
Published as a workshop paper at ICLR 2025

AN EMPIRICAL STUDY OF POLICY INTERPOLATION
VIA DIFFUSION MODELS

Yuqing Xie1, Chao Yu1,2, Ya Zhang3,4, Yu Wang1

1Tsinghua University, 2Beijing Zhongguancun Academy,
3Shanghai Jiao Tong University, 4Shanghai Artificial Intelligence Laboratory,

ABSTRACT

Diffusion-based policies have shown great potential in multi-task settings, as they
can solve new tasks without additional training through inference-time steering. In
this paper, we explore the inference-time composition of diffusion-based policies
using various interpolation methods. Our results show that, while existing meth-
ods merely switch between predefined action modes, our proposed approach can
generate entirely new action patterns by leveraging existing policies, all without
the need for further training or tuning.

1 INTRODUCTION

In real-world applications, robots often need to solve new tasks that are out of training task distri-
bution. With behavioral cloning, we can distill multiple task-specific policies into a single model,
which not only enables the robot to solve a variety of tasks with one model, but also provides certain
cross-task transfer capability to tackle new tasks. (Reuss et al., 2023; Liang et al., 2024; Ma et al.,
2024)

Diffusion models are generative models that have been widely applied in image generation for its
high-quality generation and training stability (Ho et al., 2020; Kingma et al., 2021; Du & Kaelbling,
2024). When applied to robot policies, diffusion models are able to represent multimodal action
distributions and handle high-dimensional action spaces (Chi et al., 2023), which significantly im-
proves policy performance. Additionally, diffusion-based policies facilitate task composition during
the inference phase, either through reward signals (Janner et al., 2022; Wang et al., 2022) or action
constraints (Mishra et al., 2023).

Among these methods, Decision Diffuser (DD) (Ajay et al., 2022) achieves a preliminary form of
skill composition. DD diffuses over the state sequence, and use an inverse dynamics model to predict
actions from neighboring states. When trained to imitate various gaits of a quadruped robot, DD can
generate a new gait that combines the characteristics of all the trained gaits with inference-time
Classifier-Free Guidance (CFG) (Ho & Salimans, 2022).

However, DD only switches between different behavior modes without efficiently merging them. To
facilitate policy interpolation, we design and compare different inference-time interpolation methods
for diffusion-based policies. We also incorporates CFG++ technique (Chung et al., 2024), which
shows improvement in image generation tasks, into the our sampling procedure. The results show
that CFG, with proper diffusion modeling and sampler, can blend existing policy modes into new
ones without further training or tuning, and thus achieve skill composition via policy interpolation.

2 METHOD

Diffusion process composes of two sub-processes. The forward process gradually adds Gaussian
noise to the initial data point x0, xt = αtx0+σtϵ, where αt and ϵ are predefined noise schedule. The
reverse process iteratively denoises current sample xt to obtain x0. For example, using probability
flow ODE (PF-ODE) (Song et al., 2020b), we obtain:

x̂t = (xt −
√
1− ᾱt)ϵt/

√
ᾱt (1)
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xt−1 =
√
ᾱt−1x̂t +

√
1− ᾱt−1ϵt (2)

where ϵt = ϵt(xt, t) is parameterized by a neural network that conditioned on current data point xt

and sampling time step t, and ᾱt is determined by αt.

For guided sampling, we employ CFG, which substitutes ϵt(xt, t) with ϵ̂t(xt, t, y) = ϵt(xt, t, ∅) +
w(ϵt(xt, t, y)− ϵt(xt, t, ∅)) in equation 1 and 2, where y is the condition and w is guidance weight.
We train the network with certain condition dropout rate to obtain the conditioned and the un-
conditioned ϵt simultaneously. CFG++ further substitutes equation 2 with xt−1 =

√
ᾱt−1x̂t +√

1− ᾱt−1ϵt(xt, t, ∅) to achieve better sample quality and reduce mode collapse in image genera-
tion. We incorporate CFG++ sampling to our diffusion backbone.

We consider our problem as conditioned imitation learning. For clarity, in the following notations,
we omit the subscript t in the sampling process and use t for the time step of a given trajectory.
Given a dataset D = {τk|τk = (st, at, y)

Nk
t=1} that consists of states s, actions, a, and one-hot task

labels y, we diffuse over trajectory segments, x = ((st, at)|f(y)), where f is a network that encodes
y to latent space, and y1|y2 is the union of the one-hot labels y1, y2.

