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Abstract

The rapid advancements in Large Language001
Models (LLMs) have led to a diverse landscape002
of models with varying capabilities and asso-003
ciated costs. No single LLM is optimal for all004
tasks, necessitating intelligent routing systems005
that can dynamically select the most appropri-006
ate model for a given input to balance perfor-007
mance and operational expense. In this study,008
we propose a novel benchmark-driven LLM009
routing framework designed to achieve a practi-010
cal balance between task-specific performance011
and cost. As opposed to previous studies’012
frameworks, such as HybridLLM, RouteLLM,013
and LLMProxy, which often focus on binary014
classifiers for query assessment, our multi-015
stage system employs explicit task profiling016
using a lightweight classifier LLM to determine017
not only the query’s category but also a more018
granular, multi-level difficulty. A key differ-019
entiating aspect is our tiered cost-performance020
model selection strategy, which systematically021
buckets models into cost percentiles and then022
selects the best-performing model within the023
appropriate tier for the predicted task profile,024
offering a more structured approach to balanc-025
ing cost and performance. We evaluate the026
framework using three routing configurations.027
The Optimum router consistently achieves per-028
formance comparable to or exceeding the best029
individual models on specific tasks, but at sig-030
nificantly lower total costs.031

1 Introduction032

Generative AI, particularly large language models033

(LLMs), has seen rapid advancements in recent034

years; good models are becoming cheaper, and035

cheap models are becoming good. Models such036

as GPT-4o (OpenAI, 2024a), o1 (OpenAI, 2024b),037

DeepSeek-R1 (DeepSeek-AI, 2025) have demon-038

strated remarkable capabilities in natural language039

processing tasks, including open-domain dialogue,040

question answering, and code generation.041

Despite these advancements, a critical challenge042

persists: no single LLM is universally optimal 043

across all tasks and applications, especially when 044

balancing performance against operational costs 045

and latency (Hu et al., 2024; Huang et al., 2024). 046

This inherent limitation has spurred significant re- 047

search into LLM routing systems. These systems 048

dynamically select the most suitable model from a 049

pool of candidates for a given input, aiming to 050

optimize objectives such as accuracy, computa- 051

tional efficiency, or latency, thereby aligning model 052

choice with the desired capability-resource trade- 053

off (Varangot-Reille et al., 2025). Consequently, 054

routing is now recognized as a promising paradigm 055

for achieving model-level scaling up (Huang et al., 056

2024). Existing LLM routing methods can be 057

broadly categorized. One key distinction is be- 058

tween non-predictive methods, which often involve 059

generating responses from multiple models before 060

selection, and predictive methods, which aim to 061

select the optimal LLM before generation." 062

1.1 Non-Predictive and Cascading 063

Approaches 064

These methods typically involve querying models 065

sequentially or in parallel. Cascading approaches, 066

like FrugalGPT (Chen et al., 2023; Ding et al.; 067

Feng et al.), often start with smaller, cheaper mod- 068

els and escalate to more capable ones if the initial 069

response quality (sometimes inferred by a "judger" 070

regression model) is insufficient. AutoMix (Aggar- 071

wal et al., 2024) employs a self-verification step 072

before potentially escalating. Other non-predictive 073

strategies might generate responses from multiple 074

LLMs and then select or combine the best one 075

(Jiang et al., 2023). While these can be effective, 076

the need to query multiple models can increase 077

costs and latency (Tay et al., 2022; Wang et al., 078

2024). Our approach, on the other hand, clearly 079

falls into the predictive routing category. It aims 080

to select a single, most appropriate LLM based on 081

prior classification and benchmark mapping, avoid- 082
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ing the overhead of multiple generations inherent083

