Published as a conference paper at ICLR 2025

FORGET THE DATA AND FINE-TUNING!
JUST FOLD THE NETWORK TO COMPRESS

Dong Wang®*, Haris Siki¢>} Lothar Thiele®, Olga Saukh®®

®Graz University of Technology, Austria
SComplexity Science Hub Vienna, Austria
TETH Zurich, Switzerland
{dong.wang@, haris.sikic@student., saukh@}tugraz.at
thiele@tik.ee.ethz.ch

ABSTRACT

We introduce model folding, a novel data-free model compression technique that
merges structurally similar neurons across layers, significantly reducing the model
size without the need for fine-tuning or access to training data. Unlike existing
methods, model folding preserves data statistics during compression by leveraging
k-means clustering, and using novel data-free techniques to prevent variance
collapse or explosion. Our theoretical framework and experiments across standard
benchmarks, including ResNet18 and LLaMA-7B, demonstrate that model folding
achieves comparable performance to data-driven compression techniques and
outperforms recently proposed data-free methods, especially at high sparsity levels.
This approach is particularly effective for compressing large-scale models, making
it suitable for deployment in resource-constrained environments.

1 INTRODUCTION

Deep neural networks (DNNs) have emerged as a fundamental technology, driving progress across a
multitude of applications from natural language processing to computer vision. However, the deploy-
ment of these models in real-world settings is often constrained by the computational and memory
resources available, particularly on edge devices like smartphones and embedded systems (Wan et al.|
2020; Kumar et al., [2017; |Chen et al., 2020). This limitation poses a significant challenge, as the
growing complexity and size of SOTA models demand increasingly substantial resources (Bommasani
et al.,[2021} |(Chang et al.l2024; Rombach et al., 2022).

Conventional model compression techniques, such as pruning (Han et al., 2015; [LeCun et al., [1989;
Li et al.| [2016b; Hassibi et al.l|{1993)) and quantization (Gupta et al., 2015} Zhou et al.,[2017} |Li et al.|
2016a), have been developed to mitigate this issue by reducing the model size and computational
requirements. These methods usually remove redundant or less critical parameters from the model,
thereby reducing the overall size and computational load. For example, pruning eliminates weights
that contribute minimally to the model’s output (Han et al.l 2015} L1 et al.,|2016b). Quantization
reduces the precision of the weights and activations (Gupta et al.,|2015)), which decreases memory
usage and speeds up inference (Zhou et al |2017). Despite their effectiveness, these approaches
often introduce a degradation in model performance, necessitating a phase of fine-tuning to maintain
the internal data statistics within the model (Jordan et al., 2022} and restore the original accuracy
levels (Frankle & Carbin, |2018} [Hassibi et al.l 1993} |[Frantar & Alistarh| |[2022). This requirement can
be a significant drawback in scenarios where access to the original training data is limited.

Recent methods have sought to circumvent the need for extensive retraining or fine-tuning by
exploring alternatives to traditional approaches. Instead, several recent strategies build on model
merging techniques (Entezari et al., 2022} |Ainsworth et al.,|2023; Jordan et al.,|2022)) and achieve
(multi-)model compression by fusing similar computational units. For example, Ziplt! (Stoica et al.|
2024} merges two models of the same architecture by combining similar features both within and

*Equal contribution.

Published as a conference paper at ICLR 2025

BatchN Weight tensor
layer W, of layer I+1

X

W
1.CLUSTER oS, 1.0 iOpt
A 19 —-— target
_l ﬁ _l o i IFM
| w | . } Fold-Naive
§ 06] Fold-AR .2
2.MERGE A —| § i Fold-DIR @
A
=7 | &8 || 2 = L
A ey
0.2

3.REPAIR

| % || 0.0/ Variance Collapse i Variance Explosion|
. - | 107 10T 10 100 107 10°

Variance Ratio

Figure 1: Model compression and repair of data statistics. Left: Model folding pipeline is applied
layer-wise, consisting of three phases: weight tensor clustering and merging, and data statistics repair.
Right: To maintain accuracy, the data variances of compressed and uncompressed models must align
(i.e., the variance ratio must be close to 1), as variance collapse or explosion leads to suboptimal
performance. Our data-free and fine-tuning-free model folding methods (Fold-AR and Fold-DIR)
achieve performance comparable to data-driven statistics repair (Fold-R), while outperforming naive
statistics repair (Fold-naive) and the recently proposed IFM (Chen et al.,[2023)). All methods were
evaluated on a public ResNet18 checkpoint trained on CIFAR10. Lines connect the performance of
different methods at the same weight sparsity level, applied uniformly across all layers. Variance
ratio refers to the activation outputs in the last layer. A precise definition and analysis are in Sec. E}

across models. They provide both theoretical and empirical evidence suggesting that features within
the same model are more similar than those between models trained on different tasks. This method
avoids the need for retraining the compressed model but requires training data to match features based
on the similarity of their activations. Similarly,|Yamada et al.|(2023)) examine various model merging
techniques and conclude that merged models require a dataset—such as a coreset—for effective
merging and to achieve high accuracy. This data is essential for adjusting internal data statistics
that are disrupted by weight fusion, such as updating the running mean and variance in BatchNorm
layers (loffe & Szegedy, 2015). The process involves a simple forward pass through the model and is
a well-established method to adapt models in low-resource environments (Leitner et al., [2023)).

In contrast, IFM (Chen et al., | 2023)) offers a fully data-free and fine-tuning-free approach, utilizing
weight matching (Ainsworth et al.l 2023)) to iteratively merge similar hidden units, similar to|Stoica
et al.| (2024)). However, despite a heuristic for preserving data statistics, we demonstrate that IFM
fails to maintain performance across standard architectures and for high sparsity. Other data-free
approaches, such as (Yin et al., 2020), generate synthetic images directly from the uncompressed
model for fine-tuning to restore pruned model accuracy. More related work is covered in Appendix [N]

This paper presents a model compression technique, model folding, that exploits weight similarity
through three phases: neuron clustering, merging, and data statistics repair, summarized in Fig.[T] (left).
We demonstrate that k-means clustering provides a theoretically optimal and data-free method for
merging weights. Building on Jordan et al.|(2022)), which addresses variance collapse using REPAIR
with training data, we introduce two data-free alternatives: Fold-AR (folding with approximate
REPAIR) and Fold-DIR (folding with Deep Inversion-based REPAIR). Fold-AR estimates mean
correlations within clusters assuming independent inputs, while Fold-DIR uses Deep Inversion (Yin
et al.| 2020) to synthesize a single batch of images for updating BatchNorm statistics via a forward
pass. Both methods maintain data statistics and prevent variance collapse or explosion to avoid
suboptimal compression performance, with Fold-AR standing out as a more resource-efficient option
while still significantly surpassing existing methods. Fig. [I] (right) shows that the highest accuracy
at any target sparsity is achieved when the mean variance ratio over the last layer between the
compressed and uncompressed models stays close to one. Our contributions are:

* We introduce model folding, a novel model compression technique that merges structurally
similar neurons within the same network to achieve compression. We provide both theoreti-
cal justification and empirical evidence demonstrating that k-means clustering is an optimal
and effective method for fusing model weights in a data-free manner.

* To enable data-free model compression, we adapt the REPAIR framework proposed by
Jordan et al.| (2022) to address variance collapse of data statistics within a model after

Published as a conference paper at ICLR 2025

layer compression. We introduce data-free and fine-tuning-free versions of REPAIR, that
effectively maintain model statistics and achieve high performance.

* We demonstrate that model folding surpasses the performance of SOTA model compression
methods which do not use data or fine-tune the pruned model, including recently proposed
IFM (Chen et al.,|2023)), and INN (Solodskikh et al., |2023)), in particularly at higher levels
of sparsity and when applied to more complex datasets.

* We use model folding on LLaMA-7B without utilizing data or post-tuning and achieve
comparable results to methods that require data and fine-tuning.

2 PRELIMINARIES

Our work is inspired by recent advances in two key areas: neuron alignment algorithms for fusing
model pairs in weight space, and data-driven methods for recovering from variance collapse in fused
models. Below, we summarize the relevant results from the literature.

Neuron alignment algorithms. Model merging involves combining the parameters of multiple
trained models into a single model, with a key challenge being the alignment of neurons across
these models, particularly when they are trained on different datasets or tasks. Neuron alignment
methods can be classified based on their dependency on the input data. Methods like the Straight
Through Estimator (STE) (Ainsworth et al.,|2023)), Optimal Transport (OT) (Singh & Jaggil, |2020)
and correlation-based activation matching (L1 et al.l [2015) require data for effective merging. In
contrast, weight matching (Yamada et al., 2023} |Ainsworth et al}2023)) is a data-free method, making
it efficient in scenarios when training data is not available. In weight matching, neurons are aligned
by minimizing the Lo distance between the weight vectors of neurons across models. Given two
models with weight matrices W 4 and W g, the goal is to find a permutation P of the weights in
‘W p that minimizes the distance:

min [W4 — PW |3,

where PW g denotes the weight matrix W g after applying the permutation P to align it with W 4.
Once the optimal permutation is found, the models are merged by averaging the aligned weights:

| .
Wmerged - 5 (WA + P WB))

where P* is the permutation that minimizes the L, distance. Weight matching solves an instance of
the linear sum assignment problem (LSAP), usually solved by Hungarian algorithm (Kuhn, [1955)
as done in (Jordan et al., [2022; Ainsworth et al., 2023)), to layer-wise align weight vectors. Unlike
merging different models, aligning neurons within a single model requires an acyclic matching graph,
a challenge not addressed by LSAP, which assumes disjoint task and worker sets. To overcome the
challenge |Chen et al.| (2023)) and |He et al.|(2018) apply iterative approach greedily merging a pair
of the most similar neurons in each iteration. This work extends weight matching to align clusters
of similar neurons within the same model, remaining data-free. Appendix [C|provides more details
on the relationship between weight matching and model folding. We show that IFM is inferior to
clustering utilized by model folding as described in the next section.

Variance collapse and REPAIR. When interpolating between independently trained, neuron-aligned
networks, (Jordan et al.| [2022) observed a phenomenon they termed variance collapse. This occurs
when the variance of hidden unit activations in the interpolated network significantly diminishes
compared to the original networks, leading to a steep drop in performance. To solve this issue, Jordan
et al.| (2022) introduced the REPAIR method (Renormalizing Permuted Activations for Interpolation
Repair) which uses input data to recompute the internal data statistics.

REPAIR works by rescaling the preactivations of the interpolated network to restore the statistical
properties of the original networks. Specifically, it adjusts the mean and variance of the activations
in each layer of the interpolated network to match those of the corresponding layers in the original
networks. This is done by computing affine transformation parameters—rescaling and shifting
coefficients—for each neuron, ensuring that the mean and standard deviation of activations in the
interpolated network are consistent with those in the original models. REPAIR effectively mitigates
the variance collapse, enabling the interpolated network to maintain performance closer to that of

Published as a conference paper at ICLR 2025

layerL0.convl layerllconvl layer2.0.convl layer2.0.conv2 layer2lconvl layer3.0.convl layer3.0.conv2 layer3.lconvl layerd.0.convl layerd.0.conv2 layerd.l.convl
60 channels 60 channels 60 channels 120 channels 120 channels 120 channels 242 channels 242 channels 242 channels _ 486 channels _ 486 channels _ 486 channels
. 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

1.0
: L
0.8 08 0.8 % 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8
o b
g
Sos 0.6 06% 06i 06 0.6 064 0.6 0.6 0.6 0.6 06§I
5 % L
] =} %
$0.4 0.4 E 0.4 ? 045 0.4 ?3 04 | 04 § e | 0B | os 0.4 0.4
£ & - , ==
o
02 0.2 0.2 0.2 02F | 02 0.2 02 =i 0.2 0.2 02 0.2
0.0 0.0 0.0—— o0 0.0 0.0—— o0 0.0 0.0l 0.0/ 0.0/ 0.0
5 o 5 o s o 5 o 5 o s o 5 o 5 o s 0 5 0o 5 o s

Frequency

Figure 2: Layer-wise correlation between matched channels in ResNet18 trained on CIFAR10.
For each layer, we use activation matching with Ly distance measure to greedily pair similar neurons.
Each subplot shows the correlation within all matched pairs.

the original models. This technique has become essential in recent work to preserve model accuracy
after merging (Ainsworth et al., 2023} Yamada et al. 2023} Jolicoeur-Martineau et al.,2024). While
REPAIR relies on input data to preserve the network’s statistical properties, this paper proposes a
data-free alternative.

3 MODEL FOLDING

In this section, we introduce model folding, a novel compression technique that reduces the compu-
tational complexity and size of neural networks by merging similar neurons in each layer without
requiring training data. As illustrated in Fig. [I] (left), model folding processes the network layer
by layer, involving filter clustering, merging, and correcting data statistics. Below, we present a
theoretical analysis of our approach, supported by empirical results on ResNet18 using CIFAR10.

3.1 CHANNEL CLUSTERING

Channel similarity. Neural networks trained with stochastic gradient descent (SGD) tend to have
many correlated hidden units, as illustrated in Fig. 2] Model folding exploits this observation, which
is related to the implicit bias of SGD. As discussed in (Gunasekar et al., [2017), SGD exhibits a
minimum norm bias, which can be viewed as a form of regularization when no explicit regularization
is used. In contrast to L; regularization, which promotes sparsity, the minimum Euclidean norm
solution (L, norm) penalizes large weights, encouraging smaller, more regular weights. This not
only prevents overfitting but also results in smoother decision boundaries (Bishop, |2006). While the
minimum norm solution does not directly enforce weight similarity, we empirically demonstrate in
Appendix [D]that it leads to effective model compression when applying similarity-based methods.
Recently published methods (Stoica et al., | 2024; |Chen et al., 2023) leverage the same observation.

Folding as a clustering problem. This work extends weight matching (Ainsworth et al.l [2023]),
which minimizes the Lo distance between weight vectors and operates without requiring training data.
Instead of finding pairs of similar neurons by solving the linear sum assignment problem (LSAP)
with a Hungarian algorithm (Kuhn, |1955)) as done in (Jordan et al.| |2022; |Ainsworth et al.| [2023)), we
achieve channel matching using k-means clustering. In the following, we justify this approach as it
provides an optimal weight matrix approximation.

Given a neural network layer [with a weight matrix W; € R"*™ we define the output of this layer
asy; = o(W,x;), where x; € R™ is the input vector to this layer, y; € R is the output vector, and
o(+) is a non-linear activation function applied element-wise.

