
Sparse Progressive Distillation: Resolving Overfitting under
Pretrain-and-Finetune Paradigm

Anonymous ACL submission

Abstract
Conventional wisdom in pruning Transformer-001
based language models is that pruning reduces002
the model expressiveness and thus is more003
likely to underfit rather than overfit. How-004
ever, under the trending pretrain-and-finetune005
paradigm, we postulate a counter-traditional hy-006
pothesis, that is: pruning increases the risk of007
overfitting when performed at the fine-tuning008
phase. In this paper, we aim to address the009
overfitting problem and improve pruning per-010
formance via progressive knowledge distilla-011
tion with error-bound properties. We show for012
the first time that reducing the risk of overfit-013
ting can help the effectiveness of pruning under014
the pretrain-and-finetune paradigm. Ablation015
studies and experiments on the GLUE bench-016
mark show that our method outperforms the017
leading competitors across different tasks.018

1 Introduction019

Recently, the emergence of Transformer-based020

language models (using pretrain-and-finetune021

paradigm) such as BERT (Devlin et al., 2018) and022

GPT-3 (Brown et al., 2020) have revolutionized023

and established state-of-the-art (SOTA) records (be-024

yond human-level) on various natural language025

(NLP) processing tasks. These models are first026

pre-trained in a self-supervised fashion on a large027

corpus and fine-tuned for specific downstream028

tasks (Wang et al., 2018). While effective and029

prevalent, they suffer from redundant computation030

due to the heavy model size, which hinders their031

popularity on resource-constrained devices, e.g.,032

mobile phones, smart cameras, and autonomous033

driving (Li et al., 2021; Choi and Baek, 2020).034

Various weight pruning approaches (zeroing out035

certain weights and then optimizing the rest) have036

been proposed to reduce the footprint requirements037

of Transformers (Zhu and Gupta, 2018; Blalock038

et al., 2020; Gordon et al., 2020; Xu et al., 2021;039

Li et al., 2021). Conventional wisdom in prun-040

ing states that pruning reduces the overfitting risk041

Dense model

D

Sparse model

Pruning

D
Task knowledge

Discarded
knowledge

(a) Pruning under non-pretrain-and-finetune
paradigm (e.g., CNN, LSTM, GNN)

L

Pre-trained 
model

L + D
Pruning

Sparse modelTask-specific
finetuned model

L
D

Over-fitting

Task knowledge 
+ general knowledge 

Discarded
knowledge

(b) Pruning under pretrain-and-finetune paradigm

Figure 1: Pruning under non-pretrain-and-finetune vs.
pruning under pretrain-and-finetune. In the subfigures,
the cylinders on the left describe the pruning process,
and the circles on the right represent the knowledge
analysis of the sparse model.

since the compressed model structures have fewer 042

parameters and are believed to be less prone to 043

overfit (Gerum et al., 2020). However, under 044

the pretrain-and-finetune paradigm, most pruning 045

methods understate the overfitting problem. 046

In this paper, we postulate a counter-traditional 047

hypothesis, that is: model pruning increases the 048

risk of overfitting if pruning is performed at the 049

fine-tuning phase. As shown in Figure 1b, the 050

pretrain-and-finetune paradigm contains two types 051

of knowledge, the general-purpose language knowl- 052

edge learned during pre-training (L) and the task- 053

specific knowledge from the downstream task data 054

(D). Compared to conventional pruning that only 055

discards task-specific knowledge (Figure 1a), prun- 056

ing under pretrain-and-finetune (Figure 1b) dis- 057

cards extra knowledge (red area) learned in pre- 058

training phase. Thus, to recover both the extra 059

discarded general-purpose knowledge and the dis- 060

carded task-specific knowledge, it increases the 061

amount of information a model needs, which re- 062

sults in relative data deficiency, leading to a higher 063

risk of overfitting. To empirically verify the over- 064

fitting problem, we visualize the training and eval- 065

uation performance on a real-world task data of 066

1



0 1000 2000 3000
Training steps

0.4

0.6

0.8

1.0
Ac

cu
ra

cy

dev set
training set

(a) Sparsity=0

0 1000 2000 3000
Training steps

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

dev set
training set

(b) Sparsity=0.8

0 1000 2000 3000
Training steps

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

dev set
training set

(c) Sparsity=0.95

Figure 2: Visualization of the overfitting problem when pruning weight matrices of BERTBASE on MRPC at the
fine-tuning phase. The overfitting problem becomes more severe with the increasing of sparsity.

