
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

HTS-ADAPT: A HYBRID TRAINING STRATEGY WITH
ADAPTIVE SEARCH REGION ADJUSTMENT FOR MILPS

Anonymous authors
Paper under double-blind review

ABSTRACT

Mixed Integer Linear Programming (MILP) problems are essential for optimizing
complex systems but are NP-hard, posing significant challenges as the problem
scale and complexity increase. Recent advances have integrated machine learning
to predict partial solutions by exploiting structural patterns in MILP instances.
However, existing methods often suffer from inaccurate and infeasible predictions,
limiting their practical utility. In this work, we improve the Contrastive Predict-
and-Search (ConPaS) framework by introducing a Hybrid Training Strategy with
Adaptive Search Region Adjustment mechanism (HTS-Adapt). HTS selectively
applies label-based learning and contrastive learning based on the structural proper-
ties of variables, improving prediction accuracy. Adapt dynamically adjusts the
search space to mitigate infeasible predictions, thereby reducing computational
overhead. Experiments demonstrate that our approach achieves a notable perfor-
mance enhancement by improving prediction accuracy and reducing the search
space, proving its effectiveness in addressing real-world MILP challenges. Com-
pared to the MILP solver SCIP, our method achieves an average reduction of more
than 50% in the solution gap across four MILP datasets.

1 INTRODUCTION

Mixed Integer Linear Programming (MILP) is a widely used framework for decision-making in
optimizing complex systems, such as manufacturing production lines (Pochet & Wolsey, 2006)
and global supply chains (Sharifzadeh et al., 2015). Its expressive power allows practitioners to
model complex decision-making tasks under combinatorial constraints. However, MILP problems
are inherently NP-hard, as problem size or structural complexity increases, even state-of-the-art
solvers struggle to deliver solutions efficiently (Lodi & Zarpellon, 2017). MILP instances often
exhibit learnable patterns and structural similarities that can be effectively leveraged by machine
learning techniques. This has prompted recent progress in solving MILP problems by integrating
machine learning into classical optimization frameworks to enhance the performance and scalability
of traditional solvers (Gasse et al., 2019). Broadly, existing approaches fall into two categories. The
first line of work focuses on enhancing the traditional branch-and-bound (BnB) algorithm (Land &
Doig, 2010) by learning to make key decisions such as branching variable selection (Gasse et al.,
2019), node selection (He et al., 2014b), and cutting (Huang et al., 2022), typically by training models
on historical solving patterns. The second line of research, which is the focus of this paper, follows an
end-to-end paradigm that directly predicts high-quality solutions using machine learning (Nair et al.,
2020). These methods predict assignments for a subset of variables to reduce the complexity of the
problem and guide the search process. For instance, Neural Diving (ND) (Nair et al., 2020) adopts
a predict-then-fix strategy, where predicted variable assignments are fixed to simplify the problem.
However, such prediction-based methods are highly sensitive to errors, as fixing incorrect variables
can result in suboptimal or even infeasible solutions. The Predict-and-Search (PaS) (Han et al., 2023)
framework addresses this limitation by using a trust-region strategy, thereby improving fault tolerance
and solution quality. Further advancements, such as Contrastive Predict-and-Search (ConPaS) (Huang
et al., 2024), leverage contrastive learning to enhance the accuracy of model predictions, enabling
more reliable guidance in solving MILP.

Despite these advances, existing methods still face critical limitations. Inaccurate predictions often
lead to suboptimal or infeasible solutions, a challenge that is difficult to overcome due to the inherent
diversity and complexity of MILP datasets. Moreover, existing approaches lack an effective means

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

to guarantee the feasibility of the predicted solutions. The PaS framework traditionally relies on
fixed, predefined region hyperparameters. When extending Solution Prediction and PaS framework
to real-world scenarios, the inherent diversity and complexity of real-world datasets often introduce
edge cases that fall outside these predefined bounds, rendering them infeasible. This often requires
enlarging the search space, which compromises the quality of predicted solutions and increases
computational overhead.

In this work, we propose a twofold enhancements to the ConPaS framework. The primary goal of
our approach is to improve the prediction accuracy of the model, ensuring that predicted solutions
are both high-quality and feasible, while also addressing the challenge of robust generalization in
real-world datasets. First, we introduce a Hybrid Training Strategy that integrates label-based learning
and contrastive learning. This design is motivated by an empirical observation: Some variables
consistently exhibit identical values across high-quality solution sets. For these stable variables,
we use label-based learning with cross-entropy loss to directly minimize the discrepancy between
predicted probabilities and ground-truth labels. For variables with variation, we apply contrastive
learning with InfoNCE loss (Oord et al., 2018) to capture discriminative features among different
samples in high-dimensional space. Leveraging the complementary strengths of both approaches,
our model achieves more accurate predictions. Second, we propose an Adaptive Search Region
Adjustment mechanism to dynamically respond to infeasibility. Unlike traditional approaches that
simply expand hyperparameters to mitigate infeasibility, our method utilizes the efficient feasibility
assessment capabilities of modern solvers. Upon detecting an instance as infeasible within the current
search region, the method promptly expands the search range in a targeted manner. Specifically, by
computing the Irreducible Infeasible Subsystem (IIS) (Gleeson & Ryan, 1990), we can precisely
identify the variables responsible for the infeasibility and dynamically adjust the search region
accordingly. This targeted strategy not only ensures feasibility, but also enables the PaS framework to
adapt to diverse real-world MILP instances without sacrificing performance.

These advancements improve the accuracy, efficiency, and adaptability of machine learning-driven
MILP solvers, offering a more practical and scalable solution for real-world optimization challenges.
Experimental results demonstrate that this enhanced approach significantly increases the number of
predicted variables while maintaining accuracy. Built upon SCIP (Maher et al., 2017), our approach
consistently outperforms the best baseline by achieving superior solution quality, reducing the average
absolute primal gap by more than 50% compared to SCIP.

2 RELATED WORK

2.1 MACHINE LEARNING FOR EFFICIENT BRANCH-AND-BOUND

The iterative nature of the BnB algorithm (Land & Doig, 2010), combined with the inherent struc-
tural properties of MILP problems, such as integer constraints and linear relationships, makes it
highly compatible with machine learning (ML) and reinforcement learning (RL) techniques. This
synergy has led to substantial improvements in the efficiency of solving MILP problems. Within
the BnB framework, variable selection (Gasse et al., 2019; Du et al.; Wei et al., 2025) and node
selection (Labassi et al., 2022; Zhang et al.; He et al., 2014a) have emerged as the primary areas of
integration for these learning-based approaches, directly influencing the algorithm’s search efficiency.
Additionally, other critical components of modern MILP solvers, including cutting planes (Paulus
et al., 2022; Zhang et al., 2024), presolving (Liu et al., 2024a), and warm-start (Patel, 2024) heuristics,
play significant roles in enhancing solver performance. Consequently, these areas have attracted
considerable research attention.