To reduce the number of outputs of layer [we cluster (fold) rows of Wy, i.e., k cluster centroids are
determined which serve as a prototype of the respective cluster of rows. All rows of a cluster are
replaced by their cluster centroid. This can be formulated as

W, =~ UM,
where M € R*¥*™ contains the & < n cluster centroids and the cluster matrix U € {0,1}"**

determines the membership of a row: u(¢, 7) = 1 if the i-th row of W, belongs to the j-th cluster,
and u(i, j) = 0 otherwise.

Published as a conference paper at ICLR 2025

As a measure of the approximation error when replacing the rows of W; by k£ < n prototypes, we
use the Frobenius norm || - ||% of the difference between W, and the low-rank factorization UM:

J =W, = UM||%2 = «(W,W]) + e(UMMTUT) — 20(UMWY/).

We determine the optimal matrix of cluster centroids by setting the derivative of J with respect to M
to zero:

M = (UTU)'uTw,.
As a result, we can write

W;~UM =CW, with C=U((UTU)'UT.

As mentioned above, we use k-means clustering for folding as this minimizes J by determining the
optimal clustering matrix U and the corresponding cluster centroids M, also see (Bauckhage} 2015).

Interdependence between layers. We will expand the above result to successive layers [and [+ 1.
For simplicity of notation, we neglect the bias and get

yir1 = 0(Wip10(Wixp)).

Following the above notation, we describe the folding of activations by some clustering matrix U
and C = U(UTU)~1UT. Itis shown in Appendixthat the corresponding approximation satisfies

Yir1 = 0(Wit10((CWi)xi) = o((Wi41CT)o ((CWi)xy).

Adding up the individual folding costs Ji1 = W], — CW[| [|F and J; = |[W; — CW,||%,
yields the combined approximation error J; ;41 = J;41 + J; for folding layer [which can be rewritten
as
Jiip1 = [[Wipr — CWy |7 with Wy = [W, | W]].

If we perform k-means clustering on W, ;1 and use the resulting clustering matrix U in C =
U(UTU) U7, then the combined approximation error .J; ;1 1 is minimized. This approach accounts
for the impact of compressing one layer on the next, leading to more efficient compression that
balances the process and preserves learned representations while reducing model size. Our folding
methods outperforms other methods experimentally, see Fig. [3|for a comparison to other clustering
methods and Iterative Greedy (greedy) adopted in SOTA.

Batch Normalization. Now, let us consider batch normalization in layer [represented by two
diagonal matrices X, (scaling) and ¥,, (normalization), again neglecting the bias to reduce notation.
In this case, we get

Yi+1 = U(Wl+10(zsznwlxl)).

The folding of layer [can be distributed to the matrices 3, 33,,, and W/ in various ways, depending
on the chosen correction of the variance, see Sec. @} For example, one can cluster each matrix
separately, leading to

141 = 0(Wi1CT)o((CE,)(CS,) (CWi)xr)).

Adding up the individual folding costs J; 11, Js, Jy,, and J; for each of the matrices W1, 3, 3,
and W/, respectively, yields the total approximation error Jio, = Ji41 + Js + J,, + J; for folding
layer [

Jot = Wit = CWioi||3 with Wy = [WL | | W, | diag(Z,) | diag(Z,)]

If we perform k-means clustering on W, then the total approximation error Ji, is minimized. This
approach is used in the Deep Inversion (DI) REPAIR, see next section.

Instead, if we decompose the folding of layer [according to
Fir1 = o(Wis 1 C)o((CZ,) (CE, W)x,)).
then the individual folding costs of W, 1, ¥ and the normalized weight matrix 33,, W; add up to
Jot = Wit — CWio |3 with W = [, W, | diag(Z,) | W],].

Again, if we perform k-means clustering on this combined matrix Wy, then the corresponding
total approximation error .Jy, is minimized. This approach is used in the approximate REPAIR, see
Sec. For completeness, we present in Appendix [Fflhow we handle residual connections.

Published as a conference paper at ICLR 2025

Merging similar channels in each cluster. To fuse similar channels, various approaches have
been proposed in the literature, such as fusing weights for multitasking, which involves Hessian
calculations (He et al., 2018), or by combining the matched weights into a single channel (Chen
et al.}2023). (Matena & Raffel, 2022) introduces Fisher-weighted averaging based on the Laplace
approximation for merging weights, while (Jin et al.l 2023)) suggests computing a regression mean,
which is both computationally efficient and scalable for merging multiple models. In our approach,
we use above formulation of the optimization problem as k-means clustering and use a simple mean
to compute the cluster centroids.

3.2 MAINTAINING DATA STATISTICS IN A COMPRESSED MODEL

Variance collapse and variance overshooting. We use the conceptual framework in (Jordan et al.,
2022) to analyze the performance of model compression methods. We use the following definition.

Definition 1 (Variance ratio). Consider a neural

network f(x, @) with layer activations {x;}¥ 0.8 N
and its compressed version f(x, ®) with activa- 3 | —* SC
ions {%;}¥ . The vari tio of the I-th | 8| a A e
tions {X;}{" . The variance ratio of the l-th layer g e Acsingie
AN + 0.4/ —— AC complete
x| L] —e— AC average
S X1 S —o— KM
0.2
[Var(xl):| = —1 Z 7var(xl’k). greedy e
Var(x,) x| Var(x; 1) 03 04 05 06 07 08 09 10

k=1 Sparsity
We observe not only variance collapse but also
variance overshooting phenomena. Specifically,
when data statistics are not accurately corrected
after channel merging, as in IFM, variance over-
shooting can occur, leading to network perfor-
mance decline. Fig.] shows layerwise variance
ratio between the compressed and uncompressed
networks. Staying close to 1 is essential to miti-
gate both phenomena. This highlights the critical need for precise statistical corrections during model
merging.

Figure 3: k-means (KM) outperforms other clus-
tering methods: Spectral Clustering (SC), Ag-
glomerative Clustering (AC) with different linkage
criteria and Iterative Greedy (greedy) used to com-
press ResNetl18 trained on CIFAR10. Data-based
REPAIR was used to restore data statistics after
clustering for all methods.

Fold-AR: Folding with approximate REPAIR. In the context of model compression, particu-
larly when using folding as a clustering method, it is crucial to ensure that the compressed model
maintains accurate data statistics. This is especially important for layers involving operations like
BatchNorm, where maintaining the correct statistical properties of activations is vital for model
performance (Jordan et al.||2022; 'Yamada et al., 2023)).

In the following explanation of the data-free approximate REPAIR, we neglect biases for ease of
notation. Following the previous section, we consider folding of the normalized weight matrix with

z, — Canle

using the post-activation output x; of the previous layer and the input z; to the scaling matrix 3. A
cluster ¢ is defined by the column of the clustering matrix U, i.e., all values z; (i) with u(i,¢) =1
belong to cluster c. Moreover, by definition of C, all values z;(i) belonging to a single cluster ¢
equal the centroid Z;(¢) of the cluster, i.e., the average of all values X, W;x; belonging to this cluster.
More formally,

>

Yu(i,e) ==1 : z(i) = 2(c)

1
1
Vi<e<k : Z(c)= FZ@(Z),
¢ iel.

where I, = {i : u(i,c) = 1} denotes the indices of all values belonging to cluster ¢, N. = ||
denotes the number of values in the cluster, and X; = 3,, W;x;. The batch normalization using 3,
ensures that the variances of all Z;(i) equal 1. The averaging over all Z;(i) belonging to a single
cluster destroys this property and leads to the observed variance collapse. We will describe various
methods to compensate this loss in variance, at first the data-free approximate REPAIR (Fold-AR).

Published as a conference paper at ICLR 2025

10!
w 0.8
o >
5 g
< 100 - 50.6
g] —— IFM
) < ;
2 3 0.4 Fold-Naive
g —-— target —e— Fold-AR e —e— Fold-AR
10-1 —*— IFM —e— Fold-DIR 0.2 —e— Fold-DIR
Fold-Naive =~ —e— Fold-R | —e— Fold-R
0 2 4 6 8 10 12 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Layer Index Sparsity

Figure 4: Variance collapse and overshooting Figure 5: Data-free folding methods with ap-
on ResNet18 with CIFAR10. The goal is to align proximate REPAIR (Fold-AR) and Deep In-
the layer-wise variance in the compressed network version (Yin et al. 2020) (Fold-DIR) and on
to that of the uncompressed model. Naive aver- ResNetl8 with CIFAR10 at various weight spar-
aging of statistics (Fold-Naive) leads to variance sity levels, uniformly distributed across layers.
collapse (Jordan et al.l 2022), while IFM over- Fold-DIR performs similarly to the data-based
shoots. Fold-AR and Fold-DIR closely match the REPAIR (Fold-R). Both Fold-AR and Fold-DIR
performance of the data-driven REPAIR (Fold-R). surpass IFM (Chen et al.| [2023)) by a significant
Layer-wise sparsity is 0.5. margin.

The variance of the cluster centroid Z;(c) of cluster c is given by

1
Var(2(c)) = N2 Z Var(@ (i) + Z Cov(@ (), 21(7)) | »
icl, 1,J€1c;i#]
which further simplifies to Var(Z(c)) = gz [Ne + (N2 — N.) E[c]], where E[c] is the mean corre-
lation within the cluster. To prevent variance collapse, we aim for Var(Z;(c)) = 1, which would occur
if F[c] = 1, meaning all channels in the cluster are fully correlated. However, as E|c] < 1 typically,
we multiply each cluster centroid by a scaling parameter assuming an average cluster correlation F|c]
N,
V/Ne + (NZ = No)E[]
Suppose now that the covariance matrix 3, of the output x; of the previous layer is available and

that we define the normalized weight matrix Wl = X, W, with rows w;(4). Then the correlation
E[c] can be computed as:

Zi(c) « Zi(c)

1 W, (1), i (j) .
NE = Ne iy \ (i)W () (1) B, ()

In the absence of data, E[c] can be estimated by assuming that the output values x; of the previous
layer are uncorrelated. As the individual variances of Z;(i) equal 1 we obtain

1 Wi (1) Wi (5)
N2 — N, o o~ o7
¢ Ne i) Gn()FT () (R ()% ()
We term this approach to maintain the data statistics within the model folding with approximate
REPAIR (Fold-AR). This approach helps to ensure that the statistical properties of the data are
preserved even after model compression, maintaining the performance of the network while reducing

its size. Fig. [5]shows how the performance of Fold-AR compares to the data-driven REPAIR (Fold-R)
and surpasses the SOTA data-free methods.

Elc =

Elcl =

Fold-DIR: Correcting data statistics with deep inversion. Deep Inversion (DI) (Yin et al., 2020)
is a technique that synthesizes realistic images directly from a pre-trained neural network without
requiring access to the original data. The process involves inverting the model by optimizing random
noise to produce class-conditional images that match the statistics of the data the model was trained
on (Mordvintsev et al., [2015)). DI leverages the BatchNorm layers within the network, which store

Published as a conference paper at ICLR 2025

0.9 S B —e— Fold-Naive
0.8 0.6 N Fold-AR
—e— Fold-DIR
0.7 ; >0.5
E —e— Fold-Naive § —e— Fold-R
506 Fold-AR S04 e IFM
0.5 —*— Fold-DIR = <03 —e— SPL1
i —e— Fold-R @ SP L2
@04 ey N €02
03 o spL1 01
0.2 SP L2 » N =
0.0 = —
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
Sparsity Sparsity
09| ¥ 0.7 —e— Fold-Naive
08l N\ 0.6 Fold-AR
. \ >0.5 —e— Fold-DIR
EOJ —e— Fold-Naive E . —e— Fold-R
30.6 Fold-AR 204 —o— IFM
&o5 — Fold-DIR 203 —e— SPL1
k] —e— Fold-R @ SP L2
204 o M 202
03| —e— spL1 o1 \\:
SPL2
0.2 0.0 ° © ° >
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
Sparsity Sparsity

Figure 6: Comparison with IFM (Chen et al., 2023) and structured magnitude pruning (Cai
et al., 2020; |Yin et al.,2022). Model folding, when tested on ResNet18 (top row) and VGG11-BN
(bottom row) trained on CIFAR10 (left column) and ImageNet (right column), outperforms IFM
with higher sparsity and increasing dataset difficulty.

the running mean and variance of activations during training. By using these stored statistics as a
regularization term in

RAK) = Letass (5,8) + Y (%) = p(x)ls + Y [[Var(e) = Var(xa)llz + %115 + 1%l
l l

DI ensures that the generated images have similar statistical properties to the original training data,
thus producing high-fidelity images. Here, 11(%;) and Var(X;) are the mean and variance of the feature
map X; in the synthesized data, and p(x;) and Var(x;) are the expected mean and variance of the
feature map in the original data. The term L.;4s5(X, t) denotes classification loss of the synthetic

sample, while ||§<||§ and ||x||;, denote the Lo and Total Variation regularization terms over the
synthetic sample x. Finally ¢ denotes the desired class of the synthetic sample X. Sample images
extracted from a pre-trained ResNet18 model on CIFAR100 with DI are shown in Appendix

We leverage a single batch of DI-synthesized data within model folding to preserve data statistics
after channel merging, eliminating the need for training data. By generating synthetic images aligned
with the network’s internal statistics, DI recalibrates the folded model’s parameters, ensuring that
activation variance and mean are maintained. This helps the model retain its performance post-
folding, mitigating issues such as variance collapse or explosion without requiring the original dataset.
Notably, updating BatchNorm statistics requires only a forward pass, with no backpropagation
needed. Thus, Fold-DIR offers a data-free and fine-tuning-free solution for maintaining data statistics.
Fig. [5|shows that Fold-DIR closely follows the performance of the data-driven REPAIR (Fold-R),
effectively maintaining the data statistics within the model. Fold-DIR outperforms Fold-AR at the
cost of generating a batch of synthetic images and a forward pass through the network.

