clear lit lamp.
In the image of a bicycle without a chain, NASA generated a blurry image without bikes at all, while
NAG generated a normal image, and NAG Strong generated a slightly distorted image of a bike with
no seat yet the chain is still present. VSF successfully generated a bike without a chain, even though
it also removed the seat. For the prompt of a lantern with no glass panes, NASA generated a lamp
with frosted panes, NASA++ generated a classic glass pane, and NASA++ generated broken frosted
panes. VSF, in this case, generated a pane that is clearly not glass. In the last example of a T-shirt,
NASA generated a blurry image with still one sleeve visible, and NAG generated the T-shirt with
both sleeves visible. NAG Strong and VSF both avoided the sleeve, even though NAG Strong has
some artifacts.

K QUALITATIVE RESULTS FOR WAN

In Figure 14, we showed 3 examples generated from Wan-2.1-14B. In the first example, we suc-
cessfully removed the stars in the background while keeping other elements intact. On the right
side, in the absence of stars, the moon lander is generated to fill the space. In the second video, we
successfully generated a windowsill without a curtain. In the last video, the generated video from
VSF contains no trees on the left, and instead, it fills it with a hill. There are still some bushes on the
right side, which do not violate the negative prompt of “trees. All videos have the same high quality
as the original one.

L FAILURE CASES

Like any method, our method is not perfect, especially in a challenge dataset like NegGenBench.
In Figure 15, we showed 4 failed cases. In the case where we want to generate a keyboard without
a spacebar, the generated object is technically a key-board (an array of keys) and has no space bar,
but it is not what people imagine when they think about ”keyboard with no spacebar.” The second
failed case is another image from glasses with no lens; the generated image has no lens, but the
frame is twisted in an unnatural way. In the third example, where a house with no roof is needed,
VSF completely missed the negative prompt, possibly due to the strong association between roof
and house. In the last example of a cat with no whiskers, the generated image technically has no
whiskers and looks like a cat, but it looks more like a cat statue instead of a living cat.

M NON-OBJECT NEGATIVE GUIDANCE

In this paper, we focused on removing a critical component in the image. To further validate our
negative guidance method in other areas, we also tested it on style avoidance. In Figure 5 (in main
text), we show four examples, each of which is generated using the same seed. We can see that when
prompted with famous artwork (e.g.,”A painting of Starry Night from the 1890s” or ”Mona Lisa oil
painting”) but with a negative prompt of the artist’s name style, the generated image avoided any
elements related to the style (including the town in the Starry Night) but kept the semantic meaning
of the positive prompt. When prompted to give an old photo but not monochrome, the generated
image is more like an old-style color photo, follows both non-monochrome and also not very bright
(as old photos, even in color, are less vibrant). We find these examples interesting and think they
can be used for machine unlearning, using a similar method as in (Gandikota et al., 2023).

N AN EXPERIMENT ON ANTI-AESTHETICS ARTS

Current image generation models are typically finetuned to align with so-called “human preference.”
However, we argue that there is no universal standard for human preference, and it cannot be defined
solely by developers, who inevitably bring their own interests and assumptions. Aligning models ex-
clusively with such values risks introducing bias and potentially marginalizing minority perspectives
and interests (Arzberger et al., 2024; Turchin, 2019; Sutrop, 2020; Guo et al., 2025).
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Figure 14: Qualitative Results for Wan

Figure 15: Failed examples, positive prompts are condensed for spacing.
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Extreamly Abstract, HPSv2: 0.22 Highly Abstract, HPSv2: 0.26 Abstract, HPSv2: 0.27 Normal, HPSv2: 0.31

Prompt: an abstract gouache drawing of car

Figure 16: Image with abstract style receives a lower score in HPSv2 (reflecting human preference;
traditionally, models aim for higher scores).

Figure 17: Abstraction of the image as scale increases.

