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ABSTRACT

Automated change detection (CD) and captioning from satellite imagery plays
a crucial role in urban development monitoring, infrastructure assessment, and
land-use analysis. However, existing change captioning systems lack uncertainty
quantification, making it challenging to assess prediction reliability when analyz-
ing critical infrastructure changes, building construction, or environmental modi-
fications where inaccurate interpretations could impact urban planning decisions
or infrastructure management. We address this limitation through a comprehen-
sive pipeline combining SemanticGraphCD module for enhanced change detec-
tion with a State Space Model(SSM)-based captioning module for scalable de-
scription generation. SemanticGraphCD integrates graph neural networks with
task-agnostic semantic learning, employing an adaptive processing mechanism
that dynamically switches between GNN-based feature propagation and convo-
lutional operations. This architecture learns semantic representations through bi-
temporal consistency constraints, better discriminating meaningful infrastructure
and land-use changes from temporal variations in very high-resolution imagery.
The State Space Model based captioning module contains a Spatial Difference-
aware SSM (SD-SSM) which improves upon previous CNN and Transformer-
based models in receptive field. Moreover a Temporal Traversing SSM (TT-SSM)
is used which scans bi-temporal features in a temporal cross-wise manner en-
hancing the model’s temporal understanding and information interaction. This
SSM is guided by SemanticGraphCD’s change masks using a convolutional fo-
cusing module which aggregates change information from the masks with the
bitemporal images. This guides the model in representing the changes between
the bi-temporal images within the state space model hidden states, enabling lin-
ear computational scaling while maintaining competitive performance. Instead of
treating all caption tokens equally in the context of remote sensing, we introduce
Semantic-Weighted Sentence Entropy (SWSE) for principled uncertainty quan-
tification. SWSE emphasizes domain-relevant vocabulary over function words,
providing interpretable confidence measures that correlate with caption quality.
Experimental results demonstrate that our approach achieves improvement in cap-
tioning performance compared to existing state space models, while SWSE pro-
vides reliable uncertainty estimates for informed decision-making in urban moni-
toring applications.

1 INTRODUCTION

The automated analysis of satellite imagery forms the backbone for global monitoring efforts, sup-
porting applications in disaster response, urban planning, infrastructure assessment, and environ-
mental management. With the increasing availability of high-resolution satellite data from missions
like Landsat Wulder et al. (2019), Sentinel Drusch et al. (2012), and commercial providers Li et al.
(2022b), there is unprecedented opportunity for continuous Earth observation. Within this domain,
change detection (CD) has emerged as a key technique, identifying differences between bi-temporal
images to reveal events such as building construction, deforestation, or road expansion Demir et al.
(2013); Ertürk et al. (2017); De Alban et al. (2018). Beyond merely detecting change, the task of
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change captioning seeks to generate natural language descriptions that summarize the most mean-
ingful differences, enabling human-interpretable insights for decision-makers Hoxha et al. (2018);
Shi et al. (2022). The evolution of change detection methods has progressed from traditional pixel-
based approaches Radke et al. (2005) to sophisticated deep learning architectures. Early methods
relied on simple differencing or thresholding techniques Singh (1989), which were limited by their
sensitivity to noise and inability to capture semantic changes. The introduction of object-based
change detection Blaschke et al. (2008) and machine learning approaches Lu et al. (2004) improved
robustness , but still required manual feature engineering. Deep learning revolutionized the field
with convolutional neural networks (CNNs) Zhang & Li (2017); Daudt et al. (2018) that could au-
tomatically learn hierarchical features, followed by more advanced architectures like U-Net variants
Peng et al. (2019) and attention mechanisms Chen & Shi (2020).