4 EXPERIMENTS

Following related works on model merging (Ainsworth et al.,[2023}; |Chen et al.| 2023} Jordan et al.,
2022), we evaluate folding on convolutional architectures, including ResNets (He et al., 2016)) and
VGGs (Simonyan & Zisserman, |2014) of varying sizes on CIFAR10, CIFAR100 (Krizhevsky et al.,
2009b) and ImageNet (Deng et al., |2009). For models trained on the CIFAR10 and CIFAR100
datasets, we used the hyperparameters available from online benchmark{ﬂ For models trained
on ImageNet, the pre-trained weights were taken from torchvision. For large language models
(LLMs), we evaluate model folding on LLaMA-7B (Touvron et al., [2023a) with pre-trained weights

1https://github.com/huyvnphan/PyTorch_CIFAR10
2https://github.com/weiaicunzai/pytorch—cifar1OO/

https://github.com/huyvnphan/PyTorch_CIFAR10
https://github.com/weiaicunzai/pytorch-cifar100/

Published as a conference paper at ICLR 2025

0.9 0.9 e
>'0.8 .08
? 8
o7 507
g g
£06 <06
ﬁ —e— Fold-AR ﬁ —e— Fold-AR
©0o.5 Fold-DIR os Fold-DIR

0.4 —e— Fold-R —e— Fold-R

—o— IFM 04 —e— NN
“00 01 02 03 04 05 06 07 0.0 0.1 0.2 0.3 0.4 0.5
Sparsity Sparsity

Figure 7: Comparison of model folding with IFM (Chen et al.,[2023), and INN (Solodskikh et al.,
2023) using ResNet18 on CIFAR10. In the original experiment defined in the IFM and INN papers,
where only the last two blocks of a ResNet18 are pruned, folding is significantly better than INN
while it matches the performance of IFM for lower sparsities and becomes significantly better for
higher sparsities. Note, the maximum sparsity achievable by INN is 54% (Solodskikh et al.,2023)).

. . features. f feat feat reature
10 channels 10 channels o channels o 10 channels o channels | o channels o
0.0 Qoo 0.8 0.8 0.8- 0.8- 0.8+ 0.8 0.8

0.6 o6 06451 0.6 06, 0.6 0.6 0.6 .- ----~
0.4 0.4 0.4 T 04 04 0.4 (¥} . 0.4
0.2 0.2 0.2 0.2 02 02 0.2 0.2

0.0 0.0 0.0 0.0 001 0.0 0.0 0.0

Correlation value

-0.2 -0.2 -0.2 -0.2- -0.2- 0.2+ -02 -02

o 5 o 5 o 5
Frequency

Figure 8: Layer-wise correlation among matched channels in VGG11 and its wider variants
on CIFAR10. This figure shows correlation matrices for each layer of VGGI11 and its 1x and 3x
wider variants, derived from activation matching. Opaque black represents the 1x wider model, while
vibrant colors indicate the 3x wider model, highlighting differences in correlation strength.

from Hugging Face Hub. In all experiments, model sparsity denotes the proportion of weights that
have been removed as a result of model compression. Experimental setup is detailed in Appendix [A]
Further evaluation results are in Appendix [K]and [

Model folding mitigates variance collapse. Fig. [6] compares model folding with IFM (Chen et al,
2023)), a recently introduced data-free, fine-tuning-free method that combines aspects of folding
and pruning. Unlike model folding, which accurately corrects the data statistics in the compressed
model, IFM merges matched input channels by summing one and zeroing the other, followed by a
weighted average of output channels. In contrast to the original paper, Fig. [f]applies the same sparsity
ratio across all layers for every method. We find that model folding significantly outperforms IFM,
particularly at higher sparsity levels and for larger networks. Additionally, Fig.[7| (left) replicates the
experiment from (Chen et al.,[2023)) on ResNet18 with CIFAR10, using the same per-layer sparsity
pattern where only the last two blocks are sparsified. In this scenario, IFM offers a slight performance
edge over our method for low sparsity, but struggles with higher sparsity.

Comparison to structured pruning. We compare model folding with the structured magnitude
pruning (SP) method used in (Cai et al.,|2020; Yin et al., 2022), based on L; and Ly norms, without
fine-tuning. Fig.[6demonstrates that model folding significantly outperforms magnitude pruning,
with the performance gap widening as sparsity increases. At 70% sparsity, the folded ResNet18 on
CIFAR10 maintains over 80% accuracy, while pruned networks barely surpass random chance. On
ImageNet, the performance collapse is even more pronounced across all methods due to the dataset’s
higher complexity, yet model folding consistently performs well across both datasets. Following
(Chen et al.| 2023), Fig.[/|(right) compares model folding with the SOTA data-free pruning method
INN (Solodskikh et al.| |2023), which struggles to manage even moderate sparsity.

Folding wider models. Do wider networks present more opportunities for model folding? We
first examine the layer-wise correlation among matched channels in VGG11 and its wider variants
on CIFARI10, as shown in Fig. [§] This ablation study reveals that increasing the layer width
strengthens the matched correlations, suggesting greater potential for folding. Building on this,
Fig. [0] demonstrates the application of model folding also to 1x/2x/3x wider MLP and ResNet50
architectures, trained on CIFAR10 and CIFAR100, showing consistent performance gains as width
increases.

Published as a conference paper at ICLR 2025

045 Pty 1x width 0.7
@ - 4x width
8x width

o
o

e
o

Test Accuracy
o
'S
*

Test Accuracy
° <
@
8

025/ _g Fold-DIR 0.3 —® Fold-DIR Ixwidth g
0.20 —® Fold-AR *oer ™ " - Fold-AR 2x width
—< Fold-R i L 0.2 —< Fold-R 3x width H
015 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.3 0.4 0.5 0.6 0.7 0.8
Sparsity Sparsity

Figure 9: Model folding performance improves with increasing model width. The MLP model
consists of three stacked mlp blocks (including a fully connected layer, a BN layer, and a ReLU layer),
followed by a final classifier. Upscaled versions of MLP (left) and ResNet50 (right) architectures,
trained on CIFAR10 and CIFAR100, demonstrate the consistent advantages of model folding.

Prune ratio | Method | Datausage | WikiText2] | BoolQ ~WinoGrande ~ARC-e ARC-c Average?t
0% ‘ LLaMA-7B (Touvron et al.||2023a) ‘ / ‘ 5.68 ‘ 75.05 69.93 75.34 41.89 65.55
20% Magnitude Pruning / 36136 43.21 49.40 27.23 21.59 35.36
20% LLM-Pruner (Ma et al.|[2023) Gradients 10.53 59.39 61.33 59.18 37.18 54.27
20% FLAP (An et al.[[2023) Calibration 6.87 69.63 68.35 69.91 39.25 61.79
20% Wanda_sp (Sun et al.|[2023) Calibration 8.22 71.25 67.09 71.09 42.58 63.00
20% SliceGPT (Ashkboos et al.|[2024) Calibration 7.00 57.80 67.96 62.67 36.01 56.11
20% ShortGPT (Men et al.[[2024) Calibration 15.48 62.17 67.40 58.88 3191 55.09
20% Model Folding / 13.33 62.29 62.19 49.83 26.37 50.17
20% Model Folding + Fine-tune norm / 8.95 70.09 63.14 59.85 28.24 55.33

Table 1: Structured pruning performance on LLaMA-7B without post-tuning, showing perplexity
on WikiText2 and zero-shot task results. "Wanda_sp" denotes a structured version of Wanda. Model
folding, despite no data or fine-tuning, matches data-driven methods. Fine-tuning only layernorms on
wikipedia_en further boosts performance.

Folding LLLMs. LLMs are built with a large number of parameters, achieving strong performance
across various tasks. However, structurally compressing these deep and large models remains a
challenge. LLM-Pruner (Ma et al.,|2023)) performs structured pruning using gradient calculations,
while Wanda (Sun et al., 2023) leverages an importance score by multiplying weights with their
corresponding input activations. FLAP (An et al.l 2023) dynamically computes a fluctuation pruning
metric using calibration data. In Tab.|l} we compare model folding with these methods on LLaMA-
7B (Touvron et al.,|2023al), focusing on perplexity on the WikiText2 (Merity et al.,[2016) validation set
and zero-shot performance across four tasks using the EleutherAl LM Harness (Gao et al.||2024). The
folded model performs only very slightly worse than models compressed with data-driven methods.
Following SOTA, the clustering phase of model folding was applied to LLaMA-7B, introducing 20%
and 50% sparsity in the attention and feed-forward layers of decoder blocks 22-29, and 10% and 40%
sparsity in the attention and feed-forward layers of decoder blocks 11-21, respectively. As there is no
batchnorm layer in LLaMA-like LLMs, we just applied clustering in LLMs without REPAIR. Tab. [3]
shows the generated examples of dense and folded LLaMA-7B processed by model folding without
REPAIR in Appendix [E] Results of folding LLaMA2-7B (Touvron et al.l[2023b) are also provided in
Appendix [E| When folding with 20% sparsity, the pruned model continues to perform well.

5 CONCLUSION

In this paper, we introduce model folding, a novel compression technique that reduces model size
by merging similar channels across layers, without requiring fine-tuning or training data. Model
folding achieves high sparsity while preserving data statistics, outperforming traditional pruning and
data-free compression methods. Our experiments demonstrate that wider networks, such as VGG11
and ResNet50, offer greater opportunities for folding due to increased redundancy, further improving
compression efficiency. In LLMs, model folding can prune models while maintaining performance
comparable to data-driven methods, but without the need for data access or fine-tuning, which are
typically required by most structured pruning techniques.

Limitations and future work. Model folding offers significant compression without data or fine-
tuning, but its effectiveness may be limited in networks with low redundancy. Additionally, it does
not optimize sparsity levels per layer, leaving this for future work.

10

Published as a conference paper at ICLR 2025

ACKNOWLEDGEMENTS

We thank Franz Papst and Francesco Corti for their insightful comments on the early draft of the
manuscript. This work was partly funded by the Austrian Research Promotion Agency (FFG) and
Pro2Future (STRATP II 4.1.4 E-MINDS strategic project). The results presented in this paper were
computed using the computational resources of Zentralen Informatikdienstes of Graz University of
Technology and Pro2Future GmbH.

REFERENCES

Samuel K. Ainsworth, Jonathan Hayase, and Siddhartha Srinivasa. Git re-basin: Merging models modulo
permutation symmetries, 2023.

Yongqi An, Xu Zhao, Tao Yu, Ming Tang, and Jinqiao Wang. Fluctuation-based adaptive structured pruning for
large language models, 2023. URL https://arxiv.org/abs/2312.11983|

Arduino. Arduino nano 33 ble documentation. https://docs.arduino.cc/hardware/nano-33-ble/, 2024.
Accessed: 2024-11-19.

Saleh Ashkboos, Maximilian L. Croci, Marcelo Gennari do Nascimento, Torsten Hoefler, and James Hensman.
Slicegpt: Compress large language models by deleting rows and columns, 2024. URL https://arxiv.org/
abs/2401.15024.

Christian Bauckhage. k-means clustering is matrix factorization, 2015. URL https://arxiv.org/abs/1512|
07548.

Christopher M. Bishop. Pattern Recognition and Machine Learning (Information Science and Statistics).
Springer-Verlag, Berlin, Heidelberg, 2006. ISBN 0387310738.

Rishi Bommasani, Drew A Hudson, Ehsan Adeli, Russ Altman, Simran Arora, Sydney von Arx, Michael S
Bernstein, Jeannette Bohg, Antoine Bosselut, Emma Brunskill, et al. On the opportunities and risks of
foundation models. arXiv preprint arXiv:2108.07258, 2021.

Han Cai, Chuang Gan, Tianzhe Wang, Zhekai Zhang, and Song Han. Once-for-all: Train one network and
specialize it for efficient deployment, 2020.

Yupeng Chang, Xu Wang, Jindong Wang, Yuan Wu, Linyi Yang, Kaijie Zhu, Hao Chen, Xiaoyuan Yi, Cunxiang
Wang, Yidong Wang, et al. A survey on evaluation of large language models. ACM Transactions on Intelligent
Systems and Technology, 15(3):1-45, 2024.

Hanting Chen, Yunhe Wang, Chang Xu, Zhaohui Yang, Chuanjian Liu, Boxin Shi, Chunjing Xu, Chao Xu, and
Qi Tian. Data-free learning of student networks, 2019. URL https://arxiv.org/abs/1904.01186.

Yanjiao Chen, Baolin Zheng, Zihan Zhang, Qian Wang, Chao Shen, and Qian Zhang. Deep learning on mobile
and embedded devices: State-of-the-art, challenges, and future directions. ACM Computing Surveys (CSUR),
53(4):1-37, 2020.

Yiting Chen, Zhanpeng Zhou, and Junchi Yan. Going beyond neural network feature similarity: The network
feature complexity and its interpretation using category theory. arXiv preprint arXiv:2310.06756, 2023.

Hongrong Cheng, Miao Zhang, and Javen Qinfeng Shi. A survey on deep neural network pruning-taxonomy,
comparison, analysis, and recommendations, 2023. URL |https://arxiv.org/abs/2308.06767.

Francesco Corti, Balz Maag, Joachim Schauer, Ulrich Pferschy, and Olga Saukh. HADS: Hardware-aware
deep subnetworks. In 5th Workshop on practical ML for limited/low resource settings, 2024a. URL
https://openreview.net/forum?id=oDacwadyb2.

Francesco Corti, Balz Maag, Joachim Schauer, Ulrich Pferschy, and Olga Saukh. Reds: Resource-efficient deep
subnetworks for dynamic resource constraints, 2024b. URL https://arxiv.org/abs/2311.13349,

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale hierarchical
image database. In 2009 IEEE conference on computer vision and pattern recognition, pp. 248-255. leee,
2009.

Rahim Entezari and Olga Saukh. Class-dependent compression of deep neural networks, 2020. URL https:
//arxiv.org/abs/1909.10364.

11

https://arxiv.org/abs/2312.11983
https://docs.arduino.cc/hardware/nano-33-ble/
https://arxiv.org/abs/2401.15024
https://arxiv.org/abs/2401.15024
https://arxiv.org/abs/1512.07548
https://arxiv.org/abs/1512.07548
https://arxiv.org/abs/1904.01186
https://arxiv.org/abs/2308.06767
https://openreview.net/forum?id=oDacwa4yb2
https://arxiv.org/abs/2311.13349
https://arxiv.org/abs/1909.10364
https://arxiv.org/abs/1909.10364

Published as a conference paper at ICLR 2025

Rahim Entezari, Hanie Sedghi, Olga Saukh, and Behnam Neyshabur. The role of permutation invariance in
linear mode connectivity of neural networks, 2022.

Espressif Systems. Esp-eye development board - espressif systems. https://www.espressif.com/en/
products/devkits/esp-eye/overview, 2024. Accessed: 2024-11-19.

