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Abstract
Existing self-explaining models typically fa-001
vor extracting the shortest rationales possible002
(“shortest yet coherent subset of input to pre-003
dict the same label”), with the assumption that004
short rationales are more intuitive to humans,005
even though short rationales lead to lower ac-006
curacy. However, there is a lack of human007
studies on validating the effect of rationale008
length on human understanding. Is the short-009
est rationale indeed the most understandable010
for humans? To answer this question, we de-011
sign a self-explaining model that can take con-012
trols on rationale length. Our model incorpo-013
rates contextual information and supports flex-014
ibly extracting rationales at any target length.015
Through quantitative evaluation on model per-016
formance, we verify that our method LIM-017
ITEDINK outperforms existing self-explaining018
baselines on both end-task prediction and019
human-annotated rationale agreement. We use020
it to generate rationales at 5 length levels, and021
conduct user studies to understand how much022
rationale would be sufficient for humans to023
confidently make predictions. We show that024
while most prior work extracts 10%-30% of025
the text to be rationale, human accuracy tends026
to stabilize after seeing 40% of the full text.027
Our result suggests the need for more careful028
design of the best human rationales.029

1 Introduction030

As neural networks are achieving extraordinary pre-031

diction performance in dominating NLP tasks, it032

becomes increasingly important to explain why a033

model makes a specific prediction. Recent work034

starts to extract snippets of input text as the faithful035

rationale of prediction (Jain et al., 2020; Paran-036

jape et al., 2020), with rationale defined as “short-037

est yet sufficient subset of input to predict the038

same label” (Lei et al., 2016; Bastings et al., 2019).039

The underneath assumption is two fold: (1) by re-040

taining the label, we are extracting texts used by041

predictors (Jain et al., 2020); and (2) short ratio-042

nales are more readable and intuitive for end users,043

Figure 1: Our model design on rationale generation
with length control. (A) control rationale generation
with different lengths; (B) incorporating contextual in-
formation into rationale generation; (C) regularizing
continuous rationale for human interpretability. Exam-
ples are from trained self-explaining models on SST
dataset (Socher et al., 2013).

and therefore are preferred for human understand- 044

ing (Vafa et al., 2021). Importantly, prior work 045

has knowingly traded off some amount of model 046

performance in order to achieve shortest rationales. 047

For example, when using less than 50% of text as 048

rationales-for-predictions, Paranjape et al. (2020) 049

achieved an accuracy of 84.0% (compared to 91.0% 050

if using the full text). But existing work propose 051

shortest rationales have better human interpretabil- 052

ity by intuition rather than from empirical human 053

studies (Vafa et al., 2021). Moreover, when the 054

rationale is too short, the model has a much higher 055

chance of missing the main point in the full text. In 056

Figure 1(A), though the model is able to make the 057
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correct positive prediction when using only 20%058