Existing change captioning approaches have made progress by combining deep change detec-
tion modules with natural language generation architectures. Attention-based methods, including
Siamese neural networks Chang & Ghamisi (2023a) and Sparse Focus Transformers (SFTs) Sun
et al. (2024), improve the localization of changes by focusing on the most relevant regions, but
often at high computational cost or at the risk of missing small, distributed changes that require
dense modeling. Vision-language models have shown promise in general image captioning Xu
et al. (2015); Anderson et al. (2018), leading to adaptations for remote sensing applications Lu
et al. (2018); Ramos et al. (2023). More recently, state space models such as Mamba Gu & Dao
(2023) have demonstrated efficiency in modeling long-range spatio-temporal dependencies Qi et al.
(2023), while change-guided approaches Zheng et al. (2022) leverage binary masks to explicitly
highlight regions of change before caption generation. Graph neural networks have gained attention
for their ability to model spatial relationships in remote sensing data Hong et al. (2021); Wan et al.
(2019). Several works have explored GNNs for change detection Song et al. (2022); Tang et al.
(2022), demonstrating their effectiveness in capturing contextual information and spatial depen-
dencies. However, the computational complexity of GNNs on dense imagery remains a challenge,
motivating hybrid approaches that balance accuracy with efficiency Liu et al. (2022b).

The challenge of uncertainty quantification in machine learning has received significant attention
across various domains Gal & Ghahramani (2016); Lakshminarayanan et al. (2017). In computer
vision, uncertainty estimation has been explored for object detection Laplace et al. (2021), semantic
segmentation Kendall & Gal (2017), and image classification Sensoy et al. (2018). For natural
language generation, uncertainty quantification has been studied in machine translation Wang et al.
(2019) and text summarization Zhang et al. (2020), but remains underexplored in vision-language
tasks, particularly in remote sensing applications where reliability is crucial for decision-making
Robinson et al. (2017).

However, most existing systems neglect an equally important aspect: uncertainty quantification.
In safety-critical applications like infrastructure monitoring, disaster response planning, and urban
development assessment, unreliable or overconfident captions can lead to poor planning decisions,
misallocation of resources, or inadequate emergency responses Voigt et al. (2016); Plank (2014).
The high-stakes nature of these applications demands not only accurate predictions but also reliable
confidence estimates that enable human experts to assess when model outputs should be trusted
Jiang et al. (2018).

In this work, we address these challenges with a unified pipeline that couples a SemanticGraphCD
module for robust change representation learning with a State Space Model (SSM)-based caption-
ing module for scalable description generation. SemanticGraphCD integrates graph neural networks
with task-agnostic semantic learning through an adaptive processing mechanism that dynamically
switches between GNN-based feature propagation and convolutional operations. This architecture
learns semantic representations via bi-temporal consistency constraints to better discriminate mean-
ingful infrastructure and land-use changes from temporal variations. Our SSM-based captioning
module incorporates Spatial Difference-aware SSM (SD-SSM) and Temporal Traversing SSM (TT-
SSM) components that enhance temporal understanding while enabling linear computational scal-
ing, addressing the quadratic complexity limitations of transformer-based approaches Vaswani et al.
(2017).

Critically, we introduce Semantic-Weighted Sentence Entropy (SWSE), a principled sentence-level
uncertainty measure that assigns greater importance to domain-relevant content words over func-
tion words, yielding interpretable confidence scores aligned with caption quality. Unlike existing
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uncertainty measures that treat all tokens equally Malinin & Gales (2018) , SWSE recognizes that
uncertainty in semantically important terms (e.g., ”building”, ”residential”) is more concerning than
uncertainty in function words (e.g., ”the”, ”has”). Together, these contributions provide more accu-
rate and reliable captions with trustworthy uncertainty estimates for urban monitoring and decision-
support systems. In summary, our main contributions are as follows:

1. We propose a novel change detection backbone that combines graph neural networks with
convolutional operations via an adaptive processing mechanism. This hybrid approach
captures long-range spatial dependencies while remaining computationally tractable. Bi-
temporal consistency constraints are used to learn semantically meaningful representations
that better distinguish infrastructure and land-use changes from irrelevant temporal varia-
tions.

2. We adopt a State Space Model (SSM)-based captioning module incorporating two key
components: (a) a Spatial Difference-aware SSM (SD-SSM), which enlarges the effec-
tive receptive field and improves spatial sensitivity to subtle changes, and (b) a Temporal
Traversing SSM (TT-SSM), which scans bi-temporal features cross-wise, enhancing tem-
poral understanding and information interaction. Together, these modules achieve linear
computational complexity while outperforming transformer-based approaches on change
captioning tasks.

3. We introduce a convolutional focusing module that leverages change masks from Seman-
ticGraphCD to guide the SSM hidden states. This explicitly emphasizes regions of interest,
improving the alignment between visual changes and their corresponding textual descrip-
tions.