2.2 MACHINE LEARNING FOR HIGH-QUALITY SOLUTION PREDICTION

In the realm of combinatorial optimization, neural networks can leverage the data distribution of
historical optimal solutions to construct approximate mappings, enabling the direct prediction of
problem solutions. For MILP problems, Nair et al. (2020) pioneered this approach with ND, where
they predict a partial solution for a problem instance and employ SelectiveNet (Geifman & El-Yaniv,
2019) to determine which variables to fix. However, these methods face limitations: fixing incorrect
variables can result in suboptimal or even infeasible solutions due to the complex constraint structure
of MILPs. To address this limitation and improve robustness, Han et al. (2023) proposed the Predict-

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

and-Search (PaS) framework, which departs from directly fixing variable assignments. Instead, it
employs a trust region strategy to constrain the search space around the predicted solution, thereby
enhancing fault tolerance and improving overall solution quality. Similarly, Large Neighborhood
Search (LNS) (Liu et al., 2024b) has emerged as a popular framework for predicting high-quality
solutions, reflecting a broader trend in this field. Building on these frameworks, the integration of
contrastive learning has led to the development of ConPaS (Huang et al., 2024) and CL-LNS (Huang
et al., 2023), which further refine prediction accuracy by distinguishing high-quality solutions from
suboptimal ones through comparative learning techniques.

3 PRELIMINARIES

3.1 MIXED INTEGER LINEAR PROGRAMS

Mixed Integer Linear Programming (MILP) refers to linear programming problems that incorporate
integer constraints. The MILP problem is typically formulated as:

min
x

c⊤x s.t. Ax ≤ b, l ≤ x ≤ u, x ∈ Zp × Rn−p (1)

Here, c represents the vector of coefficients in the objective function, while x denotes the decision
variable vector. Among these variables, the first x1, x2, . . . , xp are integer variables, and the re-
maining n− p variables remain continuous. The matrix A ∈ Rm×n contains the coefficients of the
linear constraints, and b ∈ Rm is a vector representing the right-hand side of these constraints. The
condition l ≤ x ≤ u defines the lower and upper bounds on the decision variables x, where l and
u can take values of negative or positive infinity. Since integer variables can be encoded as binary
variables, this paper focuses on pure binary programming problems.

3.2 BIPARTITE GRAPH REPRESENTATION

Gasse et al. (2019) pioneered the approach of encoding MILP problems as bipartite graph representa-
tions, G ≡ (W∪V, E) where constraints are modeled as constraint nodesW and variables as variable
nodes V , with edges E connecting these two types of nodes. This innovative mapping transforms
an MILP problem into a bipartite graph structure, thereby enabling the application of graph neural
networks (GNNs) to leverage the inherent relational structure for enhanced problem solving.

3.3 PREDICT-AND-SEARCH

Nair et al. (2020) introduced a definition for the marginal probability of a feasible solution as

p(x |M) =
exp(−E(x,M))∑

x′∈SM
exp(−E(x′,M))

E(x,M) =

{
c⊤x, x is feasible,
+∞, else,

(2)

where SM is a set of optimal or near-optimal solutions to M , E(x,M) is an energy function of a
solution x. Extending this concept, the Predict-and-Search (PaS) framework Han et al. (2023) assumes
independence among variables of an MILP problem and uses GNNs to model the marginal probability
of the solution, expressed as pθ(x|M), where pθ(x|M) = (pθ(x1 |M), . . . , pθ(xn |M)). In this
formulation, pθ(xi|M) denotes the probability that the variable xi equals 1. Furthermore, the trust
region method was proposed to tackle the challenge of prediction inaccuracies. Specifically, the
PaS framework operates by predicting the domain within which the solutions lie, governed by
three hyperparameters: k0, k1,∆. This method assigns the k1 variables to value 1 exhibiting the
highest marginal probabilities and the k0 variables to value 0 with the lowest marginal probabilities,
but allowing a perturbation of size ∆, Here ∆ is called trust-region radius. Let δ(k0, k1,∆) ={
x :

∑
xi∈Ik0

xi +
∑

xi∈Ik1
(1− xi) ≤ ∆

}
, a trust region problem emerges as a result:

min
x∈D∩δ(k0,k1,∆)

c⊤x (3)

where D is the feasible region of the original problem.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

MILP Problem

Near-optimal
solutions

Infeasible
solutions

Training Data
Label

Learning

Contrastive
Learning

Bipartite
Graph

GNN
Model

Train

Bipartite
Graph

GNN
Model

0.9

0.8

0.5

0.3

0.1

Fixed

1

0

Feasible∆

�

Best
solution

SearchPredict

Correction

Test

Input

Figure 1: Overview of our proposed framework. During training, we collect near-optimal solutions
and infeasible solutions as positive and negative samples, respectively, and route different variables
to distinct learning modules based on the characteristics of the near-optimal solutions. At testing,
building on the Predict-and-Search (Han et al., 2023) framework, we compute the Irreducible
Infeasible Subsystem (IIS) to identify potentially mispredicted variables, thereby adjusting the δ-
neighbor for correction.

3.4 CONTRASTIVE PREDICT-AND-SEARCH

ConPaS (Han et al., 2023) leverages contrastive learning for MILP solution prediction. It treats
high-quality solutions as positive samples and low-quality or infeasible ones as negatives. Using the
InfoNCE loss (Oord et al., 2018), the model pulls representations of high-quality solutions closer
while repelling those of suboptimal or infeasible solutions, thereby providing more informative
guidance for the search process.

4 PROPOSED FRAMEWORK

In this section, we introduce our framework-a Hybrid Training Strategy with Adaptive Search Region
Adjustment (HTS-Adapt) based on the Contrastive Predict-and-Search (ConPaS) (Huang et al., 2024),
with a focus on improving prediction accuracy and adaptability. Our approach introduces two key
innovations that work synergistically to address the challenges of prediction reliability and static
search regions in the PaS (Han et al., 2023) framework. First, we propose a Hybrid Training Strategy
(HTS) that leverages structural insights from high-quality solutions, integrating distinct machine
learning techniques. Second, we introduce an Adaptive Search Region Adjustment mechanism
(Adapt) that dynamically adjusts the search space by computing the Irreducible Infeasible Subsystem
(IIS) (Gleeson & Ryan, 1990), ensuring feasibility while maintaining computational efficiency across
a wide range of MILP instances.

4.1 HYBRID TRAINING STRATEGY

Our Hybrid Training Strategy (HTS) leverages the structural properties observed in high-quality
solutions of mixed integer linear programming (MILP) problems, where certain variables consistently
exhibit fixed values while others vary, as illustrated in Appendix B. HTS assigns different learning
strategies to different variable types, effectively utilizing the strengths of cross-entropy and contrastive
losses, respectively. For stable binary variables, which maintain identical values across a set of high-
quality solutions SM (denoted by index set Ic), we apply label-based learning to capture these
persistent patterns efficiently, minimizing cross-entropy loss to ensure precision without interference
from other variable fluctuations. For binary variables with variation (indexed as Ic), we employ
contrastive learning with InfoNCE (Oord et al., 2018) loss to model subtle differences and complex
interdependencies, enhancing generalization in various MILP instances. To implement this, we first

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

collect SM optimal or near-optimal solutions, identifying Ic as the set of variables with consistent
values and Ic as those that differ. HTS then designs separate training strategies for Ic and Ic ,
optimizing the accuracy and robustness of the model. This dual approach combines the precision of
label-based learning with the adaptability of contrastive learning, yielding a highly effective training
framework for a wide range of problem instances.