In the context of image generation, this alignment may lead to homogenization of style or taste, pro-
ducing only broadly pleasing outputs for the general population. Such uniformity can suppress niche
demands for degraded, low-quality, or unconventional aesthetics. To counteract this, one possible
approach is the use of negative guidance to steer outputs away from mainstream preferences. In this
experiment, we tested how VSF can address this issue. We ran our VSF in settings where α = 0,
which shows on the left, and α ∈ [0, 4], which shows on the right side. The image with α = 0 might
not be the same as the one without guidance, but should be an image without negative guidance.
The first test used prompts containing the same object in both positive and negative form, with the
goal of producing abstract art. This works by semi-canceling the main object, making it appear in
an abstract form. Abstract styles are often disadvantaged in alignment settings, since reward mod-
els typically favor realistic or figurative outputs. VisionReward (Xu et al., 2025) encodes this bias
through its scoring metric, and LAPIS (Maerten et al., 2025) reports that abstract paintings generally
receive lower preference scores. Figure 16 shows that an abstract image gets a much lower score
compared with a figurative one. As shown in the first two rows of Figure 18, the apple, people, and
cat appear in abstract form, demonstrating a clear shift away from the default figurative tendency of
the aligned models when VSF is applied. For the last image of a dog, we used “cute” as a negative
prompt, which usually describes realistic objects, and we achieved a very abstract and artistic image.
Figure 17 shows how abstract the image gets as the scale increases. More examples are shown in
Figure 6.

In the second test, the goal was to diverge from styles that are generally appreciated. The positive
prompt specified the desired style, while the negative prompt contained descriptions of commonly
preferred styles. Importantly, the positive prompt clearly described the intended output, so a faith-
ful model should follow it rather than default to generalized human preference. The tested cases
included desaturated color, sad emotion, pixelated art, insufficient lighting, unnatural colors, and a
non-beautiful cat. Results show that the baseline model struggled to maintain these characteristics,
often reverting to conventionally “beautiful” imagery, whereas VSF successfully produced outputs
aligned with the specified unconventional styles.
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+: an oil paint of an apple
-: apple

+: a pencil drawing of a group of people 
standing by the TV
-: people

+: an abstract painting of a cat
-: cat

+: an abstract painting of a dog
-: cute

+: a desaturated painting of an apple
-: vibrant colors

+: a sad human reading a book from his 
sofa
-: happy

+: a pixelated JPEG photo a woman 
standing under a street light
-: sharpen, clarify

+: a dark photo of an apple on the table 
in a dark room
-: sufficient lighting

+: a image of a snowy mountain in weird 
color
-: nature color

+: an ugly cat sitting on the table
-: cute, beautiful

Figure 18: A test for anti-aesthetics. The left image is generated with α = 0, and the right image is
generated with α > 0. These tests aim to move away from universally pleasing styles and demon-
strate the ability to capture more diverse aesthetic preferences.
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Table 7: Negation-Aware LLM Evaluation on Testing Set
Parameters r (↑) Acc (↑) F1 (↑)

Llama Maverick 400B 0.05 0.83 0.59
Llama Maverick CoT 400B 0.03 0.77 0.50
Qwen-2.5-VL 32B 32B 0.28 0.80 0.36
Qwen-2.5-VL 32B CoT 32B 0.31 0.88 0.70
NegAwareQwen-7B 7B 0.37 0.86 0.65
NegAwareQwen-32B 32B 0.34 0.90 0.76

O NEGATION-AWARE MLLM

Upon visual inspection, we observed that GPT-4o effectively avoids many negative prompts, though
occasionally the ambiguity within negative prompts (e.g., the term “door” referring either to the
door panel or the entrance) and the vision ability of MLLM itself (i.e., hallucination) leads to lower
negative scores. It is possible that the negative scores for other methods might also be underesti-
mated. We acknowledge this as a limitation associated with using an MLLM as the evaluator. Thus,
we provided a better negotiation understanding of MLLM and used this MLLM to evaluate different
guidance methods.

To enable future research on evaluating negation prompting in generative models, a reliable and
fast (LLaMA Maverick is too big) evaluation model is necessary. Previous CLIP-based studies
concentrated on simple negations (e.g., ”a cat that is not on the grass”) rather than more complex
cases such as those in NegGenBench. To address this, we finetuned a multimodal large language
model, Qwen-2.5-VL-7B, called NegAwareQwen for improved understanding.

