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ABSTRACT

A set of novel approaches for estimating epistemic uncertainty in deep neural
networks with a single forward pass has recently emerged as a valid alternative
to Bayesian Neural Networks. On the premise of informative representations,
these deterministic uncertainty methods (DUMs) achieve strong performance on
detecting out-of-distribution (OOD) data while adding negligible computational
costs at inference time. However, it remains unclear whether DUMs are well
calibrated and can seamlessly scale to real-world applications - both prerequisites
for their practical deployment. To this end, we first provide a taxonomy of DUMs,
and evaluate their calibration under continuous distributional shifts. Then, we
extend them to semantic segmentation. We find that, while DUMs scale to realistic
vision tasks and perform well on OOD detection, the practicality of current methods
is undermined by poor calibration under distributional shifts.

1 INTRODUCTION

Despite the dramatic enhancement of predictive performance of deep learning (DL), its adoption
remains limited due to unpredictable failure on out-of-distribution (OOD) samples (1; 2) and adver-
sarial attacks (3). Uncertainty estimation techniques aim at bridging this gap by providing accurate
confidence levels on a model’s output, allowing for a safe deployment of neural networks (NNs) in
safety-critical tasks, e.g. autonomous driving or medical applications.

While Bayesian Neural Networks (BNNs) represent the predominant holistic solution for quantifying
uncertainty (4; 5), exactly modelling their full posterior is often intractable, and scalable versions
usually require expensive variational approximations (6; 7; 8; 9; 10). Moreover, it has recently been
shown that true Bayes posterior can also lead to poor uncertainty (11). Thus, efficient approaches
to uncertainty estimation largely remain an open problem, limiting the adoption within real-time
applications under strict memory, time and safety requirements.

Recently, a promising line of work emerged estimating epistemic uncertainty in deterministic NNs
with a single forward pass. By regularizing the hidden representations of a model, these methods
represent an efficient and scalable solution to epistemic uncertainty estimation and to the related
OOD detection problem. Compared to traditional uncertainty estimation techniques, Deterministic
Uncertainty Methods (DUMs) quantify epistemic uncertainty by measuring distances (12; 13) or
estimating the distribution of latent representations (14; 15; 16; 17; 18; 19; 20; 21). While OOD
detection is a prerequisite for a safe deployment of DL in previously unseen scenarios, the calibration
- i.e. how well uncertainty correlates with model performance - of such methods under continuous
distributional shifts is equally important. Measuring the calibration of an epistemic uncertainty
estimate on shifted data investigates whether it entails information about the predictive performance
of the model. This an essential requirement for uncertainty and, unlike OOD detection, and evaluation
that is not model-agnostic - i.e. one cannot perform well without taking the predictive model into
account. Nonetheless, previous work falls short of investigating calibration, and solely focuses on
OOD detection (12; 13; 16; 18; 19). Further, DUMs have thus far only been evaluated on toy datasets
for binary classification, small-scale image classification tasks (13; 19) and toy prediction problems in
natural language processing (15). Despite claiming to solve practical issues of traditional uncertainty
estimation approaches, the practicality of DUMs remains to be assessed on more challenging tasks.

This work investigates the most crucial questions on the safety of DUMs in practical applications
and addresses their shortcomings. In particular: (i) we provide the first analysis of the calibration
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of DUMs under continuous distributional shifts; (ii) we evaluate the sensitivity of DUMs to their
regularization strength; (iii) we scale DUMs to dense prediction tasks, e.g. semantic segmentation,
and evaluate them under synthetic and realistic continuous distributional shift; (iv) we find that the
practicality of many DUMs is undermined by their poor calibration under both synthetic and realistic
distributional shifts.