Gongfan Fang, Jie Song, Chengchao Shen, Xinchao Wang, Da Chen, and Mingli Song. Data-free adversarial
distillation, 2020. URL |https://arxiv.org/abs/1912.11006.

Jonathan Frankle and Michael Carbin. The lottery ticket hypothesis: Finding sparse, trainable neural networks.
arXiv preprint arXiv:1803.03635, 2018.

Elias Frantar and Dan Alistarh. Optimal brain compression: A framework for accurate post-training quantization
and pruning. Advances in Neural Information Processing Systems, 35:4475-4488, 2022.

Leo Gao, Jonathan Tow, Baber Abbasi, Stella Biderman, Sid Black, Anthony DiPofi, Charles Foster, Laurence
Golding, Jeffrey Hsu, Alain Le Noac’h, Haonan Li, Kyle McDonell, Niklas Muennighoff, Chris Ociepa,
Jason Phang, Laria Reynolds, Hailey Schoelkopf, Aviya Skowron, Lintang Sutawika, Eric Tang, Anish Thite,
Ben Wang, Kevin Wang, and Andy Zou. A framework for few-shot language model evaluation, 07 2024.
URL https://zenodo.org/records/12608602.

Amir Gholami, Sehoon Kim, Zhen Dong, Zhewei Yao, Michael W. Mahoney, and Kurt Keutzer. A survey of
quantization methods for efficient neural network inference, 2021. URL https://arxiv.org/abs/2103!
13630.

Jianping Gou, Baosheng Yu, Stephen J. Maybank, and Dacheng Tao. Knowledge distillation: A survey.
International Journal of Computer Vision, 129(6):1789-1819, March 2021. ISSN 1573-1405. doi: 10.1007/
$11263-021-01453-z. URL http://dx.doi.org/10.1007/s11263-021-01453-z,

Suriya Gunasekar, Blake Woodworth, Srinadh Bhojanapalli, Behnam Neyshabur, and Nathan Srebro. Implicit
regularization in matrix factorization, 2017. URL https://arxiv.org/abs/1705.09280.

Suyog Gupta, Ankur Agrawal, Kailash Gopalakrishnan, and Pritish Narayanan. Deep learning with limited
numerical precision. In International conference on machine learning, pp. 1737-1746. PMLR, 2015.

Song Han, Jeff Pool, John Tran, and William Dally. Learning both weights and connections for efficient neural
network. Advances in neural information processing systems, 28, 2015.

Matan Haroush, Itay Hubara, Elad Hoffer, and Daniel Soudry. The knowledge within: Methods for data-free
model compression, 2020. URL https://arxiv.org/abs/1912.01274,

Babak Hassibi, David G Stork, and Gregory J Wolff. Optimal brain surgeon and general network pruning. In
IEEFE international conference on neural networks, pp. 293-299. IEEE, 1993.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition. In
Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 770-778, 2016.

Xiaoxi He, Zimu Zhou, and Lothar Thiele. Multi-task zipping via layer-wise neuron sharing. Advances in
Neural Information Processing Systems, 31, 2018.

Yihui He, Xiangyu Zhang, and Jian Sun. Channel pruning for accelerating very deep neural networks. In
Proceedings of the IEEE International Conference on Computer Vision (ICCV), Oct 2017.

Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the knowledge in a neural network, 2015. URL
https://arxiv.org/abs/1503.02531.

Samuel Horvath, Stefanos Laskaridis, Shashank Rajput, and Hongyi Wang. Maestro: Uncovering low-rank
structures via trainable decomposition, 2024. URL https://arxiv.org/abs/2308.14929,

Hengyuan Hu, Rui Peng, Yu-Wing Tai, and Chi-Keung Tang. Network trimming: A data-driven neuron pruning
approach towards efficient deep architectures, 2016. URL https://arxiv.org/abs/1607.03250.

Sergey loffe and Christian Szegedy. Batch normalization: Accelerating deep network training by reducing
internal covariate shift, 2015. URL https://arxiv.org/abs/1502.03167.

Robert A Jacobs, Michael I Jordan, Steven J Nowlan, and Geoffrey E Hinton. Adaptive mixtures of local experts.
Neural computation, 3(1):79-87, 1991.

Xisen Jin, Xiang Ren, Daniel Preotiuc-Pietro, and Pengxiang Cheng. Dataless knowledge fusion by merging
weights of language models, 2023. URL https://arxiv.org/abs/2212.09849,

12

https://www.espressif.com/en/products/devkits/esp-eye/overview
https://www.espressif.com/en/products/devkits/esp-eye/overview
https://arxiv.org/abs/1912.11006
https://zenodo.org/records/12608602
https://arxiv.org/abs/2103.13630
https://arxiv.org/abs/2103.13630
http://dx.doi.org/10.1007/s11263-021-01453-z
https://arxiv.org/abs/1705.09280
https://arxiv.org/abs/1912.01274
https://arxiv.org/abs/1503.02531
https://arxiv.org/abs/2308.14929
https://arxiv.org/abs/1607.03250
https://arxiv.org/abs/1502.03167
https://arxiv.org/abs/2212.09849

Published as a conference paper at ICLR 2025

Alexia Jolicoeur-Martineau, Emy Gervais, Kilian Fatras, Yan Zhang, and Simon Lacoste-Julien. Population
parameter averaging (papa), 2024. URL https://arxiv.org/abs/2304.03094,

Keller Jordan, Hanie Sedghi, Olga Saukh, Rahim Entezari, and Behnam Neyshabur. Repair: Renormalizing
permuted activations for interpolation repair. arXiv preprint arXiv:2211.08403, 2022.

Leonid V Kantorovich. On the translocation of masses. Journal of mathematical sciences, 133(4):1381-1382,
2006.

Yong-Deok Kim, Eunhyeok Park, Sungjoo Yoo, Taelim Choi, Lu Yang, and Dongjun Shin. Compression
of deep convolutional neural networks for fast and low power mobile applications, 2016. URL https:
//arxiv.org/abs/1511.06530.

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images. 2009a.

Alex Krizhevsky, Vinod Nair, and Geoffrey Hinton. Cifar-100 and cifar-10 (canadian institute for advanced
research), 2009b. URL http://www.cs.toronto.edu/~kriz/cifar.html. MIT License.

Harold W. Kuhn. The hungarian method for the assignment problem. Naval Research Logistics (NRL), 52, 1955.

Ashish Kumar, Saurabh Goyal, and Manik Varma. Resource-efficient machine learning in 2 kb ram for the
internet of things. In International conference on machine learning, pp. 1935-1944. PMLR, 2017.

Vadim Lebedev, Yaroslav Ganin, Maksim Rakhuba, Ivan Oseledets, and Victor Lempitsky. Speeding-up
convolutional neural networks using fine-tuned cp-decomposition, 2015. URL https://arxiv.org/abs/
1412.6553.

Yann LeCun, John Denker, and Sara Solla. Optimal brain damage. In D. Touretzky (ed.), Advances in Neural
Information Processing Systems, volume 2. Morgan-Kaufmann, 1989. URL https://proceedings.neurips|
cc/paper_files/paper/1989/file/6c9882bbac1c7093bd25041881277658-Paper . pdfl

Stefan Leitner, M. Jehanzeb Mirza, Wei Lin, Jakub Micorek, Marc Masana, Mateusz Kozinski, Horst Possegger,
and Horst Bischof. Sit back and relax: Learning to drive incrementally in all weather conditions, 2023. URL
https://arxiv.org/abs/2305.18953.

Fengfu Li, Bin Liu, Xiaoxing Wang, Bo Zhang, and Junchi Yan. Ternary weight networks. arXiv preprint
arXiv:1605.04711, 2016a.

Hao Li, Asim Kadav, Igor Durdanovic, Hanan Samet, and Hans Peter Graf. Pruning filters for efficient convnets.
arXiv preprint arXiv:1608.08710, 2016b.

Hao Li, Asim Kadav, Igor Durdanovic, Hanan Samet, and Hans Peter Graf. Pruning filters for efficient convnets,
2017. URL https://arxiv.org/abs/1608.08710.

Yixuan Li, Jason Yosinski, Jeff Clune, Hod Lipson, and John Hopcroft. Convergent learning: Do different neural
networks learn the same representations? arXiv preprint arXiv:1511.07543, 2015.

Hou-I Liu, Marco Galindo, Hongxia Xie, Lai-Kuan Wong, Hong-Han Shuai, Yung-Hui Li, and Wen-Huang
Cheng. Lightweight deep learning for resource-constrained environments: A survey, 2024. URL https:
//arxiv.org/abs/2404.07236.

Jian-Hao Luo, Jianxin Wu, and Weiyao Lin. Thinet: A filter level pruning method for deep neural network
compression. In Proceedings of the IEEE International Conference on Computer Vision (ICCV), Oct 2017a.

Jian-Hao Luo, Jianxin Wu, and Weiyao Lin. Thinet: A filter level pruning method for deep neural network
compression. In Proceedings of the IEEE international conference on computer vision, pp. 5058-5066,
2017b.

Xinyin Ma, Gongfan Fang, and Xinchao Wang. Llm-pruner: On the structural pruning of large language models.
Advances in neural information processing systems, 36:21702-21720, 2023.

Julieta Martinez, Jashan Shewakramani, Ting Wei Liu, Ioan Andrei Barsan, Wenyuan Zeng, and Raquel
Urtasun. Permute, quantize, and fine-tune: Efficient compression of neural networks, 2021. URL https;
//arxiv.org/abs/2010.15703.

Michael Matena and Colin Raffel. Merging models with fisher-weighted averaging, 2022. URL https:
//arxiv.org/abs/2111.09832.

13

https://arxiv.org/abs/2304.03094
https://arxiv.org/abs/1511.06530
https://arxiv.org/abs/1511.06530
http://www.cs.toronto.edu/~kriz/cifar.html
https://arxiv.org/abs/1412.6553
https://arxiv.org/abs/1412.6553
https://proceedings.neurips.cc/paper_files/paper/1989/file/6c9882bbac1c7093bd25041881277658-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/1989/file/6c9882bbac1c7093bd25041881277658-Paper.pdf
https://arxiv.org/abs/2305.18953
https://arxiv.org/abs/1608.08710
https://arxiv.org/abs/2404.07236
https://arxiv.org/abs/2404.07236
https://arxiv.org/abs/2010.15703
https://arxiv.org/abs/2010.15703
https://arxiv.org/abs/2111.09832
https://arxiv.org/abs/2111.09832

Published as a conference paper at ICLR 2025

Xin Men, Mingyu Xu, Qingyu Zhang, Bingning Wang, Hongyu Lin, Yaojie Lu, Xianpei Han, and Weipeng
Chen. Shortgpt: Layers in large language models are more redundant than you expect, 2024. URL
https://arxiv.org/abs/2403.03853.

Stephen Merity, Caiming Xiong, James Bradbury, and Richard Socher. Pointer sentinel mixture models. arXiv
preprint arXiv:1609.07843, 2016.

Paul Micaelli and Amos Storkey. Zero-shot knowledge transfer via adversarial belief matching, 2019. URL
https://arxiv.org/abs/1905.09768.

Gaspard Monge. Mémoire sur la théorie des déblais et des remblais. Mem. Math. Phys. Acad. Royale Sci., pp.
666-704, 1781.

Alexander Mordvintsev, Christopher Olah, and Mike Tyka. Inceptionism: Going deeper into neural networks,
2015. URL |https://research.googleblog.com/2015/06/inceptionism-going-deeper-into-neural.
html.

NVIDIA. Jetson nano - nvidia developer. |https://www.nvidia.com/en-us/autonomous-machines/
embedded-systems/jetson-nano/product-development/} 2024. Accessed: 2024-11-19.

Franz Papst, Daniel Kraus, Martin Rechberger, and Olga Saukh. Sensor-guided adaptive machine learning on
resource-constrained devices. In Proceedings of the International Conference on the Internet of Things, 2024.

Siyu Ren and Kenny Q. Zhu. Low-rank prune-and-factorize for language model compression, 2023. URL
https://arxiv.org/abs/2306.14152.

Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Bjorn Ommer. High-resolution image
synthesis with latent diffusion models. In Proceedings of the IEEE/CVF conference on computer vision and
pattern recognition, pp. 10684—10695, 2022.

Noam Shazeer, Azalia Mirhoseini, Krzysztof Maziarz, Andy Davis, Quoc Le, Geoffrey Hinton, and Jeff
Dean. Outrageously large neural networks: The sparsely-gated mixture-of-experts layer. arXiv preprint
arXiv:1701.06538, 2017.

Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image recognition.
arXiv preprint arXiv:1409.1556, 2014.

Sidak Pal Singh and Martin Jaggi. Model fusion via optimal transport. Advances in Neural Information
Processing Systems, 33:22045-22055, 2020.

Kirill Solodskikh, Azim Kurbanov, Ruslan Aydarkhanov, Irina Zhelavskaya, Yury Parfenov, Dehua Song, and
Stamatios Lefkimmiatis. Integral neural networks. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), pp. 16113-16122, June 2023.

George Stoica, Daniel Bolya, Jakob Bjorner, Pratik Ramesh, Taylor Hearn, and Judy Hoffman. Zipit! merging
models from different tasks without training, 2024. URL https://arxiv.org/abs/2305.03053.

Mingjie Sun, Zhuang Liu, Anna Bair, and J Zico Kolter. A simple and effective pruning approach for large
language models. arXiv preprint arXiv:2306.11695, 2023.

