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Abstract001

Large Language Models (LLMs) have demon-002
strated strong reasoning abilities through su-003
pervised fine-tuning and reinforcement learn-004
ing. However, existing Process Reward Mod-005
els (PRMs) are vulnerable to reward hack-006
ing and require expensive, large-scale anno-007
tation of reasoning steps, limiting their reli-008
ability and scalability. To address the first009
problem, we propose a novel reward model010
approach, Hierarchical Reward Model (HRM),011
which evaluates both individual and consec-012
utive reasoning steps from fine-grained and013
coarse-grained level. HRM excels at assess-014
ing multi-step reasoning coherence, particu-015
larly in cases where a flawed step is later cor-016
rected through self-reflection. Furthermore, to017
address the inefficiency of autonomously an-018
notating PRM training data via Monte Carlo019
Tree Search (MCTS), we propose a lightweight020
data augmentation strategy, Hierarchical Node021
Compression (HNC), which merges consecu-022
tive reasoning steps within the tree structure.023
Applying HNC to MCTS-generated reasoning024
trajectories increases the diversity and robust-025
ness of HRM training data, while introducing026
controlled noise with minimal computational027
overhead. Empirical results on the PRM800K028
dataset demonstrate that HRM, in conjunction029
with HNC, achieves superior stability and relia-030
bility in evaluation compared to PRM. Further-031
more, cross-domain evaluations on MATH500032
and GSM8K dataset confirm HRM’s superior033
generalization and robustness across diverse034
reasoning tasks.035

1 Introduction036

As the scale of parameters in LLMs continues037

to grow (Anil et al., 2023; Achiam et al., 2023;038

Grattafiori et al., 2024; Yang et al., 2024a), their039

general capabilities have significantly improved,040

surpassing human performance in various gener-041

ative tasks such as text comprehension and data042

generation (Wang et al., 2024b). However, the043

upper bound and inherent limitations of LLMs 044

in reasoning-intensive tasks—such as mathemati- 045

cal and logical reasoning—remain an open ques- 046

tion (Cobbe et al., 2021; Lightman et al., 2023; 047

Uesato et al., 2022; Wang et al., 2023; Luo et al., 048

2024; Amrith Setlur, 2025; Wang et al., 2024d,c). 049

Recent approaches, such as Chain-of-Thought 050

(CoT) (Wei et al., 2022) and Tree-of-Thought 051

(ToT) (Shunyu Yao, 2023), have significantly en- 052

hanced reasoning performance. Despite these ad- 053

vancements, most CoT models lack mechanisms 054

to detect and correct intermediate reasoning er- 055

rors, resulting in continued propagation of mistakes 056

throughout the reasoning process. Meanwhile, ToT 057

methods do not inherently verify every intermedi- 058

ate step or guarantee retrieval of the optimal rea- 059

soning trajectory, which can limit its reliability in 060

complex problem-solving scenarios. 061

To mitigate these limitations, recent efforts have 062

focused on reward mechanisms that guide LLMs 063

effectively. There are two primary approaches 064

to enhance the reasoning capabilities of LLMs 065

from the perspective of "how to reward LLMs": 066

the Outcome Reward Model (ORM) (Lightman 067

et al., 2023; Uesato et al., 2022; Guo et al., 2025; 068

Shao et al., 2024) and the Process Reward Model 069

(PRM) (Lightman et al., 2023; Uesato et al., 2022). 070

Each comes with its own limitations. ORM suf- 071

fers from delayed feedback and credit assignment 072

issues, making it difficult to pinpoint which reason- 073

ing steps contribute to the final answer (Lightman 074

et al., 2023; Uesato et al., 2022). PRM, in contrast, 075

provides finer-grained supervision by evaluating 076

reasoning step by step. However, most PRM meth- 077

ods are model-based and are prone to reward hack- 078

ing (Weng, 2024), where models exploit reward 079

signals rather than genuinely improving reasoning, 080

undermining reliability in complex tasks. More- 081

over, the high annotation cost associated with PRM 082

makes large-scale deployment challenging. 083

In this paper, we focus on addressing the lim- 084
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Feature ORM PRM HRM
Scoring Method Rule-Based or RM RM Only RM Only
Granularity (Training Data) Whole Process Single Step Few Consecutive Steps
Step-wise Feedback No Yes Yes
Error Correction Yes No Yes

Table 1: Comparison of scoring methods, granularity, and feedback mechanisms across ORM, PRM, and HRM.