We created 100 additional prompts using GPT-5, each paired with a positive and a negative pair
and 2 questions. For each prompt, we generated two images with the three models (NAG, VSF
Quality, and NASA) and selected 722 for manual scoring on two dimensions: adherence to the
negative prompt and overall quality. We did not assess the positive prompt evaluation as those are
simpler, and almost all images in the dataset have a perfect positive prompt following. Negative
adherence was rated on a three-level scale: 0 (ignored), 0.5 (partial), and 1 (fully followed). When
generating the samples, we slightly randomly adjust the hyperparameter in a small range to create
more diverse data (For VSF, α = 3.3 ± 1, β = 0.2; for NASA, α = 0.15 ± 0.05; for NAG,
ϕ = 8 ± 4, α = 0.5 ± 0.2, τ = 4 ± 2). Since this makes image generation models generate sub-
optimal images, the rating results of each model’s images are not used for direct comparison. The
dataset and the model will be opened after publication.

Note that here Llama showed a very weak r-score for quality; this is because all the images are
evaluated using relatively high-quality images (unlike in the ablation study, where many images are
lower quality). We did not compare the 7B untrained model because it often failed to output the
structure data needed.

The model was finetuned using prompts from the dataset of all 3 models. We trained the model using
QLoRA (Dettmers et al., 2023) with rank of 8 and r = 8, applied to query, key, value projections
in both the vision encoder and language model with dropout of 0.1. Model is trained using lr =
5 × 10−5 (with warm up and decay), WeightDecay=0.1, BatchSize=16, Epoch=5. The dataset is
split into train-val with a 90-10 ratio based on the prompt level splitting and aiming for balanced
scores in each split. We treat 0.5 as False and calculate negative scores as a binary metric. Results
are presented in Table 7 with comparison with the same model without finetuning and LLaMA-
Maverick.

P EVALUATION USING NEGAWAREQWEN

We re-evaluated VSF Quality, NAG, NAG Strong, NASA, GPT-4o, and Nano Banana images gener-
ated using the prompts and seeds in the main text of the paper using our finetuned NegAwareQwen;
the results are shown in Table 8. We did not round the 0.5 score. We used a positive score from the
original Table 2 as our finetuned version was trained on largely positive compliance samples. The
results match our observation with human validation and MLLM evaluation, that our method gets
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Table 8: Evaluation of Different Methods using Our NegAwareQwen-32B
Positive Score (↑) Negative Score (↑) Quality Score (↑)

VSF Quality 0.980 0.330 0.814
VSF Strong 0.870 0.415 0.814
NASA 0.950 0.224 0.727
NAG Strong 0.950 0.168 0.795
NAG 1.000 0.147 0.812
GPT-4o 0.978 0.619 0.812
Nano Banana 0.985 0.406 0.817

Figure 19: Relationships between metrics and α and β

the highest negative score while having better or comparable positive and quality scores with other
open source guidance methods.

Q ABLIATION STUDY ON α AND β

To study the effects of α and β and hyperparameter sensitivity, we studied the effects of the two
hyperparameters. We used 30 randomly selected prompts from the dataset and tested the effects of
α and β on the positive, negative, and quality scores. When testing the effects of α, we set β to 0, and
when studying the effects of β, we set α to 3.5. All generations use the same seed. The images are
evaluated using our NegAwareQwen-32B running for negative and quality score and used LLaMA
for the positive score. Qualitative results of the effects of α and β are shown in Figure 11 and
quantitative results are shown in Figure 19. We can see that as α increases, negative scores increase
while positive scores decrease. When β increases, the negative score decreases while the positive
score increases, which could be noise. In both cases, the quality scores only change slightly.

R FUTURE WORK

Future work may involve applying it to non-diffusion models (like Janus-4o (Chen et al., 2025b))
or models with complex text encoders (like Qwen-Image (Wu et al., 2025)), improving robustness
through normalization and blending techniques similar to those employed by NAG, and optimiz-
ing computational efficiency by using a better attention implementation. Additionally, we observed
some inaccuracies in MLLM judgment due to ambiguities or minimal differences in visual differ-
ences. Conducting a larger-scale human evaluation study would help mitigate inaccuracies observed
in MLLM-based assessments. Investigating the attention maps and diffusion trajectories of our
model could further elucidate the underlying mechanisms of VSF. Decoupling the attention, such
that it calculates the positive and negative attention separately and then uses the ratio to extrapolate
the output, might yield better quality in exchange for runtime. Or, adding a scaling factor to the
positive prompt for better control.

S USE OF LLMS IN THE PAPER

In this work, we used LLM for paper-related work collection and consumption. It is also used to
polish the paper language or provide feedback for writing/figures. It is also used to brainstorm before
and during the project.
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