4. We propose a novel sentence-level uncertainty metric that assigns higher weights to
domain-relevant content words (e.g., building, road) while down-weighting function
words. This yields interpretable and task-aware confidence scores that correlate with cap-
tion quality, providing actionable reliability estimates for decision-making in urban moni-
toring applications.

2 METHODOLOGY

We have implemented a three-stage architecture consisting of (i) a change detection module using
SemanticGraphCD with graph neural networks and task-agnostic feature learning to generate se-
mantic change masks, (ii) a change extraction module with image enhancement (IE Module), CLIP
ViT-B/32 backbone Radford et al. (2021), and dual state space models (SD-SSM and TT-SSM)
for spatio-temporal modeling, and (iii) a language decoder for caption generation with integrated
Semantic Weighted Sentence Entropy (SWSE) for enhanced interpretability Figure 1.

2.1 CHANGE DETECTION MODULE

Our change detection module employs SemanticGraphCD which incorporates adaptive processing
that dynamically switches between graph neural network-based feature propagation and convolu-
tional operations. Given bi-temporal remote sensing images, the module extracts multi-scale fea-
tures through a CNN backbone, processes them through both graph networks for semantic rela-
tionships and task-agnostic feature learning components, then uses an attention fusion mechanism
and change detection head to generate binary change masks. This approach effectively discrimi-
nates meaningful infrastructure and land-use changes from temporal variations by learning semantic
representations through bi-temporal consistency constraints.

2.2 CHANGE EXTRACTION MODULE

The change extraction module processes bi-temporal images and generates change masks through
three sequential components following the architecture shown in Figure 1.

Image Enhancement (IE Module). We implement mask-guided image fusion where binary change
masks undergo element-wise multiplication with the original bi-temporal images. To address blank
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Figure 1: Overview of the proposed three-stage architecture for change detection and caption-
ing. The pipeline consists of: (1) CDM that uses SemanticGraphCD with graph neural networks to
generate change masks, (2) CEM that enhances images and processes features via dual state space
models, and (3) CGM that generates natural language descriptions. Outputs include change masks,
captions, and SWSE confidence scores

Figure 2: SemanticGraphCD architecture for change detection. The framework extracts multi-
scale features (F1-F4) via CNN backbone, processes them through parallel Graph Network and
Task-agnostic Learning modules, then uses attention fusion and Change Detection Head to generate
binary change masks.
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mask issues common in challenging samples, the IE module includes an adaptive fallback that re-
turns original images when masks contain insufficient change information. This enhancement pro-
vides better spatial information regarding changed objects, guiding the model to improve accuracy
when describing changes.

CLIP Backbone. We utilize the frozen CLIP ViT-B/32 image encoder to extract robust visual
representations from the enhanced bi-temporal images. The choice of CLIP over domain-specific
encoders follows recent success in remote sensing applications and provides strong transferability
across diverse geographical regions. We choose the image encoder over video encoders for two rea-
sons: (1) Prior change detection approaches have demonstrated that Siamese encoders with weights
shared across time are highly effective for identifying changes in sequences of Earth observation
data Li et al. (2021b), and (2) image encoders provide more flexibility for variable sequence lengths
while maintaining computational efficiency.

State Space Models. The extracted features are processed through dual state space models: Spatial-
Difference SSM (SD-SSM) and Temporal-Transition SSM (TT-SSM) for joint spatio-temporal mod-
eling. This design choice addresses the quadratic complexity limitations of traditional attention
mechanisms when processing high-resolution remote sensing imagery, enabling efficient long-range
dependency modeling with linear complexity. The SD-SSM captures spatial relationships between
change regions, while TT-SSM models temporal transitions between bi-temporal features.

2.3 LANGUAGE DECODER

The language decoder follows a standard transformer architecture that inputs the spatio-temporal
representations from the SSMs to generate natural language descriptions of detected changes. The
decoder uses masked self-attention and feed-forward networks with residual connections for stable
training.