2 RELATED WORK

Sources of Uncertainty. Uncertainty in a model’s predictions can arise from two different
sources (22; 23). While aleatoric uncertainty encompasses the noise inherent in the data and
is consequently irreducible (22), epistemic uncertainty quantifies the uncertainty associated with
choosing the model parameters based on limited information, and vanishes - in principle - in the limit
of infinite data. This work distinguishes two properties of epistemic uncertainty - its performance
on detecting OOD samples and its calibration (i.e. its correlation with model performance under
distributional shifts). While the latter has been explored in the case of probabilistic approaches to
uncertainty estimation (24) we are the first to investigate the behaviour of DUMs in this scenario.
Notably, (25) evaluates prominent scalable epistemic uncertainty estimates on semantic segmentation.
However, they investigate calibration only on in-distribution data. Further, although (15) evaluates
the calibration of their approach, they do so exclusively on in-distribution data.

BNNs (26; 5) represent a principled way of measuring uncertainty. However, their intractable poste-
rior distribution requires approximate inference methods, such as Markov Chain Monte-Carlo (26) or
Variational Inference (VI) (4). While these methods traditionally struggle with large datasets and
architectures, a variety of scalable approaches - often based on VI - have recently emerged.

Deep Ensembles, which typically consist of identical models trained from different initializations,
have been introduced to the deep learning community by Lakshminarayanan et al. (27) and extended
by (28; 29). While deep ensembles are widely regarded as a strong baseline for estimating epistemic
uncertainty, they come with high computational as well as memory costs.

Efficient Approaches. Recently, approaches based on stochastic regularization have been de-
veloped (6; 7; 8; 30; 31). By keeping stochasticity at inference time, they estimate uncertainty
using multiple forward passes. Another line of work estimates the posterior using the Laplace-
approximation (32; 33; 34) Moreover, efficient ensemble methods were proposed producing predic-
tions using a single model (35; 29; 28; 36; 37). Despite promising results on large-scale tasks while
being parameter-efficient, these methods still require sampling through the model, which can render
them impractical given limited compute. To estimate uncertainty in real-time and resource-demanding
tasks, recent work has focused on providing uncertainty estimates with a single forward pass. One
line of work proposes a principled approach for variance propagation in NNs (9; 38; 10). Notably,
another line of work proposes efficient approaches to estimate aleatoric uncertainty (39; 40; 41).

Recently, DUMs showed promising results on OOD detection. By leveraging distances and densities
in the feature space of a NN, these methods provide confidence estimates while adding negligible
computational cost. Since they are united in their deterministic treatment of the weights, we term
them Deterministic Uncertainty Methods (DUMs). The next section provides a taxonomy of DUMs.

3 TAXONOMY FOR DETERMINISTIC UNCERTAINTY QUANTIFICATION

This section categorizes existing DUMs. To quantify epistemic uncertainty deterministically, the
distribution of the hidden representations of a NN needs to be sensitive to the input distribution.
However, discriminative models suffer from the fundamental problem of feature collapse (13; 19).
Thus, we firstly categorize DUMs according to the regularization method used to counteract feature
collapse (Sec. 3.1). Moreover, we cluster DUMs according to the method used for uncertainty
estimation (Sec. 3.2). Tab. 1 shows an overview of the resulting taxonomy.

Feature Collapse. Discriminative models can learn to discard large part of their input information, as
exploiting spurious correlations may lead to better performance on the training data distribution (46;
47). Such invariant representations learned may be blind to distributional shifts, resulting in a collapse
of OOD embeddings to in-distribution features This problem is known as feature collapse (13), and it
makes OOD detection based on high-level representations impossible.
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Table 1: Taxonomy of DUMs. Methods are grouped according to their regularization of the hidden
representations (rows), and their uncertainty estimation method (columns).

3.1 REGULARIZATION OF HIDDEN REPRESENTATIONS

We group DUMs according to how feature collapse is tackled. We identify two main paradigms -
distance awareness and informative representations - which we discuss in Sec. 3.1.1 and Sec. 3.1.2.

3.1.1 DISTANCE AWARENESS

Essentially, distance-aware hidden representations avoid feature collapse by relating distances be-
tween latent representations to distances in the input space. Therefore, one constrains the bi-Lipschitz
constant, as it enforces a lower and an upper bound to expansion and contraction performed by a
model. A lower bound enforces that different inputs are mapped to distinct representations and, thus,
provides a solution to feature collapse. The upper bound enforces smoothness, i.e. small changes
in the input do not result in large changes in the latent space. While there exist other approaches,
e.g. (48), recent proposals have primarily adopted two methods to impose the bi-Lipschitz constraint.