of the text, it relies on a particular adjective, “life-059

affirming”, which is seemingly positive but does060

not reflect the author’s sentiment. They may simply061

be confused when presented to end users.062

In this work, we ask: is shortest rationales really063

supportive of human understanding? and examine064

the effects of rationale length on human understand-065

ing and performance. Our work includes two steps:066

First, we design and train a self-explaining model067

that allows for sparsity control. That is, the model068

can flexible extract rationales of a targeted length,069

such that we can compare user perceptions on a070

set of rationales with varying lengths. As shown in071

Figure 1, our model design consider three aspects:072

(A) controllability on rationale length, (B) being073

context-aware such to priorize certain amount of074

semantic information in the text, and, (C) extract-075

ing continuous text for readability. Through au-076

tomated valuation on ERASER (DeYoung et al.,077

2019) datasets, we show that our model outper-078

forms existing self-explaining baselines on both079

end-task prediction and rationale alignment with080

human ground annotations.081

Using the rationales with different lengths gen-082

erated from the model, we conduct human studies083

to evaluate human accuracy and confidence on pre-084

dicting the document categories given only ratio-085

nales. Our results show the best explanations for086

human understanding are largely not the shortest087

rationales. Given rationales with short length at088

10%, human accuracy on predicting model class is089

worse than accuracy on the random baseline. Fur-090

thermore, while most prior work extracts 10%-30%091

of text to be rationale (Jain et al., 2020; Paranjape092

et al., 2020), human accuracy tend to stablize af-093

ter seeing 40% of the full text. Our result sounds094

a cautionary note, and we encourage future work095

to more rigorously define or evaluate the typical096

assumption of “shorter rationales are easier to in-097

terpret” before trading off model accuracy for it.098

2 LIMITEDINK099

2.1 Self-Explaining Model Definition100

We start by describing the typical self-explaining101

method (Lei et al., 2016). Consider a text classifi-102

cation dataset containing each document input as103

a tuple (x, y). Each input x includes n features104

(e.g., sentences or tokens) as x = [x1, x2, ..., xn],105

and y is the prediction. The model typically con-106

sists of a an identifier idn(·) to derive a boolean107

mask m = idn(x) = [m1,m2, ...,mn], where 108

mi ∈ {1, 0} is a discrete binary variable. It then 109

generates rationales z by z = m� x, and further 110

leverages a classifier cls(·) to make prediction y 111

based on the identified rationales as y = cls(z). 112

The optimization objective is: 113

min
θidn,θcls

Ez∼idn(x)L(cls(z), y)︸ ︷︷ ︸
sufficient prediction

+ λΩ(m)︸ ︷︷ ︸
regularization

(1) 114

where θidn and θcls are trainable parameters of 115

identifier and classifier. Ω(m) is regularization 116

function on mask and λ is the hyperparameter. 117

2.2 Generating Sparsity Controllable 118

Rationales with Contextual Information 119

To enable length control on rationales, we add ra- 120

tionale length constraints on the self-explaining 121

model. Assuming rationale length is k as prior 122

knowledge, we enforce the generated boolean mask 123

to sum up to k as m = idn(x, k), k =
∑n

i=1(mi). 124

Existing self-explaining methods commonly solve 125

this by assuming a fixed Bernoulli distribution over 126

each input feature, thus generate each mask ele- 127

ment mi independently conditioned on each in- 128

put feature xi (see Fig 1(B1)) (Paranjape et al., 129

2020) . However, these methods potentially ne- 130

glect the contextual input information. We leverage 131

the Concret Relaxation of Subset Sampling tech- 132

nique (Chen et al., 2018) to incorporating contex- 133

tual information into rationale generation process 134

(see Fig 1(B2)), where we aim to select the top-k 135

important features over all n features in input x 136

during a weighted subset sampling process. To 137

further empirically guarantee the precise rationale 138

length control, we deploy a a vector and sort regu- 139

larization on mask m (Fong et al., 2019). See more 140

model details in Appendix A.1. 141

2.3 Regularizing Rationale Continuity 142

To enforce coherent rationale for human inter- 143

pretability, we further employ the Fused Lasso to 144

encourage continuity property (Jain et al., 2020; 145

Bastings et al., 2019). The final regularization is: 146

Ω(m) = λ1

n∑
i=1

|mi −mi−1|︸ ︷︷ ︸
Continuity

+λ2 ‖ vecsort (m)− m̂‖︸ ︷︷ ︸
Length Control

(2) 147
For BERT-based models using non-contiguous 148

subword-based tokenizers (e.g., WordPiece), we 149

further assign the token’s importance score as its 150

sub-tokens’ max score for rationale extraction dur- 151

ing inference (see Fig 1(C)). 152
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Method Movies BoolQ Evidence Inference MultiRC FEVER
TaskP R F1 Task P R F1 Task P R F1 Task P R F1 Task P R F1

Full Text .90 - - - .47 - - - .48 - - - .67 - - - .89 - - -
Sparse-N .79 .18 .36 .24 .43 .12 .10 .11 .39 .02 .14 .03 .60 .14 .35 .20 .83 .35 .49 .41
Sparse-C .82 .17 .36 .23 .44 .15 .11 .13 .41 .03 .15 .05 .62 .15 .41 .22 .83 .35 .52 .42
Sparse IB .84 .21 .42 .28 .46 .17 .15 .15 .43 .04 .21 .07 .62 .20 .33 .25 .85 .37 .50 .43

LIMITEDINK .91 .26 .88 .40 .62 .17 .67 .27 .50 .05 .44 .09 .68 .16 .90 .28 .90 .28 .67 .39

Table 1: End-task predictive performance (“Task”) and human annotated rationale agreement (“P”/“R”/“F1”) on
our LIMITEDINK and baselines. All results are on test sets and averaged across five random seeds.