Alexander Theus, Olin Geimer, Friedrich Wicke, Thomas Hofmann, Sotiris Anagnostidis, and Sidak Pal Singh.
Towards meta-pruning via optimal transport. arXiv preprint arXiv:2402.07839, 2024.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée Lacroix,
Baptiste Roziere, Naman Goyal, Eric Hambro, Faisal Azhar, Aurelien Rodriguez, Armand Joulin, Edouard
Grave, and Guillaume Lample. Llama: Open and efficient foundation language models, 2023a. URL
https://arxiv.org/abs/2302.13971.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay Bashlykov,
Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, Dan Bikel, Lukas Blecher, Cristian Canton Ferrer, Moya
Chen, Guillem Cucurull, David Esiobu, Jude Fernandes, Jeremy Fu, Wenyin Fu, Brian Fuller, Cynthia Gao,
Vedanuj Goswami, Naman Goyal, Anthony Hartshorn, Saghar Hosseini, Rui Hou, Hakan Inan, Marcin Kardas,
Viktor Kerkez, Madian Khabsa, Isabel Kloumann, Artem Korenev, Punit Singh Koura, Marie-Anne Lachaux,
Thibaut Lavril, Jenya Lee, Diana Liskovich, Yinghai Lu, Yuning Mao, Xavier Martinet, Todor Mihaylov,
Pushkar Mishra, Igor Molybog, Yixin Nie, Andrew Poulton, Jeremy Reizenstein, Rashi Rungta, Kalyan Saladi,
Alan Schelten, Ruan Silva, Eric Michael Smith, Ranjan Subramanian, Xiaoqing Ellen Tan, Binh Tang, Ross
Taylor, Adina Williams, Jian Xiang Kuan, Puxin Xu, Zheng Yan, Iliyan Zarov, Yuchen Zhang, Angela Fan,
Melanie Kambadur, Sharan Narang, Aurelien Rodriguez, Robert Stojnic, Sergey Edunov, and Thomas Scialom.
Llama 2: Open foundation and fine-tuned chat models, 2023b. URL https://arxiv.org/abs/2307.09288|

14

https://arxiv.org/abs/2403.03853
https://arxiv.org/abs/1905.09768
https://research.googleblog.com/2015/06/inceptionism-going-deeper-into-neural.html
https://research.googleblog.com/2015/06/inceptionism-going-deeper-into-neural.html
https://www.nvidia.com/en-us/autonomous-machines/embedded-systems/jetson-nano/product-development/
https://www.nvidia.com/en-us/autonomous-machines/embedded-systems/jetson-nano/product-development/
https://arxiv.org/abs/2306.14152
https://arxiv.org/abs/2305.03053
https://arxiv.org/abs/2302.13971
https://arxiv.org/abs/2307.09288

Published as a conference paper at ICLR 2025

Shaohua Wan, Lianyong Qi, Xiaolong Xu, Chao Tong, and Zonghua Gu. Deep learning models for real-time
human activity recognition with smartphones. Mobile Networks and Applications, 25(2):743-755, 2020.

Dong Wang, Olga Saukh, Xiaoxi He, and Lothar Thiele. Subspace-configurable networks, 2024. URL
https://arxiv.org/abs/2305.13536.

Zixiao Wang, Ke Xu, Shuaixiao Wu, Li Liu, Lingzhi Liu, and Dong Wang. Sparse-yolo: Hardware/software
co-design of an fpga accelerator for yolov2. IEEE Access, 8:116569-116585, 2020.

Wei Wen, Chunpeng Wu, Yandan Wang, Yiran Chen, and Hai Li. Learning structured sparsity in deep neural
networks. Advances in neural information processing systems, 29, 2016.

Mitchell Wortsman, Gabriel Ilharco, Samir Yitzhak Gadre, Rebecca Roelofs, Raphael Gontijo-Lopes, Ari S.
Morcos, Hongseok Namkoong, Ali Farhadi, Yair Carmon, Simon Kornblith, and Ludwig Schmidt. Model
soups: averaging weights of multiple fine-tuned models improves accuracy without increasing inference time,
2022.

Masanori Yamada, Tomoya Yamashita, Shin’ya Yamaguchi, and Daiki Chijiwa. Revisiting permutation symmetry
for merging models between different datasets, 2023. URL https://arxiv.org/abs/2306.05641,

Hongxu Yin, Pavlo Molchanov, Zhizhong Li, Jose M. Alvarez, Arun Mallya, Derek Hoiem, Niraj K. Jha,
and Jan Kautz. Dreaming to distill: Data-free knowledge transfer via deepinversion, 2020. URL https:
//arxiv.org/abs/1912.08795.

Shanzhi Yin, Chao Li, Wen Tan, Youneng Bao, Yongsheng Liang, and Wei Liu. Exploring structural sparsity in
neural image compression, 2022. URL |https://arxiv.org/abs/2202.04595.

Shikang Yu, Jiachen Chen, Hu Han, and Shugiang Jiang. Data-free knowledge distillation via feature exchange
and activation region constraint. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 2426624275, 2023.

Aojun Zhou, Anbang Yao, Yiwen Guo, Lin Xu, and Yurong Chen. Incremental network quantization: Towards
lossless cnns with low-precision weights. arXiv preprint arXiv:1702.03044, 2017.

15

https://arxiv.org/abs/2305.13536
https://arxiv.org/abs/2306.05641
https://arxiv.org/abs/1912.08795
https://arxiv.org/abs/1912.08795
https://arxiv.org/abs/2202.04595

Published as a conference paper at ICLR 2025

APPENDIX

The following sections provide supplementary information omitted from the main text:

* Section[A} Implementation Details.

* Section B} Further Theoretical Results to Support Model Folding.

* Section [C} Relationship Between Weight Matching and Model Folding.
* Section D} Channel Similarity.

* Section [E} Model Folding on LLMs.

* Section[F} Handling Residual Blocks.

* Section [Gt Handling Batch Normalization Layers.

* Section [Ht Folding Similar Channels in MLPs.

* Section [} Folding Similar Channels in Convolutional Layers.

* Section[J} Folding Similar Channels in LlamaMLP and LlamaAttention.
* Section Kt Comparison with Knowledge Distillation.

* Section[[} Inference Speed of Folded Models on Edge Devices.

* Section M} Deep Inversion Sample Images.

* Section [N Further Related Work.

A IMPLEMENTATION DETAILS

We trained over 100 models on a NVIDIA DGX Station A100 featuring eight NVIDIA A100 GPUs
(each equipped with 80GB memory) to evaluate the performance of model folding presented in
this work. For a folding experiment, we apply the same compression ratio to all layers. Pytorch
Hulﬂ and Huggingface Hutﬁ] are used to load pre-trained checkpoints for complex model-dataset
combinations, including ResNet18/ResNet50/VGG11 on ImageNet and LLaMA-7B (Touvron et al.,
2023a). WandBE]is used to log training history, folding result, and evaluation metrics. The source code
of all experiments is available here: https://github.com/nanguoyu/model-folding-universal

B FURTHER THEORETICAL RESULTS TO SUPPORT MODEL FOLDING

Lemma 1. Let x € R¥ and let U € {0,1}"** be a binary clustering matrix with > uij = 1. Then
with any element-wise nonlinear function o(-) we have

o(Ux) = Uo(x)

Proof of Lemmall] Define y = Ux, z = ¢(Ux) and v = o(x), w = Uo(x). Note that in any
row of U just one element satisfies u;; = 1. We define such an element by a function p with

Therefore, y; = X,(;) and z; = 0(y;) = 0(Xp(;)) forall 1 < i < n. Moreover, v; = o(x;) and
W; = Vp(i) = 0(Xp(;)). Therefore, z; = w; and z = w.

O

Lemma 2. Letx € R¥, let U € {0, 1}"** be a binary clustering matrix with > juig =1 leto()
be an element-wise nonlinear function, and define C = U(UTU)~'U7”. Then

o(Cx) = CTo(Cx)

3https://pytorch.org/hub/
*https://huggingface.co/docs/hub/index
>https://wandb.ai

16

https://github.com/nanguoyu/model-folding-universal

Published as a conference paper at ICLR 2025

Proof of Lemma[2] We can write
o(Cx) = o(U(UTU)'UTx)

= Uos((UTU) U x) (LemmalT)

=U(UTu) Y(UuTu)e((UTU)1UTx)

=UUTUu)"'UTe(UUTU) 'UTx) (Lemmal[l)

= CTo(Cx).

O
Lemma 3. Let U7 be a clustering matrix and let D be a diagonal matrix, then the following is true
(UTU)"'UTDU = Diag((UTU) U diag(D))

Proof of Theorem 3] The clustering matrix U” can be expressed as:

T
u% U1 U112 oo Ulnp
T us5 U217 U222 ... U2np
Ul = = :
T
u Ukl Ug2 ... Ugn

where u? represents the rows of the clustering matrix. Each row corresponds to cluster i, and the
entries u;; satisfy the binary clustering property: u;; = 1 if the j-th data point belongs to cluster 4,
and u;; = 0 otherwise.

The product DU is given by:

dl 0 [N 0 Uil U122 cee Utk
0 dg e 0 U21 U22 e U2k
DU =
0 0 ... dol lupt Unz ... Unk
This simplifies to:
diuyy diuig ... diugg
dougr douga ... dousg
DU =
dnunl dnunZ ce. dnunk

Using the clustering property of U, it follows that:
et — 1, ifi=17,
gt = 0, otherwise.
From this, the product UT DU simplifies to:
UTDU = Diag(U” diag(D)).

This result holds because only the diagonal entries remain due to the clustering matrix’s orthogonality
and binary properties.

Finally, using the above result, we compute:
(UTU)"'UTDU = (UTU) 'Diag(U” diag(D)).
By the property diag(Diag(x)) = x for any x € R", we obtain:
(UTU)"'UTDU = Diag((UTU) U diag(D)).

The lemma demonstrates that projecting the diagonal matrix D through the clustering matrix U”
preserves its diagonal structure. The diagonal entries are determined by the clustering matrix’s
mapping of the original diagonal values diag(D), ensuring efficient computation and alignment with
clustering properties. O

17

Published as a conference paper at ICLR 2025

Lemma 4. Let UT be a clustering matrix and let w € R™ and x € R", then the following is true
UDiag(w)x = Diag(Uw)Ux

Proof of Lemma[d] The clustering matrix U can be expressed as:

T
L
V2

Sy

\%

where each row v is defined by a mapping function f : {1,2,...,n} — {1,2,...,k}. For each
row v, the entries are defined as:

I R if j = f(m),
"™ 7710, otherwise.

This representation indicates that the clustering matrix U assigns each element m to a specific cluster
f(m). Each row v has a single non-zero element corresponding to the cluster index f(m).

Calculation of the Left-Hand Side (LHS). The left-hand side of the equality is:
UDiag(w)x.

First, compute Diag(w)x, which scales each element of x by the corresponding element of w:

w11

waT2

Diag(w)x =

WnTn
Then, multiplying by U aggregates these scaled values according to the clusters defined by f.
Specifically, the j-th element of UDiag(w)x is given by:

(UDiag(w)x); = Z Wi Lo -
m:f(m)=j
Calculation of the Right-Hand Side (RHS). The right-hand side of the equality is:
Diag(Uw)Ux.
First, compute Uw. The j-th element of Uw is:
m:f(m)=j
which sums the w,,, values for all elements assigned to cluster j.

Next, construct Diag(Uw), a diagonal matrix with entries (Uw); along the diagonal:

Diag(Uw) = : : . :
0 0 ... (Uw)

Finally, compute Ux. The j-th element of Ux is:

(Ux)j = Z Lm,

m:f(m)=j
which sums the x,, values for all elements assigned to cluster j.

Multiplying Diag(Uw) by Ux gives:

(Diag(Uw)Ux); = (Uw),;(Ux); = Z Wy, Z Tom
m:f(m)=j m:f(m)=j

18

Published as a conference paper at ICLR 2025

Verification of Equality. Both the LHS and RHS compute the same aggregated sums
Do F(m)=j WmTm for each cluster j. The LHS directly performs the aggregation of w,, x,, within
clusters, while the RHS separates the computation into two steps: summing w,,, and x,, for each
cluster, followed by multiplying these sums. Since multiplication distributes over addition, the two
expressions are equivalent:

UDiag(w)x = Diag(Uw)Ux.

The lemma is proven, as both sides of the equation compute the same weighted aggregation of w.,, x,
over the clusters defined by the clustering matrix U. O

Lemma 5. Let CT be a clustering matrix and let D be a diagonal matrix, then the following is true

IW — Diag(Cdiag(W))||7 = ||diag(W) — Cdiag(W)][3

Proof of Lemma[d] Let W = Diag(Cdiag(W)), where W represents the diagonal matrix obtained
by clustering the diagonal entries of W using the clustering matrix C. Both W and W are diagonal
matrices, so their difference W — W is also diagonal. The entries of this difference are:

wi iy, - = QWi — Wi, ifi=7,
J " 0, otherwise.

The Frobenius norm of the difference W — W is:
W = W% = (w; — i ;)*.
0,J
Since W and W are diagonal matrices, this simplifies to:
W= W% = (w;; — i)

The diagonal entries of W can be represented as a vector diag(W), and the diagonal entries of W
are given by Cdiag(W). Substituting these representations, we have:

W — W3 = Z(diag(W)i — (Cdiag(W));)*.

7

This is equivalent to the squared ¢s-norm of the difference between the vectors diag(W) and
Cdiag(W), giving:
IW — W% = ||diag(W) — Cdiag(W)]3.

Substituting back W = Diag(Cdiag(W)), we conclude that:
IW — Diag(Cdiag(W))|[% = ||diag(W) — Cdiag(W)]3.

Lemma 6. Let A € R™*™ and B € R™*"™ be diagonal matrices, then:
AB = Diag(Adiag(B))

Proof of Lemmal6] Since both A and B are diagonal matrices, their product AB is also a diagonal
matrix. The entries of the product AB are given by:

(AB)ij = ai ;b
For diagonal matrices, all off-diagonal entries are zero, so:
a;ibii, ifi=j,

AB), — .
(AB)i; {0, otherwise.

19

Published as a conference paper at ICLR 2025

Thus, the diagonal entries of AB are a; ;b; ;, and the matrix AB is:

a1b1 0 ‘e 0
0 a2b2 0
AB =)
6 0 an.bn

where a; = a;; and b; = b; ; represent the diagonal entries of A and B, respectively.

Now, let diag(B) denote the vector of diagonal entries of B, i.e.,

b1
bo
diag(B) =

b

The operation Adiag(B) represents the element-wise multiplication of the diagonal entries of A and

B:
aby
a2b2

Adiag(B) =
an.bn

Next, using the function Diag(+), we can construct a diagonal matrix from this vector:

a1b1 0 [N 0

0 a2b2 . 0

Diag(Adiag(B)) = | . .) .
b O .. an'bn

Clearly, AB and Diag(Adiag(B)) are identical, as they both produce the same diagonal matrix with
entries a;b; along the diagonal. Therefore:

AB = Diag(Adiag(B)).

C RELATIONSHIP BETWEEN WEIGHT MATCHING AND MODEL FOLDING

Weight Matching (Ainsworth et al.l |2023) fuses two models into one, whereas Model Folding
compresses the weight tensors/matrices of a single network. While inspired by Weight Matching,
Model Folding addresses a distinct use case, leading to different optimization problems (K-Means vs.
LAP). Notably, the Linear Sum Assignment Problem (LAP) can be framed as a constrained K-Means
variant, where each cluster contains exactly two vectors: one from network A and one from network
B.