The two-sided Gradient Penalty relates changes in the input to changes in feature space by di-
rectly constraining the gradient of the input (13). Spectral Normalization (SN) (49) is a less
computationally-demanding alternative. SN is applicable to residual layers and normalizes the
weights W of each layer using their spectral norm sn(W ) to constrain the bi-Lipschitz constant.
Various DUMs - SNGP (15), DUE (18) and DDU (19) - rely on SN to enforce distance-awareness of
hidden representations. More details on gradient penalty and SN can be found in the supplement.

Note that the Lipschitz constraint is defined with respect to a fix distance measure, which can be
difficult to choose for many high-dimensional data distributions. A popular choice, e.g. (13; 15; 18),
is the L2 distance. Moreover, principled approaches to provide exact singular values in convolutional
layers (50) result in prohibitive computational complexity; the spectral normalization approximations
typically adopted by the methods previously described have been found to be sub-optimal (51), and
its interaction with losses, architecture and optimization is yet to be fully understood (52).

3.1.2 INFORMATIVE REPRESENTATIONS

While distance-awareness achieves remarkable performance on OOD detection, it does not explicitly
preserve sample-specific information. Thus, depending on the underlying distance metric it may
discard useful information about the input or act overly sensitive. An alternative line of work avoids
feature collapse by learning informative representations (14; 16; 20; 44; 43; 45), thus forcing discrim-
inative models to preserve information in its hidden representations beyond what is required to solve
a task independent of the choice of an underlying distance metric. Notably, while representations that
are aware of distances in the input space are also informative, both categories remain fundamentally
different in their approach to feature collapse. While distance-awareness is based on the choice of a
specific distance metric tying together input and latent space, informative representations incentivize
a NN to store more information about the input using an auxiliary task (20; 16) or forbid information
loss by construction (43; 44; 45). We identify three distinct families of approaches.

Contrastive learning (53) has emerged as an approach for learning representations that are both
informative and discriminative. This is utilized by Wu et al. (16) and Winkens et al. (42), who apply
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SimCLR (54) to regularize hidden representations for a discriminative task by using a contrastive loss
for pretraining and fine-tuning to force representations to discriminate between individual instances.

Reconstruction regularization (20) instead forces the intermediate activations to fully represent
the input. This is achieved by adding a decoder branch fed with the activations of a given layer to
reconstruct the input. We term it MIR (Maximally Informative Representations).

Entropy regularization. PostNet (17) learns the class-conditional distribution of hidden representa-
tions end-to-end using a Normalizing Flow (NF) parameterizing a Dirichlet distribution. This allows
them to enforce informative representations by implicitly encouraging large entropy of the NF during
training. We refer to the supplement for details.

Invertible Neural Networkss (INNs) (55; 43; 44; 45), built via a cascade of homeomorphic layers,
cannot discard information except at the final classification stage. Consequently, the mutual informa-
tion between input and hidden representation is maximized by construction. Interestingly, Behrmann
et al. (56) showed that a ResNet is invertible if its Lipschitz constant is lower than 1, meaning that
invertible ResNets both possess highly-informative representations and satisfy distance-awareness.
However, note that this is not a necessary condition for invertibility, and thus information preservation.

3.2 UNCERTAINTY ESTIMATION

We distinguish two directions regarding uncertainty estimation in DUMs - generative and discrimina-
tive approaches. While generative approaches use the likelihood produced by an explicit generative
model of the distribution of hidden representations as a proxy for uncertainty, discriminative methods
directly use the predictions based on regularized representations to quantify uncertainty.