itations of PRM. To mitigate the impact of re-085

ward hacking in PRM, we propose the Hierarchical086

Reward Model (HRM). The term hierarchical087

highlights that, during training, HRM incorporates088

a hierarchical supervision signal by evaluating rea-089

soning processes at both fine-grained (single-step)090

and coarse-grained (consecutive multi-step) levels.091

This layered approach enables HRM to capture092

both local and global coherence in reasoning. How-093

ever, during inference, HRM remains step-wise: it094

assigns rewards to each reasoning step individually,095

the same as PRM. Traditional PRM penalizes an096

incorrect single step without considering potential097

corrections in subsequent reasoning. In contrast,098

HRM assesses reasoning coherence across multiple099

steps, allowing the reward model to identify and100

incorporate later steps that rectify earlier errors,101

leading to a more robust and reliable evaluation.102

Table 1 compares the difference between ORM,103

PRM and HRM.104

The PRM800K (Lightman et al., 2023) dataset105

comprises manually annotated reasoning trajecto-106

ries, which serve as the foundation for training107

ORM, PRM, and HRM. We subsequently assess the108

performance of Qwen2.5-72B-Math-Instruct (Yang109

et al., 2024b) as the policy model by employing110

the Best-of-N Search strategy across ORM, PRM,111

and HRM. Experimental results (as shown in Ta-112

ble 2) demonstrate that HRM is the most robust113

to reward hacking. The policy model with HRM114

maintains stable performance, with accuracy stabi-115

lizing at 80% as N increases. In contrast, policy116

models with PRM and ORM exhibit significant per-117

formance fluctuations, with accuracy degrading as118

N grows.119

To fully exploit the capabilities of Monte Carlo120

Tree Search (MCTS) for automatic process annota-121

tion, we introduce a data augmentation framework122

termed Hierarchical Node Compression (HNC),123

which consolidates two consecutive nodes from124

different depths into a single node. This approach125

effectively expands the training dataset while main-126

taining minimal computational overhead and en-127

hancing label robustness through controlled noise128

injection. After evaluating HNC in the auto- 129

annotation process by MCTS on the PRM800K 130

dataset, we find that fine-tuned HRM achieves 131

more robust scoring within PRM800K dataset 132

and exhibits strong generalization across other do- 133

mains, including GSM8K (Cobbe et al., 2021) and 134

MATH500 (Lightman et al., 2023) dataset, outper- 135

forming PRM in robustness and consistency. 136

Our main contributions are as follows: 137

• We propose the HRM, which leverages hierar- 138

chical supervision from training data at both 139

single-step and multi-step levels, promoting 140

coherence and self-correction in multi-step 141

reasoning. We validate HRM’s robustness on 142

the PRM800K dataset using manually anno- 143

tated data. 144

• We introduce HNC, a lightweight data aug- 145

mentation approach for MCTS that substan- 146

tially increases the diversity and robustness 147

of HRM training data with minimal compu- 148

tational cost. Experiments show that HRM 149

trained on the PRM800K dataset with auto- 150

annotated data from HNC and MCTS demon- 151

strates improved robustness over PRM. Fur- 152

thermore, HRM exhibits superior reason- 153

ing consistency and generalization across 154

GSM8K and MATH500, consistently outper- 155

forming PRM. 156

• Additionally, we enhance the policy model 157

through fine-tuning on high-quality reasoning 158

trajectories filtered from MCTS, further im- 159

proving its reasoning performance. 160

2 Related Work 161

2.1 RLHF 162

Reinforcement Learning with Human Feedback 163

(RLHF) (Ouyang et al., 2022) is a widely used 164

framework for optimizing LLMs by incorporating 165

human feedback signals. The core idea of RLHF 166

is to use a Reward Model (RM) to distinguish be- 167

tween high-quality and low-quality responses and 168
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Figure 1: Illustration of how ORM, PRM, and HRM handle reasoning processes. ORM evaluates the entire
reasoning chain, PRM assesses individual steps but stops at errors, and HRM considers multiple consecutive steps,
enabling error correction. The figure also demonstrates how HRM constructs its training dataset by merging two
consecutive steps.

