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Abstract

Hierarchical generative models represent data with multiple layers of latent variables orga-
nized in a top-down structure. These models typically assume Gaussian priors for multi-layer
latent variables, which lack expressivity for the contextual dependencies among latents, re-
sulting in a distribution gap between the prior and the learned posterior. Recent works have
explored hierarchical energy-based prior models (EBMs) as a more expressive alternative to
bridge this gap. However, most approaches learn only a single EBM, which can be ineffective
when the target distribution is highly multi-modal and multi-scale across hierarchical layers
of latent variables. In this work, we propose a framework that learns multi-stage hierarchical
EBM priors, where a sequence of adaptive stages progressively refines the prior to match the
posterior. Our method supports both joint training with the generator and a more efficient
two-phase strategy for deeper hierarchies. Experiments across standard benchmarks show
that our approach consistently generates higher-quality images and learns richer hierarchical
representations.

1 Introduction

Hierarchical generative models, also known as multi-layer generator models, represent data using multiple
layers of latent variables arranged in a top-down structure. Top layers typically capture high-level semantics,
while bottom layers capture low-level fine details. Such models have shown strong performance in modelling
complex data distributions and learning multi-level representations (Child, 2020; Vahdat & Kautz, 2020;
Havtorn et al., 2021; Maaløe et al., 2019). The prior distributions over these latent variables are usually
assumed to be Gaussian, which mainly capture inter-layer relationships (i.e., dependencies between layers)
and ignore intra-layer contextual relationships (i.e., dependencies among latent units within the same layer).
This lack of expressivity often leads to a mismatch between the assumed prior and the aggregated posterior
learned from data, ultimately degrading the quality of generated samples and the capability of learning
hierarchical representations.

Recent advances have introduced energy-based models (EBMs) as more expressive priors (Cui et al., 2023a;b;
Aneja et al., 2021). EBMs can model rich intra-layer dependencies, offering a stronger inductive bias and
modelling capacity than Gaussians. However, most existing approaches consider only a single EBM (“single-
stage”) for the complex posterior. When the posterior distribution is highly multi-modal and latent scales
differently across layers, learning a single EBM prior is difficult and often ineffective. One line of research
seeks to overcome this by borrowing ideas from diffusion models (Cui & Han, 2024; Yu et al., 2022; 2023),
which introduce a sequence of conditional EBMs learned at different noise levels. While effective, these
approaches depend on carefully designed diffusion schedules and require costly sampling procedures. Another
line of work (Xiao & Han, 2022; Rhodes et al., 2020) proposes multi-stage learning for marginal EBMs (Xiao
& Han, 2022), which develops a self-adaptive strategy that evolves multiple EBMs without relying on a fixed
schedule. Yet, these methods are restricted to flat latent spaces, limiting their ability to model hierarchical
structures and capture layered representations. As a result, the development of multi-stage hierarchical EBM
priors remains largely unexplored.
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In this work, we develop multi-stage learning for hierarchical EBM priors. Our framework constructs a
sequence of hierarchical EBM priors, viewed as density-ratio estimators, where each stage adaptively refines
the prior by treating the previous stage as the new base distribution. This formulation constructs a chain
of ratio bridges that progressively align the prior with the posterior, yielding a more robust and tractable
solution than single-step methods. Unlike diffusion-based approaches, our method does not require a pre-
defined schedule, but instead allows both the generator and hierarchical EBMs to evolve self-adaptively.
Compared to flat latent space Adaptive-CE, the multi-scale nature of hierarchical latent space makes sampling
across different layers difficult. To address this, we adopt a uni-scale latent space reparameterization (Section
3.2), which transforms the multi-scale latent variables into a consistent space where EBMs can be learned
and sampled more effectively. Our framework supports two training schemes: (i) joint learning, where
the generator and EBMs are optimized together, and (ii) a more efficient two-phase strategy for deeper
hierarchies, where the generator is trained first and the EBMs are learned afterward as complementary
priors.

Extensive experiments across benchmark datasets show that our multi-stage hierarchical EBM prior not only
improves image quality but also learns semantically meaningful, layered representations. Ablation studies
further validate the benefits of multi-stage learning, uni-scale reparameterization, and the two-phase training
strategy. Together, these results demonstrate that multi-stage hierarchical EBMs provide a powerful and
scalable alternative to Gaussian or single-step EBM priors in hierarchical generative modelling.

In summary, our main contributions are as follows:

• We propose a novel framework that introduces multi-stage EBM priors for hierarchical generative
models, enabling more expressive latent modelling than Gaussian or single-stage EBM prior.

• We adopt a uni-scale latent space reparameterization and develop two training schemes, which
improve the effectiveness and efficiency of EBM learning and sampling.

• We perform extensive experiments on standard benchmarks, demonstrating that our approach con-
sistently generates higher-quality samples and learns richer hierarchical representations.

2 Preliminary

2.1 Hierarchical Generative Model

Hierarchical generative models extend the standard latent variable generative model by introducing multiple
layers of latent variables arranged in a top-down structure. Each layer captures information at a different
level of abstraction, with higher layers encoding global semantics and lower layers modelling fine details.
Formally, let X ∈ RD denote an observed data example in a high-dimensional space, and let z ∈ Rd denote
latent variables with d ≪ D. A hierarchical model defines a joint distribution over X and a hierarchy of
latent variables Z = {z1, . . . , zL} through the following factorization:

pβ(X, Z) =pβ0(X|Z)pβ>0p(Z) where

pβ>0(Z) =
L−1∏
i=1

pβi
(zi|zi+1)p0(zL)

(1)

pβ0(X|Z) is the generation model parameterized by β0, while pβ>0(Z) specifies the hierarchical prior
over latent variables. Each conditional dependency pβi

(zi|zi+1) is modeled as a Gaussian distribution
N (zi; µβi

(zi+1), σ2
βi

(zi+1)), where µβi
and σ2

βi
denote the mean and diagonal covariance determined by

zi+1. At the top of the hierarchy, the prior p0(zL) is typically set to a standard Gaussian.

Although hierarchical generative models provide a powerful framework for learning layered representations
through multiple latent variables, their effectiveness is constrained by Gaussian priors. Such priors primarily
capture dependencies across layers in the top-down hierarchy, but they fail to model the richer relationships
among latent variables within the same layer, i.e., latent units at the same layer are distributed conditionally
independent. This limited expressiveness leads to a mismatch between the assumed prior and the true
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aggregated posterior, commonly referred to as the prior-hole problem, resulting in degraded generation
quality and learned representations.

2.2 Hierarchical Energy-based Prior

Figure 1: Multi-layer latent variables
and latent units.

Energy-based models (EBMs) are well known for their ability to cap-
ture complex dependencies, especially within high-dimensional data
or latent spaces (Gao et al., 2020; Pang et al., 2020; Du et al., 2020).
When applied to hierarchical generative models, EBMs can act as
expressive priors that model richer intra-layer interactions among la-
tent variables (see Figure 1). Notably, JointEBM (Cui et al., 2023a)
proposes a hierarchical EBM prior over all latent variables as

pω,β>0(Z) = 1
Zω,β>0

exp
[
Fω(Z)

]
pβ>0(Z) (2)

where the energy function Fω(Z) =
∑L

i=1 fω(zi) couples the latent
variables across all layers, pβ>0(Z) is the Gaussian prior defined in
Eqn 1, and Zω,β>0 is the normalizing constant.

In contrast, NCP-VAE (Aneja et al., 2021) learns a conditional EBM
prior for each intermediate layer, where each conditional EBM prior
is defined as

pω,β>0(Z) =
L−1∏
i=1

pωi,βi
(zi|zi+1)pωL

(zL) where

pωi,βi(zi|zi+1) = 1
Zωi,βi(zi+1) exp[fωi(zi)]pβi(zi|zi+1)

(3)

The energy function fωi
(zi) adjusts the Gaussian prior pβi

(zi|zi+1) with a learnable reweighting.

