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Abstract

This paper presents PolyDiffuse, a novel structured reconstruction algorithm that
transforms visual sensor data into polygonal shapes with Diffusion Models (DM),
an emerging machinery amid exploding generative AI, while formulating recon-
struction as a generation process conditioned on sensor data. The task of structured
reconstruction poses two fundamental challenges to DM: 1) A structured geometry
is a “set” (e.g., a set of polygons for a floorplan geometry), where a sample of N
elements has N ! different but equivalent representations, making the denoising
highly ambiguous; and 2) A “reconstruction” task has a single solution, where
an initial noise needs to be chosen carefully, while any initial noise works for a
generation task. Our technical contribution is the introduction of a Guided Set
Diffusion Model where 1) the forward diffusion process learns guidance networks
to control noise injection so that one representation of a sample remains distinct
from its other permutation variants, thus resolving denoising ambiguity; and 2) the
reverse denoising process reconstructs polygonal shapes, initialized and directed
by the guidance networks, as a conditional generation process subject to the sensor
data. We have evaluated our approach for reconstructing two types of polygonal
shapes: floorplan as a set of polygons and HD map for autonomous cars as a set
of polylines. Through extensive experiments on standard benchmarks, we demon-
strate that PolyDiffuse significantly advances the current state of the art and enables
broader practical applications. The code and data are available on our project page:
https://poly-diffuse.github.io.

1 Introduction

Reconstruction and generation were once separate research areas with minimal overlaps. While not
acknowledged by the broader research communities, state-of-the-art reconstruction and generation
techniques have now exhibited increasing similarities. Focusing on structured geometry (e.g., CAD
models) in this paper, Auto-regressive Transformer (AR-Transformer) is a family of state-of-the-art
generative models that iteratively applies a Transformer network to generate CAD construction
sequences [18, 29, 35]. On the reconstruction side, a Transformer network iteratively reconstructs
and refines indoor floorplans, outdoor buildings models, and vectorized traffic maps [7, 23, 47], a
process resembling the generative AR-Transformer.

In 2023, Generative AI is experiencing significant growth, primarily driven by the emergence of
Diffusion Models (DM) [14, 38, 40, 41], where structured geometry generation is not an exception.
DM-based approach iteratively denoises coordinates (with associated properties) to generate realistic
design layouts [17] or floorplans [36]. A natural question is then “Is a Diffusion Model also good at
structured reconstruction?” However, the answer is not that simple.

Take the high-definition (HD) map reconstruction problem for example [22], which aims to recon-
struct a set of polylines given sensor data in a bird’s-eye view (see Figure 1). A straightforward DM
formulation would assume a maximum number of polylines (with a fixed number of corners per poly-
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Figure 1: PolyDiffuse for floorplan and HD map reconstruction. Starting from an initial proposal
(e.g., from a human annotator or an existing method), the sensor-conditioned denoising process of
our Guided Set Diffusion Model (GS-DM) generates shape reconstructions in a few sampling steps,
initialized and directed by the guidance networks. The initial proposal above mimics simple human
inputs that indicate rough locations and specify the number of vertices for the polygonal shapes.

line [23, 25]), take a particular permutation of the elements to construct a fixed-length vector of corner
coordinates, then iteratively denoise the vector subject to sensor data as a condition. The structured

(a). 𝑡 = 0

Standard diffusion

GS-DM diffusion

0 1−1

0

1

0 3−3

0

3

0 1−1

0

1
(b). 𝑡 = 𝑇 (standard DM)

(c). 𝑡 = 𝑇 (Ours)

Standard denoising

GS-DM denoising

Figure 2: (a) A toy visualization for a sample
with three elements, thus 6 different but equiva-
lent points in the data space; (b) Standard DM at
t = T ; (c) Our GS-DM at t = T .

reconstruction task poses two fundamental chal-
lenges to such standard DM formulations: 1)
Structured geometry is often a “set” of elements
(e.g., a set of polylines), where the geometry of
N elements has N ! different but equivalent rep-
resentations, making the denoising factorially
ambiguous; 2) The denoising process needs to
reach a single solution (i.e., one of N ! represen-
tations) for a reconstruction task and an initial
noise needs to be set carefully, while any initial
noise would work for a generation task. Figure 2
shows a toy example of three elements with
6 = 3! permutations, where six permutation-
equivalent representations of the solution lie in
six different sub-spaces. However, they all fol-
low the standard Gaussian and become indis-
tinguishable after the diffusion process, which
obfuscates the denoising learning.

Our technical contribution is a Guided Set Diffusion Model (GS-DM). The forward diffusion process
learns guidance networks controlling noise injection so that one representation of a sample remains
separated from its permutation variants, thus resolving denoising ambiguities. Specifically, the
guidance networks set an individual Gaussian as the target distribution for each element (instead
of a fixed zero-mean unit-variance Gaussian for everything), and are learned before the denoising
training by minimizing the permutation ambiguity as a loss function. At test time, the reverse process
initializes the element-wise Gaussian noise by the guidance networks and then denoises to reconstruct
polygonal shapes conditioned on the sensor data, while the guidance networks take rough initial
reconstructions either from an existing method or an annotator (see Figure 1 for examples).

We have conducted extensive experiments on two polygonal structure reconstruction tasks: floorplan
reconstruction from a point-cloud density image with Structured3D dataset [48], and HD map
construction from onboard camera inputs with nuScenes dataset [2]. PolyDiffuse augments the
state-of-the-art approach of the two specific tasks and brings consistent performance improvements,
especially on the geometric regularity of the reconstruction results. Our generation process takes 5
to 10 steps to produce decent results and the visual encoder only runs once. We also demonstrate a
likelihood-based refinement extension of our system by exploiting the probability flow ODE [41],
which enables broader practical applications. To our knowledge, this paper is the first to demonstrate
that DM is a powerful machinery for structured reconstruction tasks, in fact, the first in a broader
domain of geometry reconstruction as well. We will share all our code and data.
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2 Background: Denoising Diffusion Probabilistic Models

Diffusion models or score-based generative models [14, 38, 40, 41] progressively inject noise to data
in the forward (diffusion) process and generate data from noise by the reverse (denoising) process.
The section provides the key equations on the denoising diffusion probabilistic models (DDPM) [14]
that lay the foundation of our method.

DDPM considers a Markovian forward process that turns data x0 ∼ q(x0) into Gaussian noise:

q(xt|xt−1) := N (xt;
√

1− βtxt−1, βtI) (1)

t = 1, . . . , T and xt is the latent at t. The noise schedule {βt} is constant [14, 28] or learned by
reparameterization [20]. The above forward process is written in closed form for an arbitrary t:

q(xt|x0) = N (xt;
√
ᾱtx0, (1− ᾱt)I), (2)

ᾱ0 = 1, ᾱt := ᾱt−1αt, αt := 1− βt. (3)

xt is sampled by xt =
√
ᾱtx0 +

√
(1− ᾱt)ϵ for ϵ ∼ N (0, I). DDPM parameterizes the reverse

process with a noise prediction (or denoising) network ϵθ(xt, t) to make connections with denoising
score matching and Langevin dynamics [40, 45], and the sampling step of the reverse process is
derived as:

xt−1 =
1

√
αt

[
xt −

1− αt√
1− ᾱt

ϵθ(xt, t)

]
+ σtz, z ∼ N (0, I). (4)

σ2
t is set to βt or 1−ᾱt−1

1−ᾱt
βt. The final training objective is a reweighted variational lower bound:

Lsimple(θ) := Ex0,t,ϵ

[
||ϵ− ϵθ(

√
ᾱtx0 +

√
1− ᾱtϵ, t)||2

]
(5)

3 Guided Set Diffusion Models (GS-DM)

Consider the task of generating a set of elements x =
{
x1, . . . ,xN

}
under a condition y. A

straightforward application of diffusion models would be to take one permutation of the elements
to form a vector, then perform diffusion and learn denoising. With an abuse of notation, we let the
vector x0 (i.e., the sample or denoised result in DM’s notation) represent one particular permutation
of x. The challenge is that a set of N elements has N ! different but equivalent representations,
and any one of the N ! is a valid x0, making the denoising factorially ambiguous 1. To alleviate
the above issue, our idea learns to guide the noise injection in a per-element manner by learning
two “guidance networks”, such that a sample x0 remains separated from its permutation variants
throughout the diffusion process. At test time, the guidance networks produce per-element Gaussians
and stepwise guidance from an initial reconstruction, from which the denoising process generates the
final reconstruction iteratively conditioned on sensor data. We first explain the forward and reverse
processes and then the two-stage training for the guidance and denoising networks.