The final loss function comprises two components, formulated as:

L = α · Lce + (1− α) · Lcl, (4)

where α ∈ [0, 1] is a balancing coefficient that controls the trade-off between the cross-entropy loss
Lce and the contrastive loss Lcl. Lce is the cross-entropy loss for stable variables, defined as:

Lce = −
∑
i∈Ic

[yi log pθ(xi|M) + (1− yi) log(1− pθ(xi|M))] , (5)

and Lcl is the InfoNCE loss for variables exhibiting variation, expressed as:

Lcl = −
∑

xp∈SM

log
exp(cos(pθ(x|M), xp, Ic)/τ)∑

x̃∈NM∪{xp} exp(cos(pθ(x|M), x̃, Ic)/τ)
, (6)

Here, pθ(xi|M) denotes the model’s predicted probability for variable xi given the problem instance
M . For the cross-entropy loss Lce, yi represents the true label of xi. In the contrastive loss Lcl,τ is
the temperature parameter, NM is the set of negative samples. Furthermore, we adapted the standard
cosine similarity function to enhance the model’s discriminative capability, defining it as:

cos(x, y, I) =
xI · yI
∥xI∥∥yI∥

, (7)

where xI and yI are the subvectors of x and y restricted to the indices specified by I .

4.1.1 POSITIVE SAMPLES COLLECTION

For each MILP instance, we obtain a set of optimal or near-optimal solutions by employing a solver
with a fixed runtime t , which serves as our positive sample set SM . In our experiments, we utilize
Gurobi (Gurobi Optimization, 2022), a state-of-the-art commercial solver, with a solving time of
3600 seconds, |SM | = 50.

4.1.2 NEGATIVE SAMPLE COLLECTION

We adopt infeasible solutions as negative samples, as proposed by Huang et al. (2024), to streamline
the negative sample collection process. Starting with the positive sample set SM , we first identify the
indices of binary variables that remain constant across SM , denoted as Ic. These variables encapsulate
patterns inherent to high-quality solutions for the given MILP instance. We then focus on perturbing
the binary variables outside this set, indexed as Ic, to enable the model to learn finer-grained features.
For each solution x ∈ SM , we randomly perturb 10% of the variables in Ic (i.e., flipping them from
0 to 1 or 1 to 0). If the perturbed solution is infeasible, it is added to the negative sample setNM . For
each x ∈ SM , we generate β infeasible solutions through this method to form the negative sample
set NM . This approach generates negative samples that better align with HTS.

4.2 ADAPTIVE SEARCH REGION ADJUSTMENT

The Adaptive Search Region Adjustment (Adapt) method aims to tackle the challenge of predicted
solutions becoming infeasible when applying the Predict-and-Search (PaS) (Han et al., 2023) frame-
work to real-world MILP problems, where the diversity and complexity of datasets inevitably lead
to infeasible outcomes. Furthermore, the inherent limitations of neural network predictions also
contribute to the infeasibility of predicted solutions. The static strategy adopted in PaS struggles to
generalize across diverse instances, as the predefined δ-neighborhood may fail to ensure feasibility
or overly expand the search space, thereby compromising the quality of predicted solutions and
computational efficiency. To overcome this limitation, our method introduces a dynamic adjustment
mechanism that leverages the Irreducible Infeasible Subsystem (IIS) (Gleeson & Ryan, 1990). Specif-
ically, our approach directly identifies the specific variables responsible for inaccurate predictions,

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Algorithm 1 Adaptive Search Region Adjustment (Adapt)
Input: Probability prediction pθ(x|M), MILP instance M , hyperparameters k0, k1, ∆
Output: Feasible solution x (if found)

1: Initialize unfixed variable set U ← ∅, status flag γ ← false
2: Sort variables by descending marginal probability pθ(xi | I)
3: repeat
4: Fix variables not in U using δ(k0, k1,∆)
5: Solve the constrained MILP for up to 1000 seconds
6: if solution is feasible then
7: γ ← true
8: return Best feasible solution x ∈ Rn

9: else
10: Compute IIS (Irreducible Infeasible Subsystem)
11: Partition IIS into C1 and C2
12: r ← |C2|

|C1|
13: if r ≤ rmax then
14: for v in C1 do
15: Add v to U
16: end for
17: else
18: for v in C1 ∪ C2 do
19: Add v to U
20: end for
21: end if
22: end if
23: until γ is true
24: return Best feasible solution x

thereby broadening the potential of machine learning-based solution prediction. Consider an MILP
problem M with its original constraint set C1 and an additional constraint set C2, corresponding to
D and δ(k0, k1,∆) in Equation (3), respectively. When solving M proves infeasible, a process that
typically takes only a few seconds, we compute the Irreducible Infeasible Subsystem (IIS) to pinpoint
conflicting constraint sets. This process enables us to isolate the conflicting constraints within C1 and
C2, thereby identifying the variables causing the conflict. The IIS is defined as a minimal infeasible
subset of constraints, characterized by the following properties:
Infeasibility: The subset constitutes an infeasible system, meaning no solution satisfies all constraints
within it.
Minimality: Removing any single constraint from this subset makes the system feasible.

We initially extract constraints belonging to C1 from IIS and refrain from imposing additional
constraints on the variables associated with them. By solving Equation (3) under this adjusted
setting, we obtain a feasible solution. Observations indicate that, with suitable choices of k0 and
k1, a IIS typically includes only one constraint from C1. Moreover, due to the sparsity of the MILP
coefficient matrix, these constraints generally involve few variables, resulting in a minimal impact
on the search region. If the ratio r = |C2|

|C1| , computed within the IIS, exceeds a predefined threshold
rmax, indicating a high number of inaccurately predicted variables, we extend our approach by
also extracting constraints from C2 to further refine the search region adjustment. As shown in
Algorithm 1, the details of the testing phase are presented. Based on Algorithm 1 and the properties
of IIS, we derive the following analysis: if the predicted solution violates k constraints in C1, each
IIS computation eliminates at least one of these violated constraints. Consequently, the algorithm
requires at most k iterations for the predicted solution to become feasible. Algorithm 2 presents the
main steps for computing an IIS. In practice, we compute the IIS using the function provided by
Gurobi(see the appendix E).

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

5 EXPERIMENTS

In our evaluation, we focus on three main parts. First, we conduct comparative experiments using
SCIP (Maher et al., 2017) across four datasets, benchmarking our method against Predict-and-Search
(PaS) (Han et al., 2023) and Contrastive Predict-and-Search (ConPaS) (Huang et al., 2024). We then
perform ablation and generalization studies. Due to space limitations, additional results—including
experiments with Gurobi (Gurobi Optimization, 2022) as the solver, evaluations on more datasets,
and comparisons with extra baselines—are provided in the Appendix.