MRPC (Devlin et al., 2018) in Figure 2. From Fig-067

ure 2 (b), it is observed that the evaluation accuracy068

on the training dataset remains improved while it069

keeps the same for the validation set through the070

training process. From Figure 2 (c), the difference071

in performance becomes more significant when072

the pruning rate becomes higher and the perfor-073

mance on the validation set even becomes worse074

after 2,000 training steps. All these observations075

verify our hypothesis.076

The main question this paper attempts to an-077

swer is: how to reduce the risk of overfitting of078

pre-trained language models caused by pruning?079

However, answering this question is challenging.080

First, under the pretrain-and-finetune paradigm,081

both the general-purpose language knowledges and082

the task-specific knowledge are learned. It is non-083

trivial to keep the model parameters related to both084

knowledges when pruning. Second, the amount of085

data for downstream tasks can be small, such as086

the data with privacy. Thus, the overfitting prob-087

lem can easily arise, especially in the face of high088

pruning rate requirements. A little recent progress089

has been made on addressing overfitting associated090

with model compression. However, their results091

are not remarkable and most of them focus on the092

vision domain (Bai et al., 2020; Shen et al., 2021).093

To address these challenges, we propose SPD, a094

sparse progressive distillation method, for pruning095

pre-trained language models. We prune and opti-096

mize the weight duplicates of the backbone of the097

teacher model (a.k.a., student modules). Each stu-098

dent module shares the same architecture (e.g., the099

number of weights, the dimension of each weight)100

as the duplicate. We replace the corresponding101

layer(s) of the duplicated teacher model with the102

pruned sparse student module(s) in a progressive103

way and name the new model as a grafted model.104

We validate our proposed method through the ab-105

lation studies and the GLUE benchmark. Experi- 106

mental results show that our method outperforms 107

the leading competitors. 108

We summarize our contributions as follows: 109

• We postulate, analyze, and empirically verify 110

a counter-traditional hypothesis: pruning in- 111

creases the risk of overfitting under the pretrain- 112

and-finetune paradigm. 113

• We propose a sparse progressive pruning method 114

and show for the first time that reducing the 115

risk of overfitting can help the effectiveness of 116

pruning. 117

• Moreover, we theoretically prove that our prun- 118

ing method can obtain a sub-network from the 119

student model that has similar accuracy as the 120

teacher, and the accuracy gap is bounded. 121

• Last but not least, we study and minimize the 122

interference between different hyperparameter 123

strategies, including pruning rate, learning rate, 124

and grafting probability, to further improve per- 125

formance. 126

2 Related Work 127

To summarize, our contribution is determining the 128

overfitting problem of pruning under the pretrain- 129

and-finetune paradigm and proposing the sparse 130

progressive distillation method to address it. We 131

demonstrate the benefits of the proposed frame- 132

work through the ablation studies. We validate our 133

method on six datasets from the GLUE benchmark. 134

To test if our method is applicable across tasks, 135

we include the tasks of both single sentence and 136

sentence-pair classification. Experimental results 137

show that our method outperforms the leading com- 138

petitors by a large margin. 139

Network Pruning. Common wisdom has shown 140

that weight parameters of deep learning models can 141

2



Teacher 𝒇𝑻 Input

Output

Pruning (𝜃")

Grafted model 𝒇𝑮

Pruning (𝜃$)

zero non-zero

Input

Output

update

Pruning(𝜃%)

…

Pruning(𝜃&)

Input

Output

Input

Output

Input

Output

…

Input

Output

Input

Output

Input

Output

pi =0.25

pi =0.50

pi =0.25

pi =1pi =1

pi =0.25

pi =0.50

Grafted model 𝒇𝑮

Student modules

Grafted model 𝒇𝑮

Grafted model 𝒇𝑮 Grafted model 𝒇𝑮Grafted model 𝒇𝑮Grafted model 𝒇𝑮
Final grafted 

model 𝒇𝑮!

Input

Output

update

update

update

update

Student modules Student modules Student modules Student modules

Student modulesStudent modulesStudent modulesStudent modules

(a)

(e)

(b)

(c)(d)

Figure 3: An overview of our sparse progressive distillation method. (a) Teacher model. (b) Pruning to target
sparsity. (c) Module grafting with increasing probability. (d) Fine-tuning. (e) Final grafted model.