2.4 SEMANTIC WEIGHTED SENTENCE ENTROPY (SWSE)

To enhance model interpretability and provide uncertainty quantification tailored to remote sens-
ing applications, we introduce SWSE equation 1. Unlike classical Shannon entropy that treats all
vocabulary tokens equally, SWSE assigns semantic importance weights based on domain relevance:

HSWSE(X) = −
|V |∑
i=1

wi · p(xi) log p(xi) (1)

where weights wi ∈ {0.2, 0.6, 0.8, 0.9, 1.0} correspond to function words, descriptors, natural fea-
tures, land use, and infrastructure categories respectively. This weighting ensures uncertainty over
critical domain-specific terms contributes more significantly than uncertainty over common function
words, providing meaningful confidence estimates for practical applications.

2.5 TRAINING DETAILS

We have used an Adam optimizer Kingma & Ba (2014) to train on NVIDIA RTX A5000 GPU. With
an initial learning rate of 0.0001 and a step learning rate decay of 0.5 every 5 epochs. We used a batch
size of 64, with the dimesion of word vectors being set to 768, and a beam size of 1. The number
of multi-head attention mechanism is set to 8 and the model is trained for 50 epochs with validation
done after every epoch and the model with the best performing BLEU-1 value getting its parame-
ters saved. To evaluate model performance we use the following three metrics, BLEU-N(1,2,3,4)
Papineni et al. (2002), CIDEr-D Vedantam et al. (2015) and ROUGE-L Lin (2004). BLEU-N mea-
sures how well a generated sentence matches the target sentence using n-grams precision, CIDEr-D
(Consensus-based Image Description Evaluation, with damping) measures how consensus between
candidate and multiple references. ROUGE (Recall-Oriented Understudy for Gisting Evaluation)
measures how many n-grams or subsequences from the reference text appear in the generated text.
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Category Weight (wi) Description Example Tokens

Infrastructure 1.0 Core man-made structures
whose changes are central to
remote sensing analysis.

building, road, airport,
bridge, dam, port, rail-
way

Land Use 0.9 Human activity categories
that reflect economic, social,
or developmental shifts.

residential, commercial,
agricultural, industrial,
barren

Natural Features 0.8 Environmental elements that
set the scene and often
change alongside human im-
pact.

forest, water, mountain,
vegetation, river, coast-
line, glacier

Descriptors 0.6 Modifiers that qualify ob-
jects by size, condition, or
density, adding nuance but
not defining subjects.

many, large, dense, scat-
tered, new, damaged,
cleared

Function Words 0.2 Structural words essential
for grammar but carrying lit-
tle visual-semantic meaning.

the, this, has, and, in, a,
is, of, with, from

Table 1: Semantic weight assignments in SWSE
Higher weights are given to content-rich terms, while structural words receive lower values.

3 RESULTS

This section gives an evaluation of our proposed approach through extensive experiments on the
LEVIR-CC and LEVIR-MCI datasets. We conduct quantitative comparisons with state-of-the-
art change captioning methods, analyze the effectiveness of our SemanticGraphCD module, and
demonstrate the utility of our proposed SWSE uncertainty metric for real-world remote sensing
applications.

3.1 DATASET

In this work, we employ the LEVIR-CC dataset Liu et al. (2022a), the largest publicly available
benchmark for remote sensing change captioning. The dataset consists of 10,077 pairs of 256 × 256
pixel images, comprising 5,039 unchanged pairs and 5,038 changed pairs, with temporal intervals
ranging from five to fifteen years. Each image pair is described using five descriptive captions, where
the captions for changed pairs are typically longer and more detailed than those for unchanged pairs.
The standard split includes 6,815 pairs for training, 1,333 for validation, and 1,929 for testing. The
vocabulary, derived from the training annotations, contains 463 unique words that appear more than
five times and is augmented with four special tokens: unk, start, end, and pad.

The LEVIR-MCI dataset Liu et al. (2024), an extension of LEVIR-CC, provides pairwise temporal
images together with multi-label change detection masks and descriptive sentences. It comprises
13,077 image pairs with corresponding multi-label masks. For the purpose of change captioning,
the multi-label masks are converted into binary masks, denoting unchanged and changed pixels as
0 and 1, respectively. Each pair is annotated with five descriptive sentences, with explicit labels for
roads and buildings.