In both JointEBM and NCP-VAE, the learning objective can be viewed as minimizing the KL divergence
between the aggregated posterior q(Z) and the EBM prior pω,β>0(Z):

DKL(q(Z)||pω,β>0(Z)) where q(Z) =
∫

pβ(Z|X)pdata(X)dX (4)

Although these hierarchical EBM priors demonstrate the capability of modelling intra-layer contextual re-
lationships, providing greater expressivity and capacity than Gaussian priors, learning remains challenging.
Specifically, both approaches rely on a single-stage EBM prior to bridge the gap between the aggregated
posterior q(Z) and the base Gaussian prior pβ>0(Z). However, because q(Z) is typically highly multi-modal,
forcing a single EBM to approximate the entire distribution is difficult and often leads to suboptimal results.

3 Methodology

3.1 Multi-Stage Density Ratio Estimation

Single-Stage Density Ratio Estimation. Given a target distribution q(Z) and a base distribution p(Z),
the goal is to estimate their density ratio rω(Z) = q(Z)/p(Z)1. A binary classifier Dω(Z) : Rd → (0, 1) can
be trained to discriminate between samples from q(Z) and p(Z) using the standard binary cross-entropy loss:

−Eq(Z)[log Dω(Z)]− Ep(Z)[log(1−Dω(Z))] (5)

At optimum, D∗
ω(Z) = q(Z)

q(Z)+p(Z) , yielding the estimator rω(Z) = q(Z)/p(Z) ≈ D∗
ω(Z)

1−D∗
ω(Z) .

1We assume access to samples from both q(Z) and p(Z).
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We can also maximize an equivalent objective L(ω) with respect to rω(Z) as

Eq(Z)

[
log rω(Z)

1 + rω(Z)

]
+ Epω(Z)

[
log 1

1 + rω(Z)

]
(6)

This can be viewed as learning an EBM of the form pω(Z) = 1
Z rω(Z)p(Z), where Z is the normalizing

constant and rω(Z) is an unconstrained positive function. This procedure is widely known as noise-contrastive
estimation (NCE). However, when q(Z) and p(Z) differ substantially, single-stage NCE often fails to provide
reliable density ratio estimates (Xiao & Han, 2022).

Multi-Stage Density Ratio Estimation. To overcome the limitations of single-stage estimation, the den-
sity ratio can be learned in multiple stages. A sequence of estimators {rωs(Z)}m

s=1 is constructed, where each
stage progressively refines the distribution obtained from the previous one. Formally, the model distribution
after m stages is defined as

pωm(Z) = rωm(Z) · pωm−1(Z) =
m∏

s=1
rωs(Z) · p(Z) (7)

which can be viewed as a product of intermediate ratio bridges
q(Z)
p(Z) = q(Z)

pωm(Z) ·
pωm

(Z)
pωm−1(Z) · · ·

pω1(Z)
p(Z) (8)

This decomposition allows for smoother and more tractable learning, especially in the presence of highly
multi-modal targets. Prior works have explored this idea in different forms: Rhodes et al. (2020) applied a
fixed-stage design in data space, but achieved only limited success on simple datasets (e.g., MNIST). Xiao
& Han (2022) introduced an adaptive multi-stage scheme in flat latent spaces, but such methods remain
limited in their capacity to capture structured, hierarchical representations.

3.2 Toward Hierarchical Energy-based Prior

Directly applying multi-stage NCE to hierarchical latent spaces is non-trivial because of their multi-scale
structure and strong inter-layer dependencies. While prior work has studied multi-stage learning in flat
spaces (Xiao & Han, 2022), extending it to hierarchical EBMs requires addressing these additional challenges.
Inspired by the reparameterization strategy introduced in VAEBM (Xiao et al., 2020), we adopt a uni-scale
transformation that maps the original hierarchical latent space Z into a uni-scale space W. Unlike VAEBM,
which applies this idea to single-stage data-space EBM, we leverage the uni-scale space to enable efficient
multi-stage learning for hierarchical EBM priors.

Recall that the Gaussian prior pβ>0(Z) in Eqn 1 is factorized into consecutive conditional Gaussians,
pβi

(zi|zi+1) ∼ N (µβi
(zi+1), σ2

βi
(zi+1)). Through the standard reparameterization trick, each latent vari-

able can be expressed as zi = µβi
(zi+1) + σβi

(zi+1) · wi where wi ∼ N (0, Idi
). This defines an invertible

mapping Tβ>0 such that Z = Tβ>0(W) and W = T −1
β>0

(Z). In the W-space, the hierarchical EBM prior
can then be expressed as pω,β>0(W) = rω(Tβ>0(W))p0(W), where p0(W) is a standard Gaussian with
independent components p0(wi) ∼ N (0, Idi

).

Building on this representation, we define our multi-stage hierarchical EBM prior as

On Z-Space: pωm,β>0(Z) =
m∏

s=1
rωs

(Z) · pβ>0(Z)

On W-Space: pωm,β>0(W) =
m∏

s=1
rωs(Tβ>0(W)) · p0(W)

(9)

On Z-Space, the base distribution is Gaussian prior (Eqn. 1), and the multi-stage modelling aims to ap-
proximate the target distribution adaptively and progressively. On W-Space, this formulation leverages the
uni-scale reparameterization to make multi-stage learning feasible in hierarchical EBMs. The transformation
T preserves hierarchical dependencies, while the W-space provides a consistent representation that enables
efficient training and sampling.
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3.3 Learning Multi-Stage Hierarchical Energy-based Prior

3.3.1 Joint Learning

Figure 2: Updating schema of joint learning. At each stage m, a density ratio rωm
(Z) is estimated by

contrastive learning, distinguishing samples from the prior and from the aggregated posterior. Posterior
samples are obtained via MCMC posterior sampling with the prior of the current stage (red dashed line),
while prior samples can be taken from posterior samples at the previous stage. The estimated ratio is then
used to update the prior, which becomes the base distribution for the next stage. By repeating this process,
the prior is progressively refined across stages, enabling stable joint learning of both the generator and the
hierarchical EBM prior.

With hierarchical EBM prior, we can specify a joint distribution of the hierarchical generative model as

pωm,β(X, Z) = pβ0(X|Z)pωm,β>0(Z) (10)

which involves generator parameters β and multiple stages of EBM parameters ω. Learning can be achieved
by iterating between the maximum likelihood estimation (MLE) of β and contrastive estimation of ω.

Specifically, at the m-th stage, updating the generator parameters β corresponds to maximizing the data
likelihood. The gradient takes the form

Epdata(X)pωm,β(Z|X)

[
∂

∂β
log pβ0(X|Z)

]
+ Epdata(X)pωm,β(Z|X)

[
∂

∂β
log pβ>0(Z)

]
(11)

where pωm,β(Z|X) denotes the generator posterior. These expectations are approximated by posterior sam-
pling using Markov Chain Monte Carlo (MCMC), such as Langevin dynamics (see Eqn 15).

The EBM parameters ωm are updated via contrastive estimation, where the generator posterior serves as
the target distribution and the prior from the previous stage serves as the base distribution:

Epdata(X)pωm−1,β(Z|X)

[
∂

∂ωm
log rωm

(Z)
1 + rωm(Z)

]
+ Epωm−1,β(Z)

[
∂

∂ωm
log 1

1 + rωm(Z)

]
(12)

where samples from pωm−1,β(Z) are also obtained using Langevin dynamics.