Forward process: With the standard diffusion process, different permutation variants of a sample
gradually become indistinguishable through the diffusion process. To keep a particular representation
x0 separated from its permutation variants, we propose to inject noise per element. Let xi

t denote the
diffused element xi

0 at timestep t, we learn to change the transition distribution q(xi
t|xi

t−1) by adding
µϕ(x0, t, i) to the mean and multiplying σϕ(x0, t, i) to the standard deviation:

q(xi
t|xi

t−1,x0) := N (xi
t;

√
1− βtx

i
t−1 + µϕ(x0, t, i), βtσ

2
ϕ(x0, t, i)I) (6)

µϕ and σϕ take x0 and produce outputs for ith element at t. Following the similar derivations as in
DDPM [14], we obtain (see Appendix A.1 for derivations):

q(xi
t|xi

0) = N (xi
t;

√
ᾱtx

i
0 + µ̄ϕ(x0, t, i), σ̄

2
ϕ(x0, t, i)I), (7)

µ̄ϕ(x0, 0, i) = 0, µ̄ϕ(x0, t, i) :=
√
αtµ̄ϕ(x0, t− 1, i) + µϕ(x0, t, i), (8)

σ̄2
ϕ(x0, 0, i) = 0, σ̄2

ϕ(x0, t, i) := αtσ̄
2
ϕ(x0, t− 1, i) + (1− αt)σ

2
ϕ(x0, t, i). (9)

1This permutation ambiguity issue persists with permutation-invariant models (e.g., Transformers), as it is
inevitable to pick one particular permutation of x as the concrete data representation x0.
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Algorithm 1 Guidance training (stage 1)
1: ϕ: trainable, θ: frozen
2: repeat
3: x0 ∼ q(x0)
4: t ∼ Uniform({1, . . . , T})
5: ϵ ∼ N (0, I), then compute xt

6: Take gradient descent step on ∇ϕLguide (Eq.13)
7: until converged

Algorithm 2 Denoising training (stage 2)
1: ϕ: frozen, θ: trainable
2: repeat
3: x0 ∼ q(x0)
4: t ∼ Uniform({1, . . . , T})
5: ϵ ∼ N (0, I), then compute xt

6: Take gradient descent step on ∇θLsimple (Eq.11)
7: until converged

As q(xi
t|xi

0) only explicitly depends on µ̄ϕ and σ̄ϕ, and xi
T ∼ N (µ̄ϕ(x0, T, i), σ̄

2
ϕ(x0, T, i)), we

consider µ̄ϕ and σ̄ϕ as the guidance networks. µϕ and σϕ are defined implicitly by Eq. 8 and Eq. 9.
To simplify the formulation, we define σ̄ϕ(x0, t, i) :=

√
1− ᾱtC(x0, i) where C(x0, i) is a function

independent of the timestep t, thus implicitly defining σϕ(x0, t, i) = σ̄ϕ(x0, T, i) = C(x0, i).

Reverse process: Note that x0 is the ground truth and only available for training. At test time, we
introduce a proposal generator to produce an initial reconstruction x̂0, and run µ̄ϕ and σ̄ϕ with
x̂0. x̂0 can either be results from an existing method or rough annotations from a human annotator.
We first draw the element-wise initial noise with xi

T ∼ N (µ̄ϕ(x̂0, T, i), σ̄
2
ϕ(x̂0, T, i)), and then run

denoising steps iteratively. Similar to Eq.4, the sampling step of the reverse process is derived as

xi
t−1 =

1
√
αt

[
xi
t − µ̄ϕ(x̂0, t, i)− σ̄ϕ(x̂0, t, i)

1− αt

1− ᾱt
ϵiθ(xt, t,y)

]
+ µ̄ϕ(x̂0, t− 1, i)+σtz

i (10)

The denoising network ϵθ takes the entire xt (i.e., all elements), and ϵiθ is the output of the ith element.
Please see Appendix A.2 for derivations.

Learning the denoising network: Following Eq. 5 of standard DDPM, the denoising objective is

Lsimple(θ) := Ex0,t,ϵ

[
N∑
i=1

||ϵi − ϵiθ(
{√

ᾱtx
i
0 + µ̄ϕ(x0, i, t) + σ̄ϕ(x0, i, t)ϵ

i
}
, t,y)||2

]
(11)

The above formulation from Eq.6 to Eq.11 resembles that of DDPM in §2, where the key difference
is the introduction of guidance networks µ̄ϕ and σ̄ϕ. We then describe the training of the guidance
networks, which is the key step of GS-DM.

Learning the guidance network: Before training the denoising network with Eq. 11, we train µ̄ϕ

and σ̄ϕ to ensure that xt in the diffusion process keep separated from other permutation variants
of x0. We quantify the permutation invariance between x0 and xt with a triplet loss LTriplet(·, ·, ·)
widely used in metric learning [4, 34] (full implementation details are in Appendix B.3):

Lperm(ϕ) := max
x′
0∈P!(x0)\{x0}

LTriplet(xt,x0,x
′
0) + max

x′
t∈P!(xt)\{xt}

LTriplet(x0,xt,x
′
t) (12)

P !(x0) is the set of all permutation variants of x0. Using the terminology in metric learning, the three
inputs of LTriplet(·, ·, ·) are the anchor, positive, and negative, respectively. Our loss only considers
the closest negative permutation, which is similar to the hard negative mining in some variants of
the triplet loss [6, 10]. We also add two regularization terms on µ̄ϕ and σ̄ϕ, so that the means of all
elements are not too scattered and the variances do not vanish. The final loss for training the guidance
networks is:

Lguide(ϕ) := Et,x0,ϵ

[
λ1Lperm(ϕ) + λ2

N∑
i=1

∥1/σ̄ϕ(x0, t, i)∥2 + λ3

N∑
i=1

∥µ̄ϕ(x0, t, i)∥2
]

(13)

Algorithm 1 and Algorithm 2 summarize the two-stage training paradigm of GS-DM.

4 PolyDiffuse: Polygonal shape reconstruction via GS-DM

PolyDiffuse uses the GS-DM to solve polygonal shape reconstruction tasks (see Figure 3), in particu-
lar, floorplan and HD map reconstruction. This section explains specific details and specializations.
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Figure 3: Illustration of the forward and reverse processes of PolyDiffuse with floorplan data.

Feature representation: A sample x is a set of elements xi as defined in §3. Each element xi is
either a (closed) polygon or a polyline, consisting of an arbitrary (for the floorplan task) or a fixed (for
the HD map task) number of vertices as a sequence: xi =

[
vi1, . . . , v

i
Ni

]
. Each vertex contains a 2D

coordinate. For the ground-truth data, we determine the first vertex of each element by sorting based
on the Y-axis coordinate and then the X-axis coordinate, similarly to PolyGen [27]. The polygons are
always in a counter-clockwise orientation.