be reduced without sacrificing accuracy loss, such142

as magnitude-based pruning (Han et al., 2015) and143

ottery ticket hypothesis (Frankle and Carbin, 2018).144

(Zhu and Gupta, 2018) compared small-dense mod-145

els and large-sparse models with the same param-146

eters and showed that the latter outperforms the147

former, showing the large-sparse models have bet-148

ter expressive power than their small-dense coun-149

terparts. However, under the pretrain-and-finetune150

paradigm, pruning leads to overfitting as discussed.151

Knowledge Distillation (KD). As a common152

method in reducing the number of parameters, the153

main idea of KD is that the small student model154

mimics the behaviour of the large teacher model155

and achieves a comparable performance (Hinton156

et al., 2015; Mirzadeh et al., 2020). (Sanh et al.,157

2019; Jiao et al., 2020; Sun et al., 2020) utilized KD158

to learn universal language representations from159

large corpus. However, current SOTA knowledge160

distillation methods are not able to achieve a high161

model compression rate (less than 10% remaining162

weights) while achieving an insignificant perfor-163

mance decrease.164

Progressive Learning. The key idea of progres-165

sive learning is that student learns to update module166

by module with the teacher. (Shen et al., 2021)167

utilized a dual-stage distillation scheme where stu-168

dent modules are progressively grafted onto the169

teacher network, it targets the few-shot scenario170

and uses only a few unlabeled samples to achieve171

comparable results on CIFAR-10 and CIFAR-100.172

(Xu et al., 2020) gradually increased the probability173

of replacing each teacher module with their corre-174

sponding student module and trained the student175

to reproduce the behavior of the teacher. However,176

the performance on Transformer-based models of177

the aforementioned first method is unknown while 178

the second method has an obvious performance 179

drop with a low sparsity (50%). 180

3 Methodology 181

We propose to use a new knowledge distillation 182

framework that utilizes error-bound provable prun- 183

ing and progressive module grafting. 184

3.1 Problem Formulation 185

186

The teacher model and the grafted model (shown 187

in Figure 3) are denoted as fS and fG, respectively. 188

Both models have N + 1 layers (i.e., the first N 189

layers are encoder layers, and the (N + 1)-th layer 190

is the output layer). Denote fT
i (·), fG

i (·) as the 191

behaviour function induced from the i-th encoder 192

of the teacher model, and the grafted model, re- 193

spectively. As shown in Figure 4, we utilize layer- 194

wise knowledge distillation (KD), where we aim to 195

bridge the gap between fT
i (·) and fG

i (·). 196

The grafted model is trained to mimic the be- 197

havior of the teacher model. During training, we 198

minimize the summation loss L: 199

L =
∑
x∈X

N+1∑
i=1

λiLKD(f
T
i (x)fG

i (x)), (1) 200

where X denotes the training dataset, λi is coef- 201

ficient of i-th layer loss, LD is the distillation loss 202

of the layer pair, xi is the input of the i-th layer. 203

During KD, each student module mimics the 204

behavior of the corresponding teacher layer. Sim- 205

ilar to (Jiao et al., 2020), we take the advantage 206

of abundant knowledge in self-attention distribu- 207

tion, hidden states of each Transformer layer, and 208

3



the final output layer’s soft logits of teacher model209

to help train the student model. Specifically, we210

design the KD loss as follows211

LKD =

{
Lhidn + Lattn 1 ≤ i ≤ N

Lpred i = N + 1
(2)212

Teacher encoder 1

Teacher encoder 2

Teacher encoder 3

Teacher encoder N

…

Input

Input Embedding

Output Layer

Output

Teacher model 𝑓!

Student module 1

Student module 2

Student module 3

Student module N

…

Grafted model 𝑓"
(b)(a) (c)

𝑝#

𝑝$

𝑝%

…

𝑝&

…

KD

LKD1

LKD2

LKD3

LKDN

Student Modules

LKD N+1

Teacher encoder 2

Teacher encoder N

…

Input

Input Embedding

Output Layer

Output

Student module 1

Student module 3

Figure 4: An overview of the layer-wise KD in SPD. (a)
N sparse student modules have probabilities of p1, p2,
p3, ..., pN to substitute the corresponding teacher layers
separately. (b) Teacher model. (c) Grafted model. LKDi

denotes the distillation loss between the i-th layer of the
teacher and i-th layer of the grafted model.

where Lhidn = MSE(HT
i , HS

i ) (1 ≤ i ≤ N ) in-213

dicates the difference between hidden states, Lattn214

= MSE(AT
i , AS

i ) indicates the difference between215

attention matrices. MSE(·) is the mean square error216

loss function and i is the index of Transformer layer.217

Lpred = -softmax(zT ) · log _softmax(zS / temp)218

indicates the difference of soft cross-entropy loss,219

where zT and zS are the soft logits of teacher and220

student model, respectively. T is the temperature221

hyper-parameter.222

We further reduce the number of non-zero pa-223

rameters in the weight matrix while maintaining224

accuracy. We denote {Wj}j=i
j=1 as the collection of225

weights in the first i layers, θj as the sparsity of226

the j-th layer. Then, the loss function of sparse227

knowledge distillation becomes228

L =
∑
x∈X

N+1∑
i=1

λiLKD(f
T
i (x, {Wj}j=i

j=1), f
G
i (x, {Wj}j=i

j=1))

s.t. sparsity(Wj) ≤ θj for j = 1, ..., N
(3)229

After training, we find the sparse weight matrix230

W ∗
j using231

W∗
j = ΠSj (Wj) for j = 1, ..., N, (4)232

where ΠSj (·) denotes the Euclidean projection onto233

the set Sj = {Wj | sparsity(Wj) ≤ θj}.234

3.2 The Proposed 235

3.2.1 Error-bound Provable Pruning 236

Our pruning method is similar to finding match- 237

ing subnetworks using the lottery ticket hypothesis 238

methodology. 239

Analysis on Feed-forward linear Network. Con- 240

sider a linear network f(x) = w · x , and g(x) = 241

(
∑n

i=1 wi)x. Lueker et al.(Lueker, 1998) shows 242

that existing a subset of wi, such that the correspon- 243

nding value of g(x) is very close to f(x). 244

Corollary: When w∗
1, ...,w∗

n belongs to i.i.d. uni- 245

form distribution over [-1,1], where n ≥ C log 2
δ , 246

δ ≤ min{1, ϵ}. Then, with probability at least 1-δ, 247

we have 248

∃Gspd ⊂ {1, 2, ..., n}, ∀ W ∈ [−0.5, 0.5],

s.t

∣∣∣∣∣∣w −
∑

i∈Gspd

w∗
i

∣∣∣∣∣∣ ≤ ϵ
(5) 249

Analysis on self-attention layer. The self- 250

attention layer can be present as: 251

Z = attention(Q, K, V) = softmax(
Q ·KT

√
dk

) · V. (6) 252

Consider a model f(x) with only one self-attention 253

layer, when the token size of input x is 1, 254

softmax(Q·KT
√
dk

) = 1, we have Z = V, where 255

V = WVx. 256

Consider fG(x) =
(∑d

i=1 wG
i

)
x and a pruning 257

sparsity θ, base on Corollary, when d ≥ C log 4/ϵ, 258

there exists a pattern of wG
i , such that, with proba- 259

bility 1− ϵ, 260

∀ w ∈ [−1, 1], ∃θi ∈ {0, 1},

s.t.

