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ABSTRACT

Videos captured in the wild often suffer from rain streaks, blur, and noise. In addi-
tion, even slight changes in camera pose can amplify cross-frame mismatches and
temporal artifacts. Existing methods rely on optical flow or heuristic alignment,
which are computationally expensive and less robust. To address these challenges,
Lie groups provide a principled way to represent continuous geometric transfor-
mations, making them well-suited for enforcing spatial and temporal consistency
in video modeling. Building on this insight, we propose DeLiVR, an efficient
video deraining method that injects spatiotemporal Lie-group differential biases
directly into attention scores of the network. Specifically, the method introduces
two complementary components. First, a rotation-bounded Lie relative bias pre-
dicts the in-plane angle of each frame using a compact prediction module, where
normalized coordinates are rotated and compared with base coordinates to achieve
geometry-consistent alignment before feature aggregation. Second, a differential
group displacement computes angular differences between adjacent frames to es-
timate a velocity. This bias computation combines temporal decay and attention
masks to focus on inter-frame relationships while precisely matching the direc-
tion of rain streaks. Extensive experimental results demonstrate the effectiveness
of our method on publicly available benchmarks. The code is publicly available
athttps://github.com/Shuning0312/ICLR-DeLiVR.

1 INTRODUCTION

With the rapid development of mobile terminals and video platforms, outdoor video data inevitably
suffers from various adverse weather conditions, among which rain is the most common degrada-
tion (Yang et al., 2017; Bahnsen & Moeslund, 2019). Raindrops and rain streaks not only severely
reduce the visual quality of videos, leading to blurred details and decreased contrast, but more
importantly, they significantly affect the performance of downstream high-level computer vision
tasks, such as object detection, semantic segmentation, and scene understanding in autonomous
driving (Dai et al., 2021; Singha & Bhowmik, 2020). Therefore, developing efficient and robust
video deraining algorithms is crucial for improving the accuracy of advanced vision tasks such as
autonomous driving and robotic navigation.

Early video deraining methods mainly relied on hand-crafted priors, such as applying frequency-
domain filtering based on the physical characteristics of rain streaks, or using sparse coding and
Gaussian mixture models for layered modeling (Li et al., 2018). However, these previous models
were overly simple and often suffered from weak generalization when faced with diverse and dy-
namic real rain scenes, which could easily introduce artifacts or lead to oversmoothed details (Wang
et al., 2022). Later, deep learning-based methods, especially CNN, achieved significant improve-
ments through end-to-end learning (Yu et al., 2021; Wang et al., 2020; 2025). Nevertheless, their
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Figure 1: Illustration of the problem and our solution. (a) Challenge: rain streaks show spatiotempo-
ral dynamics with varying angles, making alignment unreliable. (b) Our approach: an SO(2) Head
with exponential map ensures geometry-consistent alignment. (c) Failure case: optical flow is cor-
rupted as brightness constancy breaks in rain.

exploitation of temporal information remained limited, mostly through simple frame fusion or opti-
cal flow alignment, making it difficult to effectively handle large-scale motion (Guo et al., 2023).

In recent years, some studies have attempted to introduce more powerful architectures to improve
video deraining performance, such as adopting Transformers to capture long-range spatiotemporal
dependencies (Li et al., 2024; Yan et al., 2021; Yang et al., 2022; Wu et al., 2024). However, these
methods lack knowledge of geometric alignment and are overly reliant on data-driven knowledge
when utilizing inter-frame information. When training data contains complex kinematic features
such as rotations and rapid movements, these methods often exhibit biased information capture un-
der varying rain densities and slight variations in camera pose (Wang et al., 2019; Chan et al., 2022).
How to explicitly introduce physically meaningful kinetic knowledge into the network to guide pre-
cise video-based rain removal remains a key challenge (Rota et al., 2023; Zhou et al., 2022). To
address this issue, we propose to explicitly encode geometric priors of the Lie group (Lie & Engel,
1893) into the attention mechanism, enabling the network to leverage physically interpretable mo-
tion constraints to distinguish true correspondences from rain noise during cross-frame aggregation
(see Figure 4). This design provides explicit geometric guidance for self-attention, thereby signifi-
cantly improving alignment robustness under complex motion and subtle camera pose variations.

