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Abstract

The rapid advancements in Large Language
Models (LLMs) have led to a diverse landscape
of models with varying capabilities and asso-
ciated costs. No single LLM is optimal for all
tasks, necessitating intelligent routing systems
that can dynamically select the most appropri-
ate model for a given input to balance perfor-
mance and operational expense. In this study,
we propose a novel benchmark-driven LLM
routing framework designed to achieve a practi-
cal balance between task-specific performance
and cost. As opposed to previous studies’
frameworks, such as HybridLLM, RouteLLM,
and LLMProxy, which often focus on binary
classifiers for query assessment, our multi-
stage system employs explicit task profiling
using a lightweight classifier LLM to determine
not only the query’s category but also a more
granular, multi-level difficulty. A key differ-
entiating aspect is our tiered cost-performance
model selection strategy, which systematically
buckets models into cost percentiles and then
selects the best-performing model within the
appropriate tier for the predicted task profile,
offering a more structured approach to balanc-
ing cost and performance. We evaluate the
framework using three routing configurations.
The Optimum router consistently achieves per-
formance comparable to or exceeding the best
individual models on specific tasks, but at sig-
nificantly lower total costs.

1 Introduction

Generative Al, particularly large language models
(LLMs), has seen rapid advancements in recent
years; good models are becoming cheaper, and
cheap models are becoming good. Models such
as GPT-40 (OpenAl, 2024a), ol (OpenAl, 2024b),
DeepSeek-R1 (DeepSeek-Al, 2025) have demon-
strated remarkable capabilities in natural language
processing tasks, including open-domain dialogue,
question answering, and code generation.

Despite these advancements, a critical challenge

persists: no single LLM is universally optimal
across all tasks and applications, especially when
balancing performance against operational costs
and latency (Hu et al., 2024; Huang et al., 2024).
This inherent limitation has spurred significant re-
search into LLM routing systems. These systems
dynamically select the most suitable model from a
pool of candidates for a given input, aiming to
optimize objectives such as accuracy, computa-
tional efficiency, or latency, thereby aligning model
choice with the desired capability-resource trade-
off (Varangot-Reille et al., 2025). Consequently,
routing is now recognized as a promising paradigm
for achieving model-level scaling up (Huang et al.,
2024). Existing LLM routing methods can be
broadly categorized. One key distinction is be-
tween non-predictive methods, which often involve
generating responses from multiple models before
selection, and predictive methods, which aim to
select the optimal LLM before generation."

1.1 Non-Predictive and Cascading
Approaches

These methods typically involve querying models
sequentially or in parallel. Cascading approaches,
like FrugalGPT (Chen et al., 2023; Ding et al.;
Feng et al.), often start with smaller, cheaper mod-
els and escalate to more capable ones if the initial
response quality (sometimes inferred by a "judger"
regression model) is insufficient. AutoMix (Aggar-
wal et al., 2024) employs a self-verification step
before potentially escalating. Other non-predictive
strategies might generate responses from multiple
LLMs and then select or combine the best one
(Jiang et al., 2023). While these can be effective,
the need to query multiple models can increase
costs and latency (Tay et al., 2022; Wang et al.,
2024). Our approach, on the other hand, clearly
falls into the predictive routing category. It aims
to select a single, most appropriate LLM based on
prior classification and benchmark mapping, avoid-



ing the overhead of multiple generations inherent
in many non-predictive and cascading systems.

1.2 Classification/Regression-Based:

HybridLLM (Ding et al.) uses a binary classi-
fier for query difficulty. RouteLLM (Ong et al.,
2024) trains various routers (similarity-weighted,
matrix factorization, BERT, Causal LLM) on hu-
man preference data. LLMProxy (Martin et al.,
2024) proposes model selection as one of its opti-
mizations, potentially using LLM-powered heuris-
tics. (Shekhar et al., 2024) propose quality predic-
tion without invocation using LP-based routines.
Domain-based routing (Jain et al., 2024; Liu et al.,
2024) classifies queries into domains to match with
expert models. Our method shares similarities with
classification-based routing. We use Qwen 2.5 3B
as a classifier to assign tasks to predefined cate-
gories (Law, Business, Computer Science, etc.)
and one of three difficulty levels. This explicit,
fine-grained categorization before model selection
is a key aspect. Unlike systems that predict general
query difficulty or directly regress performance,
our classifier provides a structured task profile. The
subsequent mapping of this profile to benchmark
performance (MMLU-Pro, GPQA Diamond, Hu-
manEval, etc.) to inform model choice is a data-
driven, rule-based step that leverages empirical evi-
dence.

Graph-Based Methods: GraphRouter (Feng
et al.) uses a GNN to model interactions between
tasks, queries, and LLMs, predicting optimal LLMs
via edge predictions and offering generalization to
new LLMs.

RL and Bandit-Based Methods: PickLLM
(Sikeridis et al., 2024) uses RL for dynamic routing
based on cost, latency, and accuracy. MixLLM
(Wang et al., 2024) applies a contextual ban-
dit framework with continual learning and tag-
enhanced embeddings.