3 Model Performance Evaluation153

We next validate our model performance on end-154

task prediction and human annotation agreement.155

3.1 Experimental Setup156

We evaluate our method on five text classifica-157

tion datasets from ERASER benchmark. Our self-158

explaining models use use BERT-based modules.159

The identifier consists of a BERT-based model fol-160

lowed by two linear neural networks to encode rep-161

resentation and generate probability score for each162

feature. We further conduct the concrete relaxation163

of subset sampling method to convert the logit into164

binarized mask with predefined length. We empiri-165

cally set five length levels from 10% to 50% with166

10% interval. The classifier inputs the selected ra-167

tionales to the BERT-based sequence classification168

module and outputs the final prediction.169

We compare our method with four baselines.170

Full Text consists only classifier module with full171

text inputs. Sparse-N enforces shortest rationales172

by minimizing rationale mask length (Lei et al.,173

2016; Bastings et al., 2019). Sparse-C controls174

rationale length by penalizing the mask when its175

length is less than a threshold (Jain et al., 2020).176

Sparse IB enables length control by minimizing the177

KL-divergence between the generated mask with178

a prior distribution (Paranjape et al., 2020). See179

Appendix A.1 for more model and baseline details.180

3.2 Evaluation Results181

End-Task Prediction Performance. Following182

metrics in DeYoung et al. (2019), we report183

the weighted average F1 scores for classification184

tasks to evaluate end-task prediction performance.185

Choosing from the five self-explaining models with186

different rationale lengths, we report the optimal187

performance (varying depending on datasets and188

each baseline) as shown in Table 1. We observe189

our model consistently outperform the best self-190

explaining baselines with relative improvement191

from 5.88% (FEVER) to 34.78% (BoolQ). Further,192

our model can outperform full text inputs when193

only conditioning on extracted rationales, with rela-194

tive improvement from 1.11% (Movies) to 31.91% 195

(BoolQ). We further conduct ablation studies on 196

each model components shown in Appendix A.2. 197

Human Annotated Rationale Agreement. We 198

assess human plausibility automatically by evaluat- 199

ing the agreement between generated rationales and 200

human annotations collected in ERASER bench- 201

mark (DeYoung et al., 2019). Also shown in Ta- 202

ble 1, We report the Token-level F1 metric along 203

with corresponding Precision (P) and Recall (R) 204

scores. Results show our model improves the best 205

baseline’s Token F1 score with relative improve- 206

ment from 12.00% (MultiRC) to 80.00% (BoolQ) 207

on four datasets. However, our Token F1 score is 208

lower than Sparse IB with 9.3% in FEVER dataset. 209

4 Human Studies 210

4.1 Experiments 211

Good explanations can justify the model predic- 212

tions, humans should be able to predict the correct 213

labels with high confidence given only generated 214

rationales (Lertvittayakumjorn and Toni, 2019). 215

Therefore, we design a human study to show hu- 216

mans with only model generated rationales, ask 217

humans to predict the review label and provide 218

a 5-point Likert scale confidence on their selec- 219

tion. In detail, conditioning on correct model pre- 220

dictions, we randomly sampled 100 reviews from 221

Movie dataset (Zaidan and Eisner, 2008) and gener- 222

ated five rationales with lengths from 10% to 50% 223

with an increment of 10%. In each task, we show 224

humans five levels (10%-50%) of rationales one- 225

by-one and asked their prediction with confidence. 226

The five rationales’s data index and order are all 227

randomly sampled. In comparison, we design strict 228

random baselines to contrast with the gain of just 229

seeing more rationale length. 230

We use MTurk for the human study. We strictly 231

control the worker group participation to make sure 232

each worker only see a review once at a single 233

length level, therefore eliminating learning effect. 234

We collected 1150 assignments from 110 distinct 235

workers. See more human study and user interface 236

details in Appendix A.3. 237
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Figure 2: Humans overall accuracy and confidence per-
formance on predicting rationale labels.