Specifically, we propose an efficient video de-raining method named DeLiVR, which introduces
a novel differential spatio-temporal Lie Bias to effectively estimate the variation of rain streaks in
dynamic scenes. Unlike existing methods that rely on unreliable optical flow or unconstrained im-
plicit learning, DeLiVR incorporates continuous geometric transformation theory (Lie groups) as
a strong prior, directly injected into the attention mechanism. Our method contains two comple-
mentary components. First, we design a rotation-bounded Lie relative bias module, which employs
a compact prediction network to directly estimate the in-plane rotation angle of each frame, and
achieves geometry-consistent coordinate alignment under the Lie-group framework. Second, we
introduce differential group displacement to compute angular differences between adjacent frames,
thereby estimating angular velocity and providing dynamic information about motion trends. These
two biases are ultimately integrated into a unified attention bias, combined with temporal decay and
an attention mask, guiding the network to estimate the intensity and direction of rain streaks.

The main contributions of this paper are summarized as follows:

* We introduce Lie group theory into video deraining for the first time and propose a novel
differential spatiotemporal Lie mechanism. This mechanism provides a new paradigm
based on geometric priors, independent of optical flow, for solving the feature alignment
problem in dynamic scenes.
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* We design two bias components: rotation-bounded Lie relative bias and differential group
displacement. These components explicitly encode inter-frame rotation transformations
and angular velocity information into attention, greatly boosting the spatio-temporal mod-
eling capability of networks in complex rainy videos.

* We conduct extensive experiments on multiple synthetic and real-world deraining bench-
marks. The results demonstrate that DeLiVR outperforms existing advanced methods by
producing clearer details, more thorough rain removal, and stronger temporal consistency.
Moreover, our approach achieves a certain degree of improvement in accuracy for advanced
visual tasks.

2 RELATED WORKS

Video Deraining. Video deraining seeks to recover clear frames from rainy videos where streaks
and veiling effects obscure details and introduce spatiotemporal artifacts. Early approaches relied
on handcrafted priors such as photometric modeling, frequency-domain filtering, or sparse/low-rank
decomposition, which worked in simple cases but easily failed under dense rain or fast motion (Wang
et al., 2024; Kim et al., 2015; Li et al., 2018). With the rise of deep learning, CNN-, RNN-, and
GAN-based models have achieved better restoration by learning semantic and structural cues, yet
frame-wise processing and optical-flow alignment remain computationally expensive and fragile,
often leading to mismatches and temporal jitter (Wang et al., 2019). More recently, Transformers
and diffusion models have exploited non-local dependencies and generative priors to improve de-
tail recovery, but without explicit geometric constraints, attention struggles to maintain alignment
under camera rotations or shake (Liang et al., 2022; Gao et al., 2025). To address this gap, we
develop spatiotemporal Lie-group differential biases directly into the attention score domain, com-
bining geometry-consistent relative biases with temporal motion cues, which enhances alignment
and stability without relying on fragile optical flow estimation.

Lie-group research focuses on computer vision. Video restoration critically relies on accurate
temporal alignment, yet optical-flow-based methods often fail under rain and other degradations,
while implicit attention-based approaches improve robustness but lack interpretability (Wang et al.,
2019; Chan et al., 2022). To enhance stability, recent studies incorporate geometric priors into
Transformers: from absolute and relative positional encodings (Liu et al., 2021; Su et al., 2024) to
Lie-group formulations that model continuous symmetries (Hutchinson et al., 2021). However, strict
equivariant designs are computationally demanding and struggle with temporal dynamics. Building
on these insights, our method injects lightweight Lie-group differential biases into attention, com-
bining frame-level rotation priors with temporal displacements to achieve geometry-consistent and
efficient alignment in rainy videos.

3 METHODOLOGY

3.1 OVERVIEW

As illustrated in Fig. 2, DeLiVR restores clean video frames by injecting Lie-group spatiotemporal
biases into the Transformer backbone. Specifically, each input clip is first divided into patches and
embedded into tokens, followed by a lightweight SO(2) head that predicts per-frame rotations to
capture camera pose variations. These rotations are then used to build two complementary priors:
a spatial bias that enforces geometry-consistent alignment across frames, and a temporal bias that
reflects relative angular displacements. The two biases are fused with temporal decay and mask-
ing strategies to form a unified spatiotemporal bias, which is directly added to the self-attention
process. Guided by this bias, the Transformer backbone focuses on reliable spatial-temporal corre-
spondences, and the attended features are finally decoded to reconstruct the clean video frame.