Guidance network: As derived in §3, the forward (Eq.7) and reverse (Eq.10) processes only depend
on µ̄ϕ and σ̄ϕ, and each element follows xi

T ∼ N (µ̄ϕ(x0, T, i), σ̄
2
ϕ(x0, T, i)). Therefore, we choose

to directly parameterize µ̄ϕ(x0, T, i) = Transµ̄ϕ
(x0, i) and σ̄ϕ(x0, T, i) = Transσ̄ϕ

(x0, i) as two
Transformer [44] networks, and define for all timesteps t = 1, . . . , T − 1 as follows:

µ̄ϕ(x0, t, i) := (1−
√
ᾱt) Transµ̄ϕ

(x0, i), σ̄ϕ(x0, t, i) :=
√
1− ᾱt Transσ̄ϕ

(x0, i). (14)

Note that Eq.14 makes the noise adaptation directly dependent on ᾱt for simplicity and drops t
from the input. Algorithm 1 thus learns the above two Transformers. As for the proposal generator
to produce x̂0 at test time, we either employ the state-of-the-art task-specific method (i.e., Room-
Former [47] for floorplan and MapTR [23] for HD map) or simulate rough human annotations. Please
see §5 for experiments with different proposal generators, and Appendix B.1 for implementation
details of the guidance network.

Denoising network: The implementation of the denoising network ϵθ(xt, t,y) borrows the core
neural architectures from the state-of-the-art task-specific models RoomFormer [47] and MapTR [23].
While these two models are both adapted from DETR [3] and learn direct mappings from y to x with
encoder-decoder Transformers, we need to make a few essential modifications to turn them into valid
denoising networks (full implementation details are in Appendix B.2):

• Instead of the learnable embeddings or coordinates, xt should be the input nodes to the Transformer
decoder. Each vertex is a node, and the node feature is the concatenation of four positional
encodings [44]: two for X and Y-axis coordinates and another two for vertex and instance index.

• We encode the timestep t (or noise level) with a positional encoding [9, 14], and add this feature to
each block of the Transformer decoder.

Our overall formulation with GS-DM is independent of the network architectures, and more advanced
networks can be easily integrated into the framework in the future to boost performance.

Sampling acceleration: PolyDiffuse follows Eq.10 to reconstruct polygonal shapes. Song et al.[41]
shows that DDPM can be viewed as a discretization of a stochastic differential equation (SDE) with an
associated probability flow ODE, and advanced ODE solvers [19, 26, 39] can significantly accelerate
the sampling process. At test time, we employ a first-order solver (e.g., DDIM [39]) and use 10
sampling steps for both tasks (ablation study is in §5.3). During the generation process, PolyDiffuse
only runs the image encoder once as the visual features are shared across all steps.

Likelihood evaluation: With the probability flow ODE [41], PolyDiffuse can estimate its own
reconstruction quality via likelihood evaluation, thus enabling potential extensions such as search-
based or human-in-the-loop refinement as a wrapper around our system. This is an exciting property
not possessed by previous reconstruction approaches. We show examples in Figure 4.
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5 Experiments

We have implemented the system with PyTorch and used a machine with 4 NVIDIA RTX A5000
GPUs. We have borrowed the official codebase of Karras et al.[19] to implement the diffusion model
framework. The guidance networks are implemented as set-to-set Transformer decoders, and the
loss weights for the guidance training are λ1 = 1, λ2 = 0.05, λ3 = 0.1. The implementation of the
denoising network refers to the competing state-of-the-art, RoomFormer [47] and MapTR [23] for
floorplan and HD map reconstruction, respectively. Concretely, we employ the same ResNet [12]
image encoder, DETR-style Transformer architectures (discussed in §4), learning rate settings, and
optimizer settings as RoomFormer or MapTR, while increasing the number of training iterations
(×2.5 for floorplan and ×1.5 for HD map), as the model converges slower under a denoising
formulation than a detection/regression formulation. Note that we tried the same training schedule for
the competing methods but their performance dropped due to overfitting (see §5.3 for ablation study).
For each task, we use the same trained model for different types of proposals (i.e., existing methods
or rough annotations). Complete implementation details are in Appendix B, and supplementary
experiments are in Appendix D

5.1 Floorplan reconstruction

Dataset and metrics: Structured3D dataset [48] contains 3500 indoor scenes (3000/250/250 for
training/validation/test) with diverse house floorplans. The average/maximum numbers of polygons
and vertex per polygon across the dataset are 6.29/17 and 5.72/38, respectively. Point clouds are
converted to 256×256 top-view point-density images as inputs. We use the same evaluation metrics
as previous works [7, 42, 47], which consists of three levels of metrics with increasing difficulty:
room, corner, and angle. The precision, recall, and F1 score are reported at each metric level.

Competing approaches: We compare PolyDiffuse with five approaches from the literature: Floor-
SP [5], MonteFloor [42], LETR [46], HEAT [7], and RoomFormer [47]. The first two approaches
design sophisticated optimization algorithms to solve for the optimal floorplan with learned metric
functions, while the latter three use end-to-end Transformer-based neural networks, thus being much
faster. For our proposal generator RoomFormer, we simplify the implementation by removing the Dice
loss. As the dataset is very small, we add a random rotation data augmentation and train the modified
RoomFormer for 4× the original training iterations, which improves the overall performance.

Table 1: Quantitative evaluation on Structured3D test set [48]. PolyDiffuse outperforms the
state-of-the-art methods by clear margins, and works well with rough annotations. Results of previous
works are copied from [47]. ∗ indicates our modified implementation. †: The running time is
measured on a single Nvidia RTX A5000 GPU, and we only report those run by ourselves. When
using RoomFormer to produce the initial proposals, the running time counts both the RoomFormer
proposal generator and the GS-DM.

Evaluation Level → Room Corner Angle

Method Stages Steps FPS† Prec. Rec. F1 Prec. Rec. F1 Prec. Rec. F1

Floor-SP [5] 2 - - 89. 88. 88. 81. 73. 76. 80. 72. 75.
MonteFloor [42] 2 500 - 95.6 94.4 95.0 88.5 77.2 82.5 86.3 75.4 80.5
LETR [46] 1 1 - 94.5 90.0 92.2 79.7 78.2 78.9 72.5 71.3 71.9
HEAT [7] 2 3 - 96.9 94.0 95.4 81.7 83.2 82.5 77.6 79.0 78.3
RoomFormer [47] 1 1 - 97.9 96.7 97.3 89.1 85.3 87.2 83.0 79.5 81.2

RoomFormer∗ 1 1 29.9 96.3 96.2 96.2 89.7 86.7 88.2 85.4 82.5 83.9
+PolyDiffuse(Ours) 2 2 11.7 96.9 96.4 96.6 90.3 87.1 88.7 85.8 82.8 84.3
+PolyDiffuse(Ours) 2 5 7.1 98.5 97.9 98.2 92.5 89.0 90.7 90.3 86.9 88.6
+PolyDiffuse(Ours) 2 10 4.4 98.7 98.1 98.4 92.8 89.3 91.0 90.8 87.4 89.1
Rough annotations 1 - - 17.9 18.2 18.0 1.3 1.4 1.3 0.1 0.1 0.1
+PolyDiffuse(Ours) 2 10 19.2 97.4 98.2 97.8 91.7 92.2 91.9 89.2 89.7 89.4