then optimize the LLM using PPO (Schulman et al.,169

2017). Ouyang et al. (2022) first apply RLHF170

to train InstructGPT, aligning the model’s outputs171

with human preferences.172

From the perspective of reward design, there173

are two main approaches: ORM (Cobbe et al.,174

2021; Lightman et al., 2023; Wang et al., 2023)175

and PRM (Lightman et al., 2023; Uesato et al.,176

2022; Luo et al., 2024; Zhang et al., 2024). ORM177

assigns rewards based on the whole output, while178

PRM evaluates intermediate reasoning steps to pro-179

vide more fine-grained supervision. These reward180

mechanisms directly impact how LLMs learn to181

reason and optimize their outputs.182

2.2 ORM183

ORM suffers from delayed feedback and the credit184

assignment problem. Since rewards are only pro-185

vided at the final outcome, ORM struggles to dis-186

cern which intermediate steps contribute to suc-187

cess or failure (Cobbe et al., 2021; Lightman et al.,188

2023; Wang et al., 2023). This delayed feedback189

limits learning efficiency, making it harder to opti-190

mize critical decision points. Additionally, ORM191

is prone to spurious reasoning (Cobbe et al., 2021;192

Lightman et al., 2023; Wang et al., 2023), where193

the model arrives at the correct answer despite194

flawed intermediate steps, reinforcing suboptimal195

reasoning patterns. However, DeepSeek-R1(Guo196

et al., 2025) integrates a rule-based ORM within197

GRPO algorithm(Shao et al., 2024), demonstrat-198

ing that rule-based reward mechanisms, rather than 199

score-based reward models, can effectively guide 200

LLMs toward generating long-CoT reasoning and 201

self-reflection, ultimately enhancing their reason- 202

ing abilities. 203

2.3 PRM 204

One of the most critical challenges in PRM is re- 205

ward hacking, a phenomenon in which an RL agent 206

exploits flaws or ambiguities in the reward function 207

to achieve artificially high rewards without gen- 208

uinely learning the intended task or completing it 209

as expected (Amodei et al., 2016; Di Langosco 210

et al., 2022; Everitt et al., 2017; Weng, 2024). 211

In the LLM domain, Wang et al. (2024a) find 212

that when an LLM is used as a verifier to assess 213

the quality of multiple outputs, its ranking can be 214

easily manipulated simply by changing the order 215

of candidates in the context. Wen et al. (2025) 216

demonstrate that RLHF can make AI models more 217

persuasive to human evaluators without necessarily 218

improving their correctness, leading to higher hu- 219

man approval of incorrect answers and increased 220

evaluation error rates. 221

Furthermore, the annotation process required 222

for training PRM models is prohibitively expen- 223

sive (Lightman et al., 2023; Uesato et al., 2022), 224

making large-scale implementation impractical. To 225

address this issue, MCTS has been proposed as 226

an autonomous method for annotating reasoning 227

trajectories (Luo et al., 2024; Zhang et al., 2024). 228
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Figure 2: Illustration of the MCTS-based automated reasoning annotation process. The left side depicts a tree
structure where each node represents a reasoning step, simulated using the ToT approach with MCTS. The right
side visualizes the assigned scores for each step in the reasoning tree.

While MCTS reduces the need for human annota-229

tion, it incurs substantial computational costs due230

to the extensive simulations required for the MC-231

Score to achieve relative convergence. Moreover,232

in MCTS, the computational cost increases signifi-233

cantly as the depth and breadth of the search tree234

expand. To mitigate this, constraints are imposed235

on both tree height and width, limiting the num-236

ber of simulation steps and thereby reducing the237

diversity of generated reasoning data.238

3 Methodology239

3.1 Hierarchical Reward Model240

PRM provides fine-grained, step-wise supervision,241

whereas ORM evaluates reasoning holistically. To242

leverage the strengths of both, we propose the243

Hierarchical Reward Model (HRM), which intro-244

duces hierarchical supervision by training on both245

single-step and consecutive multi-step reasoning246

sequences. This design enables HRM to capture247

local accuracy and global coherence, enhancing248

the robustness and reliability of reward evaluation249

in multi-step reasoning. The training dataset for250

HRM consists of consecutive reasoning sequences251

spanning from step 1 to N , as illustrated in Fig. 1252

and Section 4.1. HRM training data is a super-253

set of PRM training data, constructed by merging254

consecutive reasoning steps.255

Formally, let D represent the training dataset,256

N denote the total number of reasoning steps in a257

sequence, si be the i-th reasoning step, and R(·)258

be the reward function that assigns a score to a259

step. The training datasets for PRM and HRM are 260

defined as: 261

DPRM = {(si, R(si)) | 1 ≤ i ≤ N} , (1) 262

DHRM = DPRM 263

∪ {(si + si+1, R(si + si+1)) | 1 ≤ i < N} .
(2)