1.3 Cost Optimization Strategies

A central theme is optimizing cost. Many systems,
like RouterBench (Hu et al., 2024), incorporate
a "willingness-to-pay" (WTP) framework. LLM-
Proxy (Martin et al., 2024) focuses on cost-saving
through model selection, context management, and
caching. (Shekhar et al., 2024) emphasize cost op-
timization through LP-based routines and token re-
duction. Our method integrates cost explicitly and
structurally through a percentile-based bucketing

of models. We divide our tested models (Qwen 2.5,
gemma3, GPT 4.1 nano/mini, Gemini 2.0 Flash
Lite, Llama 4 Scout, etc.) into three cost tiers. The
routing logic then directly links these cost tiers
to our predefined difficulty levels: the cheapest
33.3 percentile models are considered for Level
1 tasks (Simple/Factual), the next 33.3 percentile
for Level 2 (Moderate/Standard), and the overall
best-performing models (often the most expensive)
for Level 3 (Complex/Advanced), always select-
ing the top performer within that tier for the given
category. This explicit, tiered cost-performance
mapping based on difficulty is a distinct and prag-
matic strategy.

1.4 Benchmarking and Evaluation
Frameworks

The field relies on standard LLM benchmarks
(MMLU, HumanEval, etc.) and increasingly
on dedicated routing benchmarks. ROUTER-
BENCH (Hu et al., 2024) and RouterEval (Huang
et al., 2024) provide comprehensive datasets and
frameworks to evaluate different routing strategies.
RouterEval, for instance, highlights the "model-
level scaling up" phenomenon where performance
improves with more candidate LLMs and a capa-
ble router. TaskEval (Tambon et al.) focuses on
assessing task difficulty itself using IRT, showing
discrepancies between human and LLM perception
of difficulty. SLaM (Irugalbandara et al.) pro-
vides tools for cost-benefit analysis when replacing
proprietary LLMs with open-source SLMs. We
leverage a wide array of benchmarks (MMLU-Pro,
GPQA Diamond, LiveCodeBench, SciCode, Hu-
manEval, MATH-500, AIME 2024, Multilingual
Index, LegalBench) not just for final evaluation, but
as an integral part of our routing logic. The perfor-
mance of models on these benchmarks, within spe-
cific task categories, directly informs which model
is chosen from the appropriate cost/difficulty tier.

1.5 Summary and Positioning of Our Work

Our proposed method offers a structured, inter-
pretable, and empirically-grounded approach to
LLM routing. It stands out by:

1. Explicit Task Profiling: In contrast to stud-
ies like HybridLLM (Ding et al.), RouteLLM
(Ong et al., 2024), or LLMProxy (Martin et al.,
2024), which often employ binary classifiers,
our approach uses a classifier LLM (Qwen 2.5
3B) for fine-grained task categorization and



multi-level difficulty assignment. This yields
a more nuanced understanding of prompt char-
acteristics beyond simple hard/easy distinc-
tions.

2. Benchmark-Driven Model-Task Matching:
Instead of relying solely on high-level heuris-
tics, our system systematically maps detailed
task profiles to empirical model performance
across diverse, relevant benchmarks. This
grounds model selection in observed capabil-
ities for specific task types, facilitating the
identification of the best-performing model
from the candidate pool for a given profile.

3. Tiered Cost-Performance Optimization:
While systems like HybridLLM (Ding et al.)
and RouteLLM (Ong et al., 2024) route
queries to different cost-level models based on
difficulty, and cascading approaches like Fru-
2alGPT (Chen et al., 2023) escalate through
cost tiers, our method introduces distinct, pre-
emptive cost-percentile bucketing. This ex-
plicitly links predefined model cost tiers to
predicted task difficulty levels before invo-
cation, systematically ensuring a practical
performance-expenditure balance by selecting
the optimal performer within an appropriate,
pre-defined cost bracket for the task’s profile.

4. Transparency and Simplicity: Unlike com-
plex learned routers, such as graph-based
methods (e.g., GraphRouter (Feng et al.))
or dynamic RL systems (e.g., PickLLM
(Sikeridis et al., 2024)), which can be
resource-intensive, our approach offers high
interpretability. Its rule-based nature post-
classification and benchmark mapping poten-
tially simplifies deployment and allows for
easier diagnosis and adjustment.

2 Methodology

The proposed system implements a multi-stage,
benchmark-driven framework for intelligent LLM
routing, prioritizing a balance between task-
specific performance and operational cost. The
overall architecture of this framework is depicted
in Figure 1. The methodology is comprised of four
key stages: (1) explicit task profiling using a clas-
sifier LLM, (2) offline benchmark-driven model
recommendation generation, (3) dynamic online
prompt routing, and (4) a comprehensive evalua-
tion framework.

2.1 Explicit Task Profiling

At the core of the routing intelligence is a task
profiling sub-system designed to understand the
nature and complexity of incoming user prompts.