∣∣∣∣∣∣w − (
∑

i∈[1,d]

wG
i I(θi))

∣∣∣∣∣∣ < ϵ
(7) 261

In general, let the token size x be n. so x = 262

(x1, x2, ..., xn). Consider a teacher model fT (x) 263

with a self-attention layer, then 264

fT (xi) = softmax(
Q ·KT√

(dk)
) · Vi = (

∑
j e

cij∑
i

∑
j(e

cij )
) · Vi

= (

∑
j e

cij∑
i

∑
j(e

cij )
)WVixi

= Wci.xi

(8) 265

Base on Corollary, when d ≥ C log 4/ϵ, there 266

exists a pattern of WG
i , such that, with probability 267

1− ϵ, 268

4



∀Wci. ∈ [−1, 1],∃θk ∈ {0, 1},

s.t. |Wci. − (
∑

k∈[1,d]

WG
k I(θk)) < ϵ (9)269

In summary:270

∀i ∈ {1, 2, ..., n},
∣∣fT (xi)− fG(xi)

∣∣ < ϵ (10)271

Progressive Module Grafting. To avoid overfit-272

ting in the training process for the sparse Trans-273

former model, we further graft student modules274

(scion) onto the teacher model duplicates (root-275

stock). For the i-th student module, we use an276

independent Bernoulli random variable ri to indi-277

cate where it will be grafted on the rootstock. To278

be more specific, ri has a probability of p (graft-279

ing probability) to be set as 1 (i.e., student module280

substitutes the corresponding teacher layer). Oth-281

erwise, the latter will keep unchanged. Once the282

target pruning rate is achieved, we apply linear in-283

creasing probability to graft student modules which284

enable the student modules to orchestrate with each285

other.286

Different from the model compression methods287

that update all model parameters at once, such as288

TinyBERT (Jiao et al., 2020) and DistilBERT (Sanh289

et al., 2019), SPD only updates the student modules290

on the grafted model. It reduces the complexity of291

network optimization, which mitigates the overfit-292

ting problem and enables the student modules to293

learn deeper knowledge from the teacher model.294

The overview is described in Algorithm 1. We will295

further demonstrate the effectiveness of progressive296

student module grafting in 4.2.297

Algorithm 1 Sparse Progressive Distillation

Input: Teacher model fT (fine-tuned BERTBASE); grafted
model fG: duplicates of teacher model.
Set t1, t2, t3 as the final number of training steps of pruning,
progressive module grafting, and finetuning, respectively.
Set p as the grafting probability
Output: Student model
p← p0
for t = 0 to t3 do

if 0 ≤ t < t1 then
Prune student modules and generate mask M
Graft student modules with p0

end if
if t1 ≤ t < t2 then

Graft student modules with p← k(t− t1) + p0
end if
Calculate distillation loss L in Eqn. (3)
For fG, update sparse weights w′ ← w ·M
Duplicate sparse weight(s) on fG to corresponding stu-
dent module(s)

end for
return fG

4 Experiments 298

4.1 Experimental Setup 299

Datasets. We evaluate SPD on the General Lan- 300

guage Understanding Evaluation (GLUE) bench- 301

mark (Wang et al., 2018) and report the metrics 302

i.e., accuracy scores for SST-2, QNLI, RTE, and 303

WNLI, Matthews Correlation Coefficient (MCC) 304

for CoLA, F1 scores for QQP and MRPC, Spear- 305

man correlations for STS-B. 306

Baselines. We first use 50% sparsity (a widely 307

adopted sparsity ratio among SOTA), and com- 308

pare SPD against two types of baselines – non- 309

progressive and progressive. For the former, 310

we select BERT-PKD (Sun et al., 2019), Distil- 311

BERT (Sanh et al., 2019), MiniLM (Wang et al., 312

2020), TinyBERT (Jiao et al., 2020), Sparse- 313

BERT (Xu et al., 2021) and E.T. (Chen et al., 2021), 314

while for the latter, we choose Theseus (Xu et al., 315

2020). We further compare SPD against other 316

existing works under higher sparsity, e.g., Tiny- 317

BERT (Jiao et al., 2020), SparseBERT (Xu et al., 318

2021) and RPP (Guo et al., 2019). 319

SPD Settings. We use official BERTBASE, uncased 320

model as the pre-train model and the fine-tuned 321

pre-train model as our teacher. Both BERTBASE 322

and teacher model have the same architecture (i.e., 323

12 encoder layers (L = 12; embedding dimen- 324

sion dmodel = 768; self-attention heads H = 12)). 325

We finetune BERTBASE using 32 as batch size, 326

128 as max sequence length, best performance 327

from {2e−5, 3e−5, 4e−5, 5e−5} as the learning 328

rate. For SPD model training, the number of 329

pruning epochs, linear increasing module grafting 330

epochs, finetuning epochs vary from [10, 30], [5, 331

20], [5, 10], respectively. For pruning, we use 332

AdamW (Loshchilov and Hutter, 2018) as the opti- 333

mizer and run the experiments with an initial graft- 334

ing probability from {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 335

0.7, 0.8, 0.9}. The probability with the best perfor- 336

mance will be adopted. After pruning, we adjust 337

the slope of the grafting probability curve so that 338

the grafting probability equals 1 at the end of mod- 339

ule grafting. For module grafting and finetuning, an 340

AdamW optimizer is used with learning rate cho- 341

sen from {3e−5, 1e−4, 3.2e−4, 5e−4, 6.4e−4}. 342

The model training and evaluation are performed 343

with Python 3.6.8, torch 1.8.0, and CUDA 11.1 on 344

Quadro RTX6000 GPU226and Intel(R) Xeon(R) 345

Gold 6244 @ 3.60GHz CPU. 346

5



Model #Param
MNLI QQP QNLI SST-2 CoLA STS-B MRPC RTE

#Avg.(393k) (364k) (105k) (67k) (8.5k) (5.7k) (3.7k) (2.5k)
Acc F1 Acc Acc Mcc Spea F1 Acc