4.2 Results238

We show human prediction accuracy and confi-239

dence results in Figure 2. We find that best expla-240

nations for human understanding are largely241

not the shortest rationales at 10% length level. In242

particular, when rationales are short at 10% length243

level, human accuracy on predicting model ratio-244

nales are lower than random baseline (i.e., 0.60245

compared to 0.63), clearly indicating shortest ratio-246

nales are not the best for human understanding. The247

different is statistically significant, with p = .01248

with Student’s t-test. The detailed human preci-249

sion/recall/F1 scores are in Table 2.250

Additionally, notice that the slope of our model’s251

accuracy shows a consistently flatten as the ratio-252

nale increases, whereas the random baseline does253

not display any apparent trend and obviously lower254

than our model at higher length levels (e.g., 40%).255

We hypothesize that this means our model is (1)256

indeed learning to reveal useful rationales (rather257

than just randomly displaying meaningless text),258

and (2) the amount of information necessary for hu-259

man understanding only start to saturate around260

40% of the full text. This creates a clear con-261

trast with prior work, where most studies extract262

10%-30% of the text as the rationale on the same263

dataset (Jain et al., 2020; Paranjape et al., 2020).264

5 Discussion and Limitation265

While in Section 3 we validate our modeling ap-266

proach through comparisons with baseline meth-267

ods, in Section 4 we show that shortest rationales268

extract from our model are still not sufficient for hu-269

man understanding. This contrast indicates that, ex-270

tracting shortest text that still retain correct predic-271

tions — a standard definition for self-explanation272

models — may not necessarily support human un-273

derstanding.274

Of course, our finding is limited to the Movie275

Review dataset, and we predict that the optimal276

rationale length would be dataset dependent (e.g.277

short texts may even need a rationale of 80% to278

Negative Positive
P / R / F1 P / R / F1

Model@10% 0.68 / 0.54 / / 0.60 0.66 / 0.58 / 0.62
Rand @10% 0.68 / 0.53 / 0.60 0.63 / 0.71 / 0.67
Model@20% 0.75 / 0.61 / 0.67 0.72 / 0.77 / 0.74
Rand @20% 0.69 / 0.58 / 0.63 0.67 / 0.74 / 0.70
Model@30% 0.74 / 0.75 / 0.75 0.80 / 0.78 / 0.79
Rand @30% 0.72 / 0.62 / 0.66 0.73 / 0.79 / 0.70
Model@40% 0.84 / 0.76 / 0.80 0.78 / 0.85 / 0.81
Rand @40% 0.79 / 0.63 / 0.70 0.65 / 0.79 / 0.72
Model@50% 0.78 / 0.78 / 0.78 0.85 / 0.85 / 0.85
Rand @50% 0.78 / 0.64 / 0.70 0.74 / 0.84 / 0.79

Table 2: Humans accuracy performance on predicting
rationale labels for each class label in Movie dataset.