5.1 SETTINGS

5.1.1 BENCHMARK

In our experiments, we utilize four classic combinatorial optimization problems as benchmark tasks:
Maximum Independent Set (MIS), Minimum Vertex Cover (MVC) (Garey Michael & Johnson David,
1979), Combinatorial Auction (CA) (Lehmann et al., 2006), and Item Placement (IP) (Gasse et al.,
2022). These benchmarks are sourced from Gasse et al. (2019) and ML4CO competition (Gasse et al.,
2022). MVC and MIS, both graph optimization problems, are generated using the Barabási–Albert
and Erdös-Rényi random graph model (Albert & Barabási, 2002; ERDdS & R&wi, 1959), consisting
of 6,000 nodes. The CA instances, representing combinatorial auction problems, are constructed
based on the arbitrary relations outlined in Leyton-Brown et al. (2000), comprising 2000 items and
4,000 bids. IP instances are selected from the NeurIPS ML4CO competition. Following the setup
of Gasse et al. (2019), we utilize 240 instances for training, 60 instances for validation, and 100
instances for testing.

5.1.2 BASELINES

We evaluate the following methods from existing literature as our baselines, encompassing both
learning-based heuristics and an exact optimization solver: PaS, which utilizes predictive models to
guide a search algorithm toward high-quality solutions; ConPaS, an extension of PaS that incorporates
contrastive learning to improve the predictive model’s ability to differentiate between optimal and low-
quality solutions; and SCIP (Maher et al., 2017), a open-source solver for mixed integer programming
(MIP). The PaS models in our experiments are trained using the code provided by Han et al. (2023).
Due to the the code of ConPaS is not available, we implement our own version based on the details
from the paper, making adjustments to several parameters to optimize its performance. In our
implementation, we use low-quality solutions as negative samples during training.

Table 1: Performance comparison of our approach against baseline methods on benchmarks under a
1,000-second time limit, using the SCIP solver for all methods. The results are averaged over 100 test
instances across four problem types. We report the average best objective value-Obj and the absolute
primal gap-gapabs, where ↑ denotes higher is better, and ↓ denotes lower is better. Additionally, we
show the improvement of our method (Ours+SCIP) over SCIP in terms of gapabs.

CA (BKS 117223.59) IP (BKS 5.90) MIS (BKS 2628.05) MVC (BKS 3480.39)

Obj ↑ gapabs ↓ Obj ↓ gapabs ↓ Obj ↑ gapabs ↓ Obj ↓ gapabs ↓
SCIP 112899.50 4324.09 13.41 7.51 2577.60 50.45 3530.12 49.73
PaS+SCIP 113180.23 4043.36 12.01 6.11 2612.42 15.63 3487.48 7.09
ConPaS+SCIP 113051.31 4172.28 11.86 5.96 2613.34 14.71 3487.26 6.87
Ours+SCIP 113343.56 3880.03 11.27 5.37 2618.79 9.26 3485.70 5.31

Improvement 10.3% 28.5% 81.6% 89.3%

5.1.3 METRICS

In our evaluation, we adopt the following metrics to assess all approaches: (1) Primal gap (Berthold,
2006), defined as the normalized difference between the primal bound v and the precomputed best-
known solution (BKS) v∗, calculated as |v−v∗|

max(v,v∗,ε) if v exists and v · v∗ ≥ 0, and set to 1 otherwise.
We set ε = 10−8 to avoid division by zero. The BKS v∗ is defined as the best objective obtained by

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

running Gurobi in single-thread mode for 3600 seconds, combined with the best value achieved by all
methods within a 1000-second time limit. (2) Absolute primal gap, defined as the absolute difference
|v − v∗|, denoted by gapabs.

5.1.4 IMPLEMENTATION

Our experiments are conducted on a system with an AMD EPYC 7763 64-Core processor and an
NVIDIA GeForce RTX 4090 GPU. SCIP 9.2.2 and Gurobi 11.0.3 are utilized in our experiments.
All experiments are conducted in a single-threaded environment. To collect training data, we gather
the 50 best solutions for each training instance, using Gurobi with a solving time of 3,600 seconds.
During training, we employ the Adam optimizer (Kingma & Ba, 2014) with a learning rate of 0.001,
a batch size of 8, and trained for 1,000 epochs with early stopping. For the reproduction of PaS,
we utilize the code provided in the original paper. Since ConPaS lacks publicly available code, we
made our best effort to implement it, aiming to achieve optimal performance. The partial solution
size parameters (k0, k1,∆) are detailed in the Appendix D and for all experiments we set α = 0.4,
β = 10 and τ = 0.1.

SCIP PaS ConPaS Our

0 200 400 600 800 1000

Time

10 1

Pr
im

al
 G

ap

(a) CA

0 200 400 600 800 1000

Time

100

Pr
im

al
 G

ap

(b) IP

0 200 400 600 800 1000

Time

10 2

10 1

100

Pr
im

al
 G

ap

(c) MIS

0 200 400 600 800 1000

Time
10 3

10 2

10 1

Pr
im

al
 G

ap
(d) MVC

Figure 2: We track the primal gap during the solving process using SCIP. All methods—SCIP, PaS,
ConPaS, and Ours—are implemented with a 1,000-second time limit, and results are averaged over
100 test instances from four problem types.

5.2 RESULTS

Table 1 presents the quality of the final solutions obtained by our method and the baseline approaches
within a 1,000-second time limit, reporting the average objective values and absolute primal gaps
across 100 test instances. Our method consistently outperforms the baselines across four datasets,
almost always achieving the best results in each case. Notably, in the MVC dataset, our approach
surpasses the performance of Gurobi with a 3,600-second runtime on most test instances. In the
challenging IP dataset, our method achieves a best objective value with an 10.12% improvement in
gapabs over the best baseline. Similarly, in the MIS dataset, our method demonstrates an 37.05%
improvement over ConPaS in terms of gapabs. In the CA dataset, our method performs comparable
to the baselines but still achieves the best results with a slight advantage. While PaS and ConPaS
exhibit varying strengths across different datasets, our method consistently delivers superior solution
quality. We also present the results on WA(Gasse et al., 2022), another dataset from the ML4CO
competition, in Appendix H.
Figure 2 provides a more comprehensive comparison between our method and the baselines in terms
of both solving speed and solution quality, illustrating the primal gap as a function of runtime. A
rapid decrease in the primal gap curves indicates superior solving performance. Although ConPaS
achieves worse solution quality than PaS on certain datasets, it consistently demonstrates faster
solving speeds across all datasets. In contrast, our method not only achieves better solution quality
but exhibits faster convergence compared to the baselines, showcasing improved performance in both
speed and quality across all datasets.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

5.2.1 GENERALIZATION EXPERIMENTS

To evaluate generalization, we employ the trained models on two benchmark datasets, MIS and
MVC, both representative graph optimization problems. We generate 100 larger test instances, each
consisting of 8,000 nodes, using the Barabási–Albert and Erdős–Rényi random graph models (Albert
& Barabási, 2002; ERDdS & R&wi, 1959). Table 2 presents all test results, including the average
best objective value and absolute primal gap. Our method significantly outperforms the baselines on
both datasets, nearly always achieving the best objective values.