in many non-predictive and cascading systems.084

1.2 Classification/Regression-Based:085

HybridLLM (Ding et al.) uses a binary classi-086

fier for query difficulty. RouteLLM (Ong et al.,087

2024) trains various routers (similarity-weighted,088

matrix factorization, BERT, Causal LLM) on hu-089

man preference data. LLMProxy (Martin et al.,090

2024) proposes model selection as one of its opti-091

mizations, potentially using LLM-powered heuris-092

tics. (Shekhar et al., 2024) propose quality predic-093

tion without invocation using LP-based routines.094

Domain-based routing (Jain et al., 2024; Liu et al.,095

2024) classifies queries into domains to match with096

expert models. Our method shares similarities with097

classification-based routing. We use Qwen 2.5 3B098

as a classifier to assign tasks to predefined cate-099

gories (Law, Business, Computer Science, etc.)100

and one of three difficulty levels. This explicit,101

fine-grained categorization before model selection102

is a key aspect. Unlike systems that predict general103

query difficulty or directly regress performance,104

our classifier provides a structured task profile. The105

subsequent mapping of this profile to benchmark106

performance (MMLU-Pro, GPQA Diamond, Hu-107

manEval, etc.) to inform model choice is a data-108

driven, rule-based step that leverages empirical evi-109

dence.110

Graph-Based Methods: GraphRouter (Feng111

et al.) uses a GNN to model interactions between112

tasks, queries, and LLMs, predicting optimal LLMs113

via edge predictions and offering generalization to114

new LLMs.115

RL and Bandit-Based Methods: PickLLM116

(Sikeridis et al., 2024) uses RL for dynamic routing117

based on cost, latency, and accuracy. MixLLM118

(Wang et al., 2024) applies a contextual ban-119

dit framework with continual learning and tag-120

enhanced embeddings.121

1.3 Cost Optimization Strategies122

A central theme is optimizing cost. Many systems,123

like RouterBench (Hu et al., 2024), incorporate124

a "willingness-to-pay" (WTP) framework. LLM-125

Proxy (Martin et al., 2024) focuses on cost-saving126

through model selection, context management, and127

caching. (Shekhar et al., 2024) emphasize cost op-128

timization through LP-based routines and token re-129

duction. Our method integrates cost explicitly and130

structurally through a percentile-based bucketing131

of models. We divide our tested models (Qwen 2.5, 132

gemma3, GPT 4.1 nano/mini, Gemini 2.0 Flash 133

Lite, Llama 4 Scout, etc.) into three cost tiers. The 134

routing logic then directly links these cost tiers 135

to our predefined difficulty levels: the cheapest 136

33.3 percentile models are considered for Level 137

1 tasks (Simple/Factual), the next 33.3 percentile 138

for Level 2 (Moderate/Standard), and the overall 139

best-performing models (often the most expensive) 140

for Level 3 (Complex/Advanced), always select- 141

ing the top performer within that tier for the given 142

category. This explicit, tiered cost-performance 143

mapping based on difficulty is a distinct and prag- 144

matic strategy. 145

1.4 Benchmarking and Evaluation 146

Frameworks 147

The field relies on standard LLM benchmarks 148

(MMLU, HumanEval, etc.) and increasingly 149

on dedicated routing benchmarks. ROUTER- 150

BENCH (Hu et al., 2024) and RouterEval (Huang 151

et al., 2024) provide comprehensive datasets and 152

frameworks to evaluate different routing strategies. 153

RouterEval, for instance, highlights the "model- 154

level scaling up" phenomenon where performance 155

improves with more candidate LLMs and a capa- 156

ble router. TaskEval (Tambon et al.) focuses on 157

assessing task difficulty itself using IRT, showing 158

discrepancies between human and LLM perception 159

of difficulty. SLaM (Irugalbandara et al.) pro- 160

vides tools for cost-benefit analysis when replacing 161

proprietary LLMs with open-source SLMs. We 162

leverage a wide array of benchmarks (MMLU-Pro, 163

GPQA Diamond, LiveCodeBench, SciCode, Hu- 164

manEval, MATH-500, AIME 2024, Multilingual 165

Index, LegalBench) not just for final evaluation, but 166

as an integral part of our routing logic. The perfor- 167

mance of models on these benchmarks, within spe- 168

cific task categories, directly informs which model 169

is chosen from the appropriate cost/difficulty tier. 170

1.5 Summary and Positioning of Our Work 171

Our proposed method offers a structured, inter- 172

pretable, and empirically-grounded approach to 173

LLM routing. It stands out by: 174

1. Explicit Task Profiling: In contrast to stud- 175

ies like HybridLLM (Ding et al.), RouteLLM 176

(Ong et al., 2024), or LLMProxy (Martin et al., 177

2024), which often employ binary classifiers, 178

our approach uses a classifier LLM (Qwen 2.5 179

3B) for fine-grained task categorization and 180
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multi-level difficulty assignment. This yields181