Generative approaches estimate the distribution of hidden representations post-training and use
the likelihood as uncertainty metric. Wu et al. (16) propose a method to estimate the distribution in
the feature space, where the variance of the distribution is used as a confidence measure. MIR (20),
DDU (19) and DCU (42) fit a class-conditional GMM to their regularized hidden representations and
use the log-likelihood as an epistemic uncertainty proxy. DEUP (57) uses the log-likelihood of a
normalizing flow in combination with an aleatoric uncertainty estimate to predict the generalization
error. A special instance of the generative approaches are INNs as they directly estimate the training
data distribution. The likelihood of the input data is used as a proxy for uncertainty. While this
idea is appealing, it can lead to training difficulties, imposes strong constraints on the underlying
model and still remains susceptible to OOD data (58). PostNet (17) is a hybrid approach which
estimates the distribution of hidden representations of each class using a separate NF end-to-end. Its
log-likelihoods parameterize a Dirichlet distribution. We categorize PostNet as a generative approach
since their epistemic uncertainty is the log-likelihood of the NF associated with the predicted class.

Discriminative approaches use the predictions to directly assess confidence. Mandelbaum et al. (12)
propose to use a Distance-based Confidence Score (DCS) learning a centroid for each class end-to-end.
Similarly, DUQ (13) builds on Radial Basis Function (RBF) networks (59) and proposes a novel
centroid updating scheme. Both estimate uncertainty as the distance between the model output and
the closest centroid. DUMs adopting SN (15; 18) (preserving L2 distances) typically replace the
softmax layer with Gaussian processes (GPs) with RBF kernel, extending distance awareness to the
output layer. In particular, SNGP (15) relies on a Laplace approximation of the GP based on the
random Fourier feature (RFF) expansion of the GP posterior (60). DUE (18) uses the inducing point
approximation (61; 62), incorporating a large number of inducing points without overfitting (63). The
uncertainty is derived as the Dempster-Shafer metric (15), resp. the softmax entropy (18).

4 EVALUATION OF DETERMINISTIC EPISTEMIC UNCERTAINTY

We measure the calibration of DUMs under continuous distributional shifts in two parts. Firstly, we
evaluate DUMs on image classification using synthetic corruptions (Sec. 4.1.1). Then, we extend
DUMs to a large-scale dense prediction task - semantic segmentation (Sec. 4.2) - where we evaluate
their calibration on synthetic corruptions (Sec. 4.2.1) based on Cityscapes and on more realistic
distributional shifts (Sec. 4.2.2) based on data collected in the simulation environment CARLA (64).

Baselines. We compare DUMs with two baselines for epistemic uncertainty - Monte-Carlo (MC)
dropout (7) and deep ensembles (27). Moreover, we report the softmax entropy of a vanilla NN as a
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simple baseline. We refer to the supplement for details on uncertainty estimation in our baselines.
Note, that the softmax entropy is expected to yield suboptimal calibration under distributional shifts
since it quantifies aleatoric uncertainty while adding no computational overhead.

Methods. We evaluate DUQ (13), SNGP (15) and DDU (19) as representatives of distance-awareness,
since these cover both techniques - SN and gradient penalty - and apply different techniques for
uncertainty estimation. We exclude DUE (18) since it provides limited additional insights given
SNGP. Moreover, we exclude DCS (12) since it only leads to a marginal improvement in their own
experiments and their contrastive loss only operates on class centroids and, thus, is not expected
to lead to distance awareness within clusters. Furthermore, we evaluate MIR (20), DCU (42) and
PostNet (17) as representatives of informative representations. However, we do not scale DCU and
PostNet to semantic segmentation. DCU with its constrastive pretraining based on SimCLR (54) is
computationally too demanding due to large batch sizes. PostNet does not scale to semantic segmen-
tation due instabilities arising from the end-to-end training of the NF for learning the distribution of
hidden representations. They require a small hidden dimension (<10) which already leads to poor
testset performance on CIFAR100. Further, we do not evaluate methods based on invertible neural
networks (44; 45) since they 1) enforce strict constraints on the underlying architecture (e.g. fixed
dimensionality of hidden representations) and often lead to training instabilities.