Quantitative & qualitative evaluation: Table 1 presents the quantitative evaluation results. We
tried two proposal generators: 1) the improved RoomFormer and 2) rough annotations. The rough
annotations are prepared by turning the ground-truth data into fixed-radius small circles centered
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RoomFormer +PolyDiffuseInput image G.T. Rough annot. +PolyDiffuse Likelihood-based refinement
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Figure 4: Qualitative results for floorplan reconstruction. Left: PolyDiffuse improves the geometry
of RoomFormer and turns rough annotations into decent reconstructions. Right: PolyDiffuse enables
search-based self-refinement by enumerating different vertex numbers of polygons and evaluating its
own reconstruction likelihood (i.e., NLL per dimension).

at the instance centroid (see Figure 4), which simulates what a human annotator can provide easily
(i.e., indicating instance center and the number of vertices by looking at images). When using
RoomFormer as the proposal generator, PolyDiffuse outperforms all competing methods by clear
margins across all the evaluation metrics. The performance gap increases with the difficulty level
of the metric, indicating that PolyDiffuse is superior in high-level geometry reasoning. With the
rough annotations as the initial proposal, PolyDiffuse also produces reasonable reconstructions. The
recalls are especially high because of the correct number of vertices. Note that our training is not
dependent on any specific proposal generator, but PolyDiffuse works well with different generators at
test time. Figure 4 presents concrete qualitative examples of how PolyDiffuse improves the initial
reconstruction and enforces better geometry correctness. We also provide more qualitative examples
in Appendix D.3.

Running speed analysis: Table 1 also presents the speed-performance tradeoff of PolyDiffuse on
the floorplan reconstruction task. During the denoising process, the image encoding parts of the
denoising network only run once, while the transformer decoder part runs for multiple rounds. In
our computation environment, the time of image encoding vs. the time of transformer decoder is 2:1.
Since speed is not a crucial factor for floorplan reconstruction, we can just use more denoising steps
in real applications for better reconstruction quality.

Likelihood-based refinement: Figure 4(right) demonstrates how we leverage the likelihood evalua-
tion to refine reconstruction results with minimal user interaction. We manually indicate the imperfect
polygons (inside dashed boxes at the left), then run our system with different numbers of vertices
for these polygons while evaluating the reconstruction likelihood. The result with the best negative
log-likelihood (NLL) per dimension is the refined reconstruction.

5.2 HD map reconstruction

Dataset and metrics: The nuScenes dataset [2] provides a standard benchmark for HD map recon-
struction. The dataset contains 1000 ego-centric sequences collected by autonomous vehicles with
rich annotations. The data is annotated at 2Hz. Each sample has 6 RGB images and LiDAR sweeps
captured by onboard sensors, covering the 360◦ horizontal FOV. In the top-down Bird-eye-view
(BEV) space, the perception range is [−15m, 15m] for X-axis and [−30m, 30m] for Y-axis. The
map includes three categories of elements: pedestrian crossing, divider, and road boundary. For fair
comparisons, we use the same dataset split and pre-processing setups as previous works [22, 23, 25],
and also represent each polyline with 20 uniformly-interpolated vertices. Similar to MapTR [23], we
only use the RGB images as the sensor inputs in our experiments.

We follow the common evaluation protocol from the literature [23, 25], which employs the average
precision (AP) with the Chamfer distance as a matching criterion. The AP is averaged over three
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Table 2: Quantitative evaluation reuslts of HD map construction on nuScenes[2]. All methods
in the table use RGB inputs only and employ ResNet50 as the image backbone. +: Results are
obtained by running the official code with the released model checkpoint. †: The running time here is
measured on a single Nvidia RTX A5000 GPU, and we only report for the methods run by ourselves.
When using MapTR to produce the proposals, the running time counts both the MapTR proposal
generator and the GS-DM.

Matching Criterion → Chamfer distance + Ordered angle distance

Method Stages Steps FPS† APp APd APb mAP APp APd APb mAP

VectorMapNet [25] 1 20 - 36.1 47.3 39.3 40.9 - - - -
VectorMapNet [25] 2 20 - 42.5 51.4 44.1 46.0 - - - -
VectorMapNet+ 1 20 3.9 40.0 47.6 39.0 42.2 33.0 44.5 27.3 34.9
MapTR [23] 1 1 - 56.2 59.8 60.1 58.7 - - - -

MapTR+ 1 1 14.3 55.8 60.9 61.1 59.3 46.1 43.4 41.9 43.8
+PolyDiffuse(Ours) 2 2 6.3 56.8 59.8 60.9 59.2 50.3 48.2 44.3 47.6
+PolyDiffuse(Ours) 2 5 4.8 58.1 59.7 61.2 59.6 51.8 49.5 45.4 48.9
+PolyDiffuse(Ours) 2 10 3.4 58.2 59.7 61.3 59.7 52.0 49.5 45.4 49.0
Rough annotations - - - 18.5 2.2 0.7 7.1 8.7 0.0 0.0 2.9
+PolyDiffuse(Ours) 2 10 11.3 55.3 60.4 55.3 57.0 48.3 49.5 38.1 45.3

distance thresholds: {0.5m, 1.0m, 1.5m}, and the mean average precision (mAP) is obtained by aver-
aging across the three classes of map elements. However, the Chamfer distance does not consider the
vertex order and vertex matching between prediction and G.T., thus failing to measure the structured
correctness. As directional information is critical for autonomous vehicles, we propose to augment the
matching criterion with an extra order-aware angle distance. Concretely, we find the optimal vertex
matching between a prediction and a G.T. with the smallest coordinate distance, then trace along the
two polylines/polygons to compute the average angle distance (in degrees). A prediction is considered
a true positive only when satisfying both the Chamfer and angle distance thresholds. We augment
the three-level thresholds to {(0.5m, 5◦), (1.0m, 10◦), (1.5m, 15◦)}. Results are reported in both
the original and augmented metrics. We provide complete implementation details and visualizations
about the augmented metric in the Appendix C.

Competing approaches: We compare our method with VectorMapNet [25] and MapTR [23].
VectorMapNet [25] employs an auto-regressive transformer decoder to generate the vertex of poly-
gon/polyline one by one, conditioned on the image inputs. MapTR [23] is our proposal generator and
is a DETR-style hierarchical detection method that directly estimates the polygon/polyline as a set of
vertex sequences. MapTR and RoomFormer are technically very similar but focus on different tasks.

Quantitative & qualitative evaluation: Table 2 presents the quantitative evaluation results. PolyDif-
fuse does not significantly improve the Chamfer-distance mAP of MapTR, as it does not discover
new instances. However, it shows clear advantages in the order-aware angle distance, a metric
that is indicative of high-level structural regularities. Figure 5 qualitatively shows that PolyDiffuse
accurately reconstructs curves with greater resemblance to the ground truth. We also experimented
with the same rough annotations as in the floorplan task, and the quantitative results show that the
mAP becomes lower compared to using MapTR as the proposal generator. By analyzing the results
with rough annotations more carefully, we found the AP with the lowest threshold becomes much
worse, while the one with the highest threshold improves. We believe this is because the guidance
networks are trained with “G.T. proposals”, where the rough annotations (i.e., fixed radius circles)
have a very different curve style when serving as the proposals, thus producing inaccurate initial
Gaussians and stepwise guidance. This is a potential limitation of the current method. We provide
additional qualitative examples in Appendix D.3.