2.1.1 Classifier Model Selection

A lightweight yet effective LLM, Qwen 2.5 3B, was
selected for task classification. This decision was
informed by an empirical evaluation across multi-
ple candidate models (including various sizes of
Qwen, Gemma, and proprietary models like GPT
4.1 nano/mini and Gemini 2.0 Flash Lite) on a
diverse corpus of 600 questions spanning GPQA,
MMLU, MMLU-Pro, Math-500, Humanity’s Last
Exam, and LiveCodeBench. Qwen 2.5 3B demon-
strated a leading category accuracy of 78.28 (Ta-
ble 1) and a level accuracy of 65.03 (Table 2).
While certain proprietary models such as GPT 4.1
mini and GPT 4.1 nano exhibited marginally higher
category classification accuracy, Qwen 2.5 3B pro-
vided a more balanced performance, particularly
in discerning difficulty levels, and was ultimately
preferred due to its open-source nature.

2.1.2 Prompt Classification Process

The classifier model processes incoming raw user
prompts by assigning them to a specific category
from a predefined set, which includes domains
like Professional, Science and Technology, Code-
related, Language Tasks, and Humanities and So-
cial Sciences, as detailed in Table 2?.

It also assigns the prompt to one of the difficulty
levels as guided below.

* Level 1 (Simple / Factual): Basic recall, sim-
ple instructions, minimal reasoning.

e Level 2 (Moderate / Standard): Some rea-
soning, multi-step instructions, moderately
complex generation.

* Level 3 (Complex / Advanced): Deep rea-
soning, synthesis, high creativity, complex
problem-solving.

2.2 Offline Benchmark-Driven Model
Recommendation Generation

To inform routing decisions, an offline process
of recommended model generation is carried out
each time the new model is added to the candidate
model.

A comprehensive dataset has been compiled, de-
tailing the performance scores of various large lan-
guage models (LLMs) (Table 7) across a range of
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Figure 1: System Architecture of the Benchmark-Driven LLM Routing Framework.

Table 1: Model Category Classification Accuracy in Percentage Across Diverse Benchmarks. The final row reports
overall accuracy averaged over 100 questions per benchmark (600 Total Questions).

Qwen 2.5gemma3 gemma3 Qwen 2.5 Qwen 2.5Qwen3 Qwen3 GPT 4.1 GPT 4.1 Gemini 2.0 Llama 4

Questions 0.5B 1b 4b 1.5B 3B 0.6B 4B nano mini  Flash Lite Scout
GPQA 46.94 72.73 94.00 85.71 87.50 88.89 98.00 98.00 99.00 97.00 99.00
MMLU 17.17 47.96 60.00 54.64 68.89 38.54 52.58 69.57 64.00 57.00 61.86
MMLU Pro 20.41 44.79 60.42 69.79 72.09 50.00 69.15 65.26 71.72 71.00 69.07
Math 500 100.00  77.00 99.00 100.00 100.00 97.00 100.00 97.98 99.00 98.00 93.00
Humanity Last 46.88 48.48 69.39 63.92 70.79 59.38 72.45 75.00 72.00 69.00 74.23
Exam

Livebench 0.00 0.00 81.00 0.00 71.00 0.00 0.00 0.00 89.00 87.00 20.00
Coding

Average 38.47 48.48 77.59 62.12 78.28 55.90 65.37 78.79 82.47 79.83 69.54
accuracy

Table 2: Model Level Classification Accuracy for selected models on GPQA and Math-500 benchmarks. The last
row shows total accuracy on 200 questions. Values are percentages.

Qwen 2.5 Qwen2.5 Qwen 2.5 Gemma3 Gemma3 GPT 4.1 GPT41  Gemini 2.0
Questions 3B 1.5B 0.5B 1B 4B nano Mini Flash Lite
GPQA 80.21 86.73 5.10 92.93 32.00 35.00 54.00 33.00
Math_500 48.28 41.84 49.49 32.00 56.00 37.37 35.00 47.00
Total - 200 65.03 64.29 27.41 62.31 44.00 36.18 44.5 40.00
benchmarks, including MMLU-Pro, GPQA Dia- 2024", etc.).

mond, Humanity’s Last Exam, LiveCodeBench,
SciCode, HumanEval, MATH-500, AIME 2024,
LegalBench, MedQA, MGSM, and Chatbot Arena,
along with associated input and output cost metrics.
This table needs to be updated when a new model
is added to the dataset. A predefined category-
benchmark mapping links each task category to
a set of relevant benchmarks (e.g., "Mathemat-
ics" maps to "MMLU-Pro", "MATH-500", "AIME

In further step raw benchmark scores for all mod-
els are converted to Z-scores. This normalization
standardizes performance across different bench-
marks with varying scales and score distributions.
If a benchmark models with a 0 Z-score indicates
this benchmark does not contribute to differentia-
tion for that category. An Avg Z-Score is computed
for each model within a category by averaging its
Z-scores across all relevant benchmarks for that



category. This Avg Z-Score serves as the primary
performance metric for a model within a specific
task category.