Table 2: Generalization performance on MIS and MVC datasets with 100 test instances, reporting the
average best objective value and absolute primal gap under a 1,000-second time limit. ↑ indicates
that higher values are better, while ↓ indicates that lower values are better.

MIS (BKS 3493.91) MVC (BKS 4641.85)

Obj ↑ gapabs ↓ Obj ↓ gapabs ↓
SCIP 3413.74 80.17 4786.76 144.91
PaS+SCIP 3477.67 16.24 4648.31 6.46
ConPaS+SCIP 3483.29 10.62 4654.73 12.88
Ours+SCIP 3493.82 0.09 4641.86 0.01

5.2.2 ABLATION STUDY

We conduct an ablation study on the MIS and MVC dataset to evaluate the effectiveness of the
HTS and Adapt, using ConPaS-the best performing baseline on this dataset-as the reference for
comparison. As shown in Table 3, HTS achieves a 44.9% and 20.8% reduction in gapabs compared to
ConPaS, highlighting the significant enhancement in prediction accuracy. Similarly, Adapt achieves a
51.5% and 15.1% reduction in gapabs, underscoring its superior performance in improving prediction
accuracy. By integrating HTS and Adapt, our approach achieves the best performance.

Table 3: Ablation study results on the MIS and MVC datasets, comparing ConPaS, HTS-only,
Adapt-only, and our approach (Ours) across different settings of (k0, k1,∆). The setting (k0, k1,∆)
determine whether the Adapt module is enabled, as ∆ = 0 may lead to infeasibility for certain
instances.

MIS MVC

Model (k0, k1,∆) Obj ↑ gapabs ↓ (k0, k1,∆) Obj ↓ gapabs ↓
ConPaS (800, 400, 10) 2613.34 14.71 (800, 200, 10) 3487.26 6.87
HTS-only (1200, 600, 1) 2617.59 10.46 (800, 200, 1) 3485.83 5.44
Adapt-only (800, 400, 0) 2618.48 9.57 (800, 200, 0) 3486.22 5.83
Ours (1200, 600, 0) 2618.79 9.26 (800, 200, 0) 3485.70 5.31

We further perform ablation studies on the weighting parameter α, the temperature parameter τ , and
the perturbation ratio. Details are provided in Appendix G.

6 CONCLUSION AND FUTURE WORK

In this work, we enhanced the ConPaS framework by introducing a Hybrid Training Strategy with
Adaptive Search Region Adjustment mechanism (HTS-Adapt), significantly improving prediction
accuracy and adaptability for MILP solving. Experimental results demonstrate that our approach
outperforms the PaS and ConPaS, with HTS enhancing prediction accuracy and Adapt reducing the
search space and computational overhead. For future work, we plan to explore the application of our
framework to the more complicated combinatorial optimization problems.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REPRODUCIBILITY STATEMENT

We describe all datasets, model architectures, and training procedures in detail in the main paper.
Hyperparameter values are specified in Appendix D, and the code is provided in the supplementary
material. Although the code is not publicly released at the time of submission, we will make it
available upon acceptance.

REFERENCES

Réka Albert and Albert-László Barabási. Statistical mechanics of complex networks. Reviews of
modern physics, 74(1):47, 2002.

Aliyun Optimization Team. Mindopt optimizer user manual. https://opt.aliyun.com/
doc/latest/cn/html/index.html, 2025. Accessed: 2025-07-25.

Timo Berthold. Primal heuristics for mixed integer programs. PhD thesis, Zuse Institute Berlin
(ZIB), 2006.

John W Chinneck. Feasibility and Infeasibility in Optimization:: Algorithms and Computational
Methods, volume 118. Springer Science & Business Media, 2007.

IIBM ILOG Cplex et al. V12. 1: User’s manual for cplex. International business machines
corporation, 46(53):157, 2009.

Shuhan Du, Junbo Tong, Daming Shi, Yi Liu, and Wenhui Fan. Pebsi: Policy-efficient branching
variable selection via reinforcement learning. Available at SSRN 5159367.

P ERDdS and A R&wi. On random graphs i. Publ. math. debrecen, 6(290-297):18, 1959.

R Garey Michael and S Johnson David. Computers and intractability: A guide to the theory of
np-completeness, 1979.

Maxime Gasse, Didier Chételat, Nicola Ferroni, Laurent Charlin, and Andrea Lodi. Exact combi-
natorial optimization with graph convolutional neural networks. Advances in neural information
processing systems, 32, 2019.

Maxime Gasse, Simon Bowly, Quentin Cappart, Jonas Charfreitag, Laurent Charlin, Didier Chételat,
Antonia Chmiela, Justin Dumouchelle, Ambros Gleixner, Aleksandr M Kazachkov, et al. The
machine learning for combinatorial optimization competition (ml4co): Results and insights. In
NeurIPS 2021 competitions and demonstrations track, pp. 220–231. PMLR, 2022.

Yonatan Geifman and Ran El-Yaniv. Selectivenet: A deep neural network with an integrated reject
option. In International conference on machine learning, pp. 2151–2159. PMLR, 2019.

John Gleeson and Jennifer Ryan. Identifying minimally infeasible subsystems of inequalities. ORSA
Journal on Computing, 2(1):61–63, 1990.

LLC Gurobi Optimization. Gurobi optimizer reference manual, 2023, 2022.

Qingyu Han, Linxin Yang, Qian Chen, Xiang Zhou, Dong Zhang, Akang Wang, Ruoyu Sun, and
Xiaodong Luo. A gnn-guided predict-and-search framework for mixed-integer linear programming.
arXiv preprint arXiv:2302.05636, 2023.

He He, Hal Daumé, and Jason Eisner. Learning to search in branch and bound algorithms. Advances
in neural information processing systems, 27, 2014a.

He He, Hal Daumé, and Jason Eisner. Learning to search in branch and bound algorithms.
In Z. Ghahramani, M. Welling, C. Cortes, N. Lawrence, and K.Q. Weinberger (eds.), Ad-
vances in Neural Information Processing Systems, volume 27. Curran Associates, Inc.,
2014b. URL https://proceedings.neurips.cc/paper_files/paper/2014/
file/533d190f5aa2926b2a8a30c8bea0e05d-Paper.pdf.

10

https://opt.aliyun.com/doc/latest/cn/html/index.html
https://opt.aliyun.com/doc/latest/cn/html/index.html
https://proceedings.neurips.cc/paper_files/paper/2014/file/533d190f5aa2926b2a8a30c8bea0e05d-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2014/file/533d190f5aa2926b2a8a30c8bea0e05d-Paper.pdf

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Taoan Huang, Aaron M Ferber, Yuandong Tian, Bistra Dilkina, and Benoit Steiner. Searching large
neighborhoods for integer linear programs with contrastive learning. In International conference
on machine learning, pp. 13869–13890. PMLR, 2023.