BERTBASE (Devlin et al., 2018) 109M 84.6 91.2 90.5 93.5 52.1 85.8 88.9 66.4 81.6
BERTBASE (ours) 109M 83.9 91.4 91.1 92.7 53.4 85.8 89.8 66.4 81.8
Fine-tuned BERTBASE (teacher) 109M 84.0 91.4 91.6 92.9 57.9 89.1 90.2 72.2 83.7

non-progressive
BERT6-PKD (Sun et al., 2019) 67M 81.5 88.9 88.4 91.0 45.5 86.2 85.7 66.5 79.2
DistilBERT (Sanh et al., 2019) 67M 82.2 88.5 89.2 92.7 51.3 86.9 87.5 59.9 79.8
MiniLM6 (Wang et al., 2020) 67M 84.0 91.0 91.0 92.0 49.2 - 88.4 71.5 -
TinyBERT6 (Jiao et al., 2020) 67M 84.5 91.1 91.1 93.0 54.0 90.1 90.6 73.4 83.5
SparseBERT (Xu et al., 2021) 67M 84.2 91.1 91.5 92.1 57.1 89.4 89.5 70.0 83.1
E.T. (Chen et al., 2021) 67M 83.7 86.5 88.9 90.8 55.6 87.6 88.7 69.5 81.4

progressive
Theseus (Xu et al., 2020) 67M 82.3 89.6 89.5 91.5 51.1 88.7 89.0 68.2 81.2
SPD (ours) 67M 85.0 91.4 92.0 93.0 61.4 90.1 90.7 72.2 84.5

Table 1: Results on the dev set of the GLUE benchmark. The results of DistilBERT and TinyBERT6 are taken from
(Jiao et al., 2020). Mcc refers to Matthews correlation, and Spea refers to Spearman.

Model Sparsity CoLA STS-B MRPC RTE Avg.(Mcc) (Spea) (F1) (Acc)

Teacher 100% 57.9 89.1 90.2 72.2 77.4

TinyBERT4 82% 29.8 - 82.4 - -
RPP 88.4% - - 81.9 67.5 -
SparseBERT 95% 18.1 32.2 81.5 47.3 44.8

SPD (ours) 66.6% 50.7 88.9 90.4 69.7 74.9
SPD (ours) 75% 50.0 88.3 90.2 67.9 74.1
SPD (ours) 87.5% 49.9 87.8 89.9 67.9 73.9
SPD (ours) 90% 48.7 87.8 89.9 69.0 73.9
SPD (ours) 95% 42.1 86.9 88.7 56.7 68.2

Table 2: Results on the dev set of the GLUE benchmark
at higher pruning rates.