As an example for this discussion, consider a simple feedforward network. The steps of our proposed
compression algorithm involve iteratively solving the following:

. 2 T T 2
C; = argmin [W; — QW[+ Wi, — CWi I,
C,
such that
C, =U,(U/u)u/,
where UlT is a clustering matrix.
Weight Matching merges two feedforward networks by iteratively optimizing:
P; = argmin [Wa; — PrWp |3 + [Wh 0 — PiWE 417,
P,

where P; is a permutation matrix. To connect Weight Matching with our method, we frame our

approach within the model merging domain. This begins by establishing a relationship between
K-Means and the Linear Sum Assignment (LAP) problem.

20

Published as a conference paper at ICLR 2025

K-Means and LAP Connection. In the standard K-Means formulation, given a dataset represented
as rows of a matrix X € R™*4, the objective is to cluster these rows into k groups. This can be
represented as:
C = argmin | X — CX||%, (D
c

where C € R™*" is a clustering matrix satisfying:

» Each row of C corresponds to a single cluster assignment.
* C has a block-diagonal structure that assigns each row of X to a single cluster centroid.
The clustering matrix C can be explicitly written in terms of a matrix U € R"** as:
Cc =U(UuTu)u?,
where U encodes the cluster assignments and centroids.

To connect this with LAP, let X be the concatenation of rows from two matrices W 4 and W (e.g.,
weights from two neural networks):

_ | Wy
x-[W]
Now, constrain C such that:
cC=[P 1],

where:

* P is a permutation matrix representing a one-to-one mapping between rows of W 4 and
Wg.

* T is the identity matrix, allowing for exact cluster assignments during merging.

Under this constraint, C enforces a specific structure, aligning rows of W 4 and W p pairwise.
Substituting C into Equation [T} we get:

. Wy Wal 2
P = -P .
arglinm” {WB] {WB] =

This is an instance of the Linear Sum Assignment Problem. Minimizing the cost:

W W
s=1{Wa] - [wa e

re=u(e W2)

Model Folding. Building on these results, we define Model Folding for merging networks as
follows:

1[I Wia Wi 4
o (WS

Constraining C; to C; = [P 1], where P is a permutation matrix, yields the Weight Match-
ing |Ainsworth et al.|(2023)) coordinate descent cost:

is equivalent to maximizing:

2
+ |Wiz1,4a Wip18] = [Wisia Wig] CITHf7
F

1 2 1 2
Si=5 [Wia—PW, p|p+ 2 [Wiiia = PWE g

MODEL FOLDING FOR CONNECTING MODELS
We provide a small experimental setup comparing WM |Ainsworth et al.| (2023), ZipIt! [Stoica et al.

(2024)), and our proposed method for merging networks trained on the same task and networks trained
on separate tasks.

21

Published as a conference paper at ICLR 2025

Merging Networks Trained on Separate Tasks. For the experiments involving the merging of
networks trained on disjoint tasks, we used instances of VGG11 and ResNet18 trained on CIFAR10
with a 545 label split. All experiments were performed with REPAIR.

Model \WM Ziplt! Model Folding (Ours)

VGGI1 0.57 0.69 0.71
ResNetl8 | 0.48 0.74 0.75

Table 2: Performance comparison for merging networks trained on separate tasks.

Merging Networks Trained on the Same Task. For the experiments involving the merging of
networks trained on the same task, we used instances of VGG11 and ResNet18, both trained on
CIFAR10. All experiments were performed with REPAIR.

Model \WM ZipIt! Model Folding (Ours)

VGGI11 0.89 0.87 0.92
ResNetl8 | 0.92 091 0.93

Table 3: Performance comparison for merging networks trained on the same task.

D CHANNEL SIMILARITY

Models learned by SGD trend to have correlated patterns or similar parameters in the weight space.
Fig.[I0]shows 3 x 3 filter weights in conv] of a pre-trained ResNet18. These filters across the first 3
input channels and first 16 output channels ordered by the entropy of filter weight. From the plot,
most filters of a channel can find at least one another similar filter in other channels, which means
filter similarity may lead to structured redundancy.

Figure 10: Similar patterns in weight map of convI layer in ResNet18 pre-trained on Ima-
geNet (Deng et al., 2009). Each small square represents the weights of a single filter in cool-warm
color map, where each color of grid corresponds to a weight value.

To investigate the filter redundancy within a layer, we apply weight matching activation matching
from the literature (Jordan et al., 2022)) to each layer of ResNet18 pretrained on CIFAR10 (Krizhevsky:
et al., 2009a) in Fig. E] and on ImageNet (Deng et al., 2009) in Fig. @ We observe two findings:
(1) The correlation score distribution varies across layers. The earlier and narrower the lay ers are,
the more scattered the correlation coefficients are, and only a few have high correlation coefficients.
The wider and later the layers are, the more compact the correlation coefficients are, and most of
the matching channels have high correlation coefficients. (2) In the same layer, the distribution of
correlation coefficients among matched channels differs across various pre-training datasets. This
observation does not fully align with the claim by |Chen et al.| (2023)) regarding the downward trend
of similarity before a reversal. It appears that this characterization might not consistently hold across
different models and pre-trained dataset.

D.1 THE IMPACT OF REGULARIZATION

In Fig.[6] the models on CIFAR10 were trained without regularization, while the pre-trained ImageNet
models were sourced from torchvision. In Fig.[I2] we extend the comparison of folding and pruning

22

Published as a conference paper at ICLR 2025

convl

layerL.0.convl

layerL.1.convl

layer2.0.convl

layer2.0.conv2

layer2.1

convl

layer3.0.convl

layer3.0.conv2

layer3.1

convl layerd.0.convl

layerd.0.conv2

layerd.1.convl

1.06A channels 1.34 channels 1A06A channels llézachﬂels 1A625 channels llézscnﬂe\s 1.655 channels 1A656chﬂe\s 1656 channels 1612 channels 1.812 channels 1.612 channels
0.8 0.8 ? 0.8 b 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8
% 0.6 0.6 0.6 % 0.6 b | 0.6 ﬁ 0.6 0.6 0.6 0.6 0.6 0.6 0.6
% 0.4 0.4 gj 0.4 ggj 0.4 =" 0.4 ;q 0.4 ggi 0.4 ggéj 0.4 %%L 0.4 0.4 0.4 0.4
g 0.2 0.2 P 0.2 %r 0.2 § 0.2 ;%tl 0.2 ? 0.2 % 0.2 ? 0.2 0.2 0.2 0.2
© 0.0 0.0 0.03 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
-0.2 —02y | -02¢ | -02_ | -021 | -0.2 —021 | 02y | -02 -0.2 -0.2 -0.2

5

0 5

5 5

Frequency

0 5

Figure 11: Layer-wise correlation between matched channels in ResNet18 trained on ImageNet.
We compute a layer-wise correlation matrix by matching activations between channels, then assign
each channel its best match in the same layer using a greedy pairing based on the correlation matrix.

methods on CIFAR10, including ResNet18 (left column) and VGG11 (right column) models trained
with explicit L; and Lo regularization. L, regularization, in particular, promotes neuron sparsity,
leading structured magnitude pruning methods to outperform model folding under these conditions.
However, a comparison between Fig. [6]and Fig. [I2]shows that model folding with Ly regularization
maintains the highest accuracy at higher sparsity levels, surpassing 80% accuracy. In contrast, the
accuracy of the pruned network trained with Ly drops significantly, reaching just 33% at 0.75 sparsity.

0.9 09
: ~— —e— Fold-R 0.8 i ¥ —e— Fold-R
0.8 \g\ - Fold-Naive ' w\\\,; -®- Fold-Naive
.07 SN —e— SPLL-R SO0 N —e— SPLL-R
80.6 SN -esPu 806 1\ TN . -e- SPLL
o > _ \ v 9 N
§0.5 “\747 SPL2-R §0.5 \ “~._—®— SPL2-R
< : -®-- SPL2 < % -®-- SPL2
:!‘;‘,)0.4 v Y) 3,—;)0.4 < X
Fo3 \ Fo3
02 | 02 -
01 fb—----q-----o----o—-‘--o----o---o——-o—--g 0.1 ‘"'"‘f‘“’-j——o---*---of--o--g
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
Sparsity Sparsity
0.9
0.8 0.8
> 0.7
g fos ,
506 37| —e— Fold-R
& -#-- Fold-Naive \ 2{0'5 -®-- Fold-Naive
% 0.4 —e— SPL1-R % 0.4 —e— SPL1-R ~
i} L i) R A J
-e- SPL1 _ N 3\\’ 0.3/ -®- SPL1 N
02 —* SPL2R O . 02 —* SPL2R .
- SPL2 Yo Iiing g 01l % SPL2 \{"‘17—-‘7—7—7—7-3-'———8‘—"%‘—'-{;
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
Sparsity Sparsity

Figure 12: ResNet18 (left column) and VGG11 (right column) models trained with L, (top row)
and L, (bottom row) regularization. Structured magnitude pruning outperforms model folding
only if training explicitly regularizes for model sparsity (L; norm). REPAIR is hardly beneficial for
all structural pruning methods.

E MODEL FOLDING ON LLMS

Table [5] presents example outputs from both the original and the pruned LLaMA-7B models, as
processed by model folding. From the responses presented in Table 3] it is evident that when folding
20% of the parameters, the pruned model continues to perform well. In Tab.[d] we also compare
model folding with these methods on LLaMa2-7B (Touvron et al.} [2023b)), focusing on perplexity on
the WikiText2 (Merity et al.}[2016) validation set and zero-shot performance across four tasks using
the EleutherATI LM Harness (Gao et al, 2024). We take the same folding sparsity as shown in Tab. [T}

23

Published as a conference paper at ICLR 2025

Prune ratio | Method | Datausage | WikiText2| | BoolQ ~WinoGrande ~ARC-e ARC-c Averaget
0% | LLaMA2-7B (Touvron et al.|2023b) | / | 5.12 | 7177 68.98 76.34 43.26 66.57
20% Magnitude Pruning / Inf 44.8 49.8 26.22 21.93 44.52
20% LLM-Pruner (Ma et al.||2023) Gradients 10.58 64.62 63.54 68.39 36.52 51.78
20% FLAP (An et al.|[2023) Calibration 6.87 71.5 68.74 70.20 36.95 61.85
20% ‘Wanda_sp (Sun et al.}[2023) Calibration 8.78 72.20 63.93 70.50 40.01 61.66
20% Model Folding / 17.46 62.72 61.80 49.00 26.62 50.03

Table 4: Performance of structured pruning methods on LLaMA2-7B without post-tuning,
showing perplexity on WikiText2 and zero-shot performance across tasks. "Inf" represents an
extremely great value. The "Average" is computed over four tasks. "Wanda_sp" represents an adapted
Wanda method for structured pruning. Despite not using data or fine-tuning, model folding achieves
comparable performance to data-driven methods.

Model Generated Sentences

Instruction: What are prime numbers? Response: Prime numbers are numbers that are only divisible by 1 and itself. For
L LaMA-7B example, 2, 3, 5,7, 11, 13,17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73

(ratio=0%) Instruction: Please introduce Newton’s second law Response: Newton’s second law of motion states that the net force
acting on an object is equal to the rate of change of the object’s momentum. The net force acting on an object is equal
to the rate of change of the object’s momentum. The net force acting on an object is equal to the rate of change of the
object’s momentum. Newton’s second law of motion states that the net force acting on an object is equal to the rate

Instruction: What is the difference between monkeys and gorillas? Response: Monkeys are primates that are smaller
than gorillas. They are also more agile and have longer tails. Gorillas are Iarger than monkeys and have shorter tails.
What is the difference between a gorilla and a chimpanzee? What is the difference between a gorilla and a chimpanzee?
What is the difference between a gorilla and a chimpanzee? What is the difference between a gorilla

Instruction: How many planets are there in the solar system? Response: There are eight planets in the solar system. The
planets are Mercury, Venus, Earth, Mars, Jupiter, Saturn, Uranus and Neptune. What is the name of the planet that is
closest to the sun? What is the name of the planet that is the closest to the sun? What is the name of the planet that is the
closest to the sun What is the name of the planet that is the closest to the sun

Instruction: What are prime numbers? Response: A prime number is a number that is divisible by only two numbers.
For example, 2, 3, 5,7, 11, 13, 15, 17, 23, 25, 27, 31, 33, 35, 37, 41, 43, 45, 47, 51

Instruction: Please introduce Newton’s second law Response: The second law of motion is Newton’s law of gravity.
Newton’s law of gravity is that every object is attracted by every other object. The more the two objects are attracted, the
more strongly they are attracted. Newton’s law of gravity is the law of gravity. What is the second law of motion? What
is the second law of motion? What is the second law of motion? What is the second law of motion

LLaMA-7B
(ratio=20%)

Instruction: What is the difference between monkeys and gorillas? Response: The answer is simple: monkeys are smaller
animals while gorillas are larger animals. What is the difference between a monkey and a gorilla? The answer is simple:
monkeys are smaller animals while gorillas are larger animals. The size of the body is not the only difference between
monkeys and g What is the difference between a monkey and a gri What is the difference between a monkey and a
griWhat is the difference between a

Instruction: How many planets are there in the solar system? Response: There are eight planets in the solar system. The
planets are Mercury, Venus, Earth, Mars, Jupiter, Saturn, Aster and Nept. The planets are arranged in order of size from
smallest to largest. The planets are also arranged in order of distance from the sun from closest to farest. What is the
difference between planets and stars? What is the difference between planets and stars? What is the difference between
planets

Table 5: Generated examples from the original LLaMA-7B and pruned by model folding. The
maximal number of output tokens is set to 100 in both models.

F HANDLING RESIDUAL BLOCKS

In this subsection we discuss the behavior of Residual Blocks after compression. In a similar manner
to the analysis of Normalized Blocks, we investigate the possible dependencies between the clustering
matrices for different parts of the residual block and the incoming layers.

F.1 SIMPLE RESIDUAL BLOCKS

Consider a Simple Residual Block, consisting of a shortcut represented by an identity transform
W, ; = I, and a preceding layer decomposed using a clustering matrix U;_;. The projection matrix
is defined as:

“1
Ci.1=U, (UL, Uy) UL,

24

Published as a conference paper at ICLR 2025

This decomposition allows for approximating the residual block while reducing redundancy in the
weights. The residual block approximation satisfies:

2 1
yi=o (Wl(o (Wl()CZT71X171) + ClT,lxzfl))
where x;_1 is the input to the block, y; is the output, and o (-) represents the activation function.