Taoan Huang, Aaron M Ferber, Arman Zharmagambetov, Yuandong Tian, and Bistra Dilkina.
Contrastive predict-and-search for mixed integer linear programs. In Forty-first International
Conference on Machine Learning, 2024.

Zeren Huang, Kerong Wang, Furui Liu, Hui-Ling Zhen, Weinan Zhang, Mingxuan Yuan, Jianye Hao,
Yong Yu, and Jun Wang. Learning to select cuts for efficient mixed-integer programming. Pattern
Recognition, 123:108353, 2022.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Abdel Ghani Labassi, Didier Chételat, and Andrea Lodi. Learning to compare nodes in branch
and bound with graph neural networks. Advances in neural information processing systems, 35:
32000–32010, 2022.

Ailsa H Land and Alison G Doig. An automatic method for solving discrete programming problems.
Springer, 2010.

Daniel Lehmann, Rudolf Müller, and Tuomas Sandholm. The winner determination problem.
Combinatorial auctions, pp. 297–318, 2006.

Kevin Leyton-Brown, Mark Pearson, and Yoav Shoham. Towards a universal test suite for combina-
torial auction algorithms. In Proceedings of the 2nd ACM conference on Electronic commerce, pp.
66–76, 2000.

Chang Liu, Zhichen Dong, Haobo Ma, Weilin Luo, Xijun Li, Bowen Pang, Jia Zeng, and Junchi
Yan. L2p-mip: Learning to presolve for mixed integer programming. In The Twelfth International
Conference on Learning Representations, 2024a.

Haoyang Liu, Jie Wang, Zijie Geng, Xijun Li, Yuxuan Zong, Fangzhou Zhu, Jianye HAO, and
Feng Wu. Apollo-MILP: An alternating prediction-correction neural solving framework for
mixed-integer linear programming. In The Thirteenth International Conference on Learning
Representations, 2025. URL https://openreview.net/forum?id=mFY0tPDWK8.

Wenbo Liu, Akang Wang, Wenguo Yang, and Qingjiang Shi. Mixed-integer linear optimization via
learning-based two-layer large neighborhood search. arXiv preprint arXiv:2412.08206, 2024b.

Andrea Lodi and Giulia Zarpellon. On learning and branching: a survey. Top, 25(2):207–236, 2017.

Stephen J Maher, Tobias Fischer, Tristan Gally, Gerald Gamrath, Ambros Gleixner, Robert Lion
Gottwald, Gregor Hendel, Thorsten Koch, Marco Lübbecke, Matthias Miltenberger, et al. The scip
optimization suite 4.0. 2017.

Vinod Nair, Sergey Bartunov, Felix Gimeno, Ingrid Von Glehn, Pawel Lichocki, Ivan Lobov, Brendan
O’Donoghue, Nicolas Sonnerat, Christian Tjandraatmadja, Pengming Wang, et al. Solving mixed
integer programs using neural networks. arXiv preprint arXiv:2012.13349, 2020.

Aaron van den Oord, Yazhe Li, and Oriol Vinyals. Representation learning with contrastive predictive
coding. arXiv preprint arXiv:1807.03748, 2018.

Krunal Kishor Patel. Progressively strengthening and tuning mip solvers for reoptimization. Mathe-
matical Programming Computation, 16(2):267–295, 2024.

Max B Paulus, Giulia Zarpellon, Andreas Krause, Laurent Charlin, and Chris Maddison. Learning to
cut by looking ahead: Cutting plane selection via imitation learning. In International conference
on machine learning, pp. 17584–17600. PMLR, 2022.

Yves Pochet and Laurence A Wolsey. Production planning by mixed integer programming, volume
149. Springer, 2006.

11

https://openreview.net/forum?id=mFY0tPDWK8

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Mahdi Sharifzadeh, Marti Cortada Garcia, and Nilay Shah. Supply chain network design and
operation: Systematic decision-making for centralized, distributed, and mobile biofuel production
using mixed integer linear programming (milp) under uncertainty. Biomass and Bioenergy, 81:
401–414, 2015.

Lishen Wei, Xiaomeng Ai, Jiakun Fang, Shichang Cui, Shiwu Liao, and Jinyu Wen. A gnn-guided
variable selection approach for efficient derivation of the optimal solution in unit commitment.
IEEE Transactions on Power Systems, 2025.

Sijia Zhang, Shuli Zeng, Shaoang Li, Feng Wu, and Xiangyang Li. Learning to select nodes in
branch and bound with sufficient tree representation. In The Thirteenth International Conference
on Learning Representations.

Xuefeng Zhang, Liangyu Chen, Zhengfeng Yang, and Zhenbing Zeng. Learning to select cutting
planes in mixed integer linear programming solving. arXiv preprint arXiv:2410.03112, 2024.

A DETAILS ON THE GNN ARCHITECTURE

In our approach, we represent a MILP instance M as a bipartite graph, a technique adapted from
previous works Gasse et al. (2019); Han et al. (2023). The bipartite graph consists of two types of
nodes: variable nodes and constraint nodes, with edge and node features inherited from Han et al.
(2023).

We employ a Graph Neural Network model similar to that in Han et al. (2023). Initially, node features
are processed through a two-layer Multi-Layer Perceptron (MLP), each with 64 hidden units and
ReLU activations, mapping the features to a 64-dimensional space (R64). The model then performs
two rounds of message passing: the first from the variable nodes to the constraint nodes, and the
second from the constraint nodes back to the variable nodes. These message-passing steps utilize
graph convolution layers, as described by Gasse et al. (2019), to generate refined variable embeddings.
Finally, the embeddings are passed through a second MLP with 64 hidden units per layer and ReLU
activation, followed by a sigmoid activation to output a predicted probability vector pθ(x|M) for the
binary variables.

B PREVALENCE OF STABLE VARIABLES IN HIGH-QUALITY MILP SOLUTIONS

Table 4 reports the proportion of stable binary variables (i.e., those fixed across all high-quality
solutions SM) relative to the total number of binary variables in representative MILP instances. A
substantial proportion of variables remains fixed in value, motivating our Hybrid Training Strategy
(HTS), which applies tailored learning modules to stable and varying variables.

Table 4: Average counts and proportions of stable variables across problem types.

CA IP MIS MVC

Count 2958 399 4022 2511
Proportion 74.0% 38.0% 67.0% 41.9%

This stability arises from inherent structural properties of real-world MILPs. Practical instances
exhibit constraint couplings, sparsity, dominance relations, and resource bottlenecks that tightly
constrain the feasible region, forcing many variables to adopt identical values across nearly many
high-quality solutions. Such consistency is not coincidental but a direct consequence of the problem
structure.

This insight underpins HTS: label-based supervision efficiently captures persistent patterns in stable
variables, while contrastive learning models the subtle distinctions and intricate dependencies among
varying ones.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

C DETAILS ON THE BENCHMARKS

To provide a comprehensive understanding of the experimental settings used in this work, we present
detailed statistical information for all benchmark instances in Table 5. In this appendix, we provide
detailed descriptions and MILP formulations for the benchmark problems used in our experiments.