For each category, three model recommenda-
tions are generated as shown in table 6. Models
with valid Avg Z-Score and Total Cost for the cur-
rent category are considered. Total cost is com-
puted as the sum of input cost and output cost for
each model. Cost thresholds are determined using
percentiles (1/3 and 2/3 quantiles) of these models’
total cost.

e Low Cost, Good Performance: Models
falling below or at the refined lower cost
threshold (approx. bottom 33rd percentile for
the category) are considered. The model from
this tier with the highest average Z-score is
selected.

¢ Moderate Cost, Good Performance: Mod-
els falling below the upper cost thresholds
(approx. 66th percentile) are selected. The
model from this tier with the highest average
Z-score is chosen.

* Best Performance: Irrespective of total cost,
the model is selected just based on the highest
Avg Z-score.

2.3 Dynamic Online Prompt Routing

During inference, the prompt router receives input
from a classifier that predicts both the category
and difficulty level of the incoming prompt. In
cases where the classifier is unable to determine a
valid category, the system defaults to assigning the
prompt to a miscellaneous category.

The routing mechanism is further classified into
three types based on cost-performance trade-offs:

¢ Optimum Router: Seclects the most suit-
able model from the tiered cost-performance
dataset, balancing both cost and performance
according to the predicted category and diffi-
culty level.

* Low-Cost Router: Chooses the correspond-
ing model based on the identified category,
while defaulting to the lowest difficulty level
(Level 1) to minimize computational cost.

* Best-Performance Router: Selects the
model associated with the predicted category,
defaulting to the highest difficulty level (Level
3) to maximize output quality regardless of
computational expense.

2.3.1 Model Invocation via LiteLLM

The selected LiteLLM model is invoked with the
user prompt through the LiteLLM chat completion
endpoint. The system returns the LLLM’s response
text to the user dashboard.

3 Experimental Results

This section presents the quantitative evaluation
of the proposed benchmark-driven LLM routing
framework. The primary objective is to demon-
strate the system’s capability to achieve signifi-
cant cost efficiencies while maintaining or improv-
ing performance compared to using a single, fixed
LLM across various task domains and difficulty lev-
els. The evaluation focuses on the performance and
total cost ($/1M tokens, input + output) of the three
router configurations: Low-Cost, Optimum, and
Best-Performance, as defined in Section Dynamic
Online Prompt Routing.

3.1 Evaluation Benchmarks

To rigorously assess the router’s effectiveness, we
selected three diverse and challenging benchmarks
representative of key task categories identified dur-
ing explicit task profiling:

* GPQA Diamond: A graduate-level, Google-
proof question-answering benchmark cover-
ing complex science domains (Biology, Chem-
istry, Physics). It comprises 198 questions de-
signed to be difficult for LLMs, requiring deep
factual knowledge and reasoning. (Source:
(Austin et al., 2023))

* MATH-500: A subset of 500 problems from
the challenging MATH benchmark, focusing
on mathematical problem-solving. This re-
quires strong logical deduction and symbolic
manipulation capabilities. (Source: (Cobbe
et al., 2021))

* LiveCodeBench (Coding): A benchmark de-
signed to evaluate code generation and com-
pletion capabilities while mitigating test set
contamination. We utilize the coding subset,
consisting of 78 code generation and 50 code

completion questions. (Source: (Kallas et al.,
2023))

These benchmarks were chosen for their difficulty
and relevance to categories frequently encountered
in practical applications, allowing for a robust eval-
uation of the router’s ability to select appropriate
models based on task type and inferred complexity.



3.2 Router Performance Evaluation

Table 3 summarizes the performance scores (accu-
racy or completion rate) and total costs for each
router configuration across the three selected bench-
marks.

Table 3: Performance and Total Cost of LLM Router
Configurations on Selected Benchmarks.

Benchmark Router Type Score Cost
(%)  ($/1M)
Low Cost 74.87  3.09
gf%An d Optimum 82.47 848
AMONE " Best Performance  78.28  11.13
Low Cost 98.20 0.75
I;/éngH' Optimum 98.00 1.13
Best Performance 96.00 5.50
Live Code Low Cost 76.60 0.75
Bench Optimum 84.38 6.44
Coding Best Performance 85.20 11.25

The results demonstrate clear trade-offs offered
by the different router configurations, aligning with
their design principles. To provide context, we
compare these router results with the performance
and cost of individual LLMs as depicted in the
cost-performance scatter plots (Figures 2, 3, and
4).

3.2.1 GPQA Diamond Results

On the challenging GPQA Diamond benchmark
(Figure 2), the Optimum router achieved a signif-
icantly higher performance of 82.47% at a lower
cost of $8.48. This performance level is very close
to the peak observed performance of individual
models on this benchmark (83.6% by Gemini 2.5
Pro) but at a notable cost reduction. This highlights
the Optimum router’s ability to find highly per-
formant models without necessarily incurring the
absolute highest costs. During the initial evaluation,
it was observed that the model underperformed in
the chemistry category. To enhance accuracy, an
adjustment was implemented: all models assigned
to the chemistry category were shifted up by one
level. Specifically, the initial Gemini 2.5 Flash at
Level 1 was replaced with the higher-performing
o4 mini High. The Low-Cost router, operating
at just $3.09 per million tokens, still delivered a
respectable 74.87% accuracy. This performance
is competitive with mid-range individual models
(e.g., OpenAl ol-mini at $5.5 total cost for 60.3%,

Llama 3.3 70b at $1.44 total cost for 50.0%) while
offering substantial cost savings compared to the
higher tiers and top individual models.