Since the hierarchical latent variables Z are inherently multi-scale, both posterior sampling and EBM sam-
pling are carried out in the uni-scale W-space. The results are then mapped back to Z-space through the
transformation function T for gradient computation. This joint learning procedure alternates between up-
dating β and ω at each stage, gradually refining both the generator and the hierarchical EBM prior. More
efficiently, once the density ratio estimator achieves sufficient accuracy, the prior samples from pωm−1,β(Z)
can be replaced by samples from the posterior pωm−1,β(Z|X), thereby bypassing MCMC sampling from the
prior and reducing computational cost (Xiao & Han, 2022).

While joint learning provides a principled way to train both the generator and the hierarchical EBM prior
together, it relies heavily on MCMC posterior sampling. This procedure becomes increasingly inefficient
as the hierarchy deepens, since each MCMC step requires backpropagation through all latent layers of the
generator.
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3.3.2 Two-phase Learning for Deep Hierarchy

Figure 3: Updating schema of two-phase learning. In the second phase, the variational posterior qϕ(Z|X)
serves as the fixed target distribution for hierarchical EBM prior learning. At each stage m, a density ratio
rωm

(Z) is estimated between qϕ(Z|X) and the current base prior. The updated prior pωm,β>0(Z) is then
used as the base distribution for the next stage.

To address this computational bottleneck, we introduce a two-phase learning strategy. In the first phase, we
approximate the generator posterior using a variational inference model, which eliminates the need for costly
posterior MCMC. In the second phase, our multi-stage EBM prior is learned on top of this fixed variational
posterior, retaining the expressiveness of the EBM while ensuring scalability to deep hierarchical structures.

First-phase: Variational Learning with Gaussian Prior. Variational learning Sø nderby et al.
(2016) introduces an inference model qϕ(Z|X) that approximates the generator posterior distribution.
For hierarchical latent variables, the inference model is also structured hierarchically, i.e., qϕ(Z|X) =
qϕ1(z1|X)

∏L
i=2 qϕi

(zi|zi−1), where each conditional factor is modeled as a Gaussian distribution.

With such inference model, variational learning proceeds by maximizing the evidence lower bound (ELBO)

Epdata(X)qϕ(Z|X)

[
log pβ(X, Z)

qϕ(Z|X)

]
= Epdata(X)qϕ(Z|X) [log pβ0(X|Z)]− Epdata(X)[DKL(qϕ(Z|X)||pβ>0(Z))] (13)

By maximizing the ELBO, we effectively maximize a lower bound of the true log-likelihood. The gap
between the ELBO and the likelihood is given by the KL divergence term, ELBO = log pβ(X) −
DKL(qϕ(Z|X)||pβ(Z|X)), which encourages the variational posterior to approximate the generator poste-
rior. In other words, variational learning can be interpreted as approximate MLE, where the inference model
provides a tractable surrogate for posterior sampling. Once the inference model is well trained, its variational
posterior qϕ(Z|X) serves as a reliable approximation of pβ(Z|X), and can therefore be adopted as the target
distribution in the second phase of our hierarchical EBM prior learning.

Second-phase: Contrastive Estimation with Fixed Generator. In the second phase, we fix both the
generator parameters β and the inference network ϕ, and focus on learning the hierarchical EBM prior. The
training objective at stage m is

Epdata(X)qϕ(Z|X)

[
∂

∂ωm
log rωm

(Z)
1 + rωm

(Z)

]
+ Epωm−1,β(Z)

[
∂

∂ωm
log 1

1 + rωm
(Z)

]
(14)

where posterior samples are efficiently obtained from the fixed inference model. Conceptually, this phase
isolates the task of refining the prior: it learns to bridge the gap between the aggregated posterior qϕ(Z) and
the base Gaussian prior pβ>0(Z), without requiring costly posterior MCMC updates.

This two-phase design offers two key advantages. First, it makes training significantly more efficient in
deep hierarchical settings by decoupling generator learning from EBM refinement. Second, unlike most
existing methods (Aneja et al., 2021; Xiao et al., 2020; Cui et al., 2023a; Dai & Wipf, 2019) that attempt
to close this gap with a single-stage EBM, we decompose the process into multiple adaptive stages. Each
stage provides refinement of the prior, yielding smoother convergence and a more faithful approximation of
complex, multi-modal posteriors.
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3.3.3 Markov Chain Monte Carlo Sampling

Both training strategies require access to hierarchical latent variables from either the generator posterior or
the EBM prior. To do so, we adopt MCMC sampling, such as Langevin dynamics (Neal et al., 2011), in the
uni-scale space. Specifically, for an arbitrary distribution p(z), it is performed as

zτ+1 = zτ + s
∂

∂zτ
log p(zτ ) +

√
2sUτ (15)

where τ indexes the time step, s is the step size and Uτ is Gaussian noise.

MCMC for EBM Prior. To sample from the hierarchical EBM prior, we apply Langevin dynamics in the
uni-scale W-space. The gradient update combines contributions from all ratio functions rωs together with
the standard Gaussian reference prior.

EBM: ∂

∂Wτ

[
m∑

s=1
log rωs(Tβ>0(Wτ ))− ||Wτ ||2

2

]
Posterior: ∂

∂Wτ

[
log pβ(X|Tβ>0(Wτ ))− ||Wτ ||2

2

]
(16)

MCMC for Generator Posterior. Similarly, for generator posterior, we also perform Langevin dynamics
in uni-scale W-space. MCMC sampling in the uni-scale ensures effective sampling for both prior and posterior
distributions, while the transformation T maps the results back to the original hierarchical latent space.

4 Related Work

Hierarchical Generative Models. Hierarchical generative models employ multiple layers of latent vari-
ables organized in a top-down structure and are typically parameterized with Gaussian priors (Vahdat &
Kautz, 2020; Child, 2020; Sønderby et al., 2016; Maaløe et al., 2019; Sø nderby et al., 2016). While con-
venient, Gaussian priors lack statistical expressivity, often leading to the prior-hole problem and degraded
generation quality (Aneja et al., 2021; Cui et al., 2023a). To overcome this limitation, recent studies have
explored expressive priors such as EBMs, but most approaches rely on single-stage learning. Our work ex-
tends this line of research by developing multi-stage hierarchical EBM priors that more effectively capture
complex posterior distributions while remaining scalable to deep hierarchies.

Energy-based Models. EBMs have been widely applied in data space for modeling images and other
high-dimensional signals (Du et al., 2020; Gao et al., 2020; Han et al., 2020b; Cui & Han, 2023; Hill et al.,
2022; Xiao et al., 2020). Extensions to latent space exist in both flat (Pang et al., 2020; Yu et al., 2024;
Schröder et al., 2023) and hierarchical settings (Aneja et al., 2021; Cui et al., 2023a;b), but these methods
adopt single-stage estimation, limiting their ability to approximate multi-modal posteriors. Multi-stage
training has recently been studied in flat latent spaces (Xiao & Han, 2022), showing that a sequence of
density ratio estimators can improve learning stability. However, extending this idea to hierarchical latent
spaces introduces new challenges due to scale differences and inter-layer dependencies. Our work addresses
these challenges with a uni-scale reparameterization and develops a self-adaptive multi-stage framework for
hierarchical EBMs, enabling robust and scalable training across deep latent structures.

Diffusion Energy-based Models. Both diffusion frameworks and multi-stage learning approximate
complex distributions by constructing a sequence of intermediate models. Diffusion methods learn con-
ditional EBMs (e.g., pω(Wt|Wt+1)) guided by a pre-defined forward noise process (Cui & Han, 2024;
Gao et al., 2020). While effective, this conditioning restricts each EBM to local refinements and re-
quires carefully designed schedules. In contrast, our multi-stage framework builds marginal models (e.g.,
pωm

(W) =
∏m

s=1 rωs
(W)p0(W)) in a self-adaptive manner, allowing each stage to refine the prior distribu-

tion without a fixed noise schedule.