Minimum Vertex Cover (MVC). In the MVC problem, we are given an undirected graph G =
(V,E) with a non-negative weight wv associated with each node v ∈ V . The goal is to select a subset
of nodes V ′ ⊆ V such that every edge in E has at least one endpoint in V ′, while minimizing the
total weight of the selected nodes. The corresponding MILP formulation is as follows:

min
∑
v∈V

wvxv

s.t. xu + xv ≥ 1, ∀(u, v) ∈ E,

xv ∈ {0, 1}, ∀v ∈ V.

Maximum Independent Set (MIS). The MIS problem also operates on an undirected graph
G = (V,E), where the objective is to find the largest subset of vertices such that no two selected
vertices share an edge. The standard MILP formulation for MIS is given by:

max
∑
v∈V

xv

s.t. xu + xv ≤ 1, ∀(u, v) ∈ E,

xv ∈ {0, 1}, ∀v ∈ V.

Combinatorial Auction (CA). In the CA problem, we are given n bids {(Bi, pi)}ni=1 for m items,
where each bid Bi ⊆ [m] represents a subset of items and pi denotes the associated price. The
objective is to select a subset of non-overlapping bids—i.e., no item is allocated more than once—in
order to maximize total revenue. The MILP formulation is defined as:

max

n∑
i=1

pixi

s.t.
∑
i

j∈Bi

xi ≤ 1, ∀j = 1, . . . ,m,

xi ∈ {0, 1}, ∀i = 1, . . . , n.

Additional problem descriptions, such as Item Placement and Workload Appointment, can be found
on the ML4CO competition website.1

Table 5: Statistical information of the benchmarks we used in this paper.

CA IP MIS MVC

Constraint Number 2677 195 15063 29975
Variable Number 4000 1083 6000 6000

D DETAILS ON THE HYPERPARAMETERS

Table 6 summarizes the hyperparameters (k0, k1,∆) used in our method and the baseline approaches
(PaS and ConPaS) across all benchmark tasks. For each benchmark, the values are tuned to obtain
better solutions. Specifically, for both PaS and ConPaS, we begin by fixing ∆ to 0, 5 , 10, 20, 50 and
100, then varying k0 and k1 from 0% to 50% of the number of binary variables (in 10% increments)

1https://github.com/ds4dm/ml4co-competition/blob/main/DATA.md

13

https://github.com/ds4dm/ml4co-competition/blob/main/DATA.md

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

to evaluate their performance on the validation set and determine suitable initial values. Based on
these results, we subsequently fine-tuned ∆, k0, and k1 around the identified values to obtain the
optimal configuration. Notably, guided by empirical results, our method sets ∆ = 0 for MIS and
MVC, indicating that a fixed strategy is used. As the CA dataset is intrinsically complex, leading to a
substantial number of mispredicted variables, we chose not to activate the Adapt module.

Table 6: Hyperparameters (k0, k1,∆) used for our method and baselines.

Benchmark CA IP MIS MVC

PaS (400,0,100) (400,5,1) (1200,600,5) (800,200,10)
ConPaS (800,0,50) (400,5,2) (800,400,10) (800, 200, 10)
Ours (400,0,100) (400,5,1) (1200,600,0) (800,200,0)

E IRREDUCIBLE INFEASIBLE SUBSYSTEMS

In this study, we utilize the Irreducible Infeasible Subsystem (IIS) to identify variables causing
prediction-induced infeasibility and to guide adaptive adjustments of the search region in MILP
solving. Theoretically, an IIS is defined as both infeasible and minimal, meaning that removing
any single constraint restores feasibility. However, in practice, many solvers, including Gurobi,
CPLEX(Cplex et al., 2009), Mindopt(Aliyun Optimization Team, 2025) employ heuristic algorithms
like the filtering method (Gleeson & Ryan, 1990; Chinneck, 2007) to identify an IIS, which may
result in a non-minimal and non-unique subset. Despite these theoretical limitations, our approach
remains effective in practice. The goal is not to exhaustively identify all infeasibility sources or
the smallest IIS, but to isolate a sufficiently informative subset of conflicting constraints to detect
inaccurate variable predictions. Even a partial IIS offers valuable insights, enabling meaningful
adjustments to the search space. In our experiments, we utilized Gurobi’s API. This decision was
made primarily for proof-of-concept and experimental purposes.
Algorithm 2 provides a simplified IIS computation procedure used in this work. It is included here
to clarify how the IIS is conceptually extracted when analyzing infeasibility induced by inaccurate
predictions.

To clarify the computational overhead introduced by the IIS module, we provide empirical evidence
based on our experiments. As shown in Table 7, the average time for computing IIS typically ranges
from 1 to 8 seconds, which accounts for less than 1% of the total solve time per instance.
We also further evaluate the sensitivity of our method to the choice of threshold values rmax on the
MVC dataset, using SCIP with a time limit of 1000 seconds. Since the number of predicted infeasible
instances is relatively small, we report the average objective value only on these cases. The results
are summarized in Table 8. From these results, we find that setting rmax excessively large can lead
to a slight deterioration in the final objective value. In contrast, choosing a moderately small rmax

yields more consistent outcomes, suggesting that a tighter adjustment range provides a good balance
between robustness and performance. In our experiments, we set rmax = 50.

Table 7: IIS computation time statistics across different datasets. “avg” and “max” denote the average
and maximum computation time, and “ratio” represents the percentage of IIS computation time
relative to the total solve time.

Dataset avg (s) max (s) ratio (%)
CA 1.33 1.45 0.13
IP 0.27 0.29 0.03

MIS 6.48 7.33 0.65
MVC 4.75 5.06 0.48

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Algorithm 2 IIS Computation for MILP
Input: Infeasible MILP instance M with constraints C
Output: IIS I ⊆ C

1: Initialize IIS candidate I ← C
2: Initialize improved flag γ ← true
3: while γ is true do
4: γ ← false
5: for each constraint c ∈ I do
6: Temporarily remove c from I
7: Solve the MILP with remaining constraints I \ {c}
8: if MILP is feasible then
9: c is necessary, add it back to I

10: else
11: c is redundant, permanently remove it
12: γ ← true
13: end if
14: end for
15: end while
16: return IIS I

Table 8: Sensitivity analysis of the threshold parameter rmax on the MVC dataset. A value of −1
indicates that only the else branch of Algorithm 1 is executed.

rmax −1 40 50 60 100 200

Obj ↓ 3486.83 3486.83 3486.83 3486.83 3487.17 3488.33

F PERFORMANCE UNDER GUROBI SOLVER

To further demonstrate the effectiveness and robustness of the proposed method, we replicate the
experiments using Gurobi(single-threaded) as the underlying solver. The corresponding results are
presented below. It can be observed that our method consistently achieves the best performance
among all compared approaches across various datasets.

Table 9: Performance comparison of our approach against baseline methods on benchmarks under a
1,000-second time limit, using the Gurobi solver for all methods.