3.2.2 MATH-500 Results

The MATH-500 benchmark (Figure 3) evaluation
revealed the router’s exceptional efficiency in nu-
merical and logical tasks. The Low-Cost router
achieved an impressive 98.20% accuracy for a mere
$0.75 total cost. This performance surpasses many
individual models across the entire cost spectrum
and is on par with or exceeds the accuracy of the
most expensive models (e.g., Gemini 2.5 Pro at
$11.25 for 98.0%). The Optimum router main-
tained this high accuracy at 98.00%, with a slightly
higher cost of $1.13, still remarkably low compared
to most high-performance individual models. The
Best Performance router scored 96.00% at a cost
of $5.50. While its performance was slightly lower
than the other two tiers on this specific benchmark
run. The performance on MATH-500 underscores
the router’s ability to identify highly efficient mod-
els for specific tasks, leading to dramatic cost re-
ductions without sacrificing accuracy, particularly
benefiting from the lower inference costs of certain
models when selected optimally.

3.2.3 LiveCodeBench Coding Results

The LiveCodeBench Coding benchmark (Figure 4)
demonstrates the router’s strong capabilities in
code-related tasks. The Best Performance router
achieved the highest score among all tested models
and router configurations on this specific bench-
mark set, reaching 85.20% completion rate at a
cost of $11.25. This outperforms the highest indi-
vidual model score observed (e.g., o4-mini (high)
at 80.4% for $4.40, Gemini 2.5 Pro at 69.5% for
$11.25). The Optimum router was close in perfor-
mance at 84.38%, but at a significantly reduced cost
of $6.44, offering an excellent balance for demand-
ing coding tasks. The Low-Cost router again pro-
vided substantial cost savings ($0.75) while achiev-
ing a very strong 76.60% performance, competitive
with many individual models costing significantly
more (e.g., OpenAl ol at $75 for 67.9%, DeepSeek-
R1 at $6.75 for 61.7%).

3.3 Discussion

The experimental results clearly validate the ef-
fectiveness of our benchmark-driven LLM router,
DynaRoute. Its three configurations successfully
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Figure 2: GPQA Diamond Score vs. Total Cost ($/1M tok, Input+Output). DynaRoute’s Optimum router achieves a
significantly higher performance of 82.47% at a cost of $8.48/1M tokens. In comparison, RouteLLM (Ong et al.,
2024) between GPT-4.1 and OpenAl ol) scores 58.59% at a substantially higher cost of $36.62/1M tokens. Other
individual models are also shown.
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Figure 3: MATH-500 Score vs. Total Cost ($/1M tok, Input+Output). DynaRoute’s Optimum router achieves a
high accuracy of 98.00% at a remarkably low cost of $1.13/1M tokens. Even its Low-Cost router configuration
attains 98.20% accuracy for only $0.75/1M tokens, outperforming or matching many significantly more expensive
individual models. Router configurations are shown alongside individual models.
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Figure 4: LiveCodeBench Coding Score vs. Total Cost ($/1M tok, Input+Output). DynaRoute’s Best-Performance
router achieves a leading score of 85.20% at $11.25/1M tokens, while its Optimum router delivers a strong 84.38%
at a reduced cost of $6.44/1M tokens. Router configurations are shown alongside individual models.

embody distinct cost-performance trade-offs, offer-
ing flexibility based on application requirements.

To contextualize DynaRoute’s performance,
RouteLLM (Ong et al., 2024) was selected for com-
parison on the GPQA benchmark. Configured with
OpenAl’s ol (strong) and GPT-4.1 nano (weak)
as per its design, RouteLLM achieved 58.59%
accuracy at $36.62/1M tokens. In contrast, Dy-
naRoute’s Optimum router delivered significantly
higher 82.47% accuracy at only $8.48/1M tokens,
demonstrating superior cost-efficiency.

The Optimum router epitomizes the system’s
value by achieving performance comparable to or
exceeding top individual models on challenging
benchmarks, yet at significantly lower total costs,
optimizing the cost-performance frontier.

The Low-Cost router demonstrated dramatic
cost reductions while maintaining surprisingly high
performance across diverse tasks like MATH-500
and LiveCodeBench. This tier is ideal for cost-
constrained scenarios or high-volume simple tasks,
as not all prompts demand the most expensive mod-
els.

The Best-Performance router acts as an upper
bound, showcasing the system’s ability to identify
and utilize the most capable models when maxi-
mum accuracy is paramount. In practical appli-
cations with mixed prompt complexities, routing

simpler requests to low-cost models will yield sub-
stantial overall cost savings.