The shortcut W; ¢ = I ensures that the input x;_; is directly added to the output of the main path,
preserving information and facilitating gradient flow.

)

Decomposing W, Let the weights W be decomposed using a clustering matrix UP andits
l 1 l

corresponding projection:
-1
01(2) _ Ul(2) (Ul@)TUl(z)) Ul(2)T'
Substituting this decomposition into the residual block yields:
yi=o (Cl(z)wl@)‘f (Wl(l)ClTﬂxlﬂ) + C;‘Fﬂxlﬂ) .

This approximation captures the effect of clustering and compressing the weights while maintaining
the structure of the residual block.

Aligning Clustering Matrices. To simplify the folding process, we assert that U;_; = UZ(Q). This
ensures consistency in the clustering across the residual block, reducing the need for additional
transformations between layers. As a result, the folding costs for the preceding layer and the current
layer can be summed directly:

o= I+ Ji1.

Total Approximation Error. The total approximation error for folding the residual block is defined
as:
Jtot = Hwtot - Cl(z)wtorH%w
where:
Wtol = Wl,1 WI(Q)

Here, W, combines the weights of both layers in the residual block into a single representation.
This unified view allows the clustering process to be applied holistically, ensuring that redundancies
across the entire block are captured and reduced.

By asserting U;_; = Ul(2) and summing the individual folding costs Jl(z) and J;_;, we achieve
a compact representation of the residual block with minimal approximation error. This approach
ensures that the compressed residual block remains effective while reducing redundancy in the
weights.

F.2 RESIDUAL BLOCKS WITH NON-IDENTITY SHORTCUTS

Consider a Residual Block with a shortcut represented by a weight matrix Wy ,, and a preceding
layer decomposed using a clustering matrix U;_;. The projection matrix is defined as:
-1
Ci-1=U, (UL, UL) UL,

This decomposition allows for approximating and clustering the preceding layer’s weights while
maintaining their representational capacity. The corresponding approximation for the residual block
satisfies:

yiROo (Wz(2)0 (Wl(l)cljllxl—l) +Wz,sCzT71Xl—1) ,

where:

Wl(z) is the weight matrix of the second layer in the residual block,

Wz(1> is the weight matrix of the first layer in the residual block,
* W, , is the shortcut connection weight matrix,

* o(-) represents the activation function.

25

Published as a conference paper at ICLR 2025

Decomposition of Weight Matrices. The weights WI(Q) and W, ,; are decomposed using their

respective clustering matrices. For WZ(Q), the decomposition is:

-1
c? =uf? (uP'ul) Ut
For W, ¢, the decomposition is:

Ci. = U, (UL U,,) UL

Substituting these decompositions into the approximation yields:

. (c§2>U§2>TW§2>a (Wl(”clT,lxl,l) + cl,swl,scf,lxl,l) .

Consistency Constraint and Total Approximation Error. To simplify the folding process and
ensure consistency across the layers, we introduce the constraint:

U, =U".

This ensures that the same clustering matrix is used for both the shortcut weights Wy , and the second

layer’s weights Wl(z). By adding the individual folding costs Jl(z) and J; ¢, we ensure that Lemma
holds, leading to the total approximation error for the residual block:

Jot = I + T

Unified Approximation for Residual Blocks. The total approximation error can be expressed
compactly as:

Jor = [[Wio — CP Wi ||,
where:
th = |:Wl,s | WI(Q)} .

Here, W, combines the shortcut weights W; ; and the second-layer weights Wl(2) into a single
matrix. This unified representation allows the folding process to be applied holistically, reducing
redundancies across the entire residual block.

The decomposition of weights in residual blocks with non-identity shortcuts introduces a consistent

clustering mechanism for both the shortcut and the second layer. By ensuring that U; ; = ng), we

maintain alignment in the clustering process, leading to a compact and efficient representation with
minimal approximation error.

G HANDLING BATCH NORMALIZATION LAYERS

Batch Normalization layers, when combined with linear layers, introduce additional scaling and
normalization operations. One special case is a layer consisting of a linear block followed by a Batch
Normalization block, formally defined as:

zi41 = Wi10(E8:.2,Wix;_1),
where:
* 'W;: weight matrix of the linear block,
* 3,: Batch Normalization scaling matrix,
e 3,,: Batch Normalization normalization matrix,

* W, 1: weight matrix of the subsequent layer,

* o(+): activation function applied element-wise.

26

Published as a conference paper at ICLR 2025

A design choice in handling such layers is to decompose X5, 32,,, and W, separately while preserving
the original structure of the layer. This ensures that the scaling, normalization, and linear blocks
are treated as distinct functional units. The decomposed approximation for the layer can then be
expressed as:

Zi41 ~ Z1 = Wi Clo(C2,C, 2, CWix;_1),
where the projection matrices C;, C,,, and C; are defined as:
C,=U,(UTu,)"'u? =u,M,,
c,=U,(U'u,)'vf =u,M,,
C, = U, (ulfu)~'ul =umMm,.
Here, U, U,,, and U, are clustering matrices, and M, M,,, and M, are normalization terms.

Clustering Assumptions. To simplify the decomposition and ensure alignment across the layer
components, we impose the following consistency constraint:

U, =U, =U,.

This assumption ensures that the same clustering structure is applied to the scaling, normalization,
and linear blocks, leading to a unified decomposition. Under this assumption, the approximation
becomes:

5 T
Z) 41 = Wl+1Cl O'(UgMgW[,JU[MlanlMlWZXl_l),
where Wy, ; represents the intermediate scaling factors.

Applying Diagonal Properties. Using Lemma[3] we observe that the normalization and scaling
matrices can be represented as diagonal matrices:

7111 = W11 Cl o (U, Diag(M,diag(W};))Diag(M,diag(%,,))M;W;x;_1).
Furthermore, by applying Lemma[d] we rewrite this expression as:
7141 = W1 Cl o(Diag(C;diag(W,;))Diag(C;diag(2,,))CiWx;_1).
This shows that the diagonal structure of the scaling and alignment matrices is preserved through the

decomposition, maintaining the original behavior of the Batch Normalization block.

Compression Cost. According to the definition of the Model Folding problem and using the
properties stated in Lemma 5] the compression cost for the layer can be expressed as:

Jiot = ”Wtot - CthotH%H
where:
Wi = (Wi, W, diag(E,) diag(3,)].

This cost quantifies the approximation error introduced by clustering the weights, scaling, and
normalization matrices while preserving the layer’s functional structure.

By decomposing the Batch Normalization and linear blocks separately and aligning their clustering
structures (Ug = U,, = U;), we ensure that the original diagonal properties of the scaling and
normalization matrices are preserved. The resulting compression cost captures the overall error of
folding the entire layer into a compact representation.

G.1 ALGORITHMIC DESCRIPTION OF FOLD-AR
The Fold-AR algorithm for a single layer combines the Batch Normalization components and layer

weights into a compact representation, followed by clustering to reduce redundancy. The steps are
described in Algorithm

27

Published as a conference paper at ICLR 2025

Algorithm 1 Fold-AR for a Single Layer

Require: ¥, ¥,, W;, W;; > Input components of the layer
1: Compute the normalized weight matrix: W; < 3, W,

2: Construct the combined weight matrix: Wy < [WlT+1 w, diag(Es)]
3: Solve the clustering problem:

U < argmin |[W, — U(UTU)'UTW |2
U

subject to UT € {0,1}™*" and m < n

4: Update the scaling matrix: 3, < (UTU) uTs, U
5: Update the second-layer weights: W7, L1 UTWl 41
6: Update the current-layer weights: Wl — (UTU)"'UTW,
7: forc=1,...,mdo > Adjust scaling factors for each cluster
8: Compute cluster size: N, <y . I(U; . = 1) > I(+) is the indicator function
9: Compute intra-cluster correlation:
Wl
Elc] + Wi, (Ui = Uje = DI # j)
¢ Z \/IIWz i || W12

10: Update the scaling factor for cluster c:
N,

Fodee = e =R VB

11: end for

EXPLANATION OF KEY STEPS

1. Combining Normalization and Weights. The normalization matrix 3, is diagonal, and
multiplying it with the weight matrix W produces the normalized weight matrix:

W, =3, W,
This step integrates the normalization operation into the weights of the current layer, reducing the
complexity of subsequent computations.
2. Construction of Combined Weight Matrix. The combined matrix W, is defined as:
Wi = WL, W, diag(Z,)].
This matrix aggregates the second-layer weights (W,ﬂl), the normalized current-layer weights (VV;),

and the scaling factors (diag(3y)) into a single representation, preparing them for joint clustering.

3. Clustering. The projection matrix U is computed by solving the clustering problem:
U = argmin W, — U(UTU) "UTW |17,
U

subject to U7 € {0,1}™*" and m < n. The clustering minimizes the reconstruction error by
projecting the combined weights into a lower-dimensional space defined by m clusters.

4. Scaling Adjustments. To ensure proper scaling within each cluster, the diagonal elements of
3., are updated. For each cluster ¢, the adjustment considers the size of the cluster (/V.) and the
intra-cluster correlation (E[c]):

N
(Bs)e.e ¢ (Bs)e VNe+ (N2 = No)E[]

The intra-cluster correlation E/[c] is computed as a normalized dot product, capturing the redundancy
among the weights within the same cluster. This adjustment preserves the scaling properties of the
original layer.

28

Published as a conference paper at ICLR 2025

5. Final Updates. The current-layer weights W, and second-layer weights W7,

i+ are updated to
align with the clustered representation:

W, « (UTU)"'UuT™W,, W[, « UTWL,.
These updates ensure consistency between the clustered weights and the projection matrix U.

This algorithm combines clustering, scaling adjustments, and weight updates to compress the layer
while preserving its functional properties. The clustering step minimizes redundancy, and the final
updates align all components of the layer with the clustered structure.

H FOLDING SIMILAR CHANNELS IN MLPs

For fully connected networks, where two successive layers are defined as:
X = O’(W[lel) and Xi+1 = J(Wl+1Xl)7

where x; represents the activations of layer [, W; and W, are the weight matrices, and o is the
activation function. The channels of the layer are defined as the coordinates x; ; of the vector x;.
Each channel corresponds to a specific dimension in the activations.

The folding cost J; for the [-th layer is defined as:
2 2
Ji= Wi = CWi [+ [|Wiky = CWi [,

where C; is a clustering matrix. This cost function represents the optimization objective to minimize
the approximation error introduced by folding (clustering) the weights of the [-th layer. The first
term measures the reconstruction error for the weights W, while the second term measures the
reconstruction error for the weights W1 under the transformation C;. Together, these terms ensure
that the clustering transformation preserves the structure and relationships of the weights across
layers.

From the perspective of K-Means as a matrix decomposition problem, the grouping of scalar weights
into vectors is defined as follows:

p!

T

b2
Wl = . and Wl+1 = [q1 q2 qn]7
P,

where p? are the rows of W and q; are the columns of W, 1. These groupings reflect the natural
structure of the weight matrices in fully connected layers:

* Each row of W, represents the weights associated with a specific output channel of layer [.

* Each column of W, ; represents the weights associated with a specific input channel of
layer [+ 1.

In this formulation, the rows p; and columns g; are treated as vectors to be clustered by the matrix
C;, which aligns with the K-Means decomposition perspective. The clustering matrix C; maps these
weights into representative clusters, preserving the relationships between input and output channels
across layers while enabling efficient compression.

I FOLDING SIMILAR CHANNELS IN CONVOLUTIONAL LAYERS

For convolutional layers, two successive layers can be defined as:
X =oWrx&X_1) and Ay =o(Wig1 x &),
where A] is a 3-dimensional feature tensor with values X, o . The first dimension, c,, corresponds

to the output channels, whlle 1 and j represent spatial plxel locatlons The 4-dimensional weight

tensor YV, has values wl

eu.cs iy Where:

29

Published as a conference paper at ICLR 2025

* ¢, corresponds to the output channels of A7,
* ¢; corresponds to the input channels of Xj_1.

To simplify and compress the network, we decompose the weight tensor W, such that output channels

of A} (i.e., the values X C(i)z j forc, =1,..., cou), Which are similar in some sense, are merged. This
folding problem is defined as:

Ji=|W—Co WZHQT + [Wit1 — Wi OCl||2T7
where C; corresponds to a 1 x 1 convolution parameterized by the clustering matrix C;, with
c,1,1 = Cl,c,c'-
From this definition, it follows that:
Jy =W, — CW, |7 + (Wi — Wl+1ClTH2T7
where the weight tensors W; and W, are mapped to matrices W; and W, ; as follows:

vee W])T veeW))T o vee WD)T

vee W))T vee(W))T o vee (W))T
=

VeC(Wc(jzt,l,:,:)T VeC(Wc(Q‘,Q,:,:)T T VeC(WO(‘QnC&mH:)T

This means that each convolutional filter contributing to an output channel ¢, is flattened and stacked
into a vector, forming the c,-th row of the matrix W;. Similarly, for YW, 1, each filter associated with
the ¢;-th input channel is flattened and stacked into a vector, forming a column of the matrix W :

veeWT) vee {51y veeW'T)

vee WD) veeWS5 1) o vee W)
Wi, = L U) .

VeC(Wc(j:_,}?:,:) VeC(Wc(:I;?:,:) e VeC(Wc(iut}Ji)n;iﬁ)

From the perspective of K-Means as a matrix decomposition problem, the grouping of scalar weights
into vectors is defined as follows:

Pl
Ps
W; = : and Wi =[q1 q2 - qnl,
Py
where:
Pl = [vee W)T vee W)T o vee W)]
and: T
@ = [veeW{INT vV o vee W))7

In this formulation, the rows p? of W, and columns q; of W are grouped into clusters for the
folding process, aligning with the K-Means decomposition perspective.

J FOLDING SIMILAR CHANNELS IN LLAMAMLP AND LLAMAATTENTION

J.1 FOLDING SIMILAR CHANNELS IN LLAMAMLP

The LlamaMLP module is composed of three sub-layers: gate_proj, up_proj, and down_proj.
These sub-layers define the structure and functionality of the MLP, with the main computation
pipeline expressed as:

down_proj(act_fn(gate_proj(z)) x up_proj(z)).
We cluster similar channels in both the output channel and input channel of each sub-layer.

