
LLM-Box : An Agentic Framework for Guided
Black-Box Optimization in Mapping LLMs onto

Specialized Hardware Accelerators

Sujay Pandit1
∗
, Akanksha Jain3, Rami Cohen3, Zhijie Deng3, Sagar Karandikar2,3

∗
,

Sagi Perel4, Anand Raghunathan1, Parthasarathy Ranganathan3

1Purdue University 2UC Berkeley 3Google 4Google DeepMind
{pandit8, raghunathan}@purdue.edu

{avjain, ramic, zjdeng, skarandikar, sagipe, parthas}@google.com

Abstract

Identifying efficient execution strategies for Large Language Models (LLMs) on
specialized hardware accelerators requires exploring a vast design space where ex-
haustive search is computationally prohibitive. Traditional black-box optimization
(BBO) methods offer a principled alternative, but their efficiency degrades in high-
dimensional, sparse spaces with many infeasible points. We propose LLM-Box,
a framework that integrates an LLM agent to guide multi-objective BBO toward
the Pareto frontier while significantly reducing sampling of infeasible points. By
leveraging the LLM agent to retrieve and structure prior exploration data through
retrieval-augmented generation (RAG), and by warm-starting and filtering BBO
suggestions, our approach guides the search towards feasible and promising regions
of the design space. As a result, LLM-Box identifies Pareto-optimal configurations
with a hypervolume difference of less than 3% using 40−150× fewer simulations
than an exhaustive search, and compared to a well-known BBO tool, achieves 2%
better accuracy with 20× fewer trials. Moreover, the framework demonstrates
zero-shot generalization, transferring knowledge from prior models and hardware
to unseen targets.

1 Introduction

Mapping rapidly evolving Large Language Models (LLMs) [1, 2, 3, 4] onto specialized hard-
ware accelerators involves navigating a vast combinatorial design space of execution strate-
gies—encompassing parallelism choices, collective communication strategies, KV cache sharding
strategies, and reconfigurable interconnect topologies [5, 6, 7, 8, 9]. As illustrated in Figure 1, even
for a single TPU pod, this design space already spans tens to hundreds of thousands of candidate
mappings. Each point in the design space must often be validated through detailed simulation, making
exhaustive exploration computationally prohibitive.

A common approach in prior works has been to employ black-box optimization (BBO) methods to
accelerate exploration [7, 6, 10, 11, 12, 13]. These methods offer a principled way to sample points
and improve over random or exhaustive search. However, the effectiveness of vanilla BBO is limited
in high-dimensional, constrained design spaces that are typical in hardware/software co-design,
where large regions are infeasible and domain-specific constraints dominate performance outcomes
[14, 13]. To address this, prior research has often relied on manually encoding domain knowledge
or heuristics into the optimizer [6, 11, 12, 13, 15, 16]. While effective for specific contexts, such

∗Work done at Google.

39th Conference on Neural Information Processing Systems (NeurIPS 2025) Workshop: ML for Systems.



(a) (b)

D
es

ig
n 

Sp
ac

e 
Si

ze

500000

100000

50000

10000

5000

1000 0.00

25.00

50.00

75.00

In
fe

as
ib

ili
ty

 P
er

ce
nt

ag
e 

%

100.00

Llama3 Llama4
(17B)

Gemma
(2B)

Gemma
(27B)

Deepseek V3 Qwen3
(32B)

Llama3 Llama4
(17B)

Gemma
(2B)

Gemma
(27B)

Deepseek V3 Qwen3
(32B)

Figure 1: (a) Design space size for execution strategies of LLMs on Google internal TPU pods (T1, T2, T3 &
T4) (b) Inherent infeasibility of the design space determined jointly by model-level and hardware-level

constraints (e.g., model size, degree of parallelizability, number of chips, memory capacity and bandwidth)

manual interventions do not directly scale across different hardware platforms, workload classes, or
evolving design objectives.