We have also classified the entire vocabulary of LEVIR-CC as belonging to one of the 5 classes as
described in Table 1. Figure 3 presents examples of bi-temporal images, their associated change
maps, and captions generated by the model, where each word is color-coded according to its seman-
tic category.
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a road with houses built and some houses appear

a row of houses is built and a row of villas built along the road

the plants have been replaced by a road with villas built along 
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0.2  0.2 0.2   0.20.2 0.2  0.6 

the scene is the same as before

0.2  0.2 0.2   0.20.2 0.2  0.6 

Figure 3: Captions with semantic weighting. Bi-temporal images with their corresponding change
maps and generated change captions. Each caption is color-coded according to its semantic weight-
ing category, with the associated weights shown below in the same colors. Blue denotes infrastruc-
ture, green denotes land use, orange denotes natural features, purple denotes descriptors, and gray
denotes function words.

3.2 QUALITATIVE ANALYSIS

To verify the effectiveness of our model, we have compared results with various other state of the art
change captioning models as shown in Table 2, i.e Capt-Rep-Diff Li et al. (2021a), Capt-Att Li et al.
(2020), Capt-Dual-Att Li et al. (2022a), MCCFormer-S Li et al. (2023c), MCCFormer-D Li et al.
(2023b), DUDA Li et al. (2023a) and PSNet Li et al. (2024). The Capt-Rep-Diff model uses a vision

Method BLEU-1 BLEU-2 BLEU-3 BLEU-4 ROUGEL CIDEr-D

Capt-Rep-Diff 72.90 61.98 53.62 47.41 65.64 110.57
Capt-Att 77.64 67.40 59.24 53.15 69.73 121.22
Capt-Dual-Att 79.51 70.57 63.23 57.46 70.69 124.42
MCCFormer-S 79.90 70.26 62.68 56.68 69.46 120.39
MCCFormer-D 80.42 70.87 62.86 56.38 70.32 124.44
DUDA 81.44 72.22 64.24 57.79 71.04 124.32
PSNet 83.86 75.13 67.89 62.11 73.60 132.62
Ours 83.93 73.21 68.01 60.32 73.01 133.23

Table 2: Quantitative evaluation of the proposed model in comparison with state-of-the-art ap-
proaches on the LEVIR-CC dataset. Results are reported across BLEU-1 to BLEU-4, ROUGEL,
and CIDEr-D metrics, with the best scores highlighted in bold.

transformer to extract features by employing progressive difference perception layers to obtain mul-
tiscale visual features. These features are then aggregated by a scale-aware reinforcement learning
module and a transformer decoder to generate a textual description. The Capt-Att model utilizes
a visual attention mechanism to focus on salient regions of the image, extracting key features that
are then passed to a transformer-based decoder to generate the final description. The Capt-Dual-Att
model extends this by incorporating a dual-attention mechanism, using both visual and semantic
attention to better align the extracted features with the generated text. The MCCFormer-S model
is a multi-modal cross-attention transformer that uses a single-stream approach to fuse image and
text features for description generation. The MCCFormer-D model builds on this by employing a
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dual-stream architecture, processing visual and textual information in parallel before fusing them
with a cross-attention mechanism. The DUDA model, or ”Dual-stream Unifying Dialogue-based
Attention,” uses a unique dual-stream architecture with an attention mechanism designed to unify
information from both image and text streams. The PSNet model, or ”Prompt-based Sentence Gen-
eration Network,” uses a vision transformer to extract features by employing progressive difference
perception layers to obtain multiscale visual features. These features are aggregated by a scale-aware
reinforcement learning module and transformer decoder to generate a textual description.

The Table 2 demonstrates the performance of each model compared to our model. To highlight the
best performance of each model, we have taken the experimental results of these models directly
from their papers. These results indicate that compared to the previously mentioned methods, our
model achieves superior performance overall, including BLEU-1,2 and 3 as well as CIDEr-D of
83.93%, 73.21%, 68.01%, and 133.23% respectively.

Model Change acc No-change acc Total acc
Chg2Cap 88.28% 97.72% 93.00%
SEN 85.06% 97.82% 91.44%
SparseFocus 87.86% 98.03% 92.95%
RSICCFormer 90.91% 94.48% 92.70%

Our Model 90.21% 96.04% 93.13%

Table 3: Comparison of change detection models on the LEVIR-CC dataset. Results are re-
ported for change accuracy, no-change accuracy, and overall accuracy. Our model achieves the
highest overall accuracy.