30

Published as a conference paper at ICLR 2025

Input Channel Folding. To fold the input channels of LlamaMLP, we simultaneously consider the
input dimensions of both gate_proj and up_proj layers, as they collectively define the effective input
to the gate_up sub-layer. The input channels of gate_proj and up_proj are clustered respectively
using methods similar to those applied in standard MLP layers.

Output Channel Folding. To fold the output channels of LlamaMLP, we first consider the
output channels of both gate_proj and up_proj by clustering and adjusting the input channel of
the down_proj. Subsequently, we adjust the output channel of down_proj according to the residual
connection used outside of LlamaMLP.

J.2 FOLDING SIMILAR CHANNELS IN LLAMAATTENTION

The LlamaAttention module consists of four primary sub-layers: q_proj, k_proj, v_proj, and
o_proj. These sub-layers define the query, key, value, and output projections, respectively. For
clarity and simplicity, we conceptualize q_proj, k_proj, and v_proj as a unified sub-layer referred
to as q_k_v, which computes the intermediate representations required for attention calculations. The
o_proj sub-layer processes the final output of the attention mechanism. We treat the attention head
as the structure to be folded in LlamaAttention. By reshaping the weights of each sub-layer into an
MLP-like tensor, we can cluster similar heads, similar to how it is done for a standard MLP layer.

For all configurations of LlamaAttention, including Multi-Head Attention (MHA) and Grouped
Query Attention (GQA), the weight shapes of the q_k_v sub-layer differ:

* In MHA, the weights for g, k, and v projections share the same shape: [num_heads x
head_dim, hidden_size].

* In GQA, the weights for k and v projections have the shape: [num_kv_heads x
head_dim, hidden_size].

Output Channel Folding. When performing output channel folding for the LlamaAttention
layer, the clustering of the o_proj sub-layer’s output channels is dictated by the residual connection
outside of LlamaAttention, ensuring alignment with the clustering results from previous modules.
Specifically:

* The o_proj weights, originally shaped as [num_heads x head_dim, hidden_size], are
reshaped into [num_heads, head_dim, hidden_size|, clustered along the first dimension
(num_heads), and then reshaped back to their original form.

* For clustering within the q_k_v sub-layer, the weights for g, k, and v are reshaped into
[num_heads, head_dim, hidden_size] (or [num_kv_heads, head_dim, hidden_size| for k and
v in GQA) and clustered along the first dimension (num_heads or num_kv_heads). After
clustering, the weights are reshaped back to their original dimensions.

Input Channel Folding. To perform input channel folding, the focus is on the input channels of q,
k, and v weights. Since these weights share the same input hidden_states, each of their weights
is clustered along the first dimension (hidden_size) of their respective matrices. This ensures that
the clustering process respects the shared input representation across the q_k_v sub-layer while
maintaining the integrity of the attention mechanism.

K COMPARISON WITH KNOWLEDGE DISTILLATION

We evaluated some data-free knowledge distillation (KD) methods (Micaelli & Storkeyl [2019; |Chen
et al., 2019; [Fang et al., [2020; |Yu et al., [2023)), on an NVIDIA A100 GPU, for all methods using
the same pre-trained teacher model, data loader, and student model setup for consistency. The full
model is a ResNet18 pre-defined by torchvision and trained on CIFAR10, while the student models
for each KD method share the same architecture but differ in the number of channels across all layers
to achieve the desired sparsity levels. Specifically, in ResNet18, the number of output channels for
all blocks is a multiple of 64, which is also the number of output channels in the first convolutional
layer. To reduce the model’s channel dimensions, we scale this base hyperparameter by a reduction
factor, effectively reducing the width of all layers proportionally. The following table presents the test

31

Published as a conference paper at ICLR 2025

accuracy of compressed by KD methods and model folding on CIFAR10 test dataset.The time taken
to achieve each accuracy is provided in parentheses next to the corresponding accuracy value. From
the table, it is evident that the proposed model folding achieves model compression within seconds,
even at high sparsity levels, compared to other KD methods that require tens of hours to complete.

Sparsity | Full model | 10% \ 25% \ 50% \ 70%
ABM (Micaelli & Storkey|[2019) 94.72 93.30 (17h19m) | 91.99 (16h8m) | 89.42 (15h30m) | 85.43 (13h23m)
DFAD (Chen et al.]2019) 94.72 93.79 (2h31m) | 93.52 (2h3m) 92.04 (2hlm) | 89.67 (1h54m)
DAFL (Fang et al.]|2020) 94.72 71.73 (16h48m) | 77.80 (15h39m) | 68.06 (15h19m) | 53.86(76h34m)
SpaceshipNet (Yu et al.] 2023) 94.72 94.50 (42h33m) | 93.95 (40h3m) | 92.96 (37h57m) | 91.53 (27h10m)
Model Folding (ours) 94.72 94 (56.35s) 92 (53.55s) 88 (55.75s) 82 (54.95s)

Table 6: Performance comparison of knowledge distillation and model folding, showing accuracy
(%) and runtime (in parentheses). The sparsity levels indicate the percentage of weights pruned.

L INFERENCE SPEED OF FOLDED MODELS ON EDGE DEVICES

We apply model folding on a LeNet5 model pre-trained on FashionMNIST with different sparsity,
and then evaluate the folded models on NVIDIA Jetson Nano, ESP-EYE, and Arduino Nano 33 BLE.
All models are converted and executed as a float32 Tensorflow Lite model in all devices.

10%
Runtime RAM Flash

2ms 595K 34M
259Ims 59.5K 3.4M
6831ms 595K 3.4M

25%
Runtime RAM Flash

2ms 557K 2.8M
1868ms 557K 2.8M
3726ms 557K 2.8M

50%
Runtime RAM Flash

Ims 480K 1.9M
1532ms 48.0K 1.9M
4218ms 48.0K 1.9M

70%
Runtime RAM Flash

Ims 36.5K 1.2M
1186ms 36.5K 1.2M
2969ms 36.5K 1.2M

Sparsity

NVIDIA Jetson Nano (NVIDIA|[2024}
ESP-EYE (Espressif Systems|[2024]
Arduino Nano 33 BLE Sense (Arduino/[2024}

Table 7: Performance and resource usage at various sparsity levels across devices, with detailed
breakdowns for runtime (ms), RAM usage (K), and Flash storage usage (M).

M DEEP INVERSION SAMPLE IMAGES

Deep Inversion (DI) (Yin et al.,[2020) generates synthetic images from the uncompressed network
by optimizing noise to match the internal statistics stored in BatchNorm layers. These images,
exemplified in Fig. [T3] which reflect the original data’s statistical properties, are used during model
folding to restore data statistics in the compressed network, ensuring accuracy without requiring
external data.

N FURTHER RELATED WORK

Model folding intersects with several established approaches in model compression, network archi-
tecture optimization and model merging. This section outlines key related works that inspired the
development of model folding, highlighting both their contributions and limitations.

N.1 MODEL COMPRESSION

Model compression techniques reduce models’ size and computational requirements while main-
taining or minimally sacrificing performance. Various methods have been developed. Most can be
classified as pruning, quantization, knowledge distillation, and low-rank factorization. Traditional
pruning techniques (Han et al., 2015 |LeCun et al., |[1989; |L1 et al., [2016bj; [Hassibi1 et al., |1993;
Entezari & Saukhl 2020), structured or unstructured, involve removing weights, neurons, or filters
that are deemed less important, typically measured by the magnitude of their contributions (e.g.,, L;
or Lo norm) (Entezari & Saukh, 2020; Li et al.,|2017; |Cheng et al.,2023)). While effective in reducing
the size of the model, pruning often leads to a degradation of performance that requires fine-tuning or
complete retraining of the network (Cheng et al.| 2023 [Han et al.l 2015} [Frankle & Carbin, [2018};
Frantar & Alistarh, [2022; |He et al.,|2018]). Quantization (Gupta et al., 2015} Zhou et al.,|2017; |L1

32

lPublished as a conference paper at ICLR 2025

qﬂ@ 'L ..‘:"-‘\ o\
ﬂ.'m?;.@‘“i}tﬁ =)
d«[qm' "&"“(va\ﬁ
{"' *i
l! I} =

ﬂ,

£
“ A L 'ﬁ X7 q

.x.w) IHU’I’ 3
" 3"1 7 7‘?* 2 A

“ 4’" * /l‘\

'i- \\ ﬁ a ‘;)

Figure 13: Sample images generated by Deep Inversion (Yin et al.l2020) using ResNet18 trained
on CIFAR100. These images are generated from the uncompressed network and used in model
folding to restore data statistics in the compressed network.

2016a) reduces the precision of the numerical values in a model, from floating-point to lower-
bit representations (e.g.,, 8-bit integers). This approach significantly reduces the model’s memory
footprint and speeds up computation, especially when combined with hardware accelerators designed
for low-precision arithmetic (Gholami et al., 202T). Like pruning, post-training quantization may also
require fine-tuning to restore model performance. Knowledge distillation (Hinton et al,[2015)) trains a
smaller model, called the student, to replicate a well-trained larger model, called the teacher, by mim-
icking the output of the teacher model, which transfers knowledge between the teacher model and the
student model. While effective in transferring knowledge and reducing model size, even approaches
that eliminate data dependency using synthetic samples or adversarial distillation (Micaelli & Storkey,
[2019; [Chen et al., 2019; [Fang et al.} 2020; [Yu et al., 2023}, [Haroush et al.| [2020), the training process
for knowledge distillation can be computationally expensive and time-consuming (Hinton et al., 2015}
Gou et al,[2021}; [Martinez et al, 2021)). Moreover, knowledge distillation often assumes substantial
differences between student and teacher model architectures [2021)). Low-rank factoriza-
tion decomposes weight matrices into lower-rank matrices to reduce parameter size through such

as singular value decomposition (Ren & Zhul 2023}, [Horvath et al.,[2024) or tensor decomposition

Kim et al.,[2016). Approaches such as mixture of experts (Jacobs et al., 1991}

Shazeer et al., 2017), subspace-configurable networks (Wang et al.|, 2024} [Papst et al, [2024) and
resource-efficient deep subnetworks (Corti et all,2024bga), explore dynamic model reconfiguration to

minimize the number of active weights during inference.

Structured pruning. Structured pruning is of particular interest because it removes entire structures

(such as neurons, channels, or layers) (Entezari & Saukh| 2020; [Li et al, 2016b}; [Luo et al [2017a;

Hu et al} 2016; [Wen et al, 2016) rather than individual parameters, reducing model complexity
while maintaining or even improving performance. This method is especially valuable for enhancing

efficiency with easily implemented acceleration in resource-constrained environments
[2020; [Ciu et al, [2024). However, structured pruning typically requires additional retraining or
fine-tuning (He et al.} 2017} [Liu et al., 2024} [Luo et al., 2017b). Recent work by [Theus et al.| (2024)
combines model pruning and fusion using Optimal Transport theory, demonstrating that a significant
portion of pruning accuracy can be recovered without access to training data. However, the impact of
pruning on the model’s data statistics and how to recover them is not addressed.

33

Published as a conference paper at ICLR 2025

N.2 MODEL MERGING

Model merging combines multiple models to generate a single, unified model which leverages the
strengths and diversity of each individual model. It particularly benefits ensemble learning and
distributed training scenarios, where models are trained independently on different subsets of data
or across different devices. Merging can be achieved by averaging the parameters of model trained
independently. Recently, multiple methods have been developed to enhance model performance
and robustness. MTZ (He et al., [2018) and Ziplt! (Stoica et al.| [2024) compress multiple models
pre-trained for different tasks by merging them through neuron sharing. Model soup (Wortsman
et al.| 2022)) averages the weights of multiple fine-tuned models from same initialization to improve
accuracy and robustness without increasing inference time. Taking permutation invariance of neural
networks into account, a finding (Entezari et al., 2022) shows the interpolation between models trained
with SGD has no barrier. Git Re-Basin (Ainsworth et al. |2023)) utilizes activation matching and
weight matching to achieve permutated alignment between models trained from different initialization.
REPAIR (Jordan et al.,|2022)) mitigate variance collapse problem while aligning neurons by rescaling
the preactivations of fused models. PAPA leverages a population of diverse models trained on
different data variations and slowly pushes the weights of the networks towards the population
average (Jolicoeur-Martineau et al.,|2024)). A recent work (Yamada et al.l 2023)) shows that for model
merging on different datasets, using original or condensed datasets during the model merging process
can significantly improve accuracy. However, those methods do not consider model efficiency and
internal parameter redundancy. Another recent work (Theus et al., |2024) achieves intra-layer model
fusion by integrating optimal transport (Mongel |1781; |Kantorovich, 2006; [Singh & Jaggil [2020)
to fuse computational structures in the model without fine-tuning. We note that this approach is
orthogonal to the problem solved in this paper, as we do not consider intra-layer dependencies.

Merging multiple computational units. Merging computational units has been extensively explored
in ensemble methods. [Wortsman et al.| (2022) demonstrate that combining multiple models fine-tuned
from the same pretrained initialization enhances both accuracy and robustness. |/Ainsworth et al.|(2023)
extend this approach to models trained on the same data with different initializations, albeit with
some accuracy loss. Jordan et al|(2022) improve upon Git Re-Basin by adjusting batch normalization
layers where applicable. IFM |Chen et al.[(2023) and Ziplt! [Stoica et al.| (2024)) focus on merging
multiple computational units within a single model, pioneering this approach.

34

	Introduction
	Preliminaries
	Model Folding
	Channel clustering
	Maintaining data statistics in a compressed model

	Experiments
	Conclusion
	Implementation details
	Further theoretical results to support model folding
	Relationship Between Weight Matching and Model Folding
	Channel similarity
	The impact of regularization

	Model Folding on LLMs
	Handling Residual Blocks
	Simple Residual Blocks
	Residual Blocks with Non-Identity Shortcuts

	Handling Batch Normalization Layers
	Algorithmic Description of Fold-AR

	Folding Similar Channels in MLPs
	Folding Similar Channels in Convolutional Layers
	Folding Similar Channels in LlamaMLP and LlamaAttention
	Folding Similar Channels in LlamaMLP
	Folding Similar Channels in LlamaAttention

	Comparison with Knowledge Distillation
	Inference Speed of Folded Models on Edge Devices
	Deep Inversion Sample Images
	Further Related Work
	Model compression
	Model merging