a more nuanced understanding of prompt char-182

acteristics beyond simple hard/easy distinc-183

tions.184

2. Benchmark-Driven Model-Task Matching:185

Instead of relying solely on high-level heuris-186

tics, our system systematically maps detailed187

task profiles to empirical model performance188

across diverse, relevant benchmarks. This189

grounds model selection in observed capabil-190

ities for specific task types, facilitating the191

identification of the best-performing model192

from the candidate pool for a given profile.193

3. Tiered Cost-Performance Optimization:194

While systems like HybridLLM (Ding et al.)195

and RouteLLM (Ong et al., 2024) route196

queries to different cost-level models based on197

difficulty, and cascading approaches like Fru-198

galGPT (Chen et al., 2023) escalate through199

cost tiers, our method introduces distinct, pre-200

emptive cost-percentile bucketing. This ex-201

plicitly links predefined model cost tiers to202

predicted task difficulty levels before invo-203

cation, systematically ensuring a practical204

performance-expenditure balance by selecting205

the optimal performer within an appropriate,206

pre-defined cost bracket for the task’s profile.207

4. Transparency and Simplicity: Unlike com-208

plex learned routers, such as graph-based209

methods (e.g., GraphRouter (Feng et al.))210

or dynamic RL systems (e.g., PickLLM211

(Sikeridis et al., 2024)), which can be212

resource-intensive, our approach offers high213

interpretability. Its rule-based nature post-214

classification and benchmark mapping poten-215

tially simplifies deployment and allows for216

easier diagnosis and adjustment.217

2 Methodology218

The proposed system implements a multi-stage,219

benchmark-driven framework for intelligent LLM220

routing, prioritizing a balance between task-221

specific performance and operational cost. The222

overall architecture of this framework is depicted223

in Figure 1. The methodology is comprised of four224

key stages: (1) explicit task profiling using a clas-225

sifier LLM, (2) offline benchmark-driven model226

recommendation generation, (3) dynamic online227

prompt routing, and (4) a comprehensive evalua-228

tion framework.229

2.1 Explicit Task Profiling 230

At the core of the routing intelligence is a task 231

profiling sub-system designed to understand the 232

nature and complexity of incoming user prompts. 233

2.1.1 Classifier Model Selection 234

A lightweight yet effective LLM, Qwen 2.5 3B, was 235

selected for task classification. This decision was 236

informed by an empirical evaluation across multi- 237

ple candidate models (including various sizes of 238

Qwen, Gemma, and proprietary models like GPT 239

4.1 nano/mini and Gemini 2.0 Flash Lite) on a 240

diverse corpus of 600 questions spanning GPQA, 241

MMLU, MMLU-Pro, Math-500, Humanity’s Last 242

Exam, and LiveCodeBench. Qwen 2.5 3B demon- 243

strated a leading category accuracy of 78.28 (Ta- 244

ble 1) and a level accuracy of 65.03 (Table 2). 245

While certain proprietary models such as GPT 4.1 246

mini and GPT 4.1 nano exhibited marginally higher 247

category classification accuracy, Qwen 2.5 3B pro- 248

vided a more balanced performance, particularly 249

in discerning difficulty levels, and was ultimately 250

preferred due to its open-source nature. 251

2.1.2 Prompt Classification Process 252

The classifier model processes incoming raw user 253

prompts by assigning them to a specific category 254

from a predefined set, which includes domains 255

like Professional, Science and Technology, Code- 256

related, Language Tasks, and Humanities and So- 257

cial Sciences, as detailed in Table ??. 258

It also assigns the prompt to one of the difficulty 259

levels as guided below. 260

• Level 1 (Simple / Factual): Basic recall, sim- 261

ple instructions, minimal reasoning. 262

• Level 2 (Moderate / Standard): Some rea- 263

soning, multi-step instructions, moderately 264

complex generation. 265

• Level 3 (Complex / Advanced): Deep rea- 266

soning, synthesis, high creativity, complex 267

problem-solving. 268

2.2 Offline Benchmark-Driven Model 269

Recommendation Generation 270

To inform routing decisions, an offline process 271

of recommended model generation is carried out 272

each time the new model is added to the candidate 273

model. 274

A comprehensive dataset has been compiled, de- 275

tailing the performance scores of various large lan- 276

guage models (LLMs) (Table 7) across a range of 277
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Figure 1: System Architecture of the Benchmark-Driven LLM Routing Framework.

Table 1: Model Category Classification Accuracy in Percentage Across Diverse Benchmarks. The final row reports
overall accuracy averaged over 100 questions per benchmark (600 Total Questions).

Questions
Qwen 2.5

0.5B
gemma3

1b
gemma3

4b
Qwen 2.5

1.5B
Qwen 2.5

3B
Qwen3

0.6B
Qwen3

4B
GPT 4.1

nano
GPT 4.1

mini
Gemini 2.0
Flash Lite

Llama 4
Scout

GPQA 46.94 72.73 94.00 85.71 87.50 88.89 98.00 98.00 99.00 97.00 99.00
MMLU 17.17 47.96 60.00 54.64 68.89 38.54 52.58 69.57 64.00 57.00 61.86
MMLU Pro 20.41 44.79 60.42 69.79 72.09 50.00 69.15 65.26 71.72 71.00 69.07
Math 500 100.00 77.00 99.00 100.00 100.00 97.00 100.00 97.98 99.00 98.00 93.00
Humanity Last
Exam

46.88 48.48 69.39 63.92 70.79 59.38 72.45 75.00 72.00 69.00 74.23

Livebench
Coding

0.00 0.00 81.00 0.00 71.00 0.00 0.00 0.00 89.00 87.00 20.00

Average
accuracy

38.47 48.48 77.59 62.12 78.28 55.90 65.37 78.79 82.47 79.83 69.54

Table 2: Model Level Classification Accuracy for selected models on GPQA and Math-500 benchmarks. The last
row shows total accuracy on 200 questions. Values are percentages.

Questions
Qwen 2.5

3B
Qwen2.5

1.5B
Qwen 2.5

0.5B
Gemma3

1B
Gemma3

4B
GPT 4.1

nano
GPT 4.1

Mini
Gemini 2.0
Flash Lite

GPQA 80.21 86.73 5.10 92.93 32.00 35.00 54.00 33.00
Math_500 48.28 41.84 49.49 32.00 56.00 37.37 35.00 47.00

Total - 200 65.03 64.29 27.41 62.31 44.00 36.18 44.5 40.00

benchmarks, including MMLU-Pro, GPQA Dia-278

mond, Humanity’s Last Exam, LiveCodeBench,279

SciCode, HumanEval, MATH-500, AIME 2024,280

LegalBench, MedQA, MGSM, and Chatbot Arena,281

along with associated input and output cost metrics.282

This table needs to be updated when a new model283

is added to the dataset. A predefined category-284

benchmark mapping links each task category to285

a set of relevant benchmarks (e.g., "Mathemat-286

ics" maps to "MMLU-Pro", "MATH-500", "AIME287

2024", etc.). 288

In further step raw benchmark scores for all mod- 289

els are converted to Z-scores. This normalization 290

standardizes performance across different bench- 291

marks with varying scales and score distributions. 292

If a benchmark models with a 0 Z-score indicates 293

this benchmark does not contribute to differentia- 294

tion for that category. An Avg Z-Score is computed 295

for each model within a category by averaging its 296

Z-scores across all relevant benchmarks for that 297
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category. This Avg Z-Score serves as the primary298