3.2 SO(2) HEAD

To capture frame-wise orientation variations in rainy videos, we design an SO(2) head that predicts
in-plane rotations and provides geometry-aware priors for subsequent bias construction.
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Figure 2: Overall architecture of DeLiVR. The model restores clean video frames by estimating
per-frame rotations, constructing spatial and temporal biases, and injecting them into biased self-
attention for robust geometry-consistent and temporally reliable restoration.

Preliminaries on SO(2). The group SO(2) denotes the set of 2 x 2 rotation matrices preserving
orientation in the plane:

sinf  cos6

SO(2) = {R(G) = [Cf’se Smﬂ e R}. (1)

Lie algebra s0(2) consists of all 2 x 2 skew-symmetric matrices, parameterized by a scalar angle 6:

50(2) = { [g _09] 10 ¢ R}. (2)

The exponential map exp : 50(2) — SO(2) converts an algebra element into a valid rotation matrix:
0 —0|\ _|cosf —sind 3)
P{1e o0 " |sinf  cosf |-

SO(2) head for bounded rotation prediction. For each frame X}, a lightweight SO(2) head pre-
dicts a rotation matrix R; € SO(2). The prediction is parameterized in the Lie algebra using the
axis-angle representation w; € R?. To avoid degenerate solutions, the rotation magnitude is con-
strained within a bounded range:

Rt - eXP(tanh(wt)), ||Wt|| < gmaxa (4)
where exp(+) is the exponential map from s0(2) to SO(2), and 6,,,.x specifies the maximum rotation

angle. In practice, we use SO(2) rotations by restricting w; to the z-axis, which efficiently captures
in-plane camera motion.

Compared with directly regressing angles, this design is numerically stable, differentiable, and seam-
lessly integrates with Lie-theoretic bias construction, which will be detailed in Sec. 3.3.
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3.3 ROTATION-BOUNDED LIE RELATIVE BIAS

Building on the predicted rotations from the SO(2) head, we construct a rotation-bounded Lie rela-
tive bias that explicitly injects geometry-consistent information into the attention mechanism.

Coordinate embedding. We embed spatial locations into a normalized 3D coordinate basis:

P = {pl zNzla pi € Rga ||pz|| = 17 (5)

where p; denotes the position of the i-th patch token. For frame ¢, the rotated coordinates are
obtained as

Dt,i = Ryps, (6)
with R; provided by the SO(2) head in Sec. 3.2.

Relative spatial bias. The spatial bias between token 7 in frame ¢ and token j in frame s is defined
as the inner product of their rotated coordinates:

BSPaCe[(t7i)> (57])] = <ﬁt7i7ﬁs,j>a (7)

which measures geometry-consistent similarity under the predicted rotations.

Bias injection. The computed spatial bias is added to the attention logits:
QK"
Vd
This enables the self-attention to explicitly account for frame-wise poses, guiding the network to

aggregate features along geometrically aligned correspondences.

Logits = + Bgpace- (8)

3.4 DIFFERENTIAL GROUP DISPLACEMENT

In addition to spatial alignment, temporal consistency is crucial for video restoration. To explicitly
capture relative motion between adjacent frames, we introduce a differential group displacement
based on Lie algebra differences.

Lie algebra difference. Given two consecutive frame rotations R; 1, R; € SO(2), their relative
motion can be represented as

AR, = R} Ry ©9)

We project AR; onto the Lie algebra s0(2) via the logarithm map:
vy = H log(ARy)||, (10)
where log(+) denotes the matrix logarithm and || - || is the norm measuring the angular displacement.

The sequence {v; }7_, can be interpreted as the Lie-velocity of the video.

Pairwise angular difference. For general frame pairs (¢, s), the relative angular difference is

E (11)

which reflects the rotation magnitude required to align frame ¢ — 1 with frame ¢.

01, = H log(R;rRs)

Temporal bias construction. We convert the angular difference into a temporal bias that penalizes
pairs with large pose discrepancy:
0
Biimelt — 1,1] = —=—*, (12)
K
where k is a scaling constant. This bias is broadcast to the token level and added to the attention
logits together with the spatial bias.
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Velocity regularization. To further stabilize training, we introduce a regularization term on the
Lie-velocity sequence:

Ry =(1-7) -mean(vt) + 8- mean(\vt — vt,1|), (13)
where 3 controls the balance between the overall motion magnitude and smoothness. This regular-
izer encourages moderate and smooth inter-frame rotations, preventing unstable predictions.