Calibration Metrics. Typical calibration metrics are Expected Calibration Error (ECE) (65) and
Brier score (66). However, since most DUMs, except SNGP, do not provide uncertainty in form
of a probabilistic forecast, we cannot rely on measuring the calibration of probabilities. Thus, we
will exploit another desired property of uncertainty to quantify calibration, namely the ability to
distinguish correct from incorrect predictions. In fact, this property is a relaxation of calibrated
probabilities, as it is independent of the absolute value of uncertainty estimates and only relies
on the ordering of predictions relative to each other. We assess the calibration of uncertainty
estimates under distributional shifts using two metrics. Firstly, we report the Area Under the Receiver
Operating Characteristic (AUROC) obtained when separating correct and incorrect predictions based
on uncertainty. Moreover, we introduce a new metric, Relative Area Under the Lift Curve (rAULC),
based on the Area Under the Lift Curve (AULC) (67). The AULC is obtained by ordering the
predictions according to increasing uncertainty and plotting the performance of all samples with an
uncertainty value smaller than a certain quantile of the uncertainty against the quantile itself.

Formally, given a set of uncertainty quantiles qi ∈ [0, 1], i ∈ [1, ..., S], with some quantile step
width 0 < s < 1 and the function F (qi) which returns the accuracy of all samples with uncertainty
u < qi, the AULC is defined as AULC = −1+

∑
i∈[1,...,S] s

F (qi)
FR(qi)

. Here, FR(·) refers to a baseline
uncertainty estimate that corresponds to random guessing, and we subtract 1 to shift the performance
of the random baseline to zero. Note, if an uncertainty estimate is anti-correlated with a models’
performance, this score can also be negative. To alleviate a bias towards better performing models,
we further compute the rAULC by dividing the AULC by the AULC of a hypothetical (optimal)
uncertainty estimation that perfectly orders samples according to model performance. In classification
we measure AUROC and rAULC on the image-level, in semantic segmentation on the pixel-level. In
all experiments we set the quantile step width to s = 1

N , where N is the number of predictions.

We compute AUROC and rAULC on continuous distributional shifts 1) across all severities of
distributional shifts (including the clean testset) and 2) for each severity separately. We use the
former method to establish a quantitative comparison among the methods and the latter to depict the
calibration evolution qualitatively as a function of the distributional shift’s severity.

4.1 IMAGE CLASSIFICATION

Datasets. We train DUMs on CIFAR-10 and CIFAR-100 (68) and evaluate on the corrupted versions
of their test set CIFAR10/100-C (69) (Sec. 4.1.1). These include 15 synthetic corruptions, each with
5 levels of severity. Moreover, we explore how sensitive the calibration of DUMs is to the choice of
regularization strength on MNIST (70) and FashionMNIST (71)).

Models and optimization. Each method shares the same backbone architecture and uses a method-
specific prediction head. When training on CIFAR-10/100, the backbone architecture is a ResNet-
50 (72) For the experiments regarding hyperparameter sensitivity on MNIST and Fashion-MNIST, we
employ a multilayer perceptron (MLP) as feature extractor with 3 hidden layers of 100 dimensions
each and ReLU activation functions. Each DUM has a hyperparameter for the regularization of its
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hidden representations. We choose the hyperparameter such that it minimizes the validation loss. All
results are averaged over 5 independent runs. The standard deviation and optimization details can be
found in the supplement where not present in the main paper.

4.1.1 CONTINUOUS DISTRIBUTIONAL SHIFTS

Method CIFAR10-C CIFAR100-C
ACC AUROC rAULC ACC AUROC rAULC

Softmax 0.882 0.782 0.708 0.610 0.762 0.596
MC Dropout (7) 0.885 0.866 0.829 0.615 0.818 0.726
Ensemble (27) 0.910 0.85 0 0.833 0.628 0.824 0.713

SNGP (15) 0.903 0.833 0.766 0.611 0.788 0.623
DDU (19) 0.884 0.673 0.441 0.609 0.635 0.339
MIR (20) 0.889 0.79 0.697 0.617 0.726 0.514
DUQ (13) 0.860 0.773 0.614 - - -
DCU (42) 0.945 0.794 0.706 0.642 0.750 0.558