264

HRM is designed with two primary objec- 265

tives: (1) capturing both fine-grained and coarse- 266

grained reasoning consistency, and (2) enabling 267

self-reflection and error correction. Unlike PRM, 268

which terminates evaluation upon encountering an 269

error, HRM assesses whether subsequent steps rec- 270

tify earlier mistakes, treating them as a cohesive 271

unit rather than isolated errors. 272

Although HRM training data incorporates 273

merged reasoning steps, the model remains step- 274

wise in inference, assigning a reward based solely 275

on the current step si, similar to PRM. 276

3.2 Hierarchical Node Compression in MCTS 277

Due to the prohibitively high cost of human- 278

annotated supervision, autonomous annotation 279

methods based on MCTS have been proposed. 280

Fig. 2 illustrates the process of automatic reasoning 281

annotation using MCTS. Given a ground truth and a 282

corresponding question, MCTS generates multiple 283

possible reasoning paths by simulating different 284

step-by-step solutions. Each node in the search 285

tree represents a reasoning step, and its score is 286
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Step 1: Merge the reasoning steps of N1 and N2, integrating their information into N2.
Step 2: Remove the direct connection between N1 and N2.
Step 3: Redirect N2 to point to N0.

Figure 3: Illustration of HNC. The left part represents the original MCTS data annotation structure, while the right
part shows the transformed MCTS structure after applying HNC.

calculated based on the proportion of correct trajec-287

tories in its subtree, reflecting the likelihood that288

the reasoning path is valid. However, these meth-289

ods demand substantial computational resources,290

as achieving reliable estimates of intermediate rea-291

soning step scores requires a sufficiently deep and292

wide search tree to reduce variance and mitigate293

bias; otherwise, the estimates may remain unreli-294

able. This exponential growth in complexity makes295

large-scale implementation challenging.296

To better leverage autonomous process anno-297

tation, we propose a data augmentation method298

called Hierarchical Node Compression (HNC).299

The key idea is to merge two consecutive nodes,300

each corresponding to a reasoning step, into a sin-301

gle node, thereby creating a new branch with mini-302

mal computational overhead.303

As shown in Fig. 3, HNC assumes that each304

node has a sufficiently large number of child nodes.305

By randomly merging consecutive nodes, it intro-306

duces controlled noise, enhancing the robustness307

of MCTS-based scoring. Before HNC, each child308

node contributes 1
N to the total score. After HNC309

removes a random node, the remaining child nodes310

redistribute their weights to 1
N−1 , increasing their311

individual influence. Since child nodes are indepen-312

dent and identically distributed from the parent’s313

perspective, the expectation of the parent score re-314

mains unchanged. However, the variance increases315

from σ2

N to σ2

N−1 , introducing controlled noise that316

enables data augmentation at an extremely low317

computational cost. When N is sufficiently large,318

this variance change remains moderate while still319

facilitating effective data augmentation.320

3.3 Self-Training321

To filter high-quality reasoning data from MCTS,322

we adapt two approaches: using the MC-Score or323

N 2 4 8 16 24
ORM 0.622 0.677 0.655 0.655 0.633
PRM 0.700 0.644 0.611 0.588 0.577
HRM 0.722 0.711 0.744 0.800 0.800

Table 2: Accuracy of Qwen2.5-72B-Math-Instruct on
the PRM800K test set under the best-of-N strategy,
comparing ORM, PRM, and HRM. All models are fine-
tuned on the manually labeled PRM800K dataset.