4 Conclusion

In this work, we introduced a benchmark-driven
LLM routing framework, DynaRoute, that intel-
ligently matches tasks to models based on do-
main, difficulty, and cost-performance trade-offs.
Our tiered selection strategy, Low-Cost, Optimum
and Best-Performance, demonstrated strong results
across diverse benchmarks, offering a practical and
interpretable alternative to black-box systems and
achieving superior cost-performance compared to
other routing approaches as RouteLLM (Ong et al.,
2024) , on specific tasks. While reliant on clas-
sifier accuracy and up-to-date benchmarks, our
approach lays a solid foundation for cost-aware,
performance-optimized LLM deployment. Future
directions include incorporating real-time feedback
and finer-grained profiling.
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6 Limitations

The efficacy of the routing system is heavily de-
pendent on the initial task profiling accuracy of
the classifier LLM (Qwen 2.5 3B). While selected
for its balance of performance and efficiency, Ta-
bles 1 and 2 show that classification is not per-
fect (78.28% category accuracy, 65.03% level ac-
curacy). Misclassifying the category or difficulty
level of a prompt can lead to suboptimal model
selection, potentially routing a complex query to a
low-cost, less capable model or a simple query to
an expensive, high-performance one unnecessarily.
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A Appendix

This appendix provides supplementary details re-
garding the task-to-benchmark mapping used in the
offline recommendation generation process and the
resulting model recommendations per category.

10



Table 4: Task Categories for Prompt Classification

Main Category Specific Domains / Tasks

Professional Domains Law, Business, Economics

Science and Technology Biology, Chemistry, Engineering, Physics, Computer Science, Mathematics

Code-related Syntax Check, Code Generation, Code Explanation, Debugging Assistance,

Language Tasks

Humanities and Social Sciences

Other

Algorithm, System Design

Language Translation, Summarization, Creative Writing,
Text Formatting and Editing, General Knowledge

History, Geography, Philosophy, Sociology, Astrology

Health, Facts, Logic, Miscellaneous

Table 5: Mapping of Task Categories to Relevant Benchmarks for Offline Performance Evaluation.

Category | List of Associated Benchmark

Law MMLU-Pro, Humanity’s Last Exam, Multilingual Index

Business MMLU-Pro, Humanity’s Last Exam

Economics MMLU-Pro, Humanity’s Last Exam

Biology MMLU-Pro, GPQA Diamond, Humanity’s Last Exam, SciCode

Chemistry MMLU-Pro, GPQA Diamond, Humanity’s Last Exam, SciCode
Engineering MMLU-Pro, Humanity’s Last Exam

Physics MMLU-Pro, GPQA Diamond, Humanity’s Last Exam, SciCode

Computer Science MMLU-Pro, Humanity’s Last Exam, LiveCodeBench, SciCode, HumanEval
Mathematics MMLU-Pro, Humanity’s Last Exam, SciCode, HumanEval, MATH-500, AIME 2024
Syntax Check HumanEval, LiveCodeBench, SciCode

Code Generation
Code Explanation
Debugging Assistance
Algorithm

LiveCodeBench, SciCode, HumanEval, Multilingual Index
(None listed)

LiveCodeBench

LiveCodeBench, SciCode, HumanEval

System Design LiveCodeBench, SciCode
Language Translation Multilingual Index
Summarization Multilingual Index
Creative Writing Multilingual Index

Text Formatting (None listed)

General Knowledge

MMLU-Pro, GPQA Diamond, Humanity’s Last Exam, Multilingual Index

History MMLU-Pro, Humanity’s Last Exam

Geography Humanity’s Last Exam

Philosophy MMLU-Pro, Humanity’s Last Exam

Sociology Humanity’s Last Exam

Astrology (None listed)

Health MMLU-Pro, Humanity’s Last Exam

Facts MMLU-Pro, GPQA Diamond, Humanity’s Last Exam

Logic MMLU-Pro, GPQA Diamond, Humanity’s Last Exam, LiveCodeBench, HumanEval,
MATH-500, AIME 2024

Miscellaneous MMLU-Pro
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Table 6: Tiered Model Recommendations by Task Category (Model, Avg Z-Score, Total Cost $/1M tok).

Category Low Cost Moderate Cost Best Performance

Law Gemini 2.5 Flash (Score: Claude 3 Haiku (Score: 68.30, Gemini 2.5 Flash (Score:
80.20, Cost: 0.75) Cost: 1.50) 80.20, Cost: 0.75)

Business Gemini 2.5 Flash (Score: 04-mini (high) (Score: 50.35,  Gemini 2.5 Flash (Score:
80.20, Cost: 0.75) Cost: 5.50) 80.20, Cost: 0.75)

Economics Gemini 2.5 Flash (Score: 04-mini (high) (Score: 50.35,  Gemini 2.5 Flash (Score:
80.20, Cost: 0.75) Cost: 5.50) 80.20, Cost: 0.75)

Biology Gemini 2.5 Flash (Score: 04-mini (high) (Score: 56.40,  GPT-4.5 (Score: 71.40, Cost:
57.07, Cost: 0.75) Cost: 5.50) 225.0)