PostNet (17) 0.882 0.784 0.676 0.520 0.743 0.603

Table 2: We compare Softmax, MC Dropout (7), Deep Ensembles, SNGP, DDU, MIR, DUQ, DCU
and PostNet on CIFAR10/100-C. We evaluate the accuracy (ACC) on the uncorrupted testset, AUROC
and rAULC. Ensembles and MC dropout demonstrate better uncertainty calibration than most DUMs.
Only SNGP consistently outperforms the softmax entropy. DCU’s superior performance is expected
since it uses expensive contrastive pretraining. DUQ did not converge on CIFAR100-C due to training
instabilities arising from dynamically updated cluster centroids.

Tab. 2 reports testset accuracy and calibration for the baselines and DUMs. AUROC and rAULC are
computed for each corruption across all severity levels, then averaged over all corruptions. Further,
Fig. 1 depicts our metrics depending on the severity of corruptions. We generally observe that
ensembles and MC dropout demonstrate best performance in terms of calibration. Further, SNGP is
the only DUM that consistently outperforms the softmax entropy. Overall we observe that DUMs
using the distribution of hidden representations for estimating epistemic uncertainty yield worse
calibration. Among these we find that regularizing hidden representations by enforcing distance
awareness (DDU) yields the worst calibration. The superior performance of DCU (42) in terms
of testset accuracy originates from their extensive contrastive pretraining which includes extensive
data augmentation and a prolonged training schedule. We note that DUQ (13) did not converge on
CIFAR100 due to training instabilities. These arise from maintaining the class centroids, which
become very noisy for 100 classes with only 600 samples per class.

Moreover, we report OOD detection performance of models used in Tab. 2 and Fig. 1 in the supple-
ment. Interestingly, despite competitive performance of OOD detection DUMs fall short in terms of
uncertainty calibration compared to MC dropout and deep ensembles.

4.1.2 SENSITIVITY TO HYPERPARAMETERS

We are interested in the qualitative impact of the regularization strength on the uncertainty calibration.
Therefore, we train DUQ (13), SNGP (15), MIR (20) and DDU (19) using various regularization
strengths on MNIST and evaluate on continuously shifted data by rotating from 0 to 180 degrees in
steps of 20 degrees. Fig. 2 depicts the test accuracy against the rAULC for various regularization
strengths. Only for MIR we observe a clear, positive correlation between regularization strength and
calibration. The supplement depicts similar results on FashionMNIST (71).

4.2 SEMANTIC SEGMENTATION

This section evaluates whether DUMs seamlessly scale to realistic vision tasks and compares their
behaviour under synthetic and realistic continuous distributional shifts with the softmax entropy,
MC dropout and ensembles. Therefore, we apply MIR (20), SNGP (15) and DDU (19) to semantic
segmentation. Note that DUQ (13) did not converge on this task.
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Figure 1: Softmax entropy, ensembles (27), MC dropout (7), DUQ (13), SNGP (15), MIR (20),
DDU (19) and DCU (42) on CIFAR10-C (upper row) and CIFAR100-C (lower row) (69). We show
the accuracy, AUROC and rAULC on the corruptions gaussian_noise (gn) and motion_blur (mb)
against the corruption severity. While all methods, except DCU, demonstrate a similar accuracy,
DUMs - in particular methods based on generative modeling of hidden representations - yield worse
calibration. DUQ did not converge on CIFAR100. Other corruptions are included in the supplement.
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Figure 2: We analyse the sensitivity of DUQ (13), SNGP (15), MIR (20) and DDU (19) to their
regularization strength. Therefore, we train models on MNIST and evaluate on continuously shifted
data by rotating from 0 to 180 degrees in steps of 20 degrees. We plot the accuracy on the unperturbed
testset against the rAULC computed using data from all levels of perturbation. Only for MIR we
observe a clear, positive correlation between regularization strength and calibration. For DDU and
SNGP, smaller regularization parameter denotes stronger regularization.