We will compare 4 different policy interpolation methods, together with Decision Diffuser (DD):

• Noise Model Merge (NM), where ϵ̂NM = 0.5ϵt(x, f(y1)) + 0.5ϵt(x, f(y2));

• Direct Label Merge (DL), where ϵ̂DL = ϵ̂t(x, f(y1|y2));
• Latent Label Merge (LL), where ϵ̂LL = ϵ̂t(x, 0.5f(y1) + 0.5f(y2));

• CFG Merge (CFG), where ϵ̂CFG = 0.5ϵ̂t(x, f(y1)) + 0.5ϵ̂t(x, f(y2)).

3 EXPERIMENTS

We benchmark the interpolation methods in MuJoCo HalfCheetah environment. We design three
base tasks, where the robot moves forward at speeds of 1, 2, and 3 m/s, and two interpolating tasks
with forward speeds of 1.5 and 2.5. We collect expert datasets for each base task following D4RL
pipeline as in Fu et al. (2020) and then train all models via imitation learning until convergence.
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(e) CFG.

Figure 1: The performance of five different policy interpolation methods. Each curve represents
a collection of 50 rollout trajectories for a given task. The x-axis denotes the time steps within
the episode, while the y-axis denotes the robot’s current speed. The blue lines depict the average
trajectories for the base tasks (vel=1, 2, 3). The red line shows the interpolation result between vel=2
and vel=3, and the orange line shows the interpolation result between vel=1 and vel=2.

We present the results in Figure 1. The interpolated trajectories generated by DD are consistent with
the base tasks trajectories. In other words, DD randomly selects one of the two base task trajectories
as the output. We hypothesize that the inverse dynamics model limits the generalization capability
of the diffusion model, and thus making the output actions heavily rely on the existing dataset dis-
tribution. NM produces interpolated trajectories that are similar to the base task trajectories, lacking
strong guidance towards new action modes. Methods like DL, which merely modifies the condition
labels, can only select trajectories within base task trajectories. Due to the lack of regulations on
the latent label space, the conditions fused by LL are semantically invalid, and therefore produces
invalid actions after guided sampling. In contrast, our simple model with CFG merging integrates
the data gradients from both base tasks during the denoising process. As a result, it successfully
finds new action modes and generates stable trajectories that lie between the base task trajectories.

We further quantitatively analyze the impact of CFG++ on the quality of interpolation. We compute
the average deviation between the interpolated trajectory and the intermediate trajectory directly
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merged by two base trajectories. The deviation for CFG is 0.302, while CFG++ reaches 0.197. This
indicates that CFG++ improves sample quality and yields more accurate policy interpolation results.
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A APPENDIX

A.1 EXPERIMENT SETUP

We design three base tasks for MuJoCo HalfCheetah environment, where the robot moves forward at
speeds of 1, 2, and 3 m/s, respectively. To collect dataset, we train RL policy models with SAC until
convergence, and then collect 1000 RL rollout trajectories for each task. We present the average
performance of the dataset in Table 1.

Target Velocity 1 2 3
Average Velocity in Dataset 0.969 1.914 2.976

Table 1: Dataset quality.

Our diffusion-based policy is built upon CleanDiffuser (Dong et al., 2024). We use DiT1d model
(Dong et al., 2023) as the diffusion model backbone and MLP as the condition encoder. The total
model size is about 4MB. During the denoising process, we employ DDIM (Song et al., 2020a) with
CFG++ augmentation (Chung et al., 2024) as the solver.

A.2 LIMITATIONS AND FUTURE WORK

In this paper, we present preliminary evidence of the potential for policy interpolation using diffusion
models. However, our approach lacks certain theoretical guarantees and may not generalize reliably
in all settings.

Diffusion models generate plausible interpolations within a learned latent space; the interpolations
are then mapped back to the task space (i.e., the physical world) to produce the interpolated pol-
icy. However, there is no theoretical guarantee of a unique or invertible mapping between the latent
space and the task space. In other words, the interpolated policy may exhibit several distinct be-
haviors when mapped to the task space, yet they are all valid interpolations in the latent space. For
example, when the learned latent space corresponds to the robot’s forward velocity in the task space,
interpolating between two policies results in a new policy whose velocity is a blend of the velocities
of the two base policies. However, if the latent space corresponds to the robot’s joint angles, the
interpolated policy will be a combination of the joint angles of the two base policies. Moreover,
the mapping from latent space to task space can be highly non-linear. This means that even if we
specify a 1:1 interpolation in the latent space, the resulting interpolated policy may not correspond
to the average of the two base policies.

We believe that future research could explore the following directions:

• Experiment on more scenarios, generate more complex diffusion models with a wider va-
riety of base policies, and extensively evaluate the interpolation results.

• Regulate diffusion models to establish a more explicit, interpretable, and adjustable map-
ping between the latent space and task space.

• Properly structure the latent embedding to better capture task-specific parameters. For
instance, incorporating explicit task parameters, such as velocity, directly into the latent
representation, may improve the accuracy and consistency of interpolated policies.
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