CA (BKS 117223.59) IP (BKS 5.90) MIS (BKS 2628.05) MVC (BKS 3480.39)

Obj ↑ gapabs ↓ Obj ↓ gapabs ↓ Obj ↑ gapabs ↓ Obj ↓ gapabs ↓
Gurobi 116576.63 646.96 6.65 0.75 2563.70 64.35 3514.79 34.40
PaS+Gurobi 116780.64 442.95 6.60 0.70 2622.52 5.53 3481.42 1.03
ConPaS+Gurobi 116665.31 558.28 6.57 0.67 2626.27 1.78 3481.25 0.86
Ours+Gurobi 116812.32 411.27 6.47 0.57 2626.96 1.09 3480.64 0.25

Improvement 36.4% 24.0% 98.3% 99.3%

G ADDITIONAL ABLATION

The weighting between the two loss components is a critical factor influencing model performance. To
investigate which loss contributes more significantly to the improvements, we conduct an additional
ablation study. Table 10 reports the results with α varying from 0 to 1 in increments of 0.2. Consistent
with the main experiments, we initially used the MIS dataset for evaluation. Furthermore, to validate
the effectiveness more comprehensively, we additionally tested on the MVC dataset. The results show
that the best performance is achieved at α = 0.2, while the worst occurs at α = 1 or α = 0, where
only one module is playing a role. This indicates that both learning modules jointly contribute to the
improved model performance. When α = 0, the model still performs well, slightly outperforming

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Gurobi PaS ConPaS Our

0 200 400 600 800 1000

Time

10 2

10 1
Pr

im
al

 G
ap

(a) CA

0 200 400 600 800 1000

Time

10 1

Pr
im

al
 G

ap

(b) IP

0 200 400 600 800 1000

Time

10 3

10 2

10 1

Pr
im

al
 G

ap

(c) MIS

0 200 400 600 800 1000

Time

10 4

10 3

10 2

10 1

Pr
im

al
 G

ap

(d) MVC

Figure 3: Primal gap curves of different methods solved by Gurobi on four problem types, with a
1,000-second time limit.

the pure ConPaS baseline. This suggests that the perturbations applied to variables in Ic to generate
negative samples indeed enable the model to learn more fine-grained information. Notably, the
ablation experiments achieve better results on both datasets compared to the main experiments, with
α = 0.2 yielding superior performance.

The temperature parameter τ in the contrastive learning component is another crucial factor influ-
encing model performance. We conducted experiments on the IP dataset with different values of τ ,
and the results are summarized in Table 11. It can be observed that the best performance is achieved
when τ = 0.1.

Furthermore, we investigated the effect of the perturbation ratio, with the results reported in Table 12.
On the IP dataset, the model achieves its best performance when the ratio is set to 0.15, yielding a
remarkable 17.6% improvement in gapabs compared to ConPaS.

These ablation studies demonstrate that our proposed method still holds substantial potential for
further improvement.

Table 10: Effect of the loss weight α on model performance, using SCIP with a 1,000-second time
limit.

MIS MVC

α Obj ↑ gapabs ↓ Obj ↓ gapabs ↓

0.0 2618.50 8.38 3486.21 5.82
0.2 2619.20 7.68 3485.14 4.75
0.4 2618.99 7.89 3485.70 5.31
0.6 2618.76 8.12 3485.23 4.84
0.8 2618.54 8.34 3485.43 5.04
1.0 2613.05 13.89 3486.16 5.77

Table 11: Effect of the temperature coefficient τ on model performance, using SCIP with a 1,000-
second time limit on the IP dataset.

τ Obj ↓ gapabs ↓

0.05 11.47 5.57
0.1 11.27 5.37
0.5 11.32 5.42
1.0 11.51 5.61

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Table 12: Effect of the perturbation ratio on model performance, using SCIP with a 1,000-second
time limit on the IP dataset.

Ratio Obj ↓ gapabs ↓

0.05 10.90 5.00
0.10 11.30 5.40
0.15 10.81 4.91
0.20 11.95 6.05

H PERFORMANCE EVALUATION ON WA BENCHMARK

The Workload Appointment (WA)Gasse et al. (2022) dataset is another benchmark from the ML4CO
competition. Table 13 presents the performance comparison between our approach and various
baselines. When using SCIP as the solver, our method achieves a 58.3% improvement over SCIP and
outperforms ConPaS by 17.5%. With Gurobi as the solver, our method improves upon Gurobi by
33.3% and surpasses ConPaS by 22.2%. These results consistently demonstrate the superiority of our
approach across different solvers.

Table 13: Performance comparison of our approach against baseline methods on the WA benchmark
under a 1,000-second time limit.

WA (BKS 707.85)

Obj ↓ gapabs ↓
Gurobi 708.06 0.21
PaS+Gurobi 708.06 0.21
ConPaS+Gurobi 708.03 0.18
Ours+Gurobi 707.99 0.14

SCIP 710.68 2.83
PaS+SCIP 709.37 1.52
ConPaS+SCIP 709.28 1.43
Ours+SCIP 709.03 1.18

I ADDITIONAL BASELINE

We provide more results by extending our comparison to a recent work, Apollo (Liu et al., 2025). This
supplementary experiment offers an updated evaluation against the latest advancement in the field.
We reproduce the results of Apollo on the IP (Gasse et al., 2022) and WA (Gasse et al., 2022) datasets
using the official code and experimental settings provided by the authors. The outcomes, summarized
in Table 14, indicate that our approach outperforms Apollo, yielding a 12.3% improvement on IP
dataset and 22% improvement on WA dataset in gapabs. These findings highlight the robustness
of our method and confirm its competitiveness even when benchmarked against the most recent
state-of-the-art approaches. Importantly, our method is complementary to Apollo, suggesting that
integrating the two could yield even stronger results.

J LLM USAGE

Large Language Models (LLMs) were used solely for translation and language polishing. All research
ideas, experiments, and conclusions presented in this paper are entirely the work of the authors.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Table 14: Performance comparison of our approach against Apollo method on the IP benchmark
under a 1,000-second time limit.

IP (BKS 5.90) WA (BKS 707.85)

Obj ↓ gapabs ↓ Obj ↓ gapabs ↓
Apollo+Gurobi 6.55 0.65 708.03 0.18
Ours+Gurobi 6.47 0.57 707.99 0.14

18

	Introduction
	Related Work
	Machine Learning for Efficient Branch-and-Bound
	Machine Learning for High-Quality Solution Prediction

	Preliminaries
	Mixed Integer Linear Programs
	Bipartite Graph Representation
	Predict-and-Search
	Contrastive Predict-and-Search

	Proposed Framework
	Hybrid Training Strategy
	Positive Samples Collection
	Negative Sample Collection

	Adaptive Search Region Adjustment

	Experiments
	Settings
	Benchmark
	Baselines
	Metrics
	Implementation

	Results
	Generalization Experiments
	Ablation Study

	Conclusion and Future Work
	Details on the GNN Architecture
	Prevalence of Stable Variables in High-Quality MILP Solutions
	Details on the Benchmarks
	Details on the Hyperparameters
	Irreducible Infeasible Subsystems
	Performance under Gurobi Solver
	Additional Ablation
	Performance Evaluation on WA Benchmark
	Additional Baseline
	LLM Usage

