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Abstract

Identifying efficient execution strategies for Large Language Models (LLMs) on
specialized hardware accelerators requires exploring a vast design space where ex-
haustive search is computationally prohibitive. Traditional black-box optimization
(BBO) methods offer a principled alternative, but their efficiency degrades in high-
dimensional, sparse spaces with many infeasible points. We propose LLM-Box,
a framework that integrates an LLM agent to guide multi-objective BBO toward
the Pareto frontier while significantly reducing sampling of infeasible points. By
leveraging the LLM agent to retrieve and structure prior exploration data through
retrieval-augmented generation (RAG), and by warm-starting and filtering BBO
suggestions, our approach guides the search towards feasible and promising regions
of the design space. As a result, LLM-Box identifies Pareto-optimal configurations
with a hypervolume difference of less than 3% using 40−150× fewer simulations
than an exhaustive search, and compared to a well-known BBO tool, achieves 2%
better accuracy with 20× fewer trials. Moreover, the framework demonstrates
zero-shot generalization, transferring knowledge from prior models and hardware
to unseen targets.

1 Introduction

Mapping rapidly evolving Large Language Models (LLMs) [1, 2, 3, 4] onto specialized hard-
ware accelerators involves navigating a vast combinatorial design space of execution strate-
gies—encompassing parallelism choices, collective communication strategies, KV cache sharding
strategies, and reconfigurable interconnect topologies [5, 6, 7, 8, 9]. As illustrated in Figure 1, even
for a single TPU pod, this design space already spans tens to hundreds of thousands of candidate
mappings. Each point in the design space must often be validated through detailed simulation, making
exhaustive exploration computationally prohibitive.

A common approach in prior works has been to employ black-box optimization (BBO) methods to
accelerate exploration [7, 6, 10, 11, 12, 13]. These methods offer a principled way to sample points
and improve over random or exhaustive search. However, the effectiveness of vanilla BBO is limited
in high-dimensional, constrained design spaces that are typical in hardware/software co-design,
where large regions are infeasible and domain-specific constraints dominate performance outcomes
[14, 13]. To address this, prior research has often relied on manually encoding domain knowledge
or heuristics into the optimizer [6, 11, 12, 13, 15, 16]. While effective for specific contexts, such
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Figure 1: (a) Design space size for execution strategies of LLMs on Google internal TPU pods (T1, T2, T3 &
T4) (b) Inherent infeasibility of the design space determined jointly by model-level and hardware-level

constraints (e.g., model size, degree of parallelizability, number of chips, memory capacity and bandwidth)

manual interventions do not directly scale across different hardware platforms, workload classes, or
evolving design objectives.

This paper explores a new direction: using LLM agents as a source of structured priors to guide
this design space exploration (DSE). Unlike fixed/manually added heuristics, LLMs embed broad
knowledge of LLM model architecture, accelerator architecture, algorithmic patterns, and can reason
about parameter interactions at a higher level of abstraction [17, 18]. We propose that LLMs can assist
BBO by (i) initializing the search with informed trials, (ii) filtering out infeasible or low-promise
trials, and (iii) transferring insights across prior DSE studies.

We evaluate this idea by integrating the Gemini LLM with the Google Vizier BBO service [19] to
optimize the mapping of modern LLM workloads onto Google’s TPU pods. A TPU pod is a collection
of TPU chips interconnected with reconfigurable high-speed links. To the best of our knowledge, this
is the first effort to explore this design space using LLMs.
Our Contributions. We (i) introduce LLM-Box, an LLM-guided framework that complements con-
ventional BBO; (ii) show improved sample efficiency—40–150× fewer simulations than exhaustive
search and better accuracy than BBO baselines; and (iii) demonstrate robust transfer learning across
models and hardware, enabling faster, more generalizable exploration.

2 Background

2.1 Exhaustive Design Space Exploration

Our baseline approach to this DSE utilizes an internal performance modeling simulator to conduct
exhaustive simulations across the entire mapping design space, estimating performance metrics,
namely, latency and queries per second (QPS). We use it to establish a ground-truth Pareto frontier
representing the optimal trade-offs. While this exhaustive sweep provides a valuable baseline for
analysis, it is time-consuming and computationally expensive.

2.2 Standard Black-Box Optimization

To reduce the number of required simulations, we create a second baseline by employing a BBO
tool, Google Vizier [19], that internally uses a combination of Gaussian process bandits and genetic
algorithms to sample the design space. In this setup, as shown in Figure 2(a), Vizier iteratively
suggests configurations (“trials”) to be evaluated by the performance modeling simulator and receives
performance metrics feedback. At each step, Vizier updates a surrogate with the received feedback
and optimizes a multi-objective acquisition to propose the next batch of trials.

3 LLM-guided Design Space Exploration

Our proposed framework, shown in Figure 2(b), integrates the LLM agent into the Vizier–Simulator
loop. The LLM’s role is not to replace the optimizer (Vizier), but to provide it with “context” and
filter suggestions. It leverages three sources of knowledge: (1) intrinsic knowledge of hardware and
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Figure 2: (a) Standard Vizier (BBO-only) framework. (b) The proposed LLM-Box framework. An LLM agent,
supported by retrieval from past studies (RAG), provides context to warm-start the search and filters Vizier’s
trial suggestions before simulation. During Stage 1(warm-start), the LLM remains in the decision loop; In
Stage 2, Vizier continues optimization alone using the enhanced posterior built from LLM-guided trials.