This paper explores a new direction: using LLM agents as a source of structured priors to guide
this design space exploration (DSE). Unlike fixed/manually added heuristics, LLMs embed broad
knowledge of LLM model architecture, accelerator architecture, algorithmic patterns, and can reason
about parameter interactions at a higher level of abstraction [17, 18]. We propose that LLMs can assist
BBO by (i) initializing the search with informed trials, (ii) filtering out infeasible or low-promise
trials, and (iii) transferring insights across prior DSE studies.

We evaluate this idea by integrating the Gemini LLM with the Google Vizier BBO service [19] to
optimize the mapping of modern LLM workloads onto Google’s TPU pods. A TPU pod is a collection
of TPU chips interconnected with reconfigurable high-speed links. To the best of our knowledge, this
is the first effort to explore this design space using LLMs.
Our Contributions. We (i) introduce LLM-Box, an LLM-guided framework that complements con-
ventional BBO; (ii) show improved sample efficiency—40–150× fewer simulations than exhaustive
search and better accuracy than BBO baselines; and (iii) demonstrate robust transfer learning across
models and hardware, enabling faster, more generalizable exploration.

2 Background

2.1 Exhaustive Design Space Exploration

Our baseline approach to this DSE utilizes an internal performance modeling simulator to conduct
exhaustive simulations across the entire mapping design space, estimating performance metrics,
namely, latency and queries per second (QPS). We use it to establish a ground-truth Pareto frontier
representing the optimal trade-offs. While this exhaustive sweep provides a valuable baseline for
analysis, it is time-consuming and computationally expensive.

2.2 Standard Black-Box Optimization

To reduce the number of required simulations, we create a second baseline by employing a BBO
tool, Google Vizier [19], that internally uses a combination of Gaussian process bandits and genetic
algorithms to sample the design space. In this setup, as shown in Figure 2(a), Vizier iteratively
suggests configurations (“trials”) to be evaluated by the performance modeling simulator and receives
performance metrics feedback. At each step, Vizier updates a surrogate with the received feedback
and optimizes a multi-objective acquisition to propose the next batch of trials.

3 LLM-guided Design Space Exploration

Our proposed framework, shown in Figure 2(b), integrates the LLM agent into the Vizier–Simulator
loop. The LLM’s role is not to replace the optimizer (Vizier), but to provide it with “context” and
filter suggestions. It leverages three sources of knowledge: (1) intrinsic knowledge of hardware and

2



Vizier

Suggested 
Trials

Performance
Simulator

Vizier

Suggested 
Trials

Performance
Simulator

Input
Design Space

Input
Design Space

LLM
Agent Vizier

Suggested 
Trials

Past 
Studies Data

(RAG)

Context

Stage-1

LLM
Agent

Stage-2

Filtered 
Trials

Performance
Simulator

Simulation Feedback

Warm Start Loop

(a) (b)

BBO-Only  

Si
m

ul
at

io
n 

Fe
ed

ba
ck

Figure 2: (a) Standard Vizier (BBO-only) framework. (b) The proposed LLM-Box framework. An LLM agent,
supported by retrieval from past studies (RAG), provides context to warm-start the search and filters Vizier’s
trial suggestions before simulation. During Stage 1(warm-start), the LLM remains in the decision loop; In
Stage 2, Vizier continues optimization alone using the enhanced posterior built from LLM-guided trials.

LLM models from its pre-training, (2) target system and model architecture information provided in
prompts, and (3) historical data from past exploration studies using Retrieval-Augmented Generation
(RAG). The core idea is to leverage the LLM’s ability to utilize this domain knowledge to guide the
search away from infeasible regions and towards promising ones. The process operates in two stages.

Stage 1 (Warm-start): In each iteration, the LLM, informed by the target system’s specifications
and prior studies (via RAG), emits a context object that constrains the search space [20]. Vizier
proposes a batch of candidates from this constrained space; the LLM then applies a lightweight
feasibility/quality filter using feedback from already-evaluated trials and retrieved exemplars. The
accepted candidates are evaluated by the simulator, and the resulting metrics are fed back to both
Vizier and the LLM to refine constraints and filtering in subsequent iterations.

Stage 2 (BBO-only): After the warm-start trials, the LLM is taken out of the decision loop. Vizier
continues optimization from its posterior built on all data collected in Stage 1, using a standard
multi-objective acquisition (e.g., hypervolume-improvement based) over the final hard constraints
learned during warm-start. Trials are suggested directly by Vizier and evaluated by the simulator.