Running speed analysis: Table 2 also presents our speed-performance tradeoff on the HD map
reconstruction task. In our computation environment, the time of image encoding vs. the time
of transformer decoder is 4:1 when using MapTR’s model architecture. As FPS is an important
consideration for online applications, we need to pick the number of denoising steps carefully.
Furthermore, since PolyDiffuse is not restricted to a specific task-specific method for the model
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Surrounding views G.T. MapTR +PolyDiffuse Rough annot. +PolyDiffuse

Ped. crossing Divider Boundary

Figure 5: Qualitative results for HD map reconstruction. PolyDiffuse improves the geometry
correctness of MapTR (marked in red) and can turn rough annotations into reasonable reconstructions.

architecture and proposal generator, our performance/efficiency can keep improving when better
task-specific base methods appear in the future.

5.3 Ablation studies

We provide key ablation studies with the floorplan reconstruction benchmark. Please also find
additional ablation studies in Appendix D.1.
Standard DM vs. GS-DM: To better understand the effectiveness of our GS-DM, we define a
standard DM using a vanilla DDPM with images as the condition. The standard DM does not have the
guidance network and proposal generator. The reverse process starts with a noise sampled from the
standard Gaussian distribution and gradually denoises it into the final reconstruction using the same
sampler as GS-DM. It also has the same denoising network architecture as the GS-DM of PolyDiffuse.
As shown in Table 3, although standard DM produces reasonable results with 10 sampling steps,
it does not outperform the baseline method RoomFormer. Also, the performance of standard DM
drops significantly with fewer sampling steps, as the denoising ambiguity hurts the performance more
seriously with a larger sampling step size. We also demonstrate in Appendix D.2 that the standard
DM can fail in a toy experiment due to denoising ambiguity.
Sampling steps: Unlike the standard DM, Table 1, Table 2, and Table 3 all suggest that PolyDiffuse
is robust to fewer sampling steps and can still slightly improve RoomFormer or MapTR with a very
small number of sampling steps.
Training epochs: We observed that the model converges slower under the denoising formulation than
the detection/regression formulation of previous approaches. In Table 4, PolyDiffuse keeps improving
when training with longer schedules, while RoomFormer suffers from overfitting. However, even
with the default schedule, PolyDiffuse significantly outperforms the baseline.

6 Related Work

Structured reconstruction of polygonal shapes: Structured geometry reconstruction is an active
research area in computer vision, focusing on converting raster sensor data into vectorized geometries
such as room layouts [8, 13], floorplans [1, 24], planes [11, 37], wireframes [16], etc. Taking
advantage of the advancements in deep learning, methods with end-to-end neural architecture [7,
23, 25, 47, 49, 51] gradually dominate the area with superior accuracy and efficiency. In this
paper, we formulate the reconstruction of polygonal shapes as a conditioned generation process
with diffusion models, one of the essential machinery of the recent exploding generative AI. Our
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Table 3: Comparison between standard DM and
GS-DM with different sampling steps. Results
are reported in F1 scores.

Method Steps Room Corner Edge

RoomFormer 1 96.2 88.2 83.9

Standard DM
2 12.5 6.5 5.4
5 86.7 79.6 77.0

10 90.4 83.6 81.1

PolyDiffuse
(w/ GS-DM)

2 96.6 88.7 84.3
5 98.1 90.7 88.6

10 98.4 91.0 89.1

Table 4: Ablation study on the training schedule
of PolyDiffuse and RoomFormer. Results are
reported in F1 scores.

Method Epochs Room Corner Edge

RoomFormer 1× 96.2 88.2 83.9
2× 96.0 87.9 83.7

PolyDiffuse

1× 98.0 90.6 88.6
1.5× 97.7 90.6 88.7
2× 97.8 90.7 88.9
2.5× 98.4 91.0 89.1

method, PolyDiffuse, outperforms the current state of the arts on floorplan [47] and HD map [23]
reconstruction while enabling broader practical use cases.

Diffusion-based generative models: Diffusion Models (DM) or score-based generative models [28,
38, 40, 41] have made tremendous progress in the last few years and demonstrated promising
performance in content generations [9, 31, 32, 33, 43] and likelihood estimations [19, 20, 28]. In this
paper, we explore the potential of DM in the context of structured reconstruction and propose a Guided
Set Diffusion Model (GS-DM) by extending the DDPM [14] formulation. GS-DM reconstructs
complex polygonal shapes with a guided denoising (reverse) process subject to sensor data and can
evaluate its reconstruction likelihood by leveraging the underlying probability flow ODE [41]. Our
high-level formulation is relevant to PriorGrad [21], a diffusion model for acoustic data, but has
essential differences – GS-DM learns the guidance networks to control the diffusion and direct the
denoising in a per-element and stepwise manner, while PriorGrad pre-computes the mean and variance
of the target Gaussian from the condition and directly shifts the diffusion/denoising trajectory.

7 Conclusion
This paper introduces PolyDiffuse, a system designed to reconstruct high-quality polygonal shapes
from sensor data via a conditional generation procedure. At the heart of PolyDiffuse is a novel Guided
Set Diffusion Model, that controls the noise injection in the diffusion process to avoid permutation
ambiguity for denoising. PolyDiffuse achieves state-of-the-art performance on two challenging tasks:
floorplan reconstruction from a point density image and HD map construction from onboard RGB
images. To our knowledge, this paper is the first to demonstrate that Diffusion Models, generally
regarded as a generation technique, are also powerful for reconstruction, potentially encouraging the
community to further investigate the effectiveness of Diffusion Models in broader domains.

Limitations: PolyDiffuse suffers from two major limitations. First, it does not recover geometry
instances (e.g., rooms for floorplan) missing in the initial reconstruction, while the likelihood-based
refinement provides a possible solution by incorporating search or external inputs. Second, as shown
in the HD mapping results with rough annotations, when the style of initial reconstructions (e.g.,
fixed radius small circles) is different from the curve style of ground truth, the guidance networks
could produce bad initial Gaussians and guidance, leading to inaccurate locations of the final results.
Training specific guidance and denoising networks for each type of initial reconstruction is a solution
but induces more computation.

Broader impact: The paper benefits applications in architecture, construction, autonomous driving,
and potentially human-in-the-loop annotations systems to reduce human workload. However, potential
malicious or unintended applications might include military scenarios, for example, reconstructing
digital models of important buildings or structures for targeted military operations.

Acknowledgements: This research is partially supported by NSERC Discovery Grants with Accel-
erator Supplements and DND/NSERC Discovery Grant Supplement, NSERC Alliance Grants, and
John R. Evans Leaders Fund (JELF). We thank the Digital Research Alliance of Canada and BC DRI
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Appendix:
PolyDiffuse: Polygonal Shape Reconstruction via Guided Set Diffusion Models

This appendix is organized as follows:

• §A: The derivation of the Guided Set Diffusion Models based on the DDPM [14] formulation.
• §B: Additional implementation details, including:

– Architectures and implementation details of the guidance networks.
– Architectures and implementation details of the denoising networks.
– Implementation details of the permutation loss Lperm(ϕ) for the guidance training.
– Implementation details of the diffusion models framework.

• §C: More details and analyses on the augmented matching criterion for the mean AP metric to
evaluate HD map reconstruction.

• §D: Extra experimental results including:
– Additional ablation studies on the design choices of the denoising networks.
– Additional qualitative results for floorplan and HD map reconstruction.

A Derivation of Guided Set Diffusion Models (GS-DM)

In this section, we present more details of the derivation of the Guided Set Diffusion Models (GS-DM)
proposed in §3 of the main paper.