performance metric for a model within a specific299

task category.300

For each category, three model recommenda-301

tions are generated as shown in table 6. Models302

with valid Avg Z-Score and Total Cost for the cur-303

rent category are considered. Total cost is com-304

puted as the sum of input cost and output cost for305

each model. Cost thresholds are determined using306

percentiles (1/3 and 2/3 quantiles) of these models’307

total cost.308

• Low Cost, Good Performance: Models309

falling below or at the refined lower cost310

threshold (approx. bottom 33rd percentile for311

the category) are considered. The model from312

this tier with the highest average Z-score is313

selected.314

• Moderate Cost, Good Performance: Mod-315

els falling below the upper cost thresholds316

(approx. 66th percentile) are selected. The317

model from this tier with the highest average318

Z-score is chosen.319

• Best Performance: Irrespective of total cost,320

the model is selected just based on the highest321

Avg Z-score.322

2.3 Dynamic Online Prompt Routing323

During inference, the prompt router receives input324

from a classifier that predicts both the category325

and difficulty level of the incoming prompt. In326

cases where the classifier is unable to determine a327

valid category, the system defaults to assigning the328

prompt to a miscellaneous category.329

The routing mechanism is further classified into330

three types based on cost-performance trade-offs:331

• Optimum Router: Selects the most suit-332

able model from the tiered cost-performance333

dataset, balancing both cost and performance334

according to the predicted category and diffi-335

culty level.336

• Low-Cost Router: Chooses the correspond-337

ing model based on the identified category,338

while defaulting to the lowest difficulty level339

(Level 1) to minimize computational cost.340

• Best-Performance Router: Selects the341

model associated with the predicted category,342

defaulting to the highest difficulty level (Level343

3) to maximize output quality regardless of344

computational expense.345

2.3.1 Model Invocation via LiteLLM 346

The selected LiteLLM model is invoked with the 347

user prompt through the LiteLLM chat completion 348

endpoint. The system returns the LLM’s response 349

text to the user dashboard. 350

3 Experimental Results 351

This section presents the quantitative evaluation 352

of the proposed benchmark-driven LLM routing 353

framework. The primary objective is to demon- 354

strate the system’s capability to achieve signifi- 355

cant cost efficiencies while maintaining or improv- 356

ing performance compared to using a single, fixed 357

LLM across various task domains and difficulty lev- 358

els. The evaluation focuses on the performance and 359

total cost ($/1M tokens, input + output) of the three 360

router configurations: Low-Cost, Optimum, and 361

Best-Performance, as defined in Section Dynamic 362

Online Prompt Routing. 363

3.1 Evaluation Benchmarks 364

To rigorously assess the router’s effectiveness, we 365

selected three diverse and challenging benchmarks 366

representative of key task categories identified dur- 367

ing explicit task profiling: 368

• GPQA Diamond: A graduate-level, Google- 369

proof question-answering benchmark cover- 370

ing complex science domains (Biology, Chem- 371

istry, Physics). It comprises 198 questions de- 372

signed to be difficult for LLMs, requiring deep 373

factual knowledge and reasoning. (Source: 374

(Austin et al., 2023)) 375

• MATH-500: A subset of 500 problems from 376

the challenging MATH benchmark, focusing 377

on mathematical problem-solving. This re- 378

quires strong logical deduction and symbolic 379

manipulation capabilities. (Source: (Cobbe 380

et al., 2021)) 381

• LiveCodeBench (Coding): A benchmark de- 382

signed to evaluate code generation and com- 383

pletion capabilities while mitigating test set 384

contamination. We utilize the coding subset, 385

consisting of 78 code generation and 50 code 386

completion questions. (Source: (Kallas et al., 387

2023)) 388

These benchmarks were chosen for their difficulty 389

and relevance to categories frequently encountered 390

in practical applications, allowing for a robust eval- 391

uation of the router’s ability to select appropriate 392

models based on task type and inferred complexity. 393
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3.2 Router Performance Evaluation394

Table 3 summarizes the performance scores (accu-395

racy or completion rate) and total costs for each396

router configuration across the three selected bench-397

marks.398

Table 3: Performance and Total Cost of LLM Router
Configurations on Selected Benchmarks.

Benchmark Router Type Score
(%)

Cost
($/1M)