cover just five words). Still, our work sounds a cau- 279

tionary note, and we encourage future work to more 280

rigurously define or evaluate the typical assumption 281

of “shorter rationales are easier to interpret” (Vafa 282

et al., 2021; Bastings et al., 2019), before trading 283

off model accuracy for it. One promising direc- 284

tion can be clearly define the optimal human inter- 285

pretability in an measurable way, and then learn to 286

adaptively select rationales with appropriate length. 287

6 Related Work 288

Current self-explaining models often enforce short- 289

est yet sufficient rationales, with the assumption 290

that short rationales are more intuitive to hu- 291

mans (Lei et al., 2016; Bastings et al., 2019). Paran- 292

jape et al. (2020) proposes an information bottle- 293

neck approach to enable the rationale length con- 294

trol. However current studies only assessed the 295

methods with auto-metrics and did not evaluate hu- 296

man understanding on different rationale lengths. 297

On the other hand, a line of studies measure the “hu- 298

man rationales alignment” (Paranjape et al., 2020), 299

which compares how well the model generated 300

rationales are agreeing with human grounded an- 301

notations (DeYoung et al., 2019). There are also 302

studies involving human-in-the-loop to evaluate the 303

explanations, such as asking humans to choose a 304

better model Ribeiro et al. (2016). However, there 305

is a lack of human evaluations on validating the 306

effect of rationale length on human understanding. 307

7 Conclusion 308

To investigate if the shortest rationales are best un- 309

derstandable for humans, this work presents a self- 310

explaining model that outperforms current base- 311

lines on both end-task prediction and human ra- 312

tionale alignment. we further use it to generate 313

rationales for human studies to examine how ratio- 314

nale length can affect human understanding. Our 315

results show shortest rationales are largely not the 316

best for human understanding. 317
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8 Ethical Considerations318

This work investigates if the shortest rationales319

are best understandable for humans. We present a320

self-explaining model that incorporates contextual321

information to control rationale length. Here we322

examine the ethical considerations of this model by323

explicitly answering what are the possible harms324

to users when the model is being used?325

When the model is used as intended and func-326

tions correctly, we note there are still potential327

risks. For example, when the rationales are in-328

correct, only showing rationales to humans might329

lead humans to misunderstand the model behavior330

and ignore some contents that are true cause of pre-331

diction or critical to them. Besides, if the model332

is trained from biased datasets, only showing ratio-333

nales, although more interpretable for humans but334

hide much input information, can lead to biased335

judgement for humans. However, to mitigate these336

issues in real applications, we can keep “unimpor-337

tant ” features of input still present and especially338

highlight the rationales, so that humans can quickly339

capture the important features while able to com-340

prehend the whole input context.341

Furthermore, we are aware that some potential342

biases could be introduced (unexpectedly) to the343

users. For example, some informative words might344

be incorrectly removed or masked by the proposed345

methods and mislead users. To address the possible346

harms, we can (i) explicitly inform users the poten-347

tial incorrectness of model behavior; and (ii) allow348

users to disagree or give feedback to the deployed349

method. Additionally, we set the MTurk workers350

to satisfy one qualification type as being “Adult”,351

considering the case that instances in Movie dataset352

have sensitive information.353
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A Appendix 435

A.1 Model Details and Hyperparameters 436

A.1.1 Methodology Details 437

Concrete Relaxation of Subset Sampling Pro- 438

cess. Given the output logits of identifier, we 439

use Gumbel-softmax (Jang et al., 2017) to gen- 440

erate a concrete distribution as c = [c1, ...cn] ∼ 441

Concrete(idn(x)), represented as a one-hot vec- 442

tor over n features where top important feature 443

is 1. We then sample this process for k times in 444

order to sample top-k important features, where 445

we obtain k concrete distributions as {c1, ..., ck}. 446

Next we define one n-dimensional random vec- 447

tor m to be element-wise maximum of these k 448

concrete distributions along n features, denoted as 449

m = maxj{cji}
j=k
i=n . Discarding the overlapping 450

features to keep the rest, we then use m to as the 451

k-hop vector to approximately select the top-k im- 452

portant features over document x. 453

Vector and sort regularization. we deploy a a 454

vector and sort regularization on mask m (Fong 455

et al., 2019). , where we sort the output mask m 456

in a increasing order and minimize the L1 norm 457

between m and a reference m̂ consisting of n− k 458

zeros followed by k ones. 459

A.1.2 Model Training Details. 460

Training and inference: During training, we se- 461

lect the Adam optimizer with learning rate at 2e-5 462

with no decay. We set hyperparameters in Equa- 463

tion 5 and 2 as λ = 1e− 4, v1 = 0.5 and v2 = 0.3 464

and trained 6 epochs for all models. Furthermore, 465

we trained LIMITEDINK on a set of sparsity levels 466

as k = {0.1, 0.3, 0.5, 0.7, 0.9} and chose models 467

with optimal predictive performance. 468

A.1.3 Details of Self-Explaining Baselines 469

We compare our method with state-of-the-art self- 470

explaining baseline models. 471

Sparse-N (Minimization Norm) This method 472

learns short mask with minimal L0 or L1 norm (Lei 473

et al., 2016; Bastings et al., 2019), which penalises 474

for the total number of selected words in the expla- 475

nation. 476

min Ez∼idn(x)L(cls(z), y) + λ||m|| (3) 477

Sparse-C (Controlled Norm Minimization) 478

This method controls the mask sparsity through 479

a tunable predefined sparsity level α (Chang et al., 480
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2020; Jain et al., 2020). The mask is penalized as481