From a learning perspective, diffusion-based EBMs are typically trained with MLE, which requires costly
inner-loop MCMC sampling at every step. Our approach leverages contrastive estimation, which optimizes
density ratios and avoids repeated inner-loop MCMC. During sampling, diffusion models require K × T
MCMC steps across all reverse steps, whereas our method needs only a single round of MCMC over the final
multi-stage prior. This results in substantial efficiency gains, while maintaining expressivity and scalability.
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5 Experiments

5.1 Latent Space Modeling

Figure 4: Synthesis on CelebA-HQ-256 (left), LSUN-Church-64 (center), and CIFAR10 (right).

We first evaluate our method on the task of latent space modeling. A well-learned hierarchical EBM prior
should produce informative latent samples that, when passed through the generator, yield high-quality and
realistic synthesis. Concretely, we generate images by sampling W from the learned EBM prior, mapping it
into hierarchical latent variables Z = Tβ>0(W), and decoding with the generator pβ0(X|Z). We benchmark
across several datasets, including SVHN Netzer et al. (2011), CIFAR-10 Krizhevsky et al. (2009), CelebA-64
Liu et al. (2014), LSUN-Church-64 Yu et al. (2015), and high-resolution CelebA-HQ-256 Karras et al. (2017).
Image quality is measured with Fréchet Inception Distance (FID) and Inception Score (IS).

Joint Learning. We evaluate our framework under a joint training scheme with a two-layer (L = 2)
hierarchical latent structure, where the generator and the multi-stage hierarchical EBM prior are learned
jointly. We compare against several groups of baselines. (i) Flat latent models with multi-stage EBMs, such
as Adaptive-CE Xiao & Han (2022), which learns multi-stage priors but only in single-layer latent spaces;
(ii) Hierarchical models with single-stage EBMs, including Joint-EBM Cui et al. (2023a) and NCP-VAE
Aneja et al. (2021), which extend EBMs to hierarchical structures but rely on a single-stage formulation;
(iii) Other expressive priors and Gaussian-based hierarchical models, such as LEBM Pang et al. (2020), ED-
LEBM Schröder et al. (2023), EBIPLA Marks et al. (2025), EVaLP Dutta et al. (2025), Diffusion-Amortized
Yu et al. (2024), 2s-VAE Dai & Wipf (2019), and BIVA Maaløe et al. (2019).

As shown in Table 1, our method consistently achieves superior results across datasets. These results suggest
that introducing a multi-stage EBM prior into hierarchical latent spaces offers advantages over both single-
stage EBMs and flat multi-stage approaches, resulting in stronger priors and improved generation quality.

Table 1: Joint learning for FID (↓) comparison.

Method SVHN CelebA-64 CIFAR-10
Ours 20.42 29.12 61.12
Adaptive CE Xiao & Han (2022) 26.19 35.38 65.01
Joint-EBM Cui et al. (2023a) 26.81 33.60 66.32
NCP-VAE Aneja et al. (2021) 33.23 42.07 78.06
LEBM Pang et al. (2020) 29.44 37.87 70.15
ED-LEBM Schröder et al. (2023) 28.10 36.73 73.58
EBIPLA Marks et al. (2025) 27.59 34.71 79.64
EVaLP Dutta et al. (2025) - 35.90 76.43
Diffusion-Amortized Yu et al. (2024) 21.17 35.67 60.89
2s-VAE Dai & Wipf (2019) 33.23 42.07 78.06
BIVA Maaløe et al. (2019) 31.65 33.58 66.37

Table 2: Two-phase learning for FID (↓) comparison.

Method CelebA-HQ-256 LSUN-Church-64
Ours 7.84 6.65
Hierarchical Diff-EBM Cui & Han (2024) 8.78 7.34
Joint-EBM Cui et al. (2023a) 9.89 8.38
NCP-VAE Aneja et al. (2021) 24.79 -
NVAE∗ Vahdat & Kautz (2020) 30.25 38.13
NVAE∗-Recon (rFID) 1.64 2.45
DRL-EBM (T = 6) Gao et al. (2020) - 7.04
Adv-EBM Yin et al. (2020) 17.31 10.84
GLOW Kingma & Dhariwal (2018) 68.93 59.35
PGGAN Karras et al. (2017) 8.03 6.42

Table 3: Two-phase learning on CIFAR-10.

Methods IS (↑) FID (↓)
Ours 9.03 7.80
Hierarchical Diff-EBM Cui & Han (2024) 9.03 8.93
Joint-EBM Cui et al. (2023a) 8.99 11.34
NCP-VAE Aneja et al. (2021) - 24.08
Multi-layer Generator
NVAE∗ Vahdat & Kautz (2020) 5.30 37.73
NVAE∗-Recon (rFID) - 0.68
HVAE Sø nderby et al. (2016) - 81.44
BIVA Maaløe et al. (2019) - 66.37
Energy-based Models
Dual-MCMC Cui & Han (2023) 8.55 9.26
Architectural-EBM Cui et al. (2023b) - 63.42
DRL-EBM (T = 6) Gao et al. (2020) 8.40 9.58
Adaptive-CE Xiao & Han (2022) - 65.01
VAEBM Xiao et al. (2020) 8.43 12.19
Hat EBM Hill et al. (2022) - 19.15
ImprovedCD Du et al. (2020) 7.85 25.1
Divergence Triangle Han et al. (2020a) - 30.10
Adv-EBM Yin et al. (2020) 9.10 13.21
EVaLP Dutta et al. (2025) - 42.30
GANs+Score+Diffusion Models
StyleGANv2 w/o ADA Karras et al. (2020) 8.99 9.9
Diffusion-Amortized Yu et al. (2024) - 57.72
NCSN Song & Ermon (2019) 8.87 25.32
LSGM Vahdat et al. (2021) - 2.10
DDPM (T = 1000) Ho et al. (2020) 9.46 3.17
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Two-Phase Learning. For deep hierarchical structures, our multi-stage hierarchical EBM prior is learned
as ratio bridges between the fixed aggregate posterior and the base Gaussian prior. Once learned, this EBM
prior serves as a more informative alternative to the Gaussian prior, enabling generation of realistic samples.

Following the setup of prior works, including Hierarchical Diff-EBM Cui & Han (2024), Joint-EBM Cui
et al. (2023a), and NCP-VAE Aneja et al. (2021), we build on top of NVAE Vahdat & Kautz (2020) as
our backbone model (denoted NVAE∗). As shown in Table 2 and Table 3, our method achieves competitive
or superior performance, even when compared to recent diffusion-based approaches. Notably, it yields
substantial improvements over the NVAE∗ baseline, highlighting the efficacy of our multi-stage learning
strategy in capturing complex latent distributions.

5.2 Analysis of Hierarchical Representation

A hallmark of hierarchical generative models is that different latent layers capture different levels of ab-
straction: bottom-layer variables tend to encode low-level visual attributes, while top-layer variables capture
high-level semantic concepts. In this section, we demonstrate the capability of our multi-stage hierarchical
EBM prior in learning hierarchical representations.

5.2.1 Hierarchical Controllable Synthesis

Figure 5: Starting from random samples, attributes such as gender, eyeglasses, and hair color can be ma-
nipulated in a top-down order. Higher-layer latents govern semantic structure (e.g., gender, identity), while
lower-layer latents refine local appearance (e.g., eyeglasses, hair). Importantly, sampling at lower layers
preserves the semantics imposed by higher layers, enabling interpretable and fine-grained controllability
across the hierarchy.

A unique advantage of our framework is that controllability emerges naturally from the multi-stage EBM
prior, even when the backbone generator is trained in a fully unsupervised manner. Inspired by (Salimans
et al., 2016), which demonstrated how GAN discriminators can be repurposed for classification, we reinterpret
each stage of our multi-stage NCE framework as a learned discriminator.