3.5 SPATIOTEMPORAL LIE-GROUP DIFFERENTIAL MECHANISM

The final step is to unify spatial and temporal biases into a single mechanism that governs feature
aggregation. We refer to this as the spatiotemporal Lie-group differential mechanism, which ensures
that both geometric alignment and temporal consistency are simultaneously enforced within the
attention operation.

Unified bias. Given the spatial bias Bgpace (Section 3.3) and the temporal bias Biime (Section 3.4),
the total bias added to the attention logits is

Btotal = (Bspace + O‘-Btime) ©DOG M7 (14)
where o is a scalar balancing temporal bias, D is a temporal decay matrix, and M is a banded mask.

Temporal decay. The decay matrix D € R”*7 is defined as

Dt ] = exp( - @) (15)

where 7 controls the decay rate. This weighting emphasizes short-range interactions that are more
reliable under rain distortions, while gradually suppressing long-range connections.

Banded attention mask. The mask M € {0, 1}7*7 restricts each frame to attend only to a local
temporal neighborhood:

Mit,s] = 1(|t - 5| < 5), (16)
where 0 specifies the temporal bandwidth. This prevents unstable correspondences between frames
that are too far apart.

Attention with spatiotemporal Lie. The attention logits for all tokens are finally expressed as
QK"
Vd

with Bia1 constructed as in Eq. 14. This operation ensures that spatial alignment (via rotated
coordinates) and temporal regularization (via angular differences and decay) are tightly coupled
inside the same attention layer.

LOgitS = + Btotah (17)

Loss Function DeLiVR is trained end-to-end with a hybrid loss that balances reconstruction fi-
delity and geometric regularization. The reconstruction term L. (L1 loss) ensures pixel-level ac-
curacy between the restored and ground-truth frames. To stabilize pose prediction, we add a rotation
magnitude regularizer Ry, which constrains the predicted SO(2) rotations, and a Lie-velocity regu-
larizer R, which enforces smooth temporal evolution. The final objective is

»C - »Crec + )\ORO + )\vva
where A\g and ), control the trade-off between fidelity and geometric consistency. Based on a grid

search for optimal performance, we set the hyperparameter weights to Ay = 0.02 and A\, = 0.02 in
our experiments.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Datasets We conduct a comprehensive evaluation on four benchmark datasets. For synthetic data,
we use three widely-adopted benchmarks: NTURain (Chen et al., 2018), Rain-Syn-Light (Liu et al.,
2018), and Rain-Syn-Complex (Liu et al., 2018). For real-world evaluation, we use the recently
proposed WeatherBench (Guan et al., 2025) benchmark.
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Evaluation Metrics We use Peak Signal-to-Noise Ratio, Structural Similarity Index, and Learned
Perceptual Image Patch Similarity as the main metrics. Higher PSNR/SSIM and lower LPIPS indi-
cate better video restoration quality. For downstream evaluation, we adopt mean Average Precision
for object detection and mean Intersection over Union for semantic segmentation.

Implementation Details Our DeLiVR model is implemented using the PyTorch framework and
trained on 8§ NVIDIA 3090 GPUs. We use the AdamW optimizer with an initial learning rate of
2 x 10~%. The learning rate is decayed over 5000 epochs using a cosine annealing schedule. We set
the batch size to 64. For each input, we randomly sample a window of 7' = 5 consecutive frames
from the video sequences. Our model is trained with an L1 reconstruction loss, aiming to restore the
clean center frame from the rainy input sequence.

4.2 COMPARISON WITH STATE-OF-THE-ART METHODS

To comprehensively evaluate the performance of our proposed DeLiVR model, we conduct a com-
parison with a range of state-of-the-art (SOTA) video deraining algorithms. The selected baselines
cover diverse and prominent technical, including classic CNN-based methods (MFGAN (Yang et al.,
2021), S2VD (Yue et al., 2021)), Transformer-based models (ESTINe (Zhang et al., 2022), ViWS-
Net (Yang et al., 2023)), and other recent architectures (ViMP-Net (Wu et al., 2023), rainmanba (Wu
et al., 2024), Turtle (Ghasemabadi et al.), VDMamba (Sun et al., 2025)).