GPQA
Diamond

Low Cost 74.87 3.09
Optimum 82.47 8.48
Best Performance 78.28 11.13

MATH-
500

Low Cost 98.20 0.75
Optimum 98.00 1.13
Best Performance 96.00 5.50

Live Code
Bench
Coding

Low Cost 76.60 0.75
Optimum 84.38 6.44
Best Performance 85.20 11.25

The results demonstrate clear trade-offs offered399

by the different router configurations, aligning with400

their design principles. To provide context, we401

compare these router results with the performance402

and cost of individual LLMs as depicted in the403

cost-performance scatter plots (Figures 2, 3, and404

4).405

3.2.1 GPQA Diamond Results406

On the challenging GPQA Diamond benchmark407

(Figure 2), the Optimum router achieved a signif-408

icantly higher performance of 82.47% at a lower409

cost of $8.48. This performance level is very close410

to the peak observed performance of individual411

models on this benchmark (83.6% by Gemini 2.5412

Pro) but at a notable cost reduction. This highlights413

the Optimum router’s ability to find highly per-414

formant models without necessarily incurring the415

absolute highest costs. During the initial evaluation,416

it was observed that the model underperformed in417

the chemistry category. To enhance accuracy, an418

adjustment was implemented: all models assigned419

to the chemistry category were shifted up by one420

level. Specifically, the initial Gemini 2.5 Flash at421

Level 1 was replaced with the higher-performing422

o4 mini High. The Low-Cost router, operating423

at just $3.09 per million tokens, still delivered a424

respectable 74.87% accuracy. This performance425

is competitive with mid-range individual models426

(e.g., OpenAI o1-mini at $5.5 total cost for 60.3%,427

Llama 3.3 70b at $1.44 total cost for 50.0%) while 428

offering substantial cost savings compared to the 429

higher tiers and top individual models. 430

3.2.2 MATH-500 Results 431

The MATH-500 benchmark (Figure 3) evaluation 432

revealed the router’s exceptional efficiency in nu- 433

merical and logical tasks. The Low-Cost router 434

achieved an impressive 98.20% accuracy for a mere 435

$0.75 total cost. This performance surpasses many 436

individual models across the entire cost spectrum 437

and is on par with or exceeds the accuracy of the 438

most expensive models (e.g., Gemini 2.5 Pro at 439

$11.25 for 98.0%). The Optimum router main- 440

tained this high accuracy at 98.00%, with a slightly 441

higher cost of $1.13, still remarkably low compared 442

to most high-performance individual models. The 443

Best Performance router scored 96.00% at a cost 444

of $5.50. While its performance was slightly lower 445

than the other two tiers on this specific benchmark 446

run. The performance on MATH-500 underscores 447

the router’s ability to identify highly efficient mod- 448

els for specific tasks, leading to dramatic cost re- 449

ductions without sacrificing accuracy, particularly 450

benefiting from the lower inference costs of certain 451

models when selected optimally. 452

3.2.3 LiveCodeBench Coding Results 453

The LiveCodeBench Coding benchmark (Figure 4) 454

demonstrates the router’s strong capabilities in 455

code-related tasks. The Best Performance router 456

achieved the highest score among all tested models 457

and router configurations on this specific bench- 458

mark set, reaching 85.20% completion rate at a 459

cost of $11.25. This outperforms the highest indi- 460

vidual model score observed (e.g., o4-mini (high) 461

at 80.4% for $4.40, Gemini 2.5 Pro at 69.5% for 462

$11.25). The Optimum router was close in perfor- 463

mance at 84.38%, but at a significantly reduced cost 464

of $6.44, offering an excellent balance for demand- 465

ing coding tasks. The Low-Cost router again pro- 466

vided substantial cost savings ($0.75) while achiev- 467

ing a very strong 76.60% performance, competitive 468

with many individual models costing significantly 469

more (e.g., OpenAI o1 at $75 for 67.9%, DeepSeek- 470

R1 at $6.75 for 61.7%). 471

3.3 Discussion 472

The experimental results clearly validate the ef- 473

fectiveness of our benchmark-driven LLM router, 474

DynaRoute. Its three configurations successfully 475
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Figure 2: GPQA Diamond Score vs. Total Cost ($/1M tok, Input+Output). DynaRoute’s Optimum router achieves a
significantly higher performance of 82.47% at a cost of $8.48/1M tokens. In comparison, RouteLLM (Ong et al.,
2024) between GPT-4.1 and OpenAI o1) scores 58.59% at a substantially higher cost of $36.62/1M tokens. Other
individual models are also shown.

Figure 3: MATH-500 Score vs. Total Cost ($/1M tok, Input+Output). DynaRoute’s Optimum router achieves a
high accuracy of 98.00% at a remarkably low cost of $1.13/1M tokens. Even its Low-Cost router configuration
attains 98.20% accuracy for only $0.75/1M tokens, outperforming or matching many significantly more expensive
individual models. Router configurations are shown alongside individual models.
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Figure 4: LiveCodeBench Coding Score vs. Total Cost ($/1M tok, Input+Output). DynaRoute’s Best-Performance
router achieves a leading score of 85.20% at $11.25/1M tokens, while its Optimum router delivers a strong 84.38%
at a reduced cost of $6.44/1M tokens. Router configurations are shown alongside individual models.