Given K class labels or attributes (denoted by y), the hierarchical EBM prior can be extended into a multi-
class classifier with K + 1 outputs, where the (K + 1)-th logit continues to distinguish posterior samples
from prior samples. This formulation enables modeling of the joint distribution pωm,β≥0(W, y), allowing
conditional generation under a specified label y.

As illustrated in Figure 5, our method leverages the discriminative structure of the multi-stage EBM prior
to achieve fine-grained and semantically consistent controllability. The hierarchical organization further
ensures that semantic structure imposed by higher layers is preserved when lower layers are sampled, enabling
controllable generation that is both structured and coherent across different levels of abstraction.

5.2.2 Hierarchical Out-of-Distribution Detection.

Beyond generation and representation learning, our multi-stage hierarchical EBM prior also provides a
natural mechanism for out-of-distribution (OOD) detection. Each stage of the prior operates as a density-
ratio classifier, distinguishing samples from the aggregated posterior versus the base prior in latent space. As
a result, OOD detection emerges as a built-in capability of our framework, requiring no additional supervision
or auxiliary objectives.

9
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We evaluate this property by training on CIFAR-10 as the in-distribution dataset and testing on SVHN
as OOD. Detection is based on the classifier output D : Rd → (0, 1), where lower values indicate higher
likelihood of being OOD. As shown in Figure 6, AUROC scores increase with depth: top-layer latents
provide the strongest OOD signals by encoding distribution-specific semantics, while lower layers capture
more generic features that are often shared across datasets Havtorn et al. (2021).

AUROC L>0 L>3 L>6 L>9 L>12

Stage 1 0.3312 0.3858 0.4118 0.4312 0.4410
Stage 2 0.3501 0.3953 0.4315 0.4626 0.5235
Stage 3 0.4045 0.4775 0.4969 0.5351 0.5713

AUROC L>15 L>18 L>21 L>24 L>27

Stage 1 0.5382 0.6683 0.6735 0.6960 0.7079
Stage 2 0.6416 0.7277 0.7335 0.7471 0.8002
Stage 3 0.6652 0.7835 0.7710 0.8469 0.8897

Table 4: AUROC (↑) for OOD detection. L > k de-
notes for using the top k layers. The total number of
layers is 30.

Figure 6: Visualization of AUROC curve.

These findings highlight a key advantage of our hierarchical design. By aligning representation depth with
semantic specificity, our model not only improves generative modeling but also enhances robustness to distri-
butional shifts. In particular, the top layers act as semantic sentinels that sharply delineate in-distribution
from OOD inputs, making hierarchical EBMs a powerful tool for reliable and interpretable uncertainty
estimation.

5.3 Analysis of Multi-Stage Learning Dynamic

5.3.1 Multi-Stage Learning Analysis

We next analyze the learning behavior of our multi-stage framework. In our formulation, each stage of
density ratio estimation refines the prior by building on the ratio estimator learned in the previous stage,
effectively evolving the base distribution toward the target posterior. As the base distribution becomes
progressively better aligned with the posterior, the discrimination task between posterior and prior samples
naturally becomes harder. This increasing difficulty is reflected in higher loss values observed in later stages.

Figure 7: Visualization of stage-wise evolution
with loss trends averaged across all latent layers.

Figure 7 illustrates this trend: the average loss (aggre-
gated across all latent layers) grows as the stage index in-
creases. This progression confirms that successive stages
refine increasingly aligned priors, making the classifica-
tion task progressively more challenging. In other words,
earlier stages correct large mismatches between the prior
and posterior, while later stages focus on finer adjust-
ments. Such behavior is consistent with theoretical ex-
pectations and aligns with prior observations in flat latent
settings Xiao & Han (2022). These results provide strong
empirical support for the effectiveness and robustness of
our multi-stage learning scheme.

5.3.2 Multi-Layer Learning Analysis

To further examine learning dynamics, we analyze loss trends across different latent layers. In hierarchical
latent structures, lower layers typically encode fine-grained, low-level details such as texture or background.
These features are often more variable and complex, creating a larger gap between the aggregate posterior
and the base prior. Consequently, the density ratio estimation task at lower layers is relatively easier, yielding
lower loss values.

10
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Figure 8: Visualization of layer-wise evolution from stage 1 to stage 3.

This trend is evident in Figure 8, where lower layers consistently report smaller losses than top layers. As
additional learning stages are introduced, the multi-stage EBM prior progressively narrows the gap between
the posterior and the base distribution at each layer. This refinement makes the classification task more
difficult across all layers, leading to higher losses over time. The observed progression confirms that our
multi-stage framework effectively reduces discrepancies at every level of the hierarchy, supporting stable and
coherent prior learning in complex multi-layer latent spaces.

5.4 Analysis of Energy Landscape

5.4.1 Joint Langevin Transition.

Figure 9: Joint Langevin transition.

We analyze the sampling behavior using Langevin tran-
sition. Starting from a sample drawn from the stan-
dard Gaussian, we perform 10 Langevin steps for learned
multi-stage hierarchical EBM priors. As illustrated in
Figure 9, image quality improves gradually and coher-
ently with each step. This smooth evolution reflects the
well-structured energy landscape of our model, which is
further facilitated by operating in the uni-scale u-space.

5.4.2 Progressive Transition

Figure 10: Visualization of progressive Langevin transition.

We next examine whether each stage of the EBM prior can serve as a base distribution for the subsequent
stage. To this end, we perform progressive sampling: at the s-th stage, Langevin dynamics is applied only
with the s-th stage EBM prior, initialized from the final sample of the s − 1 stage. Figure 10 shows that
each stage produces a refined update of the sample, demonstrating that the sequence of EBMs provides a
coherent progression that incrementally shapes the energy landscape.

5.5 Ablation Studies

Multi-Stage vs. Single-Stage under Fixed Iterations. We begin by testing the effectiveness of the
proposed multi-stage framework. To ensure fairness, we fix the total training budget to 15K iterations and
compare two settings: (i) a single-stage hierarchical EBM prior trained for the full 15K iterations, and (ii)
a three-stage model, where 5K iterations are allocated to each stage.

As reported in Table 5, the multi-stage approach substantially outperforms the single-stage baseline, achiev-
ing an FID of 9.48 compared to 15.15. Notably, the table also reveals a clear progression: Stage 1 starts
weaker due to limited training, but each subsequent stage produces marked improvements, with the final
stage delivering the strongest results.
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This experiment highlights our framework: rather than relying on prolonged training of a single-stage EBM
prior, decomposing the task into multiple adaptive stages provides a more effective refinement process. Even
with the same computational budget, multi-stage learning achieves higher-quality EBM priors and better
generative performance, suggesting that the learning scheme itself is crucial to success.

Table 5: Comparison of single-stage vs. multi-stage learning under a fixed total of 15K training iterations.

Iteration Single-stage (15K) Stage 1 (5K) Stage 2 (5K) Stage 3 (5K)
FID 15.15 18.68 12.87 9.48

Effect of Langevin step. Each stage in our framework employs Langevin dynamics to draw samples from
the EBM prior refined by the previous stage. Our default setting uses K = 10 Langevin steps, but we also
examine the effect of varying K. As shown in Table 6, performance improves as K increases: reducing to
K = 5 yields weaker results (FID = 11.15), while increasing to K = 15 produces a substantial gain (FID
= 7.11). This trend confirms that more accurate sampling enhances prior quality and improves generative
performance. Nevertheless, since larger K values also increase computational overhead, we adopt K = 10 as
a balanced default across experiments.

Table 6: Impact of Langevin steps K and number of stages M on generation quality for CelebA-HQ-256.