A.1 Forward process

We derive Eq. 7, 8, and 9 in Sec. 3 of the main paper by induction. The trivial case of t = 1 can
be easily verified. Let xi

t−1 =
√
ᾱt−1x

i
0 + µ̄ϕ(x0, t− 1, i) + σ̄ϕ(x0, t− 1, i)ϵit−1 for t > 1 and

ϵit−1 ∼ N (0, I). By definition, we have

xi
t =

√
αtx

i
t−1 + µϕ(x0, t, i) +

√
1− αtσϕ(x0, t, i)ϵ

i
t

=
√
αt(

√
ᾱt−1x

i
0 + µ̄ϕ(x0, t− 1, i) + σ̄ϕ(x0, t− 1, i)ϵit−1)+

µϕ(x0, t, i) +
√
1− αtσϕ(x0, t, i)ϵ

i
t

=
√
ᾱtx

i
0 +

√
αtµ̄ϕ(x0, t− 1, i) + µϕ(x0, t, i)+

√
αtσ̄ϕ(x0, t− 1, i)ϵit +

√
1− αtσϕ(x0, t, i)ϵ

i
t

(15)

where ϵit is a standard Gaussian variable independent of ϵit−1. Since ϵit−1 and ϵit are independent,√
αtσ̄ϕ(x0, t− 1, i)ϵit−1 +

√
1− αtσϕ(x0, t, i)ϵ

i
t is a Gaussian random variable of zero mean and

a variance of αtσ̄
2
ϕ(x0, t− 1, i) + (1− αt)σ

2
ϕ(x0, t, i). Thus we have

µ̄ϕ(x0, t, i) :=
√
αtµ̄ϕ(x0, t− 1, i) + µϕ(x0, t, i) and (16)

σ̄2
ϕ(x0, t, i) := αtσ̄

2
ϕ(x0, t− 1, i) + (1− αt)σ

2
ϕ(x0, t, i), (17)

which correspond to Eq.8 and Eq.9 of the main paper, and we further obtain

q(xi
t|xi

0) = N (xi
t;

√
ᾱtx

i
0 + µ̄ϕ(x0, t, i), σ̄

2
ϕ(x0, t, i)I), (18)

which is the Eq.7 of the main paper.

A.2 Reverse process

Assuming we are given the guidance networks µϕ and σϕ and the noise scales σts of the reverse
process, we follow a style similar to DDPM [14] to derive a sampling step in the reverse process. At
each sampling step in the reverse process, pθ(xi

t−1|xi
t), the Gaussian distribution to sample xi

t−1 from
is supposed to have the same mean as q(xi

t−1|xi
t,x0) defined by the forward process, which is also

Gaussian, to minimize their KL divergence. As the joint distribution of xi
t−1 and xi

t conditioned on
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x0 is Gaussian, the mean of q(xi
t−1|xi

t,x0) can be easily derived with the following closed form [30,
Chapter 8.1.3]:

√
ᾱt−1x

i
0 + µ̄ϕ(x

i
0, t− 1, i) +

√
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2
ϕ(x0, t− 1, i)
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(xi
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ᾱtx

i
0 − µ̄ϕ(x0, t, i)). (19)

Since xi
t =

√
ᾱtx

i
0 + µ̄ϕ(x0, t, i) + σ̄ϕ(x0, t, i)ϵ

i for ϵi ∼ N (0, I), Equation 19 can be rewritten as
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(20)

As our formulation directly parameterizes σ̄ϕ, we further simplify Eq. 20 by defining σ̄ϕ(x0, t, i) :=√
1− ᾱtC(x0, i) where C(x0, i) is independent of the timestep t, thus implicitly defining

σϕ(x0, t, i) = σ̄ϕ(x0, T, i) = C(x0, i). Such a parameterization makes {σ̄ϕ(x0, t, i)}t simply
an interpolation between 0 and σ̄ϕ(x0, T, i) and further simplifies Eq. 20 as

1
√
αt

(xi
t − µ̄ϕ(x

i
0, t, i)− σ̄ϕ(x0, t, i)

1− αt

1− ᾱt
ϵi) + µ̄ϕ(x

i
0, t− 1, i). (21)

During inference, we replace µ̄ϕ(x0, t, i) and σ̄ϕ(x0, t, i) with µ̄ϕ(x̂0, t, i) and σ̄ϕ(x̂0, t, i) respec-
tively and replace ϵi with the denoising network ϵiθ to define the mean of sampling distribution
pθ(x

i
t−1|xi

t) and derive a sampling step in the reverse process as

xi
t−1 =

1
√
αt

[
xi
t − µ̄ϕ(x̂0, t, i)− σ̄ϕ(x̂0, t, i)

1− αt

1− ᾱt
ϵiθ(xt, t,y)

]
+µ̄ϕ(x̂0, t− 1, i)+σtz

i, (22)

which is the Eq.10 of the main paper.

B Additional implementation details

In this section, we complement §4 of the main paper by providing the complete implementation
details of PolyDiffuse for the two different tasks.

B.1 Guidance networks

The implementation details of the guidance networks are shared across the two tasks.

Model architectures: In §4 of the main paper, we parameterize µ̄ϕ(x0, T, i) and σ̄ϕ(x0, T, i) with
two Transformers Transµ̄ϕ

(x0, i) and Transσ̄ϕ
(x0, i), and define µ̄ϕ(x0, t, i) and σ̄ϕ(x0, t, i) with

Eq.14. The two Transformers are implemented with a DETR-style [3] Transformer decoder2: The
Transformer decoder contains two shared attention-based decoder layers and two separate linear
projection heads for µ̄ϕ and σ̄ϕ, respectively. Each decoder layer consists of an intra-element self-
attention layer and a global self-attention layer, whose outputs are fused by addition. Each vertex
in the input x0 becomes an input node of the Transformer decoder, and the node feature consists
of three positional encodings [44]: 1) positional encoding of the X-axis coordinate, 2) positional

2https://github.com/facebookresearch/detr/blob/main/models/transformer.py
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encoding of the Y-axis coordinate, 3) positional encoding of the vertex index inside the element. The
sequence of each element starts with a special dummy node (similar to the SOS token in language
modeling), whose final encodings are used to compute the µ̄ϕ and σ̄ϕ of the element. The dimension
of the positional encoding is 128, and the hidden dimension of the Transformer decoder is 256.

Training details: The guidance training is summarized by Algorithm 1 of the main paper. We train
the Transformer decoder for 3125 iterations with batch size 32. Adam optimizer is employed with a
learning rate of 2e-4 and a weight decay rate of 1e-4.

B.2 Denoising networks

Since the implementations of the denoising networks are based on the corresponding state-of-the-art
task-specific models, we describe them separately.

Floorplan reconstruction: The denoising network for the floorplan reconstruction task refers
to RoomFormer [47] and its official implementation3. RoomFormer is a DETR-based [3] model
consisting of a ResNet50 [12] image backbone, a Transformer encoder to process and aggregate
image information, and a Transformer decoder with two-level learnable embeddings/cooridnates
to predict a set of polygon vertices from the image information. The Transformer has 6 encoder
layers and 6 decoder layers with an embedding dimension of 256, and deformable-attention [50] is
employed for all cross-attention layers and the self-attention layers in the Transformer encoder.

We follow the same architecture as RoomFormer, and have discussed the key modifications to turn
the model into a denoising function (§4 of the main paper) and our improvements to lift up its
overall performance (§5 of the main paper). A minor modification omitted in the main paper is that
we add an intra-element attention layer to each Transformer decoder layer to increase the model
capacity, as we found the model converges obviously slower under the denoising formulation than
the regression/detection formulation of RoomFormer. In each decoder layer, the outputs of the
intra-element attention are added to the outputs of the original global attention. The intra-element
attention increases the number of overall parameters by ~5%, and the corresponding ablation study is
in §D.1 of this appendix, showing minor but recognizable improvements.