embody distinct cost-performance trade-offs, offer-476

ing flexibility based on application requirements.477

To contextualize DynaRoute’s performance,478

RouteLLM (Ong et al., 2024) was selected for com-479

parison on the GPQA benchmark. Configured with480

OpenAI’s o1 (strong) and GPT-4.1 nano (weak)481

as per its design, RouteLLM achieved 58.59%482

accuracy at $36.62/1M tokens. In contrast, Dy-483

naRoute’s Optimum router delivered significantly484

higher 82.47% accuracy at only $8.48/1M tokens,485

demonstrating superior cost-efficiency.486

The Optimum router epitomizes the system’s487

value by achieving performance comparable to or488

exceeding top individual models on challenging489

benchmarks, yet at significantly lower total costs,490

optimizing the cost-performance frontier.491

The Low-Cost router demonstrated dramatic492

cost reductions while maintaining surprisingly high493

performance across diverse tasks like MATH-500494

and LiveCodeBench. This tier is ideal for cost-495

constrained scenarios or high-volume simple tasks,496

as not all prompts demand the most expensive mod-497

els.498

The Best-Performance router acts as an upper499

bound, showcasing the system’s ability to identify500

and utilize the most capable models when maxi-501

mum accuracy is paramount. In practical appli-502

cations with mixed prompt complexities, routing503

simpler requests to low-cost models will yield sub- 504

stantial overall cost savings. 505

4 Conclusion 506

In this work, we introduced a benchmark-driven 507

LLM routing framework, DynaRoute, that intel- 508

ligently matches tasks to models based on do- 509

main, difficulty, and cost-performance trade-offs. 510

Our tiered selection strategy, Low-Cost, Optimum 511

and Best-Performance, demonstrated strong results 512

across diverse benchmarks, offering a practical and 513

interpretable alternative to black-box systems and 514

achieving superior cost-performance compared to 515

other routing approaches as RouteLLM (Ong et al., 516

2024) , on specific tasks. While reliant on clas- 517

sifier accuracy and up-to-date benchmarks, our 518

approach lays a solid foundation for cost-aware, 519

performance-optimized LLM deployment. Future 520

directions include incorporating real-time feedback 521

and finer-grained profiling. 522
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6 Limitations530

The efficacy of the routing system is heavily de-531

pendent on the initial task profiling accuracy of532

the classifier LLM (Qwen 2.5 3B). While selected533

for its balance of performance and efficiency, Ta-534

bles 1 and 2 show that classification is not per-535

fect (78.28% category accuracy, 65.03% level ac-536

curacy). Misclassifying the category or difficulty537

level of a prompt can lead to suboptimal model538

selection, potentially routing a complex query to a539

low-cost, less capable model or a simple query to540

an expensive, high-performance one unnecessarily.541
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Table 4: Task Categories for Prompt Classification

Main Category Specific Domains / Tasks

Professional Domains Law, Business, Economics

Science and Technology Biology, Chemistry, Engineering, Physics, Computer Science, Mathematics

Code-related Syntax Check, Code Generation, Code Explanation, Debugging Assistance,
Algorithm, System Design

Language Tasks Language Translation, Summarization, Creative Writing,
Text Formatting and Editing, General Knowledge

Humanities and Social Sciences History, Geography, Philosophy, Sociology, Astrology

Other Health, Facts, Logic, Miscellaneous

Table 5: Mapping of Task Categories to Relevant Benchmarks for Offline Performance Evaluation.

Category List of Associated Benchmark

Law MMLU-Pro, Humanity’s Last Exam, Multilingual Index
Business MMLU-Pro, Humanity’s Last Exam
Economics MMLU-Pro, Humanity’s Last Exam
Biology MMLU-Pro, GPQA Diamond, Humanity’s Last Exam, SciCode
Chemistry MMLU-Pro, GPQA Diamond, Humanity’s Last Exam, SciCode
Engineering MMLU-Pro, Humanity’s Last Exam
Physics MMLU-Pro, GPQA Diamond, Humanity’s Last Exam, SciCode
Computer Science MMLU-Pro, Humanity’s Last Exam, LiveCodeBench, SciCode, HumanEval
Mathematics MMLU-Pro, Humanity’s Last Exam, SciCode, HumanEval, MATH-500, AIME 2024
Syntax Check HumanEval, LiveCodeBench, SciCode
Code Generation LiveCodeBench, SciCode, HumanEval, Multilingual Index
Code Explanation (None listed)
Debugging Assistance LiveCodeBench
Algorithm LiveCodeBench, SciCode, HumanEval
System Design LiveCodeBench, SciCode
Language Translation Multilingual Index
Summarization Multilingual Index
Creative Writing Multilingual Index
Text Formatting (None listed)
General Knowledge MMLU-Pro, GPQA Diamond, Humanity’s Last Exam, Multilingual Index
History MMLU-Pro, Humanity’s Last Exam
Geography Humanity’s Last Exam
Philosophy MMLU-Pro, Humanity’s Last Exam
Sociology Humanity’s Last Exam
Astrology (None listed)
Health MMLU-Pro, Humanity’s Last Exam
Facts MMLU-Pro, GPQA Diamond, Humanity’s Last Exam
Logic MMLU-Pro, GPQA Diamond, Humanity’s Last Exam, LiveCodeBench, HumanEval,

MATH-500, AIME 2024
Miscellaneous MMLU-Pro
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Table 6: Tiered Model Recommendations by Task Category (Model, Avg Z-Score, Total Cost $/1M tok).