Table 3 presents the results of our model and that of Chang & Ghamisi (2023b), SEN Wang et al.
(2018), SparseFocus Zhai et al. (2025) and RSICCFormer Lu et al. (2023) for the task of determining
whether changes exist in the bi-temporal image pairs, we can see that most models are good at either
detection of image pairs with changes or those with no chnages, our model is more balanced with a
slight preference for images with no change, it also outperforms all other models in overall accuracy.

To compare the impact of using ground truth masks vs masks generated by Semantic graph CD,
analysis has been carried out by training using binary masks provided by LEVIR MCI as shown
in Table 4.The results demonstrate that manually annotated masks, while inherently more accurate
and serving as an upper bound, yield higher performance compared to automatically generated ones.
Nevertheless, masks produced by Semantic Graph CD offer a scalable and annotation-free alterna-
tive, making the approach more practical for large-scale applications.

Mask Source BLEU-1 BLEU-2 BLEU-3 BLEU-4 ROUGE-L CIDEr-D
Ground Truth (LEVIR-MCI) 85.82 77.65 70.26 64.32 73.56 136.03
SemanticGraphCD 83.93 73.21 68.01 60.32 73.01 133.23

Table 4: Impact of change mask quality on captioning performance. Ground truth vs. generated
masks

Table 4 presents a performance comparison between ground truth masks from LEVIR-MCI and
masks generated by our SemanticGraphCD module. Ground truth masks achieve slightly higher
scores, with a 4.0 BLEU-4 advantage, reflecting the benefit of manual precision. However, Se-
manticGraphCD delivers competitive results across all metrics, demonstrating its ability to generate
reliable change cues without manual supervision. This validates our integrated pipeline as a practi-
cal alternative that balances accuracy with scalability. This makes our approach especially suitable
for large-scale remote sensing applications where manual mask creation is impractical.

Table 5 compares uncertainty quantification between standard entropy and our proposed SWSE met-
ric. RSICCFormer exhibits the lowest standard entropy (0.53), indicating high model confidence,
yet maintains comparable SWSE values (0.56), suggesting that its uncertainty is appropriately con-
centrated on semantically important terms. RSCaMa shows moderate standard entropy (4.71) but
higher SWSE (0.65), indicating uncertainty is spread across less meaningful vocabulary. Our model
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Model Mean Sentence Entropy SWSE
RSCaMa 4.71 0.65
RSICCFormer 0.53 0.56
Our Model 5.58 0.60

Table 5: Entropy comparison across different models showing SWSE provides more meaningful
uncertainty quantification than standard entropy

demonstrates the most effective uncertainty distribution with high standard entropy (5.58) but low
SWSE (0.60), suggesting that while the model exhibits overall uncertainty, it maintains confidence
in domain-critical terms. This pattern indicates that our image enhancement module, which focuses
attention on changed regions, effectively reduces uncertainty for semantically important change-
related vocabulary while maintaining appropriate uncertainty for less critical terms.

4 CONCLUSION

In this work, we present a comprehensive pipeline that address the critical gap in uncertainity quan-
tification for automated change detection and captioning from remote sensing imagery. We inte-
grate SemantcGraphCD, a novel change detection with dual state space models for efficient spatio-
temporal reasoning, complemented by the proposed Semantic Weighted Sentence Entropy (SWSE)
for principled uncertainty quantification. Experimental evaluations on the LEVIR-CC and LEVIR-
MCI datasets demonstrated that the mode not only achieves state-of-the-art captioning performance
but also provides interpretable confidence estimates that address the reliability gap in existing meth-
ods. By emphasising domain-relevant vocabulary in uncertainity estimation, SWSE enables more
trustworthy decision support in safety-critical applications such as infrastructure monitoring and
urban planning. Several interesting directions for future work emerge from the research. First, inte-
gration of large language models for more sophisticated temporal reasoning and multi-modal under-
standing of satellite imagery sequences. Second, extending SWSE to other vision-language tasks in
remote sensing where uncertainty quantification is crucial, such as disaster assessment and environ-
mental monitoring. Third, investigating multi-spectral band processing capabilities and developing
domain-adaptive semantic weighting schemes for different geographical regions or application do-
mains.
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