4 Evaluation

We evaluated our approach against the performance modeling simulator (ground truth) and Vizier
baselines across a suite of modern LLMs (Qwen3, Llama3, Llama4, DeepseekV3, Gemma-2B and
Gemma-27B) on four Google internal TPU pods. Each TPU pod contains multiple chips connected
in a dynamically reconfigurable interconnect topology [5]. For any given model and hardware
pair, the design space of possible execution strategies encompasses parameters like batch size,
KV cache sharding strategies, collective operations, parallelism choices (data, model, pipeline, or
expert), and interconnect topologies. We use Pareto-hypervolume (HPV) error relative to the ground
truth to evaluate the quality of Pareto-frontiers obtained using Vizier and LLM-Box [21]. For the
LLM-Box framework, we employed Gemini-2.5-Pro[1] as the reasoning model to guide Vizier, and
Gemini-Embedding-001[22] to support retrieval-augmented generation (RAG) from prior exploration
data. Although the empirical results naturally depend on the specific reasoning model and BBO
algorithm chosen, the framework we present is agnostic to these choices, and the broader methodology
extends across a wide range of hardware platforms and workload scenarios.

4.1 Transfer Learning

Across Systems We provided the LLM with the Pareto-frontier trials (obtained using ground truth
simulation) for all models on one TPU pod (T1). We then tasked it with finding the Pareto curve
for the same models on the other three target pods. Figure 3(a) shows that the LLM-guided search
achieved significantly lower error with 100 trials than the Vizier-only baseline with 2000 trials.
Crucially, as seen in Figure 3(b), the infeasibility rate was reduced by 20% compared to Vizier,

3



10
Percentage of LLM-guided

Trials in DSE study 

0
(Vizier
Only)

100
(LLM
Only)

20 30 40 50 60 70 80 9010

(b)
25

10

5

0

20

15

H
PV

 E
rr

or
 %

 w
.r.

t 
G

ro
un

d 
Tr

ut
h

H
PV

 E
rr

or
 %

 w
.r.

t 
G

ro
un

d 
Tr

ut
h

(c)

In
fe

as
ib

ili
ty

 %

H
PV

 E
rr

or
 %

 w
.r.

t 
G

ro
un

d 
Tr

ut
h

Qwen3 Llama3 Gemma
(2B)

Gemma
(27B)

Llama4Deepseek
V3

(a)

Qwen3 Llama4 Gemma
(27B)

(d)

Qwen3 Llama3 Deepseek
V3

Gemma
(2B)

Llama4 Gemma
(27B)

60

40

20

0

LLM-Box-100 trials Vizier-100 trials Vizier-2000 trials

Figure 3: A comparison of our LLM-Box framework with Vizier-only baselines. (a) and (b) evaluate the
Hypervolume (HPV) error and infeasibility rate for transfer learning across systems. (c) shows the HPV error

for transfer learning across models. (d) presents an ablation study on the impact of the warm-start budget
(percentage of LLM-guided trials). Note: All results are averaged across TPU pods. "X trials" in the labels are

results for the corresponding framework with X simulated trials.

demonstrating effective knowledge transfer.
Across Models In another experiment, we gave the LLM the Pareto-optimal trials from a set of
source models (Llama 3, DeepseekV3, Gemma-2B) and targeted new, unseen models (Llama4, Qwen
3, Gemma-27B). Figure 3(c) shows that the LLM-guided approach led to a much more accurate
Pareto-frontier than Vizier could achieve with 20× more trial budget.

4.2 Warm start

Figure 3(d) shows an ablation study on the role of LLM, confirming that a balanced warm-start is
crucial. Using an LLM agent to actively guide the initial exploration trials before letting Vizier take
over yielded the best results. However, relying solely on LLM hinders exploration, while using only
Vizier suffers from the inefficiencies of initial random exploration. We also find that the duration of
the optimal involvement of the LLM agent depends on the inherent infeasibility of the design space.

