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Abstract
We extend Differential Policy Optimization (DPO) to stochastic settings by deriving a discrete-time
algorithm from the stochastic Pontryagin Maximum Principle using rough path theory. The frame-
work preserves DPO’s operator-based structure while incorporating stochasticity via Brownian and
second-level rough path increments. We prove pointwise convergence, establish sample complexity
bounds, and derive a regret bound of O(K5/6). This provides a theoretically grounded approach to
policy learning in continuous-time stochastic control settings.
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1. Introduction

Reinforcement learning (RL) is a powerful method that achieves successes across domains such as
robotics, biological sciences, and control systems [6, 9, 1]. However, sample complexity and the lack
of physical bias prevent reinforcement learning from achieving good results in scientific computing.
Model-based methods help mitigate this by improving sample efficiency and incorporating physical
models, but they typically require access to analytic reward functions and their derivatives, or the
ability to reset to intermediate timesteps [3, 5, 14], making them inapplicable to scientific settings.
Differential Policy Optimization (DPO) [13] was recently proposed as a model-free framework that
addresses these challenges by solving the differential dual of the continuous-time RL objective.
DPO embeds physical structure through a symplectic operator derived from Pontryagin’s Maximum
Principle [7], and learns this operator directly from trajectory-level reward signals. This formulation
avoids reliance on environment gradients or reset capabilities, while retaining the sample efficiency
and inductive bias typically associated with model-based methods. In this work, we take a step
further and extend DPO to the stochastic control settings. A naïve injection of stochasticity into the
deterministic DPO breaks the theoretical connection to optimality conditions in stochastic control.
To overcome this, we introduce a new framework that builds on rough path theory to construct
differential operators that evolve along stochastic trajectories in a pathwise manner. This results in a
stochastic extension of DPO that allows randomness and, at the same time, maintains the advantages
of sample efficiency and physical bias for trajectory-level learning.
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1.1. Related Works

Continuous-time RL. Given an Markov Decision Process (MDP) with state space S and action
space A, reinforcement learning (RL) aims to maximize the expected cumulative reward:

J = Eπ

[
H−1∑
k=0

r(sk, ak)

]
, sk+1 ∼ P(sk+1|sk, ak), ak ∼ π(ak|sk). (1)

A continuous-time approximation of such formulation leads to the optimal control formulation:

max
π

E
[∫ T

0
r(st, at)dt

]
, subject to ṡt = f(st, at). (2)

Several works including DPO [13] operates on this continuous-time formulation or its variants.

Differential Policy Optimization (DPO). Pontryagin’s Maximum Principle (PMP) [7], through
the Hamiltonian function HF (s, p, a), and its reduced version hf(s, p) := HF (s, p, a∗(s, p)),
introduces the following differential dual system:[

ṡ
ṗ

]
=

[
∇phf(s, p)
−∇shf(s, p)

]
. (3)

By combining (s, p) into x = (s, p), we obtain a dynamics operator:

xn+1 = G(xn) := xn +∆S∇hf(xn), (4)

where S is the canonical symplectic matrix. DPO reduces finding the optimal policy to approximating
the operator G using the trajectory-level reward feedback g. In particular, DPO focuses on the abstract
problem of finding/approximating G : Ω → Ω:

x0 = x ∼ ρ0, x1 = G(x0) = G(x), (5)

x2 = G(x1) = G(2)(x), · · · , xH−1 = G(H−1)(x) (6)

Here Ω is a compact domain in Rd, H is the number of steps in an episode, and ρ0 is the distribution
of the starting point x0. The framework learns a policy Gθ that approximates G by interacting with
environment B, which inputs a policy Gθ and outputs the trajectories (G(k)

θ (x))H−1
k=0 together with

their associated scores (g(G(k)
θ (x)))H−1

k=0 for a sample x from distribution ρ0. Due to Equation (4),
we obtain the first-order relation: G = Id +∆S∇g.