below as long as the sparsity level α is passed.482

min Ez∼idn(x)L(cls(z), y) + λmax(0,
||m||
N
− α)

(4)483

where N is the input length and ||m|| denotes484

mask penalty with L1 norm.485

Sparse IB (Controlled Sparsity with Informa-486

tion Bottleneck) This method introduces a prior487

probability of z, which approximates the marginal488

p(m) of mask distribution; and p(m|x) is the para-489

metric posterior distribution over m conditioned490

on input x (Paranjape et al., 2020). They design491

the sparsity controll via the information loss term,492

which reduces the KL divergence between the pos-493

terior distribution p(m|x) that depends on x and a494

prior distribution r(m) that is independent of x.495

min Ez∼idn(x)L(cls(z), y) + λKL[p(m|x), r(m)]

(5)496

A.2 Ablation Study on Model Components497

We provide an ablation study on the Movie dataset498

to evaluate each loss term’s influence on end-task499

prediction performance, including Precision, Re-500

call, and F1 scores. The result is shown in Table 3.501

Setups End-Task Prediction
Precision Recall F1

No Sufficiency 0.25 0.50 0.34
No Continuity 0.82 0.81 0.81
No Sparsity 0.80 0.79 0.79
No Contextual 0.83 0.83 0.83
Our Model 0.92 0.91 0.91

Table 3: Ablation study of each module in our model
on Movie dataset.

A.3 Additional Details of Human Evaluation502

A.3.1 Additional Details of Human Study503

Random Baseline Design. We design the random504

baseline to be also continuous, keeping same to-505

tal tokens and averaged number of chunks as our506

model generated rationales on each length level.507

Specifically, given the sparsity level k, we get the508

count of total tokens in rationale as #tokens =509

#input_length ∗ k; we compute the average spans510

count over dataset generated by our model m; we511

generate m random integers with fixed sum at k,512

meaning dividing the baseline review randomly 513

into m spans with length of these values; Finally, 514

we randomly chose the start position of these m 515

spans for rationales. 516

Control Experiment Design. To strictly con- 517

trol the experiments, we grouped 5 reviews into 518

one batch and obtain 20 batches in total. For each 519

batch, we created 10 tasks (webpages) and assign 520

10 worker groups to conduct the human study. We 521

used costum MTurk qualifications to strictly con- 522

trol worker participants, so that workers who joined 523

one group could not view tasks from other groups. 524

provide detailed worker group control design in 525

Figure 3(A). 526

Amazon MTurk Study Statistics. We present 527

each task to 7 MTurk workers. In first stage – 528

worker recruiting stage – we recruited 200 crowd 529

workers where each worker finished one simple 530

assignment. We conduct our human study in the 531

second stage with the recruited 200 workers. There 532

are 110 out of the distinct workers participated and 533

finished 1150 assignments in our study. We com- 534

pensate workers at a rate of $0.50 per assignment 535

in worker recruiting and $0.20 per assignment in 536

task evaluation. Our assignment response rate is 537

84.38% in total. 538

A.3.2 Human Evaluation User Interface 539

We provide our designed user interfaces used in 540

the human study. Specifically, we show the inter- 541

face of human study panel in Figure 3 (B). We also 542

provide the detailed instructions for workers to un- 543

derstand our task, the instruction inteface is shown 544

in Figure 4. 545
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(B) Worker Study Interface

(A) Worker Group Assignment

Figure 3: (A) The design of worker group assignment in our human study. (B) User Interface of human study.
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Figure 4: User Interface of the instruction in the human study.
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