5 Conclusion and Future Work

We presented LLM-Box , a framework that augments multi-objective black-box optimization with
large language model guidance for efficient hardware/software co-design of ML accelerators. By
combining intrinsic domain knowledge from pre-trained LLMs with retrieval from prior explorations,
our approach provides warm-start priors and trial filtering that steers the search toward feasible
and high-quality design points. Empirically, LLM-Box identifies Pareto-optimal execution strategies
with 40–150× fewer simulations than exhaustive search and achieves improved sample efficiency
compared to a state-of-the-art BBO tool. Moreover, the framework demonstrates robust transfer
learning, effectively generalizing across both models and hardware platforms. Our ablation study
highlights the critical role of balanced warm-starting—too little LLM involvement limits efficiency,
while too much hinders exploration. These findings suggest that LLM-guided BBO offers a promising
paradigm for tackling expensive design space exploration problems. Looking forward, we envision
extending this methodology to larger design spaces and investigating alternative modes of interaction
where LLMs and optimizers collaborate more effectively.

4



References
[1] Gheorghe Comanici, Eric Bieber, Mike Schaekermann, Ice Pasupat, Noveen Sachdeva, and

Inderjit Dhillon et al. Gemini 2.5: Pushing the frontier with advanced reasoning, multimodality,
long context, and next generation agentic capabilities, 2025.

[2] Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni
Aleman, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4
technical report. arXiv preprint arXiv:2303.08774, 2023.

[3] AI Anthropic. The claude 3 model family: Opus, sonnet, haiku. Claude-3 Model Card, 1(1):4,
2024.

[4] Meta AI. Introducing LLaMA 4: Advancing Multimodal Intelligence. Meta AI Blog, April
2025. Accessed: 2025-08-19.

[5] Norm Jouppi, George Kurian, Sheng Li, Peter Ma, Rahul Nagarajan, Lifeng Nai, Nishant Patil,
Suvinay Subramanian, Andy Swing, Brian Towles, et al. Tpu v4: An optically reconfigurable
supercomputer for machine learning with hardware support for embeddings. In Proceedings of
the 50th annual international symposium on computer architecture, pages 1–14, 2023.

[6] Dan Zhang, Safeen Huda, Ebrahim Songhori, Kartik Prabhu, Quoc Le, Anna Goldie, and
Azalia Mirhoseini. A full-stack search technique for domain optimized deep learning accelera-
tors. In Proceedings of the 27th ACM International Conference on Architectural Support for
Programming Languages and Operating Systems, pages 27–42, 2022.

[7] Srivatsan Krishnan, Amir Yazdanbakhsh, Shvetank Prakash, Jason Jabbour, Ikechukwu
Uchendu, Susobhan Ghosh, Behzad Boroujerdian, Daniel Richins, Devashree Tripathy, Aleksan-
dra Faust, and Vijay Janapa Reddi. Archgym: An open-source gymnasium for machine learning
assisted architecture design. In Proceedings of the 50th Annual International Symposium on
Computer Architecture, New York, NY, USA, 2023. Association for Computing Machinery.

[8] Jaehong Cho, Minsu Kim, Hyunmin Choi, and Jongse Park. LLM-sim: A simulation infrastruc-
ture for LLM inference serving systems. In Machine Learning for Computer Architecture and
Systems 2024, 2024.

[9] Cong Guo, Feng Cheng, Zhixu Du, James Kiessling, Jonathan Ku, Shiyu Li, Ziru Li, Mingyuan
Ma, Tergel Molom-Ochir, Benjamin Morris, Haoxuan Shan, Jingwei Sun, Yitu Wang, Chiyue
Wei, Xueying Wu, Yuhao Wu, Hao Frank Yang, Jingyang Zhang, Junyao Zhang, Qilin Zheng,
Guanglei Zhou, Hai Li, and Yiran Chen. A survey: Collaborative hardware and software design
in the era of large language models. IEEE Circuits and Systems Magazine, 25(1):35–57, 2025.

[10] Sheng-Chun Kao and Tushar Krishna. Gamma: Automating the hw mapping of dnn models on
accelerators via genetic algorithm. In 2020 IEEE/ACM International Conference On Computer
Aided Design (ICCAD), pages 1–9, 2020.