DPO’s limitations and our contribution. DPO demonstrates competitive performance across
diverse scientific computing tasks, including surface optimization, multiscale grid-based control, and
molecular dynamics [13]. However, while we can augment the function G with stochastic terms to
introduce exploration behavior, the resulting dynamics do not preserve the structural correspondence
to the stochastic control formulation. Thus, in this work, we extend the DPO framework toward
a more rigorous stochastic setting, with a proper differential dual for the stochastic control formu-
lation. To achieve this, we investigate stochastic extensions of Pontryagin’s Maximum Principle.
A common method is to employ backward stochastic differential equations (BSDEs), which yield
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powerful theoretical tools but are challenging to lift into an abstract operator framework like DPO.
Moreover, the integration of BSDEs with deep learning architectures is computationally burdensome
and algorithmically complex. To overcome these difficulties, we draw on recent advances in rough
path theory, a more abstract but pathwise approach to stochastic calculus. Rough path theory allows
for the construction of differential systems that evolve along irregular, stochastic trajectories in a fully
pathwise manner. This aligns naturally with the original DPO perspective, enabling us to formulate a
stochastic differential learning framework that is robust to noise and uncertainty.

Organization. The remainder of the paper is organized as follows. Section 2 reviews extensions
of Pontryagin’s Maximum Principle to the stochastic setting, focusing on formulations based on
backward stochastic differential equations (BSDEs) and rough path theory. This discussion motivates
and culminates in the update rule Equation (21). Section 3 presents the theoretical framework for our
stochastic DPO algorithm based on this update rule. It includes convergence analysis, generalization
bounds, and derives corresponding sample complexity and regret guarantees. We conclude in Section
4 with a brief summary.

2. Stochastic Pontryagin Maximum Principle

We now examine extensions from classical Pontryagin Maximum Principle (PMP) to stochastic
systems, where the dynamics are governed by stochastic differential equation (SDE).

2.1. Backward Stochastic Differential Equation

One of the most prominent formulations of stochastic Pontryagin Maximum Principle (stochastic
PMP) is based on the theory of backward stochastic differential equations (BSDEs), with an example
of BSDE being shown below:

dst = b(st, at)dt+ σ(st, at)dWt, (Forward)

dpt = h(t, st, pt, qt)dt− qtdWt, (Backward)

pT = g(sT ) (Terminal),

(7)

where st is the state process, pt the adjoint (costate) process, qt arises from the martingale represen-
tation, and Wt is a standard Brownian motion.

In earlier versions of stochastic PMP, solving the dual problem involved two coupled FBSDE systems:
one for (pt, qt) and another for correcting the diffusion through (Pt, Qt). Under stronger assumptions,
such as the concavity of the Hamiltonian, this can however be simplified. In particular, let’s consider
the general stochastic control problem of maximizing over policy a = {at}t:

J(a) = E
[∫ T

0
r(t, st, at)dt+ g(sT )

]
, (8)

subject to the controlled stochastic dynamics:

dst = b(st, at)dt+ σ(st, at)dWt, s0 = s. (9)

Define the stochastic Hamiltonian:

H(t, s, a, p, q) = b(s, a)⊤p+ tr(σ(s, a)⊤q) + r(t, s, a). (10)
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Then the stochastic version of PMP [15] can be introduced through the adjoint BSDE system:

−dpt = DsH(t, st, at, pt, qt)
⊤dt− qtdWt, (11)

pT = Dsg(sT )
⊤. (12)

Here the optimality condition is simply H(t, st, at, pt, qt) = maxa∈AH(t, st, a, pt, qt) almost
surely for all t ∈ [0, T ]. In practice, solving such BSDEs is challenging due to the hidden process
qt. Computing qt often involves auxiliary PDEs or the more complex conditional probability. In
the more straight-forward PDE approach [12], if u(t, s) is a function that solves the corresponding
PDE, then we can quantify the relation between processes pt and qt through the solution function u:
pt = u(t, st) and qt = σ⊤(t, st)Dsu(t, st). However, parameterizing u in a deep learning context
is nontrivial, and coupling it with FBSDEs further complicates implementation. These challenges
motivate us to seek a more flexible, pathwise alternative.

2.2. Rough Path Theory

Rough path theory, pioneered by Lyons [10, 11], provides a pathwise framework for integrating and
solving differential equations driven by irregular signals, such as Brownian motion. It enhances a
trajectory x : [0, T ] → Rd by embedding it in a higher-order structure. Intuitively, a rough path X
is defined by N structures: (X1

s,t, X
2
s,t, . . . , X

N
s,t) ∈ G for a suitable algebraic space G, where each

component Xn
s,t is heuristically similar to n-th order iterated integral

∫
s<t1<···<tn<t dxt1 · · · dxtn .