For training the denoising network, we keep the same setups as RoomFormer except that we increase
the number of training iterations (ablation study is in §5 of the main paper). Adam optimizer is
employed with a base learning rate of 2e-4 for all parameters, and the learning rate decays by a factor
of 0.1 for the last 20% iterations.

HD map reconstruction: The denoising network for the HD map reconstruction task refers to
MapTR [23] and its official implementation4. The overall design of MapTR is very similar to
RoomFormer, where the keys are the “hierarchical” or “two-level” query embeddings for DETR-style
Transformer and a loss based on “hierarchical bipartite matching”. We use the same model config file
provided in MapTR’s official codebase and convert the model into a denoising function as described
in §4 of the main paper. Similar to what we did to RoomFormer above, we add an intra-element
attention layer to each Transformer decoder layer to facilitate convergence.

We employ an Adam optimizer with a base learning rate of 6e-4 and a weight decay factor of 1e-4.
A cosine learning rate scheduler is used. To further facilitate convergence under the denoising
formulation, we load the ResNet image backbone and Transformer encoder from the pre-trained
MapTR, and set the initial learning rate of the image backbone to be 0.1 of the base learning rate.

When using MapTR as the proposal generator to produce the initial reconstruction for PolyDiffuse,
we only consider predicted instances with a confidence score higher than 0.5 as MapTR’s positive
predictions. PolyDiffuse takes and updates the positive predictions of MapTR and keeps the remaining
low-confidence predictions unchanged. Only the positive predictions are visualized for the qualitative
results of MapTR and PolyDiffuse.

3https://github.com/ywyue/RoomFormer
4https://github.com/hustvl/MapTR
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B.3 Permutation loss

Directly computing the Lperm(ϕ) as defined in Eq.14 of the main paper requires finding x∗
0 =

argmaxx′
0∈P!(x0)\{x0} LTriplet(xt,x0,x

′
0) and x∗

t = argmaxx′
t∈P!(xt)\{xt} LTriplet(x0,xt,x

′
t),

where the size of P !(x0) and P !(xt) is N !. This enumeration over all N ! permutations of x0 and xt

immediately becomes computationally prohibitive when N gets large.

To reduce the computational cost and make Eq.14 practically feasible, we propose to approximate
Lperm(ϕ) with element-level triplet losses. Concretely, we first enumerate all pairs of elements xi

0

and xj
t for i, j = 1, . . . , N to compute a N×N distance matrix D. The entry D(i, j) is the minimum

distance between two elements xi
0 and xj

t , considering all possible vertex-level permutations (i.e.,
two variants for a polyline, and 2(Ni − 1) variants for a polygon with Ni vertices, similar to the
“point-level matching” in MapTR [23]). We then replace the sample-level triplet loss in Lperm(ϕ)

with N element-level triplet losses, and define the computationally feasible proxy loss L̂perm(ϕ) as:

L̂perm(ϕ) =
∑

i=1,...,N

max
1≤j≤N,j ̸=i

LTriplet(x
i
t,x

i
0,x

j
0) + max

1≤j≤N,j ̸=i
LTriplet(x

i
0,x

i
t,x

j
t ), (23)

LTriplet(x
i
t,x

i
0,x

j
0) = max (0, α+D(i, i)−D(j, i)) , (24)

LTriplet(x
i
0,x

i
t,x

j
t ) = max (0, α+D(i, i)−D(i, j)) . (25)

α is the soft margin hyperparameter of the hinge-style triplet loss [15, 34] and we set α = 0.1. All
coordinate values are re-scaled into [−1, 1]. In this way, we reduce the computational cost from
O(N !) to O(N2M), where M = maxNi=1 Ni is the maximum number of vertices of an element of
x0. In practical implementation, the guidance training (Algorithm 1 of the main paper) uses L̂perm(ϕ)
rather than Lperm(ϕ).

B.4 Diffusion models framework

Karras et al.[19] (EDM) presents a general diffusion model framework, where DDPM [14] and SDE-
based DM formulations from Song et al.[41] can all be viewed as specializations of the proposed
framework. We borrow its official codebase5 to implement our GS-DM as it provides a general
and clean base implementation suitable for all DM-based formulations. We then describe how we
adapt the GS-DM into the EDM-based framework and list the relevant hyperparameter settings.
This subsection follows the notations in Karras et al., where y is the data sample, n is the sampled
Gaussian noise, x is the noisy sample, σ is the noise level (equivalent to the timestep), while cskip(σ),
cin(σ), cout(σ), and cnoise(σ) are the preconditioning factors [19, Section 5]. Similar to the notations
of our main paper, we let yi and xi denote the ith element of y and x, respectively. The sensor
condition is omitted for notation simplicity.

To adapt our GS-DM into the EDM framework, we first set σdata = 1.0 for EDM [19, Table 1], and
then adapt the preconditioning equation [19, Section 5, Eq.7] based on §3 of our main paper:

Dθ(x
i;σ,y) = cskip(σ) x

i+ cout(σ) F
i
θ

({
cin(σ) x

i + (1− cin(σ)) µ̄ϕ(y, σ, i)
}
; cnoise(σ)

)
, (26)

where the per-element noise injection is defined as xi = yi+nσ̄ϕ(y, σ, i), and noise n ∼ N (0, σ2I).
Dθ(x

i;σ,y) is the reconstructed yi. Fθ is the denoising network taking all elements of a noisy
sample x, and F i

θ is the output of the ith element. With the above modifications, we implement
our GS-DM with the general EDM framework. We then describe the concrete hyperparameter
settings [19, Table 1] for our two tasks. Please refer to Karras et al. for detailed explanations of each
hyperparameter.

Floorplan reconstruction: For the guidance training, we set the Pmean = 1.0 and Pstd = 4.0 to
ensure sufficient coverage of the forward process. For the denoising training, we set the Pmean = −0.5
and Pstd = 1.5. For inference (sampling), we set σmax = 5.0 and σmin = 0.01. Instead of the 2nd

order Heun ODE solver adopted by the original EDM, we simply employ the 1st order Euler solver
for sampling, which is equivalent to DDIM [39]. All other hyperparameters are kept unchanged.

HD map reconstruction: The settings of Pmean and Pstd for guidance and denoising training are the
same as the floorplan reconstruction task. We set cskip(σ) = 0 and cout(σ) = 1 so that the denoising

5https://github.com/NVlabs/edm
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G.T. CD matching +OAD matching

G.T. CD matching +OAD matching

G.T. CD matching +OAD matching

G.T. CD matching +OAD matching

G.T. CD matching +OAD matching G.T. CD matching +OAD matching

Figure 6: Illustration of the matching results with MapTR [23] predictions. CD matching: the
original Chamfer distance (CD) matching criterion with a threshold of 1.0m. +OAD matching:
the original CD criterion with a threshold of 1.0m, augmented with the order-aware angle distance
(OAD) criterion with a threshold of 10◦. The matched instances (i.e., true positives) are marked in
red except for the two endpoints.

network directly estimates the sample y, as we found this choice stabilizes the denoising training on
the HD map construction task. For inference (sampling), we set σmax = 5.0 and σmin = 0.1, and use
the Euler solver. All other hyperparameters are kept unchanged.

C The augmented matching criterion for HD map reconstruction

In §5.2 of the main paper, we augment the Chamfer-distance (CD) matching criterion for the mean
AP (mAP) metric used in previous works [23, 25] with an order-aware angle distance (OAD) to
better evaluate the structural regularity and directional correctness of the results. This section first
discusses the limitations of the original Chamfer-distance matching criterion and then provides
complete implementation details of the order-aware angle distance.