Chemistry Gemini 2.5 Flash (Score: 04-mini (high) (Score: 56.40,  GPT-4.5 (Score: 71.40, Cost:
57.07, Cost: 0.75) Cost: 5.50) 225.0)

Engineering Gemini 2.5 Flash (Score: 04-mini (high) (Score: 50.35,  Gemini 2.5 Flash (Score:
80.20, Cost: 0.75) Cost: 5.50) 80.20, Cost: 0.75)

Physics Gemini 2.5 Flash (Score: 04-mini (high) (Score: 56.40,  GPT-4.5 (Score: 71.40, Cost:
57.07, Cost: 0.75) Cost: 5.50) 225.0)

Computer Science Gemini 2.5 Flash (Score: 04-mini (high) (Score: 65.32,  GPT-4 (Score: 88.40, Cost:
50.85, Cost: 0.75) Cost: 5.50) 90.0)

Mathematics Llama 4 Maverick (Score: 04-mini (high) (Score: 73.18,  GPT-4 (Score: 88.40, Cost:
55.77, Cost: 0.80) Cost: 5.50) 90.0)

Syntax Check Gemini 1.5 Flash (Score: 04-mini (high) (Score: 75.30,  GPT-4 (Score: 88.40, Cost:
55.55, Cost: 0.90) Cost: 5.50) 90.0)

Code Generation
Debugging Assistance
Algorithm

System Design
Language Translation
Summarization
Creative Writing
General Knowledge
History

Geography
Philosophy
Sociology

Health

Facts

Logic

Miscellaneous

Gemini 1.5 Flash (Score:
63.93, Cost: 0.90)

Llama 4 Maverick (Score:
39.70, Cost: 0.80)
Gemini 1.5 Flash (Score:
55.55, Cost: 0.90)

Llama 4 Maverick (Score:
36.40, Cost: 0.80)
Gemini 1.5 Flash (Score:
80.70, Cost: 0.90)
Gemini 1.5 Flash (Score:
80.70, Cost: 0.90)
Gemini 1.5 Flash (Score:
80.70, Cost: 0.90)
Gemini 2.5 Flash (Score:
74.85, Cost: 0.75)
Gemini 2.5 Flash (Score:
80.20, Cost: 0.75)
Gemini 2.0 Flash (Score:
Cost: 0.75)

Gemini 2.5 Flash (Score:
80.20, Cost: 0.75)
Gemini 2.0 Flash (Score:
Cost: 0.75)

Gemini 2.5 Flash (Score:
80.20, Cost: 0.75)
Gemini 2.5 Flash (Score:
74.85, Cost: 0.75)
Gemini 2.5 Flash (Score:
64.33, Cost: 0.75)
Llama 4 Maverick (Score:
80.90, Cost: 0.80)

5.30,

5.30,

04-mini (high) (Score: 75.30,
Cost: 5.50)
04-mini (high) (Score: 80.40,
Cost: 5.50)
04-mini (high) (Score: 75.30,
Cost: 5.50)
04-mini (high) (Score: 63.45,
Cost: 5.50)
Llama 3.3 70b (Score: 83.90,
Cost: 1.44)
Llama 3.3 70b (Score: 83.90,
Cost: 1.44)
Llama 3.3 70b (Score: 83.90,
Cost: 1.44)
Claude 3 Haiku (Score: 68.30,
Cost: 1.50)
04-mini (high) (Score: 50.35,
Cost: 5.50)
04-mini (high) (Score: 17.50,
Cost: 5.50)
04-mini (high) (Score: 50.35,
Cost: 5.50)
04-mini (high) (Score: 17.50,
Cost: 5.50)
04-mini (high) (Score: 50.35,
Cost: 5.50)
04-mini (high) (Score: 59.70,
Cost: 5.50)
0o4-mini (high) (Score: 78.77,
Cost: 5.50)
0o4-mini (high) (Score: 83.20,
Cost: 5.50)

GPT-4 (Score: 88.40, Cost:
90.0)

04-mini (high) (Score: 80.40,
Cost: 5.5)

GPT-4 (Score: 88.40, Cost:
90.0)

04-mini (high) (Score: 63.45,
Cost: 5.5)

Claude 3.5 Sonnet (Score:
88.40, Cost: 18.0)

Claude 3.5 Sonnet (Score:
88.40, Cost: 18.0)

Claude 3.5 Sonnet (Score:
88.40, Cost: 18.0)

Gemini 2.5 Flash (Score:
74.85, Cost: 0.75)

Gemini 2.5 Flash (Score:
80.20, Cost: 0.75)

04-mini (high) (Score: 17.50,
Cost: 5.5)

Gemini 2.5 Flash (Score:
80.20, Cost: 0.75)

04-mini (high) (Score: 17.50,
Cost: 5.5)

Gemini 2.5 Flash (Score:
80.20, Cost: 0.75)

Gemini 2.5 Flash (Score:
74.85, Cost: 0.75)

GPT-4 (Score: 88.40, Cost:
90.0)

Gemini 2.5 Pro (Score: 85.80,
Cost: 11.25)
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Table 7: Full Model Benchmark Performance and Cost Data.