4.2.1 QUANTITATIVE ANALYSIS

As shown in Table 1, DeLiVR consistently achieves the best overall performance across synthetic
and real rainy benchmarks. On NTURain, our method ranks second only to VDMamba (CVPR
2025). More importantly, when evaluated on the real-world WeatherBench dataset, VDMamba suf-
fers a noticeable performance drop (PSNR 23.91, SSIM 0.773), while DeLiVR establishes new
state-of-the-art results (PSNR 26.56, SSIM 0.781). This contrast highlights that our Lie-group dif-
ferential bias design not only provides competitive results on synthetic benchmarks but also yields
superior generalization to challenging real rainy scenarios, demonstrating the practical robustness of
our approach.

Table 1: Quantitative comparison on synthetic benchmarks and the real-world WeatherBench
dataset. The WeatherBench benchmark is included to specifically evaluate the model’s general-
ization ability to authentic, real-world adverse weather conditions. For PSNR/SSIM, higher is better
(1. For LPIPS, lower is better ({). Best results are in bold, and second-best are underlined.

Method ‘ NTURain ‘ Syn-Light ‘ Syn-Complex | WeatherBench(real-world)
| PSNRT SSIMt LPIPS| | PSNRT SSIMf LPIPS| | PSNRT SSIM{ LPIPS| | PSNRT SSIMt LPIPS|
S2VD (CVPR 21) 32.46 0.953 0.068 25.57 0.833 0.248 16.56 0.524 0.462 26.51 0.827 0.340

MFGAN (TPAMI 22) 33.69 0.950 0.152 22.55 0.839 0.106 21.05 0.763 0.184 20.61 0.707 0.365
ESTINe (TPAMI 23) 33.93 0.950 0.035 27.61 0.879 0.169 20.16 0.653 0.302 25.22 0.795 0.334
ViMP-Net (MM 23) 24.86 0.804 0.259 22.32 0.759 0.302 16.42 0.490 0.465 24.04 0.716 0.433
ViWS-Net (ICCV 23) 33.65 0.949 0.039 27.70 0.860 0.157 19.13 0.576 0.408 23.50 0.689 0.381
rainmanba (MM 24) 29.48 0.876 0.194 22.71 0.749 0.295 15.59 0.474 0.470 25.38 0.763 0.391

Turtle (NeurIPS 24) 23.15 0.717 0.286 21.16 0.652 0311 14.12 0413 0.511 22.48 0.462 0.501
VDMamba (CVPR 25) | 36.29 0.973 0.010 28.76 0.896 0.157 17.83 0.582 0.376 2391 0.773 0.344
DeLiVR (Ours) | 34.06 0.952 0.039 | 30.53 0.908 0.088 | 24.68 0.733 0227 | 26.56 0.781 0.358

4.2.2 QUALITATIVE ANALYSIS

Figure 3 illustrates the visual comparisons on both synthetic and real-world rainy scenes. Compared
to other methods, our DeLiVR is capable of generating sharper images with richer details. For
instance, methods like MFGAN and S2VD are prone to producing artifacts or over-smoothed back-
grounds. While ESTINe and ViWS-Net are strong performers, they still exhibit residual rain streaks
and temporal flickering when dealing with dense rain or fast-moving objects. In contrast, by leverag-
ing geometry-consistent alignment, DeLiVR not only removes rain streaks more thoroughly but also
better preserves object edges and fine textures. It also demonstrates stronger temporal consistency
in video sequences, without noticeable flickering or artifacts.
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Figure 3: Qualitative comparison with state-of-the-art methods on four benchmarks. From top to
bottom, the rows show results on NTU, Rain-Syn-Light, Rain-Syn-Complex, and the real-world
WeatherBench dataset. Compared to other methods, our model more effectively removes severe
rain streaks and color casts, while better preserving fine background textures and natural colors.

Baseline Bspace Btime Full

Figure 4: Visual ablation of different bias components on the NTURain dataset. From left to right:
baseline without Lie bias, model with spatial bias only (Bgpace), model with temporal bias only
(Biime), and the full DeLLiVR with both spatial and temporal Lie-group differential biases.

4.3 ABLATION STUDY

To assess the contribution of each component in DeLiVR, we conducted an ablation study (Ta-
ble 2). Starting from a plain spatiotemporal Transformer baseline, adding the spatial bias (Space)
via rotation-bounded Lie relative bias improved PSNR by 1.37 dB, confirming the importance of
explicit geometric alignment. Incorporating the temporal bias (Time) through differential group
displacement further enhanced performance by modeling inter-frame motion. Finally, adding tem-
poral decay and a banded attention mask (D&M) yielded the best results.