LLM models from its pre-training, (2) target system and model architecture information provided in
prompts, and (3) historical data from past exploration studies using Retrieval-Augmented Generation
(RAG). The core idea is to leverage the LLM’s ability to utilize this domain knowledge to guide the
search away from infeasible regions and towards promising ones. The process operates in two stages.

Stage 1 (Warm-start): In each iteration, the LLM, informed by the target system’s specifications
and prior studies (via RAG), emits a context object that constrains the search space [20]. Vizier
proposes a batch of candidates from this constrained space; the LLM then applies a lightweight
feasibility/quality filter using feedback from already-evaluated trials and retrieved exemplars. The
accepted candidates are evaluated by the simulator, and the resulting metrics are fed back to both
Vizier and the LLM to refine constraints and filtering in subsequent iterations.

Stage 2 (BBO-only): After the warm-start trials, the LLM is taken out of the decision loop. Vizier
continues optimization from its posterior built on all data collected in Stage 1, using a standard
multi-objective acquisition (e.g., hypervolume-improvement based) over the final hard constraints
learned during warm-start. Trials are suggested directly by Vizier and evaluated by the simulator.

4 Evaluation

We evaluated our approach against the performance modeling simulator (ground truth) and Vizier
baselines across a suite of modern LLMs (Qwen3, Llama3, Llama4, DeepseekV3, Gemma-2B and
Gemma-27B) on four Google internal TPU pods. Each TPU pod contains multiple chips connected
in a dynamically reconfigurable interconnect topology [5]. For any given model and hardware
pair, the design space of possible execution strategies encompasses parameters like batch size,
KV cache sharding strategies, collective operations, parallelism choices (data, model, pipeline, or
expert), and interconnect topologies. We use Pareto-hypervolume (HPV) error relative to the ground
truth to evaluate the quality of Pareto-frontiers obtained using Vizier and LLM-Box [21]. For the
LLM-Box framework, we employed Gemini-2.5-Pro[1] as the reasoning model to guide Vizier, and
Gemini-Embedding-001[22] to support retrieval-augmented generation (RAG) from prior exploration
data. Although the empirical results naturally depend on the specific reasoning model and BBO
algorithm chosen, the framework we present is agnostic to these choices, and the broader methodology
extends across a wide range of hardware platforms and workload scenarios.

4.1 Transfer Learning

Across Systems We provided the LLM with the Pareto-frontier trials (obtained using ground truth
simulation) for all models on one TPU pod (T1). We then tasked it with finding the Pareto curve
for the same models on the other three target pods. Figure 3(a) shows that the LLM-guided search
achieved significantly lower error with 100 trials than the Vizier-only baseline with 2000 trials.
Crucially, as seen in Figure 3(b), the infeasibility rate was reduced by 20% compared to Vizier,
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Figure 3: A comparison of our LLM-Box framework with Vizier-only baselines. (a) and (b) evaluate the
Hypervolume (HPV) error and infeasibility rate for transfer learning across systems. (c) shows the HPV error

for transfer learning across models. (d) presents an ablation study on the impact of the warm-start budget
(percentage of LLM-guided trials). Note: All results are averaged across TPU pods. "X trials" in the labels are

results for the corresponding framework with X simulated trials.

demonstrating effective knowledge transfer.
Across Models In another experiment, we gave the LLM the Pareto-optimal trials from a set of
source models (Llama 3, DeepseekV3, Gemma-2B) and targeted new, unseen models (Llama4, Qwen
3, Gemma-27B). Figure 3(c) shows that the LLM-guided approach led to a much more accurate
Pareto-frontier than Vizier could achieve with 20× more trial budget.

4.2 Warm start

Figure 3(d) shows an ablation study on the role of LLM, confirming that a balanced warm-start is
crucial. Using an LLM agent to actively guide the initial exploration trials before letting Vizier take
over yielded the best results. However, relying solely on LLM hinders exploration, while using only
Vizier suffers from the inefficiencies of initial random exploration. We also find that the duration of
the optimal involvement of the LLM agent depends on the inherent infeasibility of the design space.

5 Conclusion and Future Work

We presented LLM-Box , a framework that augments multi-objective black-box optimization with
large language model guidance for efficient hardware/software co-design of ML accelerators. By
combining intrinsic domain knowledge from pre-trained LLMs with retrieval from prior explorations,
our approach provides warm-start priors and trial filtering that steers the search toward feasible
and high-quality design points. Empirically, LLM-Box identifies Pareto-optimal execution strategies
with 40–150× fewer simulations than exhaustive search and achieves improved sample efficiency
compared to a state-of-the-art BBO tool. Moreover, the framework demonstrates robust transfer
learning, effectively generalizing across both models and hardware platforms. Our ablation study
highlights the critical role of balanced warm-starting—too little LLM involvement limits efficiency,
while too much hinders exploration. These findings suggest that LLM-guided BBO offers a promising
paradigm for tackling expensive design space exploration problems. Looking forward, we envision
extending this methodology to larger design spaces and investigating alternative modes of interaction
where LLMs and optimizers collaborate more effectively.
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