4.2 Experimental Results347

Accuracy vs. Sparsity. We do experiments348

on eight GLUE benchmark tasks (Table 1). For349

non-progressive baselines, SPD exceeds all of350

them on QNLI, SST-2, CoLA, STS-B, and MRPC.351

For RTE, TinyBERT6 has a 1.6% higher accu-352

racy than SPD. However, TinyBERT6 used aug-353

mented data while SPD does not use data augmen-354

tation to generate the results in Table 1. On av-355

erage, SPD has 6.3%, 5.6%, 1.2%, 1.7%, 3.7%356

improvement in performance than BERT6-PKD,357

DistilBERT, TinyBERT6, SparseBERT, E.T. respec-358

tively. Furthermore, on CoLA, SPA achieves up359

to 25.9% higher performance compared to all non-360

progressive baselines. For the progressive baseline,361

we compare SPD with BERT-of-Theseus. Exper-362

imental results show that SPD exceeds the latter363

on all tasks. SPD has a 3.9% increase on aver-364

age. Among all the tasks, CoLA and RTE have365

20.2% and 5.9% gain respectively. For the compar-366

ison with sparse and non-progressive baseline, SPD 367

has an improvement of 16.8%, 5.5%, 3.2%, 2.7%, 368

2.0%, 1.9%, 1.6%, 1.6% on CoLA, RTE, MNLI, 369

QNLI, QQP, MRPC, STS-B, SST-2, respectively. 370

On all listed tasks, SPD even outperforms the 371

teacher model except for RTE. On RTE, SPD re- 372

tains exactly the full accuracy of the teacher model. 373

On average, the proposed SPD achieves a 1.1% 374

higher accuracy/score than the teacher model. We 375

conclude the reason for the outstanding perfor- 376

mance from three respects: 1) There is redundancy 377

in the original dense BERT model. Thus, prun- 378

ing the model with a low pruning rate (e.g., 50%) 379

will not lead to a significant performance drop. 2) 380

SPD decreases the overfitting risk which helps the 381

student model learn better. 3) The interference 382

between different hyperparameter strategies is miti- 383

gated, which enables SPD to obtain a better student 384

model. 385

We also compare SPD with other baselines (i.e., 386

4-layer TinyBERT (Jiao et al., 2020), RPP (Guo 387

et al., 2019), and SparseBERT (Xu et al., 2021) 388

) under higher pruning rates. Results are sum- 389

marized in Table 2. For the fairness of compar- 390

ison, we remove data augmentation from the above 391

methods. We mainly compare the aforementioned 392

baselines with very high sparsity (e.g., 90%, 95%) 393

SPD. For the comparison with TinyBERT4, both 394

SPD (90% sparsity) and SPD (95% sparsity) win. 395

SPD (90% sparsity) has 63.4% and 9% higher 396

evaluation score than TinyBERT4 on CoLA and 397

MRPC, respectively. For the setting of 95% spar- 398

sity, SPD outperforms TinyBERT4 with 41.3% and 399

6



0 1000 2000 3000
Training steps

0.4

0.6

0.8

1.0
Ac

cu
ra

cy

dev set
training set

(a) No progressive, no KD

0 1000 2000 3000
Training steps

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

dev set
training set

(b) Progressive, no KD

0 1000 2000 3000
Training steps

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

dev set
training set

(c) No progressive, KD

0 1000 2000 3000
Training steps

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

dev set
training set

(d) Progressive, KD (ours)

Figure 5: Comparison of four strategies to deal with the overfitting problem on MRPC.

7.6% higher performance, respectively. Compared400

to RPP, both SPD (90% sparsity) and SPD (95%401

sparsity) show higher performance on MRPC, with402

9.8% and 8.3% higher F1 score, respectively. For403

SparseBERT, SPD exceeds it on all tasks in Table 2.404

Especially on CoLA, SPD (90% sparsity) and SPD405

(95% sparsity) have 2.69× and 2.33× higher Mcc406

score on CoLA, respectively. SparseBERT has407

competitive performance with SOTA when using408

data augmentation. The reason for the performance409

drop for SparseBERT may because its deficiency410

of ability in mitigating overfitting problems.411

Overfitting Mitigation. We explore the effective-412

ness of SPD to mitigate the overfitting problem.413

Depending on whether progressive, grafting, or414

KD is used, we compare 4 strategies: (a) no pro-415

gressive, no KD; (b) progressive, no KD; (c) no416

progressive, KD; (d) progressive, KD (ours). We417

evaluate these strategies on both training and valida-418

tion sets of MRPC. The results are summarized in419

Figure 5. From (a) to (d), the gap between the eval-420

uation results of the training set and the dev set is421

reduced, which strongly suggests that the strategy422

adopted by SPD, i.e., progressive + KD, outper-423

forms other strategies in mitigating the overfitting424

problem. Figure 5 (a), (b), and (c) indicate that425

compared to progressive only, KD has a bigger im-426

pact on mitigating overfitting, as the performance427

gap between the training set and the dev set de-428

creases more from (a) to (c) than from (a) to (b).429

From Figure 5 (a), (b) and (c), we also observe that430

compared to no progressive, no KD, either using431

progressive (Figure 5 (b)) or KD (Figure 5 (c)) is432

very obvious to help mitigate the overfitting prob-433

lem. Figures 5 (b), (c) and (d) indicate that the434

combination of progressive and KD brings more435

benefits than only using progressive or KD as Fig-436

ure 5 (d) has the smallest performance gap between437

the training set and the dev set. Combined with438

Table 1 and Table 2, Figure 5 shows that SPD miti- 439

gates overfitting and leads to higher performance. 440

4.3 Ablation Studies 441

In this section, we justify the three schedulers used 442

in our method (i.e., grafting probability, pruning 443

rate, and learning rate), and study the sensitivity of 444

our method with respect to each of them. 445

Study on Components of SPD. The proposed SPD 446

consists of three components (i.e., sparse, knowl- 447

edge distillation, and progressive module grafting). 448

We conduct experiments to study the importance of 449

each component on GLUE benchmark tasks with 450

the sparsity of 50% and results are shown in Ta- 451

ble 3. Compared to sparse (vanilla pruning), both 452

KD and progressive achieve gains on performance 453

among all tasks. The combination of all compo- 454

nents has the highest average score, which is 0.96% 455

higher than vanilla pruning. 456

Effects of Grafting Probability Strategy. In our 457

method, we set the grafting probability greater than 458

0 during pruning, to allow student modules to learn 459

deeper knowledge from the teacher model. To ver- 460

ify the benefit of this design, we change the graft- 461

ing probability to zero and compare it with our 462

method. The result on RTE is shown in Figure 6. 463

Pruning with grafting (the red curve) shows better 464

performance than pruning without grafting, which 465

justifies the existence of grafting during pruning. In 466

addition, we study the sensitivity of our method to 467

grafting probability (Figure 7). It is observed that 468

p0 = 0.6 achieves the best performance, and the pro- 469

gressive design is better than the non-progressive. 470

Effects of Pruning Rate Strategy. For the pruning 471

rate scheduler, we compare the strategies with dif- 472

ferent pruning ending steps. The results are shown 473

in Figure 8. It is observed that the pruning during 474

when grafting probability p = p0 has a higher F1 475

score than other strategies on MRPC. 476

Effects of Optimizer Strategy. We also compare 477

7



Model #Param MNLI QQP QNLI SST-2 CoLA STS-B MRPC RTE Avg.