Table 2: Ablation study of different components of DeLiVR on the NTURain dataset. For FVD,
lower is better ().

Model Baseline Bgpace Btime D&M | PSNRT SSIMtT  FVD|

(a) v 2921  0.868 4725
(b) v v 3258 0927 316
©) v v v 33.14 0935 225
() v v v v 3406 0952 185

Rotation—Perturbation Study. To directly validate that the proposed Lie-group differential bias im-
proves cross-frame alignment, we conduct a controlled experiment where small in-plane rotations
are injected into several frames of the input sequence. This perturbation produces synthetic mis-
alignment while keeping scene content unchanged. As shown in Fig. 5, the rotation-aware model
exhibits clearer temporal stability. The attention maps further reveal that the rotation-enhanced
model captures richer directional dependencies, displaying higher entropy and more concentrated
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high-valued regions. The attention-difference visualization highlights that the Lie-group bias pref-
erentially strengthens correspondences around motion-sensitive structures, thereby reducing flicker
and ghosting. These results provide explicit interpretability evidence that our method addresses
cross-frame misalignment beyond improving overall metrics.

Controlled Comparison with Optical Flow Biases. To provide a comparison between our Lie-
group rotation module and optical-flow-based alternatives, we conducted a strictly controlled exper-
iment where all variables except the bias representation were held constant. Specifically, we utilized
a 12-layer Transformer backbone and maintained an identical training protocol. For the optical-flow
baseline, RAFT flow fields were processed through a small learnable MLP to predict bias maps, mir-
roring the structure of our rotation module. This design ensures the only differing factor is the choice
of bias representation. Evaluations on the NTU-Rain dataset show our method improves PSNR by
+2.43 dB, demonstrating that modeling rain-streak orientation on the SO(2) manifold provides a
stronger and more stable geometric inductive bias compared with unconstrained optical-flow fields.
Visualizations in in Appendix (Fig. 9) and real-world results in Appendix (Fig. 10) further con-
firm that our proposed prior excels on benchmarks and transfers robustly to naturally occurring rain
conditions.
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Figure 5: Attention comparison between the baseline and the rotation-enhanced model. The
top row shows full attention matrices for both models under the same input sequence. The sec-
ond row visualizes spatial attention maps extracted from representative query positions. The right
column reports aggregated attention statistics, including average entropy and maximum attention
values. The bottom row presents the distribution of attention weights and attention entropy across
all heads and layers.

4.4 DISCUSSION

Impact on Downstream Tasks To assess the practical value of our deraining method, we tested its
impact on downstream tasks like object detection and semantic segmentation. As visually demon-
strated in Figure 6, adverse weather conditions severely degrade the performance of these high-level
vision models. The top row shows that the object detector fails on the rainy input, but after pro-
cessing with our method, it can accurately localize the targets. Similarly, for semantic segmentation
(bottom row), our method helps the model produce a much cleaner and more precise mask com-
pared to the corrupted result from the original image. This intuitively proves that our method not
only enhances visual quality but also acts as a crucial pre-processing step to improve the reliability
of downstream vision systems in real-world scenarios.
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Figure 6: Visual comparison of downstream task performance on the Rain-Syn-Complex dataset.

Efficiency Analysis. In addition to restoration accuracy, efficiency plays a crucial role in the practi-
cal deployment of video deraining systems. Table 3 reports the model size (in terms of parameters)
and the average inference time per frame. DeLiVR demonstrates clear advantages over prior meth-
ods: it uses significantly fewer parameters and achieves much faster inference, while still delivering
competitive or superior restoration quality. This confirms that introducing Lie-group differential
biases is not only theoretically meaningful and robust, but also lightweight and computationally
efficient, making DeLiVR more suitable for real-world applications.

Table 3: Efficiency comparison on the NTURain dataset. Params denote model parameters (in
millions). Time denotes average inference time (ms per frame).