leveraging PRM/HRM to assign scores. To miti- 324

gate reward hacking caused by the reward model, 325

we apply a high-quality data filter based on MC- 326

Score. 327

Due to computational constraints, we do not em- 328

ploy RL methods such as PPO (Schulman et al., 329

2017) or GRPO (Shao et al., 2024). Instead, we 330

continue using supervised fine-tuning. To preserve 331

the general capabilities of the policy model, we 332

incorporate causal language modeling loss com- 333

bined with KL divergence regularization using a 334

reference model. The objective function is defined 335

as: 336

L = LLM + λ logDKL(P ||Q), (3) 337

where LLM represents the causal language mod- 338

eling loss computed on high-quality reasoning se- 339

quences, and DKL(P ||Q) denotes the KL diver- 340

gence between the policy model’s output distribu- 341

tion P and the reference model’s output distribu- 342

tion Q. The term λ serves as a weighting factor to 343

balance task-specific adaptation and retention of 344

general capabilities. 345

Without proper KL regularization or with an in- 346

sufficiently weighted KL loss (i.e., a very small λ), 347

the KL divergence grows unbounded during train- 348

ing. Specifically, KL loss typically ranges from 0 to 349

20000, whereas the causal LM loss remains within 350

0 to 12, leading to a severe loss imbalance. This 351
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causes the optimization process to excessively min-352

imize KL divergence at the expense of task-specific353

reasoning performance. To address this, we apply a354

logarithmic scaling to DKL(P ||Q), stabilizing the355

loss landscape and ensuring a balanced trade-off356

between preserving general language capabilities357

and enhancing reasoning ability. Further details are358

provided in Section 4.3.359

4 Experiment360

4.1 HRM361

Given that the PRM800K dataset (Lightman et al.,362

2023) consists of Phase1 and Phase2, where Phase1363

includes manually annotated reasoning processes,364

we utilize these manual annotations to construct365

the training datasets for ORM, PRM, and HRM.366

ORM training data comprises complete reasoning367

trajectories, while PRM training data consists of368

individual reasoning steps conditioned on preced-369

ing context. HRM training data extends PRM by370

incorporating multiple consecutive reasoning steps,371

allowing HRM to capture self-reflection and en-372

sure reasoning coherence across sequential steps.373

Table 6 summarizes the labeling rules for merged374

reasoning steps in HRM.375

We fine-tune Qwen2.5-1.5B-Math (Yang et al.,376

2024b) as the reward model (RM) for classifying377

given reasoning step as correct or incorrect. Given378

an input, RM predicts logits for the positive and379

negative classes, denoted as lpos and lneg, respec-380

tively. The confidence score is obtained by apply-381

ing the softmax function:382

P (y = pos | x) =
exp(lpos)