CIFAR-10 K = 5 K = 15 K = 10, M = 3 M = 4
FID 11.15 7.11 7.84 7.05

Effect of Stage Number. We also analyze the influence of the number of stages M in the multi-stage
learning framework. With M = 3, the model achieves strong generative quality (FID = 7.84). Increasing
the number of stages to M = 4 further reduces the FID to 7.05, indicating that additional stages continue
to refine the prior and improve performance. However, the performance gain is relatively modest compared
to the increase in training cost and computational complexity. This observation suggests that while deeper
staging can yield incremental improvements, three stages provide an effective balance between accuracy and
efficiency. Consequently, we adopt M = 3 as the default setting for all reported experiments.

Impact of Network Structure and Decoder Type. In our default configuration, the NVAE backbone
employs a discretized logistic decoder. To further evaluate the robustness of our approach, we also experiment
with the NVAE backbone using a Gaussian decoder and network structures, consistent with the setting in
NCP-VAE Aneja et al. (2021). As shown in Table 7, our multi-stage learning consistently outperforms the
single-stage baseline, achieving substantially lower FID scores. These results demonstrate that the benefits of
our multi-stage framework are not tied to a specific decoder choice, but generalize across network structures.

Table 7: Effect of decoder type on CIFAR-10.

CIFAR-10 Gaussian prior Stage 1 Stage 2
NCP-VAE 52.45 24.08 -

Ours 52.45 20.68 14.04

6 Conclusion

We proposed a novel framework for learning hierarchical energy-based priors through a multi-stage learning
scheme. Instead of relying on a single-stage EBM to approximate the highly complex aggregated posterior,
our method progressively refines the prior via a sequence of ratio estimators in a uni-scale latent space. This
design enables efficient sampling, stable training, and scalable integration with hierarchical generators.

Comprehensive experiments across multiple benchmarks show that our approach not only improves image
generation quality but also yields semantically structured and interpretable latent representations. Moreover,
we demonstrated its unique strengths in hierarchical controllability, out-of-distribution detection, and energy
landscape analysis
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A Additional Result

Joint v.s. progressive sampling.

Table 8: FID for image synthesis of different stages.

Prgrogressive Sampling Joint SamplingStage 1 Stage 2 Stage 3
CIFAR-10 13.15 9.72 7.62 7.80

LSUN-Church-64 14.82 10.06 6.12 6.65
CelebA-HQ-256 11.48 8.65 7.71 7.84

We compare the two strategies quantitatively. As
shown in Table 8, progressive sampling can yield
slightly better generation quality, but at a much
higher computational cost, since each stage requires
separate Langevin updates. Joint sampling, in con-
trast, delivers strong performance with far greater
efficiency, making it the default strategy in our
framework. This analysis confirms that our multi-
stage hierarchical EBM prior supports both flexible
stage-wise refinement and efficient joint sampling.

Stage-wise Analysis with Diffusion Scheme. Both diffusion-based EBMs and our multi-stage con-
trastive framework progressively refine the prior distribution by decomposing the modeling task into simpler
intermediate steps. Table 9 compares the generation quality (FID) of intermediate stages.

While both approaches improve with more refinement stages, our method shows clear advantages. Diffusion-
based models rely on fixed schedules and Gaussian perturbations, which restrict flexibility and may lead
to inefficient sampling. In contrast, our multi-stage framework is self-adaptive, where each stage learns the
density ratio between its evolving prior and the target posterior, which ultimately yields better generative
quality.

Table 9: Comparison of diffusion-based and multi-stage priors across refinement steps. t = (2, 1, 0) denotes
diffusion steps; s = (1, 2, 3) denotes stages in our multi-stage hierarchical EBM prior.

FID Gaussian Prior t = 2 / s = 1 t = 1 / s = 2 t = 0 / s = 3
CIFAR-10 37.73 18.11 / 13.15 11.87 / 9.72 8.93 / 7.62

LSUN-Church-64 38.13 20.15 / 14.82 13.54 / 10.06 7.31 / 6.12
CelebA-HQ-256 30.25 17.75 / 11.48 12.05 / 8.65 8.78 / 7.71
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Sample Quality Evolution. To provide additional evidence of training stability, we track the evolution
of sample quality measured by FID. Specifically, we report FID at regular checkpoints both within each
stage and across stages. We compute FID every 2,000 iterations, and every 5,000 iterations we transition
to the next stage of learning (denoted by s = 1, 2, 3). The results on CIFAR-10 and LSUN-Church-64 are
summarized in Table 10. As shown, FID decreases as learning progresses, and importantly, there is no degra-

Table 10: Evolution of generation quality FID (↓) over iterations and stages.

s = 1 s = 2 s = 3
2000 iter 4000 iter 6000 iter 8000 iter 10000 iter 12000 iter best

CIFAR-10 21.45 14.34 12.85 10.55 9.66 7.84 7.62 (13500 iter)
LSUN-Church-64 19.61 15.87 11.22 10.10 10.03 7.10 6.12 (14500 iter)

dation or fluctuation in quality when switching to the next stage. This improvement across iterations and
stages indicates that the dynamic loss behavior observed in Fig.7 is accompanied by consistently improving
generation quality.

We show additional image synthesis in Figure 11, Figure 12, and Figure 13, as well as Langevin transition
results in Figure 14.

B Derivation

B.1 Joint Learning Objective

Learning hierarchical generative models (Eqn. 10) can be achieved by maximizing the log-likelihood as
Lp(β, ωm) = 1

N

∑N
i=1 log pβ,ωm(Xi), where pβ,ωm(Xi) =

∫
Z pβ,ωm(Xi, Z)dZ. For learning the generator

parameters β, the gradient is computed as

∂

∂β
Lp(β, ωm) = Epdata(X)pβ,ωm (Z|X)

[
∂

∂β
log pβ,ωm

(X, Z)
]

= Epdata(X)pβ,ωm (Z|X)

[
∂

∂β
log pβ0(X|Z)

]
+ Epdata(X)pβ,ωm (Z|X)

[
∂

∂β
log pωm,β>0(Z)

]
= Epdata(X)pβ,ωm (Z|X)

[
∂

∂β
log pβ0(X|Z)

]
+ Epdata(X)pβ,ωm (Z|X)

[
∂

∂β
log pβ>0(Z)

]
+ C

(17)

where C is constant with respect to β.

For learning the EBM prior ωm, we adopt contrastive estimation, i.e., minimizing −Eq(Z)[log Dωw
(Z)] −

Ep(Z)[log(1−Dωw
(Z))], which corresponds to learning a density-ratio estimator rωm

(Z) = q(Z)
p(Z) ≈

Dωw (Z)
1−Dωw (Z) .

The reparameterized objective yields the learning gradient as

arg max
ωm

Eq(Z)[log Dωw
(Z)] + Ep(Z)[log(1−Dωw

(Z))]

= Eq(Z)

[
∂

∂ωm
log rωm

(Z)
1 + rωm(Z)

]
+ Ep(Z)

[
∂

∂ωm
log 1

1 + rωm(Z)

] (18)

Here, we consider the target distribution q(Z) as the generator posterior from the previsous stage, i.e.,
pdata(X)pωm−1,β(Z|X), and p(Z) is the hierarchical EBM prior from previous stage as well, i.e., p(Z) =
pωm−1,β(Z). These derivations lead to our joint-training objectives in Eqn. 11 and Eqn. 12.

B.2 Two-phase Learning Objective

In the first-phase learning, we adopt a variational scheme for the hierarchical latent variables by introducing
a hierarchical inference model qϕ(Z|X) and maximizing the corresponding ELBO (Eqn. 13). This ELBO
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is equivalent to minimizing the KL divergence between two joint distributions, the data inference joint
pdata(X)qϕ(Z|X) and the hierarchical generator joint pβ(X, Z), as

DKL(pdata(X)qϕ(Z|X)|pβ(X, Z)) = DKL(pdata(X)|pβ(X)) + Epdata(X)[DKL(qϕ(Z|X)|pβ(Z|X))] (19)

In this decomposition, the first term encourages the generator to match the data marginal over X, while
the second term encourages the variational posterior qϕ(Z|X) to approximate the true generator posterior
pβ(Z|X). As such, we can efficiently draw approximate posterior samples.