[11] Sheng-Chun Kao, Michael Pellauer, Angshuman Parashar, and Tushar Krishna. Digamma:
domain-aware genetic algorithm for hw-mapping co-optimization for dnn accelerators. In
Proceedings of the 2022 Conference & Exhibition on Design, Automation & Test in Europe,
DATE ’22, page 232–237. European Design and Automation Association, 2022.

[12] Chirag Sakhuja, Zhan Shi, and Calvin Lin. Leveraging domain information for the efficient
automated design of deep learning accelerators. In 2023 IEEE International Symposium on
High-Performance Computer Architecture (HPCA), pages 287–301, 2023.

[13] Luigi Nardi, David Koeplinger, and Kunle Olukotun. Practical design space exploration. In
2019 IEEE 27th International Symposium on Modeling, Analysis, and Simulation of Computer
and Telecommunication Systems (MASCOTS), pages 347–358. IEEE, 2019.

[14] Aviral Kumar, Amir Yazdanbakhsh, Milad Hashemi, Kevin Swersky, and Sergey Levine. Data-
driven offline optimization for architecting hardware accelerators, 2022.

5



[15] Chen Bai, Qi Sun, Jianwang Zhai, Yuzhe Ma, Bei Yu, and Martin D.F. Wong. Boom-explorer:
Risc-v boom microarchitecture design space exploration framework. In 2021 IEEE/ACM
International Conference On Computer Aided Design (ICCAD), pages 1–9, 2021.

[16] Amir Yazdanbakhsh, Christof Angermueller, Berkin Akin, Yanqi Zhou, Albin Jones, Milad
Hashemi, Kevin Swersky, Satrajit Chatterjee, Ravi Narayanaswami, and James Laudon. Apollo:
Transferable architecture exploration. arXiv preprint arXiv:2102.01723, 2021.

[17] Kavya Sreedhar, Josh Ogbonda, Pengqi Yin, Narges Shahidi, Kanthi Nagaraj, Zhijie Deng,
Rami Cohen, Ton Kalker, Sameer Kumar, Amir Yazdanbakhsh, et al. Leveraging llms to
improve hardware-software co-design workflow productivity and accessibility. In Machine
Learning for Computer Architecture and Systems 2025, 2025.

[18] Hannah Lin, Martin Maas, Maximilian Roquemore, Arman Hasanzadeh, Fred Lewis, Yusuf
Simonson, Tzu-Wei Yang, Amir Yazdanbakhsh, Deniz Altinbüken, Florin Papa, Maggie Nolan
Edmonds, Aditya Patil, Don Schwarz, Satish Chandra, Chris Kennelly, Milad Hashemi, and
Parthasarathy Ranganathan. Eco: An llm-driven efficient code optimizer for warehouse scale
computers, 2025.

[19] Daniel Golovin, Benjamin Solnik, Subhodeep Moitra, Greg Kochanski, John Karro, and David
Sculley. Google vizier: A service for black-box optimization. In Proceedings of the 23rd ACM
SIGKDD international conference on knowledge discovery and data mining, pages 1487–1495,
2017.

[20] Andreas Krause and Cheng Ong. Contextual gaussian process bandit optimization. Advances in
neural information processing systems, 24, 2011.

[21] E. Zitzler, L. Thiele, M. Laumanns, C.M. Fonseca, and V.G. da Fonseca. Performance assess-
ment of multiobjective optimizers: an analysis and review. IEEE Transactions on Evolutionary
Computation, 7(2):117–132, 2003.

[22] Jinhyuk Lee, Feiyang Chen, Sahil Dua, Daniel Cer, Madhuri Shanbhogue, Iftekhar Naim,
Gustavo Hernández Ábrego, Zhe Li, Kaifeng Chen, Henrique Schechter Vera, et al. Gemini
embedding: Generalizable embeddings from gemini. arXiv preprint arXiv:2503.07891, 2025.

6


	Introduction
	Background
	Exhaustive Design Space Exploration
	Standard Black-Box Optimization

	LLM-guided Design Space Exploration
	Evaluation
	Transfer Learning
	Warm start

	Conclusion and Future Work