exp(lpos) + exp(lneg)
, (4)383

where P (y = pos | x) denotes the probability of384

given reasoning step being correct. This probability385

serves as the reward assigned by RM. Detailed386

information is provided in Appendix A.2.387

To evaluate the performance of ORM, PRM,388

and HRM, we employ Qwen2.5-72B-Math-389

Instruct (Yang et al., 2024b) as the policy model390

and implement the best-of-N strategy. Specifically,391

ORM selects the best result from N complete rea-392

soning trajectories, while PRM and HRM score N393

intermediate reasoning steps and select the most394

promising one at each step. For PRM and HRM,395

we consider the completion of a formula as an in-396

termediate reasoning step, enabling a finer-grained397

evaluation mechanism. Table 2 presents the results,398

showing that the accuracy of the policy model with 399

ORM and PRM exhibits significant fluctuations, 400

decreasing as N increases. In contrast, the policy 401

model with HRM maintains stable performance, 402

converging to an accuracy of 80% as N grows. 403

4.2 HNC 404

In this section, we utilize only the questions and 405

ground truth from the PRM800K dataset, without 406

relying on manually annotated data. We adopt 407

MCTS as the automatic annotation method, us- 408

ing Qwen2.5-7B-Math-Instruct as the reasoning en- 409

gine to generate trajectories. As mentioned in Sec- 410

tion 3.2, these auto-annotated reasoning trajectories 411

from MCTS are used to train PRM, after which we 412

apply the HNC data augmentation method to gen- 413

erate additional training data for HRM. 414

To balance computational efficiency and robust- 415

ness, we configure MCTS with 5–6 child nodes 416

per parent and a maximum tree depth of 7, ensur- 417

ing reasoning completion within 7 steps. Since 418

the computational cost of MCTS rollouts grows 419

exponentially with tree depth and branching factor, 420

we limit these parameters to maintain feasibility. 421

The full MCTS simulation requires approximately 422

2,457 A100-80GB GPU-hours, while the HNC aug- 423

mentation process takes around 30 minutes with 424

CPU. 425

We perform supervised fine-tuning of Qwen2.5- 426

1.5B-Math (Yang et al., 2024b) for both PRM and 427

HRM. To evaluate performance, we employ differ- 428

ent policy models, including Qwen2.5-7B-Math- 429

Instruct (Yang et al., 2024b), DeepSeek-Math- 430

7B (Shao et al., 2024), and Qwen2.5-72B-Math- 431

Instruct (Yang et al., 2024b), applying the best- 432

of-N strategy on the PRM800K dataset. Detailed 433

training information is provided in Appendix A.3. 434

Table 3 presents the accuracy results of various 435

policy models under PRM and HRM settings on 436

the PRM800K dataset. Although both PRM and 437

HRM training data are derived from MCTS with 438

Qwen2.5-7B-Math-Instruct, we evaluate HRM and 439

PRM using different policy models, where HRM 440

consistently demonstrates greater stability and ro- 441

bustness compared to PRM. 442

The relatively lower performance of Qwen2.5- 443

72B-Math-Instruct (as shown in Table 3) can be 444

attributed to the tree height constraints imposed 445

by MCTS, which limit answer generation to a 446

predefined template of at most 6 reasoning steps 447

and require explicit output of "# Step X". While 448

Qwen2.5-72B-Math-Instruct exhibits strong rea- 449
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Policy Model Method N

2 4 8 16 24 32 64 128 256 512

DeepSeek-Math-7B
PRM 0.311 0.433 0.377 0.455 0.411 0.455 0.466 0.444 0.377 0.377
HRM 0.311 0.388 0.444 0.455 0.455 0.422 0.533 0.522 0.455 0.500

Qwen2.5-72B-Math
PRM 0.233 0.344 0.411 0.422 0.488 0.522 0.600 0.566 0.666 0.700
HRM 0.288 0.366 0.366 0.488 0.511 0.611 0.622 0.611 0.711 0.722

Qwen2.5-7B-Math
PRM 0.477 0.466 0.600 0.544 0.633 0.677 0.733 0.677 0.700 0.722
HRM 0.500 0.566 0.655 0.600 0.666 0.711 0.711 0.766 0.777 0.766

Table 3: Accuracy of different policy models under PRM and HRM using the best-of-N strategy on the PRM800K
test set. The training data for both PRM and HRM are derived from MCTS with Qwen2.5-7B-Math-Instruct.

Figure 4: Loss dynamics during training across different KL loss weightings. Each column corresponds to a different
λ value: 0.001 (left), 0.5 (middle), and 10.0 (right). The top row shows the log KL loss, while the bottom row
depicts the causal language modeling loss.

soning capabilities, its highly structured training450

process makes it more likely to generate outputs451

that deviate from the required format. As a result,452

some outputs cannot be retrieved using regex-based453

post-processing, thereby affecting the overall mea-454

sured performance.455

4.3 Self-Training456

We adapt the method described in Section 3.3 to fil-457

ter high-quality reasoning data and train the policy458

model. Fig. 4 illustrates that when λ is small (e.g.,459

0.001), the fine-tuned policy model rapidly loses its460

generalization ability within just a few iterations,461

causing the KL loss to escalate to approximately462

20,000. In contrast, the causal LM loss remains463

within the range of 0 to 12, leading to a significant464

imbalance. This discrepancy underscores the ne-465

cessity of applying logarithmic scaling to the KL466

term in the objective function, as discussed in Sec- 467

tion 3.3. Conversely, when λ is excessively large 468

(e.g., 10.0), the model prioritizes adherence to the 469

reference distribution, resulting in slower conver- 470

gence and constrained improvements in reasoning 471

capability. 472

We fine-tune Qwen2.5-7B-Math-Instruct using 473

reasoning data with MC-score > 0.9, extracted 474

from the PRM and HRM training datasets. Qwen- 475

7B-HRM denotes the policy model fine-tuned on 476

such data from HRM’s training set, while Qwen- 477

7B-PRM follows the same procedure for PRM’s 478

training set. We set λ to 0.5. Table 4 further vali- 479

dates that SFT enhances the policy model’s reason- 480

ing capability by leveraging high-quality data, with 481

HRM demonstrating greater robustness compared 482

to PRM. 483
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Policy Model Method N

2 4 8 16 24 32 64 128 256 512

Qwen2.5-7B-Math
PRM 0.477 0.466 0.600 0.544 0.633 0.677 0.733 0.677 0.700 0.722
HRM 0.500 0.566 0.655 0.600 0.666 0.711 0.711 0.766 0.777 0.766