More rigorously, an α-Hölder rough path over a Banach space V is a multiplicative functional:

X : {(s, t) | 0 ≤ s ≤ t ≤ T} → TN (V ), (13)

where Xs,t = (X0
s,t, X

1
s,t, . . . , X

N
s,t) lies in the truncated tensor algebra TN (V ) with X0

s,t = 1. It
satisfies the Chen (multiplicativity) identity:

Xs,u = Xs,t ⊗Xt,u for all s ≤ t ≤ u, (14)

and the α-Hölder continuity condition:

∥Xn∥nα := sup
0≤s<t≤T

|Xn
s,t|

|t− s|nα
< ∞. (15)

This formal structure allows one to define integration and differential equations for paths that
are too irregular for classical calculus, such as sample paths of Brownian motion. The rough
integral against such a path is defined via enhanced integrands Yt, which is also a multi-level object
(Y 0

t , Y
1
t , . . . , Y

N−1
t ) with controlled structure. The integral is then approximated by generalized

Riemann sums: ∫ t

0
YsdXs := lim

|P|→0

∑
ti∈P

N∑
k=1

Y k−1
ti−1

Xk
ti−1,ti . (16)

This allows us to define the rough differential equation (RDE):

dYt = F (Yt)dXt. (17)

Lyons’ universal limit theorem [10, 11] guarantees continuity of the solution map and provides a
stable framework under pathwise irregularity. Notably, for Brownian motion Wt, its rough path Bt

4



STOCHASTIC DPO VIA ROUGH PATHS

lift includes both the original Brownian motion and a second-level iterated integral [2]. When i ̸= j,
the component B2;i,j

s,t of this lift corresponds to the Stratonovich integral
∫ t
s W

i
s,v ◦ dW j

v , which
coincides with the Itô integral due to independency. Here W i is the ith component of Wt, and W i

s,v

is simply the increment W i
v −W i

s . Additionally, the diagonal term B2;i,i
s,t is the quadratic increment:

1
2(W

i
s,t)

2.

Building on this rough path theory, Lew [8] introduces a maximum principle version for the (rough)
stochastic control problem:

max
a=(at)t≥0

E

[∫ T

0
r(t, st, at)dt

]
(18)

subject to st = s0 +

∫ t

0
b(v, sv, av)dv +

∫ t

0
σ(v, sv)dBv, t ∈ [0, T ] (19)

Here Bt is the rough path for Brownian motion Wt. More specifically, under a smooth assumption
on σ, with the following Hamiltonian H : [0, T ]×S×A×RdA → R: H(t, s, a, p) = pT b(t, s, a)+
r(t, s, a), the maximum principle at = argmaxa∈A E[H(t, st, a, pt)] holds with the following RDEs
for the adjoint process:

pt = p0 −
∫ t

0

∂H

∂s
(v, sv, av, pv)dv −

∫ t

0

(
∂σ

∂s
(sv)

)⊤
pvdBv, (20)

By discretizing and coupling the above RDE system, we obtain the following update rules:[
sk+1

pk+1

]
=

[
sk
pk

]
+∆ b̄

([
sk
pk

]
, ak

)
+ σ̄

([
sk
pk

])
Wtk,tk+1

+ (∇σ̄σ̄)

([
sk
pk

])
Btk,tk+1

(21)

where the augmented drift term is b̄(x, a) = (b(s, a),−∂H
∂s (s, a, p)) with x = (s, p), and the

diffusion term is σ̄(s, p) = (σ(s),−(∂sσ(s))
⊤p). Also, ∆ is the discretization time step, and

Wv,t = Wt − Wv is simply Brownian motion increment. Additionally, B corresponds to the
second-level of the Brownian motion’s rough path B, with detailed formula given above.

3. Theoretical framework

Framework and algorithm. Our stochastic algorithm still follows the main flow of DPO, but
with significant modification to the dynamic operator, i.e. definition of G and its updates, since
the original relation: G = Id +∆S∇g is no longer valid (see Algorithm 1). The new “stochastic”
update rule Equation (21) allows us to modify the differential RL dynamics to align with the rigorous
stochastic differential dual. In particular, we now replace the dynamic operator xk+1 = G(xk) by
xk+1 = G(xk, ξ, χ), where ξ corresponds to the random noise of the (first-level) standard Brownian
motion, and χ corresponds to the noise of the second-level term of the rough path Bt. Here xk is still
the composite vector of the state sk and the adjoint pk. This leads to the following update equation
for the optimal dynamic operator G and its neural network approximator Gθk at stage k, both from
step n− 1 to step n:
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G(n)(X) = F(G(n−1)(X), ξn, χn) (22)