Fine-tuned BERTBASE (teacher) 109M 84.0 91.4 91.6 92.9 57.9 89.1 90.2 72.2 83.7

Sparse 67M 83.7 86.5 88.9 90.8 55.6 87.6 88.7 69.5 81.4
Sparse + KD 67M 84.2 91.1 91.5 92.1 57.1 89.4 89.5 70.0 83.1
Sparse + Progressive 67M 83.9 91.2 91.5 92.3 57.4 89.6 89.6 71.4 83.4
SPD (ours) 67M 85.0 91.4 92.0 93.0 61.4 90.1 90.7 72.2 84.5

Table 3: The performance comparison of different strategies on the dev set of GLUE. The results of DistilBERT and
TinyBERT6 are taken from (Jiao et al., 2020). Mcc refers to Matthews correlation and Spea refers to Spearman.

0 1000 2000 3000 4000
Training steps

0.5

0.6

0.7

Ac
cu

ra
cy

Best choice

Pruning w/o. module grafting
Pruning w. module grafting
End of pruning
End of grafting

Figure 6: Pruning w/ module grafting vs. Pruning w/o.
module grafting on RTE (dev set).

0 1000 2000 3000 4000
Training steps

0.5

0.6

0.7

Ac
cu

ra
cy

Best choice

End of pruning
End of grafting
p=0
p=0.1
p=0.2

p=0.3
p=0.4
p=0.5
p=0.6

p=0.7
p=0.8
p=0.9
p=1.0

Figure 7: Sensitivity analysis of grafting probability on
RTE (dev set).

0 1000 2000 3000 4000 5000 6000 7000
Training steps

0.0

0.2

0.4

0.6

0.8

1.0

F1

Best choice

Prune during p=p0
Prune till p=1
Prune during whole training
End of pruning
End of grafting

Figure 8: Effects of different pruning ending strategies
on MRPC (dev set).

our strategy with the strategy that only has one478

learning rate scheduler. The results (Figure 9) indi-479

cate that our strategy (i.e., two independent optimiz-480

ers) is better. We also evaluate different learning481

rates with the pruning rate of 0.9 and the grafting482

probability of 0.8.483

5 Conclusion484

In this paper, we postulate a counter-traditional485

hypothesis that pruning increases the risk of over-486

0 2000 4000
Training steps

0

1

2

3

Le
ar

ni
ng

 r
at

e 
(e

-4
)

(a) One optimizer

0 2000 4000
Training steps

0

1

2

3

Le
ar

ni
ng

 r
at

e 
(e

-4
)

(b) Two optimizers

0 1000 2000 3000 4000
Training steps

0.55

0.60

0.65

0.70

Ac
cu

ra
cy

Best choice

One optimizer
Two optimizers
End of pruning
End of grafting

(c) Comparison of two different optimizer settings

Figure 9: (a) The learning rate curve of one AdamW op-
timizer in training. (b) The learning rate of two AdamW
optimizers in training. (c) Performance comparison of
the above two settings.

fitting under the pretrain-and-finetune paradigm. 487

We analyze and empirically verify this hypothesis, 488

and propose a sparse progressive pruning method 489

to address the overfitting problem. We theoreti- 490

cally prove that our pruning method can obtain 491

a sub-network from the student model that has a 492

similar accuracy as the teacher and the accuracy 493

gap is bounded. We study and minimize the inter- 494

ference between different hyperparameter strate- 495

gies, including pruning rate, learning rate, and 496

grafting probability. A number of ablation stud- 497

ies and experimental results on eight tasks from the 498

GLUE benchmark demonstrate the superiority of 499

our method over the leading competitors. 500

8



References501

Haoli Bai, Jiaxiang Wu, Irwin King, and Michael Lyu.502
2020. Few shot network compression via cross distil-503
lation. In AAAI, volume 34, pages 3203–3210.504

Davis Blalock, Jose Javier Gonzalez Ortiz, Jonathan505
Frankle, and John Guttag. 2020. What is the506
state of neural network pruning? arXiv preprint507
arXiv:2003.03033.508

Tom B Brown, Benjamin Mann, Nick Ryder, Melanie509
Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind510
Neelakantan, Pranav Shyam, Girish Sastry, Amanda511
Askell, et al. 2020. Language models are few-shot512
learners.513

Shiyang Chen, Shaoyi Huang, Santosh Pandey, Bing-514
bing Li, Guang R Gao, Long Zheng, Caiwen Ding,515
and Hang Liu. 2021. Et: re-thinking self-attention516
for transformer models on gpus. In Proceedings of517
the International Conference for High Performance518
Computing, Networking, Storage and Analysis, pages519
1–18.520

Yun Won Choi and Jang Woon Baek. 2020. Edge cam-521
era system using dee p learning method with model522
compression on embedded applications. In 2020523
IEEE International Conference on Consumer Elec-524
tronics (ICCE), pages 1–4. IEEE.525

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and526
Kristina Toutanova. 2018. Bert: Pre-training of deep527
bidirectional transformers for language understand-528
ing. arXiv preprint arXiv:1810.04805.529

Jonathan Frankle and Michael Carbin. 2018. The lottery530
ticket hypothesis: Finding sparse, trainable neural531
networks. In International Conference on Learning532
Representations.533

Richard C Gerum, André Erpenbeck, Patrick Krauss,534
and Achim Schilling. 2020. Sparsity through evo-535
lutionary pruning prevents neuronal networks from536
overfitting. Neural Networks, 128:305–312.537

Mitchell A Gordon, Kevin Duh, and Nicholas Andrews.538
2020. Compressing bert: Studying the effects of539
weight pruning on transfer learning. arXiv preprint540
arXiv:2002.08307.541

Fu-Ming Guo, Sijia Liu, Finlay S Mungall, Xue Lin,542
and Yanzhi Wang. 2019. Reweighted proximal prun-543
ing for large-scale language representation. arXiv544
preprint arXiv:1909.12486.545