Metric rainmanba ViMP-Net  Turtle ViWS-Net VDMamba ESTINe MFGAN S2VD DeLiVR (Ours)
Params (M)} 38.73 36.63 58.62 57.82 12.70 29.90 29.47 0.53 2.64
Time (ms)] 145.55 130.77 270.54 252.64 32.04 175.61 162.81 26.78 82.52

Comparison with Optical-Flow-Based Guidance. We evaluate two representative flow-guided
recurrent video restoration models on the WeatherBench dataset: Frame-Consistent Recurrent Video
Deraining (Yang et al., 2019) (PSNR 23.33 / SSIM 0.691 / LPIPS 0.455) and High-Resolution
Optical Flow and Frame-Recurrent Network (Fang & Zhan, 2022) (PSNR 24.10 / SSIM 0.716 /
LPIPS 0.402). Under the same evaluation setting on an A100 GPU, our rotation-prediction-based
model consistently surpasses both flow-based baselines.

Necessity of Lie Groups. Our design leverages Lie-group theory to ensure valid and continuous ro-
tations, provide a tangent space for stable optimization, and enable principled definitions of temporal
displacement. Although similar effects could be superficially achieved by direct matrix parameter-
ization, the Lie-group formulation offers theoretical rigor and extensibility. A detailed analysis is
provided in Appendix A.1.

Limitations. Despite its effectiveness, DeLiVR has certain limitations. First, the reliance on
rotation-centric modeling may not fully capture more complex non-rigid rain dynamics or cam-
era motions beyond in-plane rotations. Second, incorporating Lie-group biases introduces addi-
tional computational overhead compared to purely implicit alignment schemes. Addressing these
challenges and extending the framework to richer transformation groups (e.g., SE(2)/SE(3)) are
promising directions for future work.

5 CONCLUSION

We proposed DeLiVR, a video deraining framework that injects Lie-group differential biases into
attention to achieve geometry-consistent alignment and motion-aware temporal modeling. Our
method is theoretically grounded through the use of Lie algebra for stable optimization and princi-
pled temporal displacement, and empirically validated by extensive experiments. Experimental re-
sults demonstrate that DeLLiVR not only achieves state-of-the-art performance on real rainy datasets
but also enhances downstream tasks such as object detection and semantic segmentation. These
findings highlight both the superior robustness of DeLiVR compared with existing methods and the
practical value of integrating geometric theory into attention for reliable video restoration.
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A APPENDIX

A.1 THEORETICAL ANALYSIS OF LIE GROUP FORMULATION

Although one may use rotation matrices to approximate rain streak orientation, here we provide a
theoretical analysis showing why a Lie group formulation is essential for our task.

(i) Guaranteed validity of rotations. A valid planar rotation must lie in the special orthogonal
group:
SO(2) ={ReR**? | RTR =1,det(R) = 1}. (18)

If R is directly parameterized as an unconstrained matrix, optimization may yield invalid results
(e.g., det(R) # 1 or RTR # I). Enforcing orthogonality requires either costly projection steps or
implicit normalization, which are non-trivial in gradient-based learning. By contrast, parameterizing
in the Lie algebra so(2) with exponential mapping

R = exp(w), w € 50(2), (19)

guarantees R € SO(2) by construction. Thus, every predicted transformation remains a mathemat-
ically valid rotation.

(ii) Tangent space for stable optimization. The Lie algebra so0(2) is the tangent space at the

identity, defined as
50(2) = { [2 _09} 10 € R}. (20)

This provides a linear space for optimization, allowing unconstrained updates w € R while ensuring
stability. Optimization in this Euclidean tangent space avoids the degeneracy and instability of
directly manipulating matrix entries subject to nonlinear constraints.
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(iii) Principled definition of temporal displacement. For temporal modeling, we require a con-
sistent notion of relative rotation between frames. Given two orientations R, R; € SO(2), their
relative transformation is

AR;, = R/ R, € SO(2). 1)
The logarithm map log : SO(2) — s0(2) then yields
vt = || 1og(ARys) |, (22)

which quantifies the angular displacement as a scalar in the Lie algebra. This is a principled, geomet-
rically meaningful notion of motion, while subtracting raw matrices R; — R provides no intrinsic
interpretation of displacement.

In summary, while plain rotation matrices can approximate orientation, the Lie group perspective
(i) ensures validity of rotations by construction, (ii) offers a tangent space for stable gradient-based
optimization, and (iii) enables principled temporal displacement via group differences and logarithm
mapping. These theoretical properties justify our design choice and highlight why Lie groups are
essential in modeling spatiotemporal alignment for video deraining.