:= G(n−1)(X) + ∆S∇g(G(n−1)(X)) + h1(G
(n−1)(X))ξn + h2(G

(n−1)(X))χn

And

G
(n)
θk

(X) = F(G
(n−1)
θk

(X), ξn, χn) (23)

:= G
(n−1)
θk

(X) + ∆S∇gθk(G
(n−1)
θk

(X)) + h1(G
(n−1)
θk

(X))ξn + h2(G
(n−1)
θk

(X))χn

Here, functions h1 and h2 depends on σ according to Equation (21). From now on, for notational
convenience, we use ξ := ξn and χ := χn, where step n can be inferred from the context. In our
setting, ξ is the discretization of Brownian motion increment and is equal to Wtn −Wtn−1 , while χ
is the discretization of the second-level rough path with the definition:

χi,j :=

∫ tn

tn−1

W i
tn−1,udW

j
u for i ̸= j, χi,i =

1

2
(W i

tn−1,tn)
2 (24)

Again, W i is the ith component of multidimensional Brownian motion W .

Algorithm 1 (Main algorithm) Stochastic DPO for a generic environment B
Input: a generic environment B, the number of steps per episode H , time step ∆, and the number of
samples Nk at stage k with k ∈ 1, H − 1. Here Nk can be chosen based on Theorem 2. We also
assume that the hypothesis space for the policy approximator Gθk in stage k is Hk for k ∈ 1, H .
Output: a neural network approximation Gθ that approximates the optimal policy G

1: Initialize an empty replay memory queue M.
2: Initialize k = 1 as the current stage and a random scoring function gθ0 . Set the initial policy

through Equation (23) via automatic differentiation.
3: repeat
4: Use Nk starting points {Xi}Nk

i=1 and previous policy Gθk−1
to query B and get Nk sample

trajectories {G(n)
θk−1

(Xi)}H−1
n=0 together with their scores {g(G(n)

θk−1
(Xi))}H−1

n=0 for i ∈ 1, Nk

5: Add the labeled samples of the form (x, y) = (G
(n)
θk−1

(Xi), g(G
(n)
θk−1

(Xi))) to M. Also add

labeled samples (x, y) = (G
(n)
θk−1

(Xi), gθk−1
(G

(n)
θk−1

(Xi))) for n ∈ 1, k − 2 and i ∈ 1, Nk to
M. The latter addition step is to ensure that the new policy doesn’t deviate from the previous
policy on samples on which the previous policy already performs well.

6: Train the neural network gθk ∈ Hk at stage k using labeled sample from M with smooth L1

loss function [4].
7: Set Gθk based on Equation (23) via automatic differentiation. Update k → k + 1.
8: until k ≥ H
9: Output GθH−1

via automatic differentiation baased on Equation (23).

Theoretical analysis. Similar to DPO [13], for this stochastic extension, we will prove a pointwise
estimate that enables us to prove the algorithm’s convergence, its sample complexity and derive a
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regret bound. First of all, we recall from DPO the definition that defines the number of training
samples needed to allow derivative approximation transfer:

Definition 1 [13] For a function g : Ω → R, a hypothesis space H consists of the function h ∈ H
that approximates g, two positive constants ϵ and δ, we define the function N(g,H, ϵ, δ) to be the
number of samples needed such that if we approximate g by h ∈ H via N(g,H, ϵ, δ) training samples,
then with probability of at least 1− δ, we also have the following estimate on two function gradients:

∥∇g(X)−∇h(X)∥ < ϵ (25)

In other words, we want N(g,H, ϵ, δ) to be large enough so that the original approximation can
transfer to the derivative approximation above. If no such N(g,H, ϵ, δ) exists, let N(g,H, ϵ, δ) = ∞.

This definition will be used to derive the number of samples needed for Algorithm 1. Below is the
pointwise convergence theorem for Algorithm 1 and its proof.

Theorem 2 Suppose that we are given a threshold error ϵ, a probability threshold δ, and a number
of steps per episode H . Assume that {Nk}H−1

k=1 is the sequence of numbers of samples used at each
stage in Algorithm 1 (Stochastic DPO) so that:

N1 = N(g,H1, ϵ, δ), (26)

Nk = max{N(gθk−1
,Hk, ϵ, δ/(2(k − 1))), N(g,Hk, ϵ, δ/(2(k − 1)))} for k ∈ 2, H − 1 (27)

We further assume that there exists a constant L > 0 such that relevant functions such as h1, h2,∇g,
and the policy neural network approximator ∇gθk at step k with regularized parameters have
their Lipschitz constants at most L for each k ∈ 1, H . Then, for a general starting point X , with
probability at least 1− δ, the following generalization bound for the trained policy Gθk holds for all
k ∈ 1, H − 1:

EX,ξ,χ∥G
(n)
θk

(X)−G(n)(X)∥ <
Cn

C − 1
(C∆+ n∆2L)ϵ for all 1 ≤ n ≤ k (28)

Here C = 1 + L∆+ L
√
∆. Note that when Nk → ∞, the errors approach 0 uniformly for all n

given a finite terminal time T .