In the second-phase learning, we treat the posterior samples obtained from the first phase as defining the
target distribution in the latent space. Concretely, we draw Z ∼ qϕ(Z|X) with X ∼ pdata(X) from the
learned first-phase model. If the first-phase model is well-learned, the variational posterior is close to the
generator posterior. This empirical assumption is supported by the strong reconstruction quality shown
in Table 3. In this regime, the induced target distribution over latents can be viewed as the aggregated
posterior

q(Z) =
∫

qϕ(Z|X)pdata(X)dX ≈
∫

pβ(Z|X)pdata(X)dX (20)

However, this aggregated posterior is typically complex and exhibits a substantial mismatch with the simple
Gaussian prior, a phenomenon often referred to as the prior-hole problem Aneja et al. (2021); Cui & Han
(2024). The goal of the second phase is therefore to learn a hierarchical EBM prior pω,β>0(Z) that matches
the aggregated posterior and bridge this gap. Maximizing the log-likelihood under the EBM reduces to
minimizing the KL divergence:

arg max
ω

Eq(Z) [log pω,β>0(Z)] = arg max
ω

−Eq(Z)

[
log q(Z)

pω,β>0(Z)

]
+ C = arg min

ω
DKL(q(Z)||pω,β>0(Z)) (21)

where C is the entropy term of Eq(Z) [log q(Z)] being constant during this phase. Thus, second-phase learning
amounts to minimizing this KL divergence (ours Eqn. 4), aligning the hierarchical EBM prior with the
aggregated posterior distribution.

B.3 Uni-scale Transformation

For conditional Gaussian distribution pβi(zi|zi+1), an invertible transformation function Tβ>0 can be defined
Xiao et al. (2020). Take 2-layer latent variables as an example,

z2 = T z2
β>0

(u2) = u2 and
z1 = T z1

β>0
(u1, u2) = µβ1(z2) + σβ1(z2) · u1

(22)

where u1 and u2 are distributed as independent Gaussian noise, i.e., (u1, u2) ∼ p0(u1, u2) and p0(u1, u2) =
p0(u1)p0(u2) with each p0(ui) ∼ N (0, Id). By the change-of-variable rule, we have

pβ>0(z1, z2) = p0(u1, u2)|det(JT −1
β>0

)| and

p0(u1, u2) = pβ>0(z1, z2)|det(JTβ>0
)|

(23)

where JTβ>0
is the Jacobian of Tβ>0 .

For joint EBM prior on Z-space pω,β>0(Z) = 1
Z rω(Z))pβ>0(Z), we can apply the change-of-variable rule and

Eqn. 23 as
pω,β>0(W) = pω,β>0(Z)|det(JTβ>0

)|

= 1
Zrω(Tβ>0(W))pβ>0(Z)|det(JTβ>0

)|

= 1
Zrω(Tβ>0(W))p0(W)

(24)

With such single-stage EBM prior on W-space, we construct our multi-stage EBM prior.
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Comparison with Z-space. In the original Z-space, each zi can reside in different scale. In particular,
for layers i ̸= j, the conditional priors pβi(zi|zi+1) and pβj (zj |zj+1) may have distinct parameterization
{µβi , σβi} and {µβj , σβj}. This induces variations in the magnitude of different scales of zi and zj , result-
ing in a multi-scale latent space. Sampling in such a space can be challenging: a single global step size is
often suboptimal, and one may need carefully designed, scale-adapted updates to ensure stable and efficient
exploration. In contrast, our W-space is uni-scale by construction: all u variables are drawn from a fixed,
standard Normal distribution. This enforces a consistent scale across layers and dimensions, greatly simpli-
fying the design of sampling algorithms, reducing the need for ad-hoc scale corrections, and leading to more
effective sampling behavior in practice.

B.4 Coupling with Symbol Vector

Inspired by prior advance Salimans et al. (2016), we extend our hierarchical prior with an additional la-
tent–label coupling module to enable controllable generation. After training the hierarchical generator in a
fully unsupervised manner in the first phase, we fix the learned generator and learn our hierarchical EBM
prior with label vectors y. In this way, our model supports controllable generation without re-training the
backbone generator.

We define our ratio estimator as rω(Tβ>0(W), y), which produces K + 1 outputs. The first K outputs
correspond to classes y = {1 . . . K}, and the (K + 1)-th output plays the role of distinguishing samples from
the base distribution (EBM prior of previous stage) versus the target distribution (aggregated posterior).
Therefore, our joint desnity is factorized as pωm,β≥0(W, y) = pωm,β≥0(y|W)pωm,β≥0(W), where pωm,β≥0(y|W)
is a K-way classifier (i.e., softmax classifier), and pωm,β≥0(W) is our hierarchical EBM prior. Such a ratio
estimator can be interpreted as a classifier over (K+1) classes.

C Discussion of Latent Space Modelling and Learning

Latent variable generative model specifies a joint distribution with a low-dimensional latent space as

pβ(X, z) = pβ(X|z)p0(z) (25)

where p0(z) is the prior model usually assumed to be standard Gaussian, and pβ(x|z) is the generation model
that maps from low-dimensional latent space to high-dimensional data space. However, such a Gaussian
prior model can be non-informative and inexpressive, making the modelling capacity limited and hurting the
generative performance.

Hierarchical Prior. To tackle this issue, prior arts explore learning a hierarchical prior model by factorizing
multiple layers of latent variables (Eqn. 1) as

pβ(X, Z) = pβ0(X|Z)pβ>0(Z) where pβ>0(Z) =
L−1∏
i=1

pβi
(zi|zi+1)p0(zL) (26)

Such hierarchical generative models have shown strong ability to model complex data distributions and,
importantly, to learn multi-level latent representations that reflect semantic hierarchies in the data Sønderby
et al. (2016); Vahdat & Kautz (2020); Child (2020); Nijkamp et al. (2020). However, most of these models
still assume each conditional prior to be Gaussian, which primarily captures dependencies across layers, while
ignoring the intra-layer relationship, resulting in the hierarchical latent space being under-modelled.

Energy-based Prior. Alternatively, the latent variable generative model with EBM prior (LEBM) Pang
et al. (2020) specified a joint distribution

pβ,ω(X, z) = pβ(X|z)pω(z) (27)

pω(z) = 1
Zω

exp fω(z)p0(z) becomes the EBM prior, which can be more expressive than a Gaussian prior.
However, learning EBM prior by MLE requires MCMC sampling, such as Langevin dynamics Neal et al.
(2011), as an inner-loop during the training. This motivates follow-up works of different modelling schemes
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(e.g., score-matching Hyvärinen (2005); Guo et al. (2023)) and learning schemes (e.g., energy discrepancy
Schröder et al. (2023), NCE learning Rhodes et al. (2020); Xiao & Han (2022)).

Hierarchical EBM Prior. More recently, advances also explore hierarchical EBM prior Cui et al. (2023a);
Aneja et al. (2021); Cui et al. (2023b) which intend to leverage the strengths of both the hierarchical
generative model and EBM prior. In this setting, the joint distribution is specified as

pβ,ω(X, z) = pβ(X|Z)pω,β>0(Z) (28)

where pω,β>0(Z) becomes a hierarchical prior modulated by EBM. However, the aggregated posterior is
typically highly multi-modal and strongly structured, and learning a single-stage EBM to approximate the
aggregated posterior is difficult, leading to a suboptimal learned hierarchical EBM prior.