A.2 CORE PSEUDOCODE OF DELIVR

Algorithm 1 summarizes the overall workflow of our proposed DeLiVR framework. The process
begins with patch embedding to obtain tokenized representations, followed by frame-wise rotation
prediction through the SO(2) head. The predicted rotations are then used to construct spatial and
temporal biases, which are fused into a total bias and injected into the attention mechanism. Finally,
the updated token states are decoded to reconstruct the clean center frame, with the entire model
trained under a joint reconstruction and regularization loss.

Algorithm 1 Core pseudocode of DeLiVR

Input: Rainy video window X = {X;}1_;

Output: Restored center frame ffc

Patchify all frames and obtain initial embeddings H(®).

For each frame X, use SO(2) head to predict rotation R;.

Construct biases:
1. Rotated coordinates: p; ; = [;p;.
2. Spatial bias: Bspace[(t, 1), ($,7)] = (Pt,is Ds,j)-
3. Temporal bias: Biimel[t, s] = — || log(R, R,)|| /-
4. Fuse: Biotal = (Bspace + @Btime) © D © M.

6: Update tokens forl =1,..., L:

HOHD = HO + Attention(H(l); Biotal)-
7: Decode center tokens to obtain )A/c.
8: Train with £ = Liec + MRy + MRy

AR .

A.3 GENERALIZATION TO DEBLURRING AND DEHAZING

Although our method is introduced primarily for video deraining, the core idea—injecting a Lie-
group differential bias to stabilize cross-frame alignment—is degradation-agnostic. To further ver-
ify this, we additionally evaluate the model on two representative degradation types: deblurring
(trained on the GoPro dataset (Nah et al., 2017)) and dehazing (trained on the RESIDE datasetLi
et al. (2019)). As shown in Fig. 7, our method consistently improves geometric stability, reduces
temporal flickering, and preserves fine structures across all three tasks (deraining, deblurring, de-
hazing). These results demonstrate that the proposed geometric prior captures fundamental motion
characteristics rather than degradation-specific cues, thereby enabling natural transfer to a broader
range of video restoration scenarios.
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blur deblur haze dehaze

Figure 7: Generalization to other degradations. Our method consistently produces cleaner struc-
tures and fewer temporal flickers.

rain derain

Figure 8: Real-world downstream evaluation on object detection. We apply an off-the-shelf
detector to a real captured rainy frame (left) and to the derained result produced by our method
(right).

A.4 REAL-WORLD DOWNSTREAM EVALUATION

To further validate the practical utility of our method, we test an off-the-shelf object detector on a

real captured rainy image. As shown in Fig. 8, deraining enables the detector to identify an additional
pedestrian missed in the rainy input, demonstrating improved reliability for downstream perception.

A.5 LARGE VISUALIZATION OF FIGURE 3

To provide a clearer view, we include the enlarged version of Figure 3 in Appendix.
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input optical flow our work gt

Figure 9: Visual comparison on the NTU-Rain. From left to right: rainy input, flow-based bias
baseline, our Lie Rotation model, and ground-truth.

input optical flow our work

Figure 10: Real-world rain removal. From left to right: the original rainy input, the flow-based
bias baseline, and our Lie Rotation model.

A.6 USE OF LARGE LANGUAGE MODELS
During the preparation of this paper, large language models (LLMs) were employed for tex-

tual refinement, including grammar checking, clarity improvement, and stylistic polishing of the
manuscript.

ETHICS STATEMENT

This work focuses on video deraining, a low-level vision task, and does not involve human sub-
jects or sensitive personal data. All datasets used in our experiments are either publicly available
synthetic datasets or real-world benchmarks that do not contain personally identifiable information.
Our method does not introduce risks of privacy leakage or misuse beyond the scope of general image
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and video restoration. We adhere to the ICLR Code of Ethics, and we believe that our contributions
advance fundamental research in computer vision without posing foreseeable ethical concerns.

REPRODUCIBILITY STATEMENT

We have made significant efforts to ensure the reproducibility of our work. The paper provides de-
tailed descriptions of the proposed architecture, bias formulation, and loss functions in Sections 3,
with theoretical derivations further explained in the appendix. Implementation details, training se-
tups, and hyperparameters are described in the experimental section and supplementary materials.
Pseudocode for the core algorithm is included in the appendix (Algorithm 1), and all datasets used
(NTURain, Syn-Light, Syn-Complex, WeatherBench) are publicly available.
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Figure 11: Enlarged visualization corresponding to Figure 3.
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