Proof . We use the notation H and Hk for ∇g and ∇gθk respectively. First, g is approximated
by gθk+1

∈ Hk+1 on sample points {G(n)
θk

(Xi)}Nk+1

i=1 with n ∈ 1, k − 1. Definition of Nk+1 ≥
N(g,Hk+1, ϵ, δk/(2k)) allows derivative approximation transfer so that for a general starting point
X , with probability of at least 1− δk/(2k), the following estimate holds:

EX∥Hk+1(G
(n)
θk

(X))−H(G
(n)
θk

(X))∥ < ϵ (29)

Second, gθk+1
is trained to approximate gθk to ensure that the updated policy doesn’t deviate too

much from current policy. For n ∈ 1, k − 1, gθk+1
∈ Hk+1 approximates gθk on Nk+1 samples

of the form G
(n)
θk

(Xi) for i ∈ {1, · · · , Nk+1}. Since Nk+1 ≥ N(gθk ,Hk+1, ϵ, δk/(2k)) allows
derivative approximation transfer, for probability of at least 1− δk/(2k):

EX∥Hk+1(G
(n)
θk

(X))−Hk(G
(n)
θk

(X))∥ < ϵ. (30)
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Next, for notational convenience, define the following errors:

enk = EX,ξ,χ∥G
(n)
θk

(X)−G(n)(X)∥ (31)

enk,k−1 = EX,ξ,χ∥G
(n)
θk

(X)−G
(n)
θk−1

(X)∥ (32)

We now bound EX,ξ,χ∥G
(n)
θk+1

(X)−G(n)(X)∥ by taking the difference between Equation (22) and
Equation (23):

∥G(n)
θk+1

(X)−G(n)(X)∥ ≤ ∥G(n−1)
θk+1

(X)−G(n−1)(X)∥ (33)

+∆∥Hk+1(G
(n−1)
θk+1

(X))−H(G(n−1)(X))∥

+ ∥h1(G(n−1)
θk+1

(X))− h1(G
(n−1)(X))∥∥ξ∥

+ ∥h2(G(n−1)
θk+1

(X))− h2(G
(n−1)(X))∥∥χ∥

≤ ∥G(n−1)
θk+1

(X)−G(n−1)(X)∥

+∆∥Hk+1(G
(n−1)
θk+1

(X))−H(G(n−1)(X))∥

+ (Lh1∥ξ∥+ Lh2∥χ∥)∥G
(n−1)
θk+1

(X)−G(n−1)(X)∥

= T1 + T2 + T3

Here we denote Lh1 and Lh2 as Lipschitz constant of h1 and h2 and by theorem assumption they are
also at most L. For the second term T2, we estimate through the following 3-term decomposition:

∥Hk+1(G
(n−1)
θk+1

(X))−H(G(n−1)(X))∥ ≤ ∥Hk+1(G
(n−1)
θk+1

(X))−Hk+1(G
(n−1)
θk

(X))∥ (34)

+ ∥Hk+1(G
(n−1)
θk

(X))−H(G
(n−1)
θk

(X))∥+ ∥H(G
(n−1)
θk

(X))−H(G(n−1)(X))∥

≤ L∥G(n−1)
θk+1

(X)−G
(n−1)
θk

(X)∥+ ϵ+ L∥G(n−1)
θk

(X)−G(n−1)(X)∥

The middle inequality holds with probability of at least 1− δ/(2k) thanks to the first paragraph. Now
combining with two (easier terms) T1 and T3, and then taking expectation over X, ξ and χ. Since
E∥ξ∥ and E∥χ∥ correspond to Gaussian random variables with standard deviations that scale with√
∆ and ∆ respectively, for n ∈ 1, k, with probability of at least 1− δ/(2k), we have the estimate:

enk+1 ≤ en−1
k+1 +∆(Len−1

k+1,k + ϵ+ Len−1
k ) + L

√
∆en−1

k+1 (35)

By a similar estimate but with a two-term decomposition for the middle inequality, with probability
of at least 1− δ/(2k), for n ∈ 1, k, we obtain estimate for EX,ξ,χ∥G

(n)
θk+1

−G
(n)
θk

∥:

enk+1,k ≤ en−1
k+1,k +∆(Len−1

k+1,k + ϵ) + L
√
∆en−1

k+1,k (36)

Hence, with probability of at least 1 − δ, Equation (35) and Equation (36) holds for all n ∈ 1, k.