C.1 The limitations of the Chamfer-distance matching criterion

Figure 6 shows examples of the Chamfer-distance (CD) matching (threshold is 1.0m). Since CD
considers each vertex separately, it mostly evaluates the global location of the instance and ignores
the structural/directional information of the prediction. In the figure, some predictions with obviously
wrong shapes are considered true positives under the CD matching criterion, while the augmented
OAD matching criterion can effectively reject these bad shapes and align better with human judgment.
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C.2 Implementation details

The computation of the order-aware angle distance is based on an optimal vertex-level matching
between a predicted element (instance) and a ground truth (G.T.) element, similar to the “point-level
matching” in the loss computation of MapTR [23]. Concretely, we enumerate through all equivalent
representations of a G.T. map element and compute the average vertex-level L1 distance between
the G.T. vertices and the predicted vertices. The variant with the smallest average vertex-level L1
distance forms the optimal matching with the predicted element. There are two equivalent variants
for a polyline and 2(Ni − 1) equivalent variants for a polygon with Ni vertices. After obtaining
the optimal one-to-one vertex-level matching, we trace along the vertices of the G.T. and predicted
elements to compute their average angle distance.

With the augmented OAD matching criterion, we change the three-level thresholds of the original CD-
based AP from {0.5m, 1.0m, 1.5m} into {(0.5m, 5◦), (1.0m, 10◦), (1.5m, 15◦)}. However, com-
pared to polylines (i.e., road dividers and boundaries), we noticed that the angle direction of polygons
(pedestrian crossings) is much more challenging to recover. With an OAD threshold of 5◦, MapTR’s
average precision for the pedestrian crossing class (APp) is zero. Therefore, we loosen the OAD thresh-
olds for the pedestrian crossing class by a factor of 2 (i.e., {(0.5m, 10◦), (1.0m, 20◦), (1.5m, 30◦)})
while not changing the thresholds for the other two classes.

D Additional experimental results

This section provides additional experimental results, including extra ablation studies and qualitative
comparisons.

Table 5: Ablation study for the intra-element attention layer on the floorplan reconstruction task.
Note that PolyDiffuse uses the RoomFormer from the first row to produce the initial reconstruction.

Evaluation Level → Room Corner Angle

Method Intra-element-attn Prec. Rec. F1 Prec. Rec. F1 Prec. Rec. F1

RoomFormer ✗ 96.3 96.2 96.2 89.7 86.7 88.2 85.4 82.5 83.9
RoomFormer ✓ 96.9 96.4 96.6 90.3 87.0 88.6 84.9 81.9 83.4
PolyDiffuse(Ours) ✗ 98.4 97.8 98.1 92.4 89.0 90.7 90.2 87.0 88.6
PolyDiffuse(Ours) ✓ 98.7 98.1 98.4 92.8 89.3 91.0 90.8 87.4 89.1

Table 6: Ablation study for the intra-element attention layer on the HD map reconstruction task.
Note that PolyDiffuse uses the MapTR from the first row to produce the initial reconstruction.

Matching Criterion → Chamfer distance + Ordered angle distance

Method Intra-element-attn APp APd APb mAP APp APd APb mAP

MapTR ✗ 55.8 60.9 61.1 59.3 46.1 43.4 41.9 43.8
MapTR ✓ 56.5 59.9 60.2 58.8 48.6 44.8 41.6 45.0
PolyDiffuse(Ours) ✗ 56.9 59.2 60.6 58.9 50.8 48.3 44.9 48.0
PolyDiffuse(Ours) ✓ 58.2 59.7 61.3 59.7 52.0 49.5 45.4 49.0

D.1 Additional ablation studies

Table 5 presents the ablation study of the intra-element attention with the floorplan reconstruction
task. Comparing the first and second rows, adding intra-element attention to RoomFormer slightly
improves the room and corner results but deteriorates the angle-level performance. Table 6 provides
a similar comparison for the HD map reconstruction task. Augmenting MapTR with intra-element
attention worsens the mAP with the CD matching criterion while slightly improving the mAP with the
OAD-augmented matching criterion. These comparisons provide a potential empirical explanation
for the architecture choice of RoomFormer and MapTR – they only employ global attention layers
without extra attention layers at the element or instance level.
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On the contrary, as indicated by the third and fourth rows of both Table 5 and Table 6, applying intra-
element attention consistently boosts PolyDiffuse across all metrics, although the improvements are
not huge. A potential explanation here is that the denoising task of PolyDiffuse is more challenging
than the regression/detection task of RoomFormer and MapTR, thus benefiting from extra modeling
capacities.

D.2 A toy experiment with standard DM

In Figure 7, we provide a toy experiment to support what we motivated in §1 of the main paper,
which demonstrates how standard DM easily fails even with a single data sample. Note that we have
clarified the definition of standard DM in §5.3 of the main paper. In this experiment, the data contains
a single toy sample with 6 rectangular shapes, so there are permutation-equivalent representations.
After sufficient training, we draw four samples using the image-conditioned denoising process. The
DDIM sampler is used with 10 sampling steps, so the randomness only comes from the initial noise.
As the figure shows, only the third sample gets the correct reconstruction result. With the challenges
of set ambiguity, a standard conditional DM has trouble overfitting a single data sample and easily
gets wrong outputs when the initial noise is inappropriate.

Toy input image

There are 6 elements, 
and the G.T. has 6! = 720 
permutation-equivalent 
representations

Sampling results of Standard DM (DDIM sampler, 10 steps)

Sample 1 Sample 2

Sample 3 Sample 4

t = 0 t = 10

⋯ ⋯

t = 0 t = 10

⋯ ⋯

t = 0 t = 10

⋯ ⋯

t = 0 t = 10

⋯ ⋯

Figure 7: A simple toy experiment of using a standard DM to fit a single data sample with 6 elements.
Four sampling results with different initial noises are shown. The DDIM sampler is used with 10
denoising steps. Only one of the four samples (i.e., Sample 3) gets the correct final result due to the
challenges induced by the set ambiguity, as explained in the main paper.

D.3 More qualitative examples

We provide additional qualitative results to compare PolyDiffuse against the state-of-the-art floorplan
and HD map reconstruction methods, respectively. Note that the state-of-the-art method (i.e., Room-
Former or MapTR) produces the initial reconstruction for PolyDiffuse. Figure 8 to Figure 10 are for
the floorplan reconstruction task, while Figure 11 to Figure 13 are for the HD map reconstruction
task.

Since the likelihood-based refinement is not employed in the qualitative examples of this subsection,
PolyDiffuse cannot discover missing instances that are not covered by the proposal generator (i.e.,
RoomFormer and MapTR in the qualitative results). However, the visual comparisons clearly
demonstrate that PolyDiffuse significantly improves the structural regularity of the reconstructed
polygonal shapes.
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RoomFormer +PolyDiffuseInput image G.T.

Figure 8: Additional qualitative results for the floorplan reconstruction task.
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RoomFormer +PolyDiffuseInput image G.T.

Figure 9: Additional qualitative results for the floorplan reconstruction task.
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RoomFormer +PolyDiffuseInput image G.T.

Figure 10: Additional qualitative results for the floorplan reconstruction task.
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Boundary

Surrounding views G.T. MapTR +PolyDiffuse

Ped. crossing Divider

Figure 11: Additional qualitative results of the HD map reconstruction task.
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Boundary

Surrounding views G.T. MapTR +PolyDiffuse

Ped. crossing Divider

Figure 12: Additional qualitative results of the HD map reconstruction task.
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Boundary

Surrounding views G.T. MapTR +PolyDiffuse

Ped. crossing Divider

Figure 13: Additional qualitative results of the HD map reconstruction task.
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