Qwen-7B-PRM
PRM 0.477 0.555 0.533 0.655 0.655 0.677 0.711 0.700 0.744 0.744
HRM 0.477 0.544 0.644 0.722 0.700 0.711 0.722 0.755 0.800 0.800

Qwen-7B-HRM
PRM 0.511 0.533 0.644 0.667 0.667 0.689 0.733 0.722 0.744 0.733
HRM 0.489 0.589 0.722 0.722 0.722 0.744 0.744 0.789 0.789 0.789

Table 4: Comparison of fine-tuned policy model reasoning performance on the PRM800K dataset using the best-of-
N strategy. Qwen-7B-HRM denotes the policy model fine-tuned on high-MC-score reasoning data from HRM’s
training set, while Qwen-7B-PRM follows the same procedure for PRM’s training set.

Dataset Method N

2 4 8 16 24 32 64 128 256 512

GSM8K
PRM 0.784 0.828 0.858 0.882 0.884 0.893 0.905 0.917 0.927 0.918
HRM 0.784 0.833 0.846 0.886 0.893 0.902 0.907 0.914 0.930 0.926

MATH500
PRM 0.468 0.572 0.598 0.624 0.658 0.658 0.656 0.662 0.686 0.688
HRM 0.490 0.576 0.612 0.660 0.688 0.692 0.742 0.740 0.740 0.736

Table 5: Generalization performance of PRM and HRM fine-tuned on the PRM800K dataset and evaluated on
GSM8K and MATH500 using the best-of-N strategy. The policy model used for evaluation is Qwen2.5-7B-Math-
Instruct.

4.4 HRM Generalization Across Different484

Domains485

Trained solely on PRM800K, HRM and PRM are486

further evaluated on MATH500 (Lightman et al.,487

2023) and GSM8K (Cobbe et al., 2021) to assess488

their generalization to out-of-domain reasoning489

tasks. Table 5 shows that HRM exhibits greater490

robustness across different domains, demonstrating491

superior generalization performance, particularly492

in MATH500, where it effectively handles complex493

mathematical reasoning tasks.494

However, the performance difference between495

HRM and PRM on the GSM8K dataset is marginal,496

as GSM8K primarily consists of relatively sim-497

ple arithmetic problems. A strong policy model498

can typically solve these problems within three499

steps, reducing the impact of HRM’s key advan-500

tages, such as assessing multi-step reasoning coher-501

ence and facilitating self-reflection. Nevertheless,502

as shown in Table 5, HRM still achieves a slight per-503

formance edge over PRM, even on simpler datasets504

like GSM8K.505

5 Conclusion506

In this paper, we present HRM, which enhances507

multi-step reasoning evaluation by integrating fine-508

grained and coarse-grained assessments, improving 509

reasoning coherence and self-reflection. We fur- 510

ther introduce HNC, a data augmentation method 511

that optimizes MCTS-based autonomous anno- 512

tation, enhancing label diversity while expand- 513

ing training data with minimal computational 514

cost. Extensive experiments on PRM800K dataset 515

demonstrate HRM’s superior robustness over PRM, 516

with strong generalization across GSM8K and 517

MATH500 dataset. Additionally, MCTS-generated 518

auto-labeled data enables policy model fine-tuning, 519

further improving reasoning performance. 520

6 Limitations 521

6.1 Merged Steps 522

The reason why we only merge two consecutive 523

steps at a time is to maintain the simplicity and clar- 524

ity of the labeling strategy. When merging more 525

than two steps—such as combining four reasoning 526

steps—the number of possible label combinations 527

increases rapidly (e.g., one positive, two negative, 528

one neutral), making it difficult to define unified la- 529

beling rules and leading to potential conflicts. This 530

stands in sharp contrast to the straightforward rules 531

shown in Table 6, where merging only two steps 532

allows for clear and consistent label definitions. 533
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6.2 Limited Domain and Lack of Statistical534

Testing535

This paper mainly focuses on the math domain, as536

mathematical reasoning is more amenable to auto-537

matic verification and annotation with MCTS. As538

discussed in Section 4.2, the computational require-539

ments are substantial: both the auto-annotation540

process and reward model evaluation rely on tree-541

structured reasoning, leading to high computational542

cost and large-scale test data. Due to these resource543

constraints, we evaluate our method only on a sin-544

gle run, without multiple trials or statistical signifi-545

cance testing.546
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A Appendix708