By induction, we have enk+1,k ≤ ∆ϵ(Cn − 1)

C − 1
. Now we also prove by induction on n that for any

n ∈ 1, k, enk ≤ un, where un is the sequence that satisfy un = (α+ β)un−1 + γn = Cun−1 + γn,
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where α = (1 + L
√
∆), β = L∆, and γn = ∆L

∆ϵ(Cn − 1)

C − 1
+ ∆ϵ. Indeed, for the induction step,

Equation (35) together with the previous bound on two-indices term enk+1,k yields:

enk+1 ≤ αen−1
k+1 + βen−1

k +∆Len−1
k+1,k +∆ϵ ≤ αun−1 + βun−1 + γn (37)

Now, by simple induction, un =
∑n

i=0C
iγn−i, and hence un is upper-bounded by:

un = ∆ϵ

(
n∑

i=0

Ci

)
+∆2Lϵ

(
n∑

i=1

CiC
n−i − 1

C − 1

)
(38)

≤ ∆ϵ
Cn+1

C − 1
+ ∆2Lϵ

n∑
i=1

Ci C
n−i

C − 1
=

Cn

C − 1
(C∆+ n∆2L)ϵ

Therefore, we obtain Equation (28) as needed.

Sample complexity. Similar to DPO [13], the pointwise estimates for the stochastic DPO version in
Theorem 2 allow us to explicitly state the number of training episodes required for two scenarios
considered in this work: one works with general neural network approximators and the other with
more restricted (weakly convex and linearly bounded) functions. Detailed definitions of weakly
convex and linearly bounded are given in [13]. Furthermore, DPO [13] shows that N(g,H, ϵ, δ) =
O(ϵ−(2d+4)) for general case, and O(ϵ−6) for restricted case. Hence, the following corollaries
regarding sample complexity for our stochastic extension also holds through similar proofs:

Corollary 3 In Algorithm 1 (Stochastic DPO), suppose we are given fixed step size and fixed number
of steps per episode H . Further assume that for all k ∈ 1, H − 1, Hk is the same everywhere and
is the hypothesis space H consisting of neural network approximators with bounded weights and
biases. Then with the sequence of numbers of training episodes Nk = O(ϵ−(2d+4)), the pointwise
estimates Equation (28) hold.

Corollary 4 If in Algorithm 1 (Stochastic DPO), Hk is the special hypothesis subspace consisting
of h ∈ Hk so that h− g and h− gθk−1

are both p-weakly convex and linearly bounded instead. Then
with Nk = O(ϵ−6), we obtain Equation (28).

Regret bound. For a given policy π, define Vπ(s) := Ea,s1,···

[∑H−1
k=0 r(sk, ak)|s0 = s

]
and optimal

value function V (s) := argmaxπ Vπ(s). Suppose K episodes are used during the training process
and suppose a policy πk is applied at the beginning of the k-th episode with the starting state sk for
k ∈ 1,K. Then Regret is defined as the following function of the number of episodes K:

Regret(K) =
K∑
k=1

(V (sk)− Vπk(sk)) (39)

The above corollaries (3 and 4) result in the regret bound estimate below directly:

Corollary 5 Suppose that number of steps per episode H is fixed and relatively small. If in
Algorithm 1 (Stochastic DPO), the number of training samples Nk has the scale of O(ϵ−µ), the
Regret for stochastic DPO is upper-bounded by O(K(µ−1)/µ). In other words, we obtain a regret
bound of O(K(2d+3)/(2d+4)) for regular and O(K5/6) for restricted hypothesis spaces respectively.
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4. Conclusion

We present a stochastic extension of DPO by embedding rough path formulations of the stochastic
PMP into an operator-based RL framework. Theoretical contributions include pointwise convergence,
sample complexity estimates, and a regret bound under stochastic dynamics. This work bridges
trajectory-level reinforcement learning and stochastic control theory with rigorous guarantees.
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