Category Low Cost Moderate Cost Best Performance

Law Gemini 2.5 Flash (Score:
80.20, Cost: 0.75)

Claude 3 Haiku (Score: 68.30,
Cost: 1.50)

Gemini 2.5 Flash (Score:
80.20, Cost: 0.75)

Business Gemini 2.5 Flash (Score:
80.20, Cost: 0.75)

o4-mini (high) (Score: 50.35,
Cost: 5.50)

Gemini 2.5 Flash (Score:
80.20, Cost: 0.75)

Economics Gemini 2.5 Flash (Score:
80.20, Cost: 0.75)

o4-mini (high) (Score: 50.35,
Cost: 5.50)

Gemini 2.5 Flash (Score:
80.20, Cost: 0.75)

Biology Gemini 2.5 Flash (Score:
57.07, Cost: 0.75)

o4-mini (high) (Score: 56.40,
Cost: 5.50)

GPT-4.5 (Score: 71.40, Cost:
225.0)

Chemistry Gemini 2.5 Flash (Score:
57.07, Cost: 0.75)

o4-mini (high) (Score: 56.40,
Cost: 5.50)

GPT-4.5 (Score: 71.40, Cost:
225.0)

Engineering Gemini 2.5 Flash (Score:
80.20, Cost: 0.75)

o4-mini (high) (Score: 50.35,
Cost: 5.50)

Gemini 2.5 Flash (Score:
80.20, Cost: 0.75)

Physics Gemini 2.5 Flash (Score:
57.07, Cost: 0.75)

o4-mini (high) (Score: 56.40,
Cost: 5.50)

GPT-4.5 (Score: 71.40, Cost:
225.0)

Computer Science Gemini 2.5 Flash (Score:
50.85, Cost: 0.75)

o4-mini (high) (Score: 65.32,
Cost: 5.50)

GPT-4 (Score: 88.40, Cost:
90.0)

Mathematics Llama 4 Maverick (Score:
55.77, Cost: 0.80)

o4-mini (high) (Score: 73.18,
Cost: 5.50)

GPT-4 (Score: 88.40, Cost:
90.0)

Syntax Check Gemini 1.5 Flash (Score:
55.55, Cost: 0.90)

o4-mini (high) (Score: 75.30,
Cost: 5.50)

GPT-4 (Score: 88.40, Cost:
90.0)

Code Generation Gemini 1.5 Flash (Score:
63.93, Cost: 0.90)

o4-mini (high) (Score: 75.30,
Cost: 5.50)

GPT-4 (Score: 88.40, Cost:
90.0)

Debugging Assistance Llama 4 Maverick (Score:
39.70, Cost: 0.80)

o4-mini (high) (Score: 80.40,
Cost: 5.50)

o4-mini (high) (Score: 80.40,
Cost: 5.5)

Algorithm Gemini 1.5 Flash (Score:
55.55, Cost: 0.90)

o4-mini (high) (Score: 75.30,
Cost: 5.50)

GPT-4 (Score: 88.40, Cost:
90.0)

System Design Llama 4 Maverick (Score:
36.40, Cost: 0.80)

o4-mini (high) (Score: 63.45,
Cost: 5.50)

o4-mini (high) (Score: 63.45,
Cost: 5.5)

Language Translation Gemini 1.5 Flash (Score:
80.70, Cost: 0.90)

Llama 3.3 70b (Score: 83.90,
Cost: 1.44)

Claude 3.5 Sonnet (Score:
88.40, Cost: 18.0)

Summarization Gemini 1.5 Flash (Score:
80.70, Cost: 0.90)

Llama 3.3 70b (Score: 83.90,
Cost: 1.44)

Claude 3.5 Sonnet (Score:
88.40, Cost: 18.0)

Creative Writing Gemini 1.5 Flash (Score:
80.70, Cost: 0.90)

Llama 3.3 70b (Score: 83.90,
Cost: 1.44)

Claude 3.5 Sonnet (Score:
88.40, Cost: 18.0)

General Knowledge Gemini 2.5 Flash (Score:
74.85, Cost: 0.75)

Claude 3 Haiku (Score: 68.30,
Cost: 1.50)

Gemini 2.5 Flash (Score:
74.85, Cost: 0.75)

History Gemini 2.5 Flash (Score:
80.20, Cost: 0.75)

o4-mini (high) (Score: 50.35,
Cost: 5.50)

Gemini 2.5 Flash (Score:
80.20, Cost: 0.75)

Geography Gemini 2.0 Flash (Score: 5.30,
Cost: 0.75)

o4-mini (high) (Score: 17.50,
Cost: 5.50)

o4-mini (high) (Score: 17.50,
Cost: 5.5)

Philosophy Gemini 2.5 Flash (Score:
80.20, Cost: 0.75)

o4-mini (high) (Score: 50.35,
Cost: 5.50)

Gemini 2.5 Flash (Score:
80.20, Cost: 0.75)

Sociology Gemini 2.0 Flash (Score: 5.30,
Cost: 0.75)

o4-mini (high) (Score: 17.50,
Cost: 5.50)

o4-mini (high) (Score: 17.50,
Cost: 5.5)

Health Gemini 2.5 Flash (Score:
80.20, Cost: 0.75)

o4-mini (high) (Score: 50.35,
Cost: 5.50)

Gemini 2.5 Flash (Score:
80.20, Cost: 0.75)

Facts Gemini 2.5 Flash (Score:
74.85, Cost: 0.75)

o4-mini (high) (Score: 59.70,
Cost: 5.50)

Gemini 2.5 Flash (Score:
74.85, Cost: 0.75)

Logic Gemini 2.5 Flash (Score:
64.33, Cost: 0.75)

o4-mini (high) (Score: 78.77,
Cost: 5.50)

GPT-4 (Score: 88.40, Cost:
90.0)

Miscellaneous Llama 4 Maverick (Score:
80.90, Cost: 0.80)

o4-mini (high) (Score: 83.20,
Cost: 5.50)

Gemini 2.5 Pro (Score: 85.80,
Cost: 11.25)
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Table 7: Full Model Benchmark Performance and Cost Data.