A.1 Labeling Rules for HRM Training Data709

Table 6 summarizes the labeling rules for merging710

reasoning steps in HRM, as applied to the manually711

labeled PRM800K dataset.712

A.2 HRM Training Details713

To accelerate the training process of reward model,714

we employ FlashAttention (Dao et al., 2022; Dao,715

2024), DeepSpeed (Rajbhandari et al., 2020; Am-716

inabadi et al., 2022), and mixed-precision train-717

ing (Kalamkar et al., 2019; Micikevicius et al.,718

2017). However, within the PRM800K domain,719

we frequently encounter the issue: "Current loss720

scale already at minimum - cannot decrease scale721

anymore. Exiting run." This indicates that the nu-722

merical precision is insufficient for stable training.723

To mitigate this issue and ensure reproducibility,724

we set max_grad_norm to 0.01, which effectively725

stabilizes the training process.726

We define the completion of a reasoning727

step as the end of a formula, using stop =728

['\]\n\n', '\)\n\n', '# END!'] as boundary729

markers.730

The following prompt is used in Section 4.1:731
732

"""733
You are an expert of Math and need to734
solve the following question and return735
the answer.736

737
Question:738
{question}739

740
Let 's analyze this step by step.741

742
After you finish thinking , you need to743
output the answer again!744

745
The answer should start with '# Answer ',746
followed by two line breaks and the747
final response.748

749
Just provide the answer value without750
any descriptive text at the end.751

752
And the answer ends with '# END!'753
Below is a correct example of the754
expected output format:755
-----------------756
Question: 1+2+3 = ?757

758
Firstly , solve 1 + 2 = 3,759
Then , 3 + 3 = 6.760

761
# Answer762

763
6764
# END!765
-----------------766
"""767

768

A.3 HNC Setting Details 769

To ensure the feasibility of autonomous annotation 770

using MCTS, we impose constraints on both the 771

width and height of the search tree. This limita- 772

tion prevents us from treating the completion of 773

a formula as a single reasoning step. Instead, we 774

require the model to explicitly output # Step X at 775

each step. Consequently, the training data for the 776

reward model is segmented using # Step X as a 777

delimiter. During inference, we also apply # Step 778

X as a separator and employ the Best-of-N strategy 779

for selecting the optimal reasoning path. 780

The prompt we use is as follows(delimiter=[’# 781

END!’, ’# Step 2’, "# Step 3", "# Step 782

4", "# Step 5"]): 783

784
"""You are an expert of Math and need to 785
solve the following question and return 786
the answer. 787

788
Question: 789
{question} 790

791
792

Let 's analyze this step by step. 793
794

Begin each step with '# Step X' to 795
clearly indicate the entire reasoning 796
step. 797

798
After you finish thinking , you need to 799
output the answer again! 800

801
The answer should start with '# Answer ', 802
followed by two line breaks and the 803
final response. 804

805
Just provide the answer value without 806
any descriptive text at the end. 807

808
And the answer ends with '# END!' 809

810
Below is a correct example of the 811
expected output format: 812
----------------- 813
Question: 1+2+3 = ? 814

815
# Step 1 816
solve 1 + 2 = 3, 817

818
# Step 2 819
Then , 3 + 3 = 6. 820

821
# Answer 822

823
6 824
# END! 825
----------------- 826
""" 827828
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Previous Step Label Current Step Label Label for Merged Step
Positive Positive Positive
Positive Neutral/Negative Negative

Neutral/Negative Positive Positive
Neutral/Negative Neutral/Negative Negative

Table 6: Labeling strategy for constructing the HRM training dataset from manual annotations in PRM800K dataset.
PRM800K dataset contains three label types: Positive, Negative, and Neutral. HRM extends PRM by incorporating
multi-step reasoning.

A.4 Self-Training829

Initially, KL loss is not incorporated, causing830

the policy model to lose its generalization ability831

rapidly, despite a continuous decrease in evaluation832

loss. To address this issue, we introduce KL loss to833

regularize training from the reference model.834

The logarithmic scaling and weighting factor λ835

are added to balance the impact of KL divergence.836

Without these adjustments, KL loss would range837

from 0 to 20000, while the language modeling loss838

remains between 0 and 12, leading to an imbalance.839

The logarithm ensures a more stable contribution840

of KL loss during training.841

As illustrated in Fig. 4, setting λ = 0.5 achieves842

a balanced trade-off between KL loss and language843

modeling loss, preventing excessive divergence844

from the reference model while ensuring stable845

and effective training.846
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