Model MMLU- GPQA Humanity Live Sci Human MATH- AIME Multi | Input Output
Pro ’sLast Code Code Eval 500 2024  Ling. Cost Cost
Exam
OpenAl ol 84.10 74.70 7.70 67.90 35.80 9740 97.00 7230 87.60 | 15.00 60.00
Claude 3.5 Sonnet 77.20 59.90 3.90 38.10 35.10 93.00 77.10 1570  88.40 3.00 15.00
GPT-40 74.80 54.30 3.30 30.90 33.30 93.00 7590 15.00 83.80 2.50 10.00
Llama 3.1 405b 73.20 51.50 4.20 30.50 29.90 8540 7030 21.30 76.50 2.40 2.40
Llama 3.1 405b 73.20 51.50 4.20 30.50 29.90 8540 7030 21.30 76.50 5.00 16.00
OpenAl ol-mini 74.20 60.30 4.90 57.60 32.30 97.20 9440 60.30 83.30 1.10 4.40
GPT-4 Turbo 69.40 — 3.30 29.10 29.50 91.80  73.70 9.70 — 10.00  30.00
Claude 3 Opus 69.60 48.90 3.10 27.90 23.30 84.80  64.10 3.30 — 15.00  75.00
DeepSeek V3 75.70 55.70 3.60 35.90 35.40 90.60  88.70 2530 86.40 — —
GPT-4 — — — — — 88.40 — — — 30.00  60.00
Llama 3.1 70b 67.60 41.00 4.60 23.20 26.70 81.20 6490 17.30 — 0.72 0.72
Llama 3.3 70b 71.30 50.00 4.00 28.80 26.00 86.00 7730 30.00 83.90 0.72 0.72
Gemini 1.5 Pro 75.00 58.90 4.90 31.60 29.50 89.80  87.60 23.00 85.00 5.00 10.00
Claude 3.5 Haiku 63.40 41.00 3.50 31.40 26.00 8590  72.10 3.30 78.50 0.80 4.00
Gemini 1.5 Flash 67.80 46.30 3.50 27.30 — 83.80 8270 18.00  80.70 0.30 0.60
Claude 3 Haiku — — — 16.20 17.70 70.60  39.40 — 68.30 0.25 1.25
Llama 3.1 8b 47.60 26.00 5.10 11.60 13.20 66.50  51.90 7.70 61.00 0.22 0.22
GPT-3.5 Turbo — — — — — — — — — 0.50 1.50
Gemini 2.0 Flash 77.90 62.30 5.30 33.40 31.20 90.40  93.00  33.00 — 0.15 0.60
AWS Nova Micro 53.10 35.80 3.40 14.00 9.40 79.90  70.30 8.00 71.10 | 0.035 0.14
AWS Nova Lite 59.00 43.30 4.60 16.70 13.80 82.80 7650 10.70  76.10 0.06 0.24
AWS Nova Pro 69.10 49.90 4.70 23.30 20.80 84.10 78.60 10.70  83.40 0.80 3.20
GPT-40 mini 64.80 43.00 4.00 23.40 22.90 87.60 7890 11.70  80.50 0.15 0.60
OpenAl 03-mini 79.10 74.80 8.70 71.70 39.80 97.20  97.30 77.00 — 1.10 4.40
OpenAl 03-mini High | 80.20 77.30 12.30 73.40 39.90 — 98.50  86.00 — 1.10 4.40
DeepSeek-R1 84.40 70.80 9.30 61.70 35.70 97.70  96.30  68.30 — 1.35 5.40
GPT-4.5 — 71.40 — — — — — 36.70 — 75.00  150.00
Claude 3.7 Sonnet 80.30 65.60 4.80 39.40 37.50 9220  83.50 24.30 — 3.00 15.00
Gemini 2.0 Flash Lite | 72.30 54.20 4.40 17.90 27.70 89.60 8730  30.30 — 0.075 0.30
GPT-4.1 80.60 66.60 4.60 45.70 38.10 95.60  91.30 43.70 — 2.00 8.00
GPT-4.1 mini 78.10 66.40 4.60 48.30 40.40 95.00 9250  43.00 — 0.40 1.60
GPT-4.1 nano 65.70 51.20 3.90 32.60 25.90 87.70  84.80 23.70 — 0.10 0.40
Llama 4 Maverick 80.90 67.10 4.80 39.70 33.10 87.90  88.90  39.00 — 0.20 0.60
Llama 4 Scout 75.20 58.70 4.30 29.90 17.00 82.60 8440 28.30 — 0.15 0.60
04-mini (high) 83.20 78.40 17.50 80.40 46.50 99.00  98.90  94.00 — 1.10 4.40
Gemini 2.5 Flash 80.20 69.50 — — 21.50 — — 43.30 — 0.15 0.60
Gemini 2.5 Flash 80.00 69.80 11.60 50.50 35.90 — 98.10  84.30 — 0.15 3.50
Thinking
Gemini 2.5 Pro 85.80 83.60 17.10 69.50 39.50 98.50  98.00  87.00 — 1.25 10.00
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