Multi-stage learning. To address the limitations of single-stage learning, multi-stage EBM frameworks
have been proposed. One branch of this line of work is diffusion-based EBM priors Guo et al. (2023);
Gao et al. (2020); Cui & Han (2024); Hyvärinen (2005). They model a sequence of gradually perturbed
distributions (from simple noise to the target distribution) and learn a hierarchy of score functions along a
pre-defined noise schedule. These approaches are powerful but typically rely on carefully designed schedules
and can be sensitive to hyperparameters such as the number and spacing of noise levels. Another branch is
multi-stage NCE, which offers a self-adaptive scheme without a fixed schedule. Specifically, Rhodes et al.
(2020) uses a fixed number of stages in data space, but so far shows convincing results only on relatively
simple datasets like MNIST. Xiao & Han (2022) introduces adaptive multi-stage schemes in flat latent spaces,
but still does not realize the hierarchical structure in the latent representation. Our work builds on this line
of research by introducing a multi-stage hierarchical EBM prior.

D Broader Impact Statement

This paper proposes a generative probabilistic framework aimed at advancing hierarchical representation
learning and controllable generation, and thus shares similar potential risks as other powerful generative
models. In particular, fine-grained control over semantic attributes could, in principle, be misused to create
manipulated or misleading visual content. At the same time, our work on improved uncertainty estimation
and OOD detection may help mitigate some risks by enabling more reliable detection of anomalous or
out-of-distribution inputs in downstream systems.

E Implementation and Algorithm

E.1 Implementation

Training detail. For joint learning, we benchmark our method on CIFAR-10, SVHN, and CelebA-64, for
which we scale training images to [−1, 1] and use only 40,000 examples of CelebA-64 following Xiao & Han
(2022). For Two-phase training, we train our model on CIFAR-10, LSUN-Church-64, and CelebA-HQ-256
using the same setting as NVAE Vahdat & Kautz (2020). We compute FID scores using 30,000 generated
images for CelebA-HQ-256 and 50,000 for other datasets.

We use one A100 Nvidia GPU (training time on CIFAR-10 for 0.15 seconds/iteration) for joint learning and
two A100 Nvidia GPUs (training time on CIFAR-10 for 8.45 seconds/iteration) for Two-phase training.

Network Structure. For joint learning, we adopt the network structures from Xiao & Han (2022), which
contain generator and energy function networks shown in Table 12. For Two-phase learning scheme, we
utilize the NVAE2 backbone model, and our energy function is shown in Table 11.

E.2 Training Algorithm

2https://github.com/NVlabs/NVAE
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Algorithm 1 Joint Learning Scheme
Require:

Training images x; Training iteration i; Each stage iteration I; Current stage number m; Total stages
M ; Joint EBM prior ωm; Hierarchical generator model βm; Posterior Buffer Bm and Bm−1; Langevin
steps k;.

1: Let m← 0, initialize ωm and βm.
2: repeat
3: repeat
4: Posterior Sample: obtain Wtrue ∼ pωm,β(Z|X) using Eqn.16 with k.
5: Save Buffer: Save posterior sample Wtrue to Posterior Buffer Bm.
6: Prior sample: Draw Wfake from Bm−1 if m > 0 else Wfake ∼ N(0, I)
7: Learn βm: Update βm with Wtrue using Ztrue = T −1

β>0
(Wtrue) and Eqn. 11

8: Learn ωm: Update ωm with Wtrue and Wfake using Z = T −1
β>0

(W) and Eqn. 12
9: until i = I

10: Replace Bm−1 by Bm and initiate new Bm

11: until m = M

Algorithm 2 Two-phase Scheme
Require:

Training images x; First-phase training iteration i1; First-phase total iteration I1; Hierarchical model
β, ϕ; Second-phase training iteration i2; Each stage iteration I2; Current stage number m; Total stages
M ; Joint EBM prior ωm; Langevin steps k;. Prior Buffer B;

1: (1) First-phase learning: initialize β, ϕ.
2: repeat
3: Variational learning for β, ϕ: update β, ϕ via Eqn. 13
4: until i = I1
5: (2) Second-phase learning: Fix β, ϕ and initialize m = 0, ωm.
6: repeat
7: if m > 0, prepare Buffer Bm−1 by EBM prior sampling via Eqn.16 with k else continue.
8: repeat
9: Posterior Sample: obtain Ztrue ∼ qϕ(Z) and Wtrue = Tβ>0(Ztrue)

10: Prior sample: Draw Wfake from Bm−1 if m > 0 else Wfake ∼ N(0, I)
11: Learn ωm: Update ωm with Wtrue and Wfake using Z = T −1

β>0
(W) and Eqn. 14.

12: until i2 = I2
13: until m = M

Figure 11: Additional synthesis on LSUN-Church-64.
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Figure 12: Additional synthesis on CIFAR-10.

Figure 13: Additional synthesis on CelebA-HQ-256 with temp= 1.0 (left) and temp= 0.7 (right).

Figure 14: Additional Langevin transition on LSUN-Church-64, CIFAR-10, and CelebA-HQ-256.
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Figure 15: Additional progressive Langevin transition on LSUN-Church-64, CIFAR-10, and CelebA-HQ-
256.

Table 11: Two-phase learning energy function on each zi.

Conv Residule Block
(in-ch, out-ch, downsample, preActivation)

Input: SiLU(h0) if preActivation else h0
h1(h0) = 4x4 conv (out-ch), s=2, SiLU if downsample
h1(h0) = 3x3 conv (out-ch), s=1, SiLU if not downsample

h1(h1) = 3x3 conv (out-ch) if in-ch̸=out-ch or downsample
hshort(h0) = 4x4 conv (out-ch), s=2 if downsample
hshort(h0) = 3x3 conv (out-ch), s=1 if in-ch̸=out-ch

hshort(h0) = h0 else
return h1 + hshort

Conv Residule
(in-ch, out-ch, res-layer)

Input: h0
Conv Residule Block (in-ch, out-ch, downsample=True, preActivation=True)

#res-layer x Conv Residule Block (in-ch, out-ch, downsample=False, preActivation=True)
Linear Residule Block

(in-ch, out-ch, preActivation)
Input: SiLU(h0) if preActivation else h0

h1(h0) = Linear (out-ch), SiLU -
h1(h1) = Linear (out-ch) if in-ch̸=out-ch

hshort(h0) = Linear (out-ch) if in-ch̸=out-ch
hshort(h0)=h0 else

return h1 + hshort

Energy function
(nef=128, ndf=256, res-layer=8)

Layer In-Out Size
Input: ui h x w x ch

3x3 conv (nef), s=1 h x w x nef
# of Conv Residule (nef, nef, res-layer) 4 x 4 x 64

flatten 4 ∗ 4 ∗ 64
# res-layer of Linear Residule Block (ndf, ndf, preActivation=True) ndf

SiLU, Linear (1) 1

Table 12: 2-layer generator network on
CIFAR-10.

pβ0(x|z1), ngf= 64
Layers In-Out Size Stride

Input: z1 1 x 1 x 100 -
4x4 convT (ngf x 8), LReLU 4 x 4 x (ngf x 8) 1
4x4 convT (ngf x 4), LReLU 8 x 8 x (ngf x 4) 2
4x4 convT (ngf x 2), LReLU 16 x 16 x (ngf x 2) 2

4x4 convT (3), Tanh 32 x 32 x 3 2
pβ1(z1|z2), ngf= 256

Layers In-Out Size
Input: z2 100

Linear (ngf), LReLU ngf
Linear (ngf), LReLU ngf
Linear (ngf), LReLU ngf
Linear (ngf), LReLU ngf
Linear (100), µ of u1 100

Linear (100), log σ of u1 100
energy function for each ui, ndf= 200
Layers In-Out Size

Input: z1 100
Linear (ngf), LReLU ndf
Linear (ngf), LReLU ndf
Linear (ngf), LReLU ndf
Linear (ngf), LReLU ndf

Linear (1) 1
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