We consider semantic segmentation as a multidimensional classification problem, where each pixel
of the output mask represents an independent classification problem. Given an image x with n pixels
y = {y1, · · · , yn}, the predictive distribution factorizes according to p(y | x) = p(y1 | x)p(y2 |
x) · · · p(yn | x). We evaluate the calibration of the pixel-level uncertainty in our experiments.

Datasets. We evaluate on synthetic distributional shifts using a corrupted version of Cityscapes (73)
(Cityscapes-C (74)) which contains the same corruptions as CIFAR10/100-C. To further benchmark
DUMs in a realistically and continuously changing environment, we collect a synthetic dataset for
semantic segmentation. We use the CARLA Simulator (64) for rendering the images and segmentation
masks. The classes definition is aligned with the CityScape dataset (73). Training data is collected
from four towns in CARLA. We produce 32 sequences from each town. Vehicles and pedestrians are
randomly generated for each sequence. Every sequence has 500 frames with a sampling rate of 10
FPS. We uniformly sample a validation set. We introduce continuous distributional shifts by varying
the time-of-the-day and weather conditions (visual examples and details on data collection are in
the supplment). The time-of-the-day is parameterized by the sun’s altitude angle, where 90◦ means
mid-day (training data) and the 0◦ means dust/dawn. We produce samples with altitude angles from
90◦ to 15◦ by steps of 5◦, and 15◦ to −5◦, where the environment changes sharply, in 1◦ steps. In
order to continuously change the weather conditions, we increase the magnitude of the rain in four
steps (see supplement for visual examples). We refer to this dataset as CARLA-C.

Backbone. We adopt Dilated ResNet (DRN) (75; 76) as semantic segmentation backbone since it is
based on residual connections allowing the use SN. Using dilated convolutions it improves spatial
accuracy, achieving satisfactory results on CityScapes (73). We adopt the variant DRN-A-50. All
results are averaged across 5 independent repetitions.

SNGP. DRN uses 1× 1 convolutions at the last layer to map the latest feature map to the predicted
segmentation mask. This works under the assumption that all pixels in the output mask are i.i.d.

7



Under review as a conference paper at ICLR 2022

random variables. Following this intuition, we extend SNGP to semantic segmentation by fitting a
GP : RZ → RC at pixel level that maps from the deep feature dimension z to the number of classes c.
By keeping the GP kernel parameters shared across all pixels, we simulate a 1× 1 convolutional GPs,
i.e. σ : (Hl ×Wl × Z)→ (Hl ×Wl × C), where σ convolves the GP, Hl and Wl are, respectively,
feature map height and width at layer l, Z is the number of latent features and C is the number of
output classes. For details about the GP we refer to (15) or the supplement.

MIR and DDU require fitting the distribution of hidden representations. We fit a Gaussian mixture
model (GMM) with 20 components (i.e. number of classes) to each spatial location of the hidden
representations using features extracted from the training data independently. This assumes that the
distribution is translation invariant and factorizes along the spatial dimensions of the latent space.
Pixel-level uncertainties are then computed using bi-cubic interpolation following a similar procedure
as (77) in this framework. We refer to the supplement for more details

4.2.1 CITYSCAPES CORRUPTED

We evaluate the softmax entropy, ensembles (27), MC dropout (7), SNGP (15), MIR (20), DDU (19)
on Cityscapes-C (74). Tab. 3 and Fig. 3 depict mean Intersection over Union (mIoU) and calibration
performance in terms of AUROC and rAULC. Ensembles and MC dropout yield the best calibration,
while among DUMs only SNGP consistently ourperforms the softmax entropy.