Model MMLU-
Pro

GPQA Humanity
’s Last
Exam

Live
Code

Sci
Code

Human
Eval

MATH-
500

AIME
2024

Multi
Ling.

Input
Cost

Output
Cost

OpenAI o1 84.10 74.70 7.70 67.90 35.80 97.40 97.00 72.30 87.60 15.00 60.00
Claude 3.5 Sonnet 77.20 59.90 3.90 38.10 35.10 93.00 77.10 15.70 88.40 3.00 15.00
GPT-4o 74.80 54.30 3.30 30.90 33.30 93.00 75.90 15.00 83.80 2.50 10.00
Llama 3.1 405b 73.20 51.50 4.20 30.50 29.90 85.40 70.30 21.30 76.50 2.40 2.40
Llama 3.1 405b 73.20 51.50 4.20 30.50 29.90 85.40 70.30 21.30 76.50 5.00 16.00
OpenAI o1-mini 74.20 60.30 4.90 57.60 32.30 97.20 94.40 60.30 83.30 1.10 4.40
GPT-4 Turbo 69.40 — 3.30 29.10 29.50 91.80 73.70 9.70 — 10.00 30.00
Claude 3 Opus 69.60 48.90 3.10 27.90 23.30 84.80 64.10 3.30 — 15.00 75.00
DeepSeek V3 75.70 55.70 3.60 35.90 35.40 90.60 88.70 25.30 86.40 — —
GPT-4 — — — — — 88.40 — — — 30.00 60.00
Llama 3.1 70b 67.60 41.00 4.60 23.20 26.70 81.20 64.90 17.30 — 0.72 0.72
Llama 3.3 70b 71.30 50.00 4.00 28.80 26.00 86.00 77.30 30.00 83.90 0.72 0.72
Gemini 1.5 Pro 75.00 58.90 4.90 31.60 29.50 89.80 87.60 23.00 85.00 5.00 10.00
Claude 3.5 Haiku 63.40 41.00 3.50 31.40 26.00 85.90 72.10 3.30 78.50 0.80 4.00
Gemini 1.5 Flash 67.80 46.30 3.50 27.30 — 83.80 82.70 18.00 80.70 0.30 0.60
Claude 3 Haiku — — — 16.20 17.70 70.60 39.40 — 68.30 0.25 1.25
Llama 3.1 8b 47.60 26.00 5.10 11.60 13.20 66.50 51.90 7.70 61.00 0.22 0.22
GPT-3.5 Turbo — — — — — — — — — 0.50 1.50
Gemini 2.0 Flash 77.90 62.30 5.30 33.40 31.20 90.40 93.00 33.00 — 0.15 0.60
AWS Nova Micro 53.10 35.80 3.40 14.00 9.40 79.90 70.30 8.00 71.10 0.035 0.14
AWS Nova Lite 59.00 43.30 4.60 16.70 13.80 82.80 76.50 10.70 76.10 0.06 0.24
AWS Nova Pro 69.10 49.90 4.70 23.30 20.80 84.10 78.60 10.70 83.40 0.80 3.20
GPT-4o mini 64.80 43.00 4.00 23.40 22.90 87.60 78.90 11.70 80.50 0.15 0.60
OpenAI o3-mini 79.10 74.80 8.70 71.70 39.80 97.20 97.30 77.00 — 1.10 4.40
OpenAI o3-mini High 80.20 77.30 12.30 73.40 39.90 — 98.50 86.00 — 1.10 4.40
DeepSeek-R1 84.40 70.80 9.30 61.70 35.70 97.70 96.30 68.30 — 1.35 5.40
GPT-4.5 — 71.40 — — — — — 36.70 — 75.00 150.00
Claude 3.7 Sonnet 80.30 65.60 4.80 39.40 37.50 92.20 83.50 24.30 — 3.00 15.00
Gemini 2.0 Flash Lite 72.30 54.20 4.40 17.90 27.70 89.60 87.30 30.30 — 0.075 0.30
GPT-4.1 80.60 66.60 4.60 45.70 38.10 95.60 91.30 43.70 — 2.00 8.00
GPT-4.1 mini 78.10 66.40 4.60 48.30 40.40 95.00 92.50 43.00 — 0.40 1.60
GPT-4.1 nano 65.70 51.20 3.90 32.60 25.90 87.70 84.80 23.70 — 0.10 0.40
Llama 4 Maverick 80.90 67.10 4.80 39.70 33.10 87.90 88.90 39.00 — 0.20 0.60
Llama 4 Scout 75.20 58.70 4.30 29.90 17.00 82.60 84.40 28.30 — 0.15 0.60
o4-mini (high) 83.20 78.40 17.50 80.40 46.50 99.00 98.90 94.00 — 1.10 4.40
Gemini 2.5 Flash 80.20 69.50 — — 21.50 — — 43.30 — 0.15 0.60
Gemini 2.5 Flash
Thinking

80.00 69.80 11.60 50.50 35.90 — 98.10 84.30 — 0.15 3.50

Gemini 2.5 Pro 85.80 83.60 17.10 69.50 39.50 98.50 98.00 87.00 — 1.25 10.00
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