Method Cityscapes-C CARLA-C
mIoU AUROC rAULC mIoU AUROC rAULC

Softmax 0.503 0.815 0.737 0.422 0.854 0.818
MC Dropout (7) 0.506 0.846 0.785 0.410 0.843 0.730
Ensemble (27) 0.525 0.835 0.751 0.428 0.863 0.812

SNGP (15) 0.519 0.833 0.759 0.424 0.853 0.813
DDU (19) 0.505 0.731 0.542 0.408 0.467 -0.038
MIR (20) 0.504 0.729 0.564 0.412 0.744 0.619

Table 3: We compare semantic segmentation using Softmax, MC Dropout (7), Deep Ensembles,
SNGP, DDU and MIR on Cityscapes-C and CARLA-C. We evaluate the mIoU on the uncorrupted
testset and AUROC/rAULC across all levels of corruption. Again, ensembles and MC dropout yield
better calibrated uncertainty than most DUMs. Most notably, only SNGP consistently outperforms
the softmax entropy. DUMs using an explicit generative model of hidden representations to estimate
uncertainty perform particular bad on realistic distributional shifts (CARLA-C).
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Figure 3: Softmax entropy, ensembles (27), MC dropout (7), SNGP (15), MIR (20), DDU (19) on
Cityscapes-C (74). We show the mIoU, AUROC and rAULC on the corruptions gaussian_noise
(upper) and motion_blur (lower) depending on the corruption severity. While all methods demonstrate
a similar mIoU, DUMs - in particular methods based on generative modeling of hidden representations
- yield worse calibration across corruption severities. Other corruptions are in the supplement.
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Figure 4: Softmax entropy, ensembles (27), MC dropout (7), SNGP (15), MIR (20), DDU (19)
on CARLA-C (74). We show the mIoU, AUROC and rAULC for each method on the corruptions
"time of day" (upper) and "rain" (lower) depending on the corruption severity. While all methods
demonstrate a similar mIoU pattern, DUMs - in particular methods based on generative modeling of
hidden representations - yield worse calibration across corruption severities.

4.2.2 REALISTIC CONTINUOUS DISTRIBUTIONAL SHIFTS

Similarly, we evaluate the softmax entropy, ensembles (27), MC dropout (7), SNGP (15), MIR (20),
DDU (19) on CARLA-C. Tab. 3 and Fig. 4 depict mIoU and calibration performance in terms of
AUROC and rAULC. Ensembles yield the best calibration. Among DUMs only SNGP consistently
ourperforms the softmax entropy which is in line with the results on image classification (Sec. 4.1.1).

5 CONCLUSION & DISCUSSION

This work investigated the calibration under continuous distributional shifts of DUMs which recently
showed good OOD detection performance and are interesting for practical applications in need of effi-
cient uncertainty quantification. Overall, we observe that such uncertainty estimates are considerably
worse calibrated than scalable Bayesian methods. We observe this on image classification (Sec. 4.1.1)
as well as semantic segmentation (Sec. 4.2) and on synthetic as well as more realistic distributional
shifts. SNGP (15) denotes the only DUM that consistently yields better calibrated uncertainties under
continuous distributional shifts than the softmax entropy. Simultaneously, SNGP is the only DUM
which derives there uncertainty from its predictive distribution.

In particular, our experiments reveal that methods relying on the distribution of hidden representations
to quantify uncertainty (42; 20; 19) are poorly calibrated. Arguably, it is understandable that these
methods are worse calibrated than SNGP since they do not take into account the predictive distribution.
The underlying assumption is that locations in feature space entail information about the correctness of
predictions. While this is arguably true, features also contain additional information that render them
suboptimal for judging the correctness of predictions due to ambiguities.We refer to the supplement
for a further theoretical consideration of the limitations of DUMs. Overall, this underlines the
necessity to refrain from DUMs that purely rely of distance or log-likelihood in the feature space
when well calibrated uncertainties are required.

Moreover, another desirable property for such methods would be that the strength of the feature
space regularization correlates with the quality of the uncertainty. Due to the original purpose of
most DUMs, this would be at least expected for OOD detection. However, this is not verified for
Lipschitz regularization by our investigation (Sec. 4.1.1). We hypothesize that this originates from
the choice of metric for regularization - i.e. L2 distance - which is not meaningful in the image space.
We hope that our findings will foster future research on making these promising family of methods
better calibrated and more broadly applicable.
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