Song Han et al. 2015. Learning both weights and con-546
nections for efficient neural network. In Advances547
in Neural Information Processing Systems (NIPS),548
pages 1135–1143.549

Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. 2015.550
Distilling the knowledge in a neural network. Ad-551
vances in Neural Information Processing Systems552
(NIPS).553

Xiaoqi Jiao, Yichun Yin, Lifeng Shang, Xin Jiang, Xiao 554
Chen, Linlin Li, Fang Wang, and Qun Liu. 2020. 555
Tinybert: Distilling bert for natural language under- 556
standing. In Proceedings of the 2020 Conference on 557
Empirical Methods in Natural Language Processing: 558
Findings, pages 4163–4174. 559

Zhengang Li, Geng Yuan, Wei Niu, Pu Zhao, Yanyu 560
Li, Yuxuan Cai, Xuan Shen, Zheng Zhan, Zhenglun 561
Kong, Qing Jin, et al. 2021. Npas: A compiler-aware 562
framework of unified network pruning and architec- 563
ture search for beyond real-time mobile acceleration. 564
In CVPR, pages 14255–14266. 565

Ilya Loshchilov and Frank Hutter. 2018. Fixing weight 566
decay regularization in adam. 567

George S Lueker. 1998. Exponentially small bounds 568
on the expected optimum of the partition and subset 569
sum problems. Random Structures & Algorithms, 570
12(1):51–62. 571

Seyed Iman Mirzadeh, Mehrdad Farajtabar, Ang 572
Li, Nir Levine, Akihiro Matsukawa, and Hassan 573
Ghasemzadeh. 2020. Improved knowledge distilla- 574
tion via teacher assistant. In Proceedings of the AAAI 575
Conference on Artificial Intelligence, volume 34, 576
pages 5191–5198. 577

Victor Sanh, Lysandre Debut, Julien Chaumond, and 578
Thomas Wolf. 2019. Distilbert, a distilled version of 579
bert: smaller, faster, cheaper and lighter. Advances 580
in Neural Information Processing Systems (NIPS). 581

Chengchao Shen, Xinchao Wang, Youtan Yin, Jie Song, 582
Sihui Luo, and Mingli Song. 2021. Progressive net- 583
work grafting for few-shot knowledge distillation. In 584
Proceedings of the AAAI Conference on Artificial 585
Intelligence, volume 35, pages 2541–2549. 586

Siqi Sun, Yu Cheng, Zhe Gan, and Jingjing Liu. 2019. 587
Patient knowledge distillation for bert model com- 588
pression. In Proceedings of the 2019 Conference on 589
Empirical Methods in Natural Language Processing 590
and the 9th International Joint Conference on Natu- 591
ral Language Processing (EMNLP-IJCNLP), pages 592
4323–4332. 593

Zhiqing Sun, Hongkun Yu, Xiaodan Song, Renjie Liu, 594
Yiming Yang, and Denny Zhou. 2020. Mobilebert: a 595
compact task-agnostic bert for resource-limited de- 596
vices. In Proceedings of the 58th Annual Meeting of 597
the Association for Computational Linguistics, pages 598
2158–2170. 599

Alex Wang, Amanpreet Singh, Julian Michael, Felix 600
Hill, Omer Levy, and Samuel R Bowman. 2018. 601
Glue: A multi-task benchmark and analysis platform 602
for natural language understanding. 603

Wenhui Wang, Furu Wei, Li Dong, Hangbo Bao, Nan 604
Yang, and Ming Zhou. 2020. Minilm: Deep self- 605
attention distillation for task-agnostic compression 606
of pre-trained transformers. Advances in Neural In- 607
formation Processing Systems(NIPS). 608

9



Canwen Xu, Wangchunshu Zhou, Tao Ge, Furu Wei,609
and Ming Zhou. 2020. BERT-of-theseus: Com-610
pressing BERT by progressive module replacing. In611
Proceedings of the 2020 Conference on Empirical612
Methods in Natural Language Processing (EMNLP),613
pages 7859–7869, Online. Association for Computa-614
tional Linguistics.615

Dongkuan Xu, Ian EH Yen, Jinxi Zhao, and Zhibin616
Xiao. 2021. Rethinking network pruning–under the617
pre-train and fine-tune paradigm.618

Michael H Zhu and Suyog Gupta. 2018. To prune, or619
not to prune: Exploring the efficacy of pruning for620
model compression. The International Conference621
on Learning Representations.622

10

https://www.aclweb.org/anthology/2020.emnlp-main.633
https://www.aclweb.org/anthology/2020.emnlp-main.633
https://www.aclweb.org/anthology/2020.emnlp-main.633


Appendix623

We provide the sensitivity analysis of learning rate624

on RTE and STS-B (dev set) and the evaluation625

curves of four tasks (CoLA, STS-B, MRPC, and626

RTE) with the target pruning rate of 0.95.627

Sensitivity Analysis of Learning Rate. The628

analysis results on RTE and STS-B are shown in629

Figure 10 and Figure 11, respectively. Results vary630

with different learning rate settings. Among the631

eight learning rates listed in the legend of Figure 10,632

3.2× e−4 achieves the best performance. For STS-633

B, 4.0× e−4 gives the best performance among the634

learning rate choices in Figures 11.635

Evaluation Curves of Four Tasks at Tar-636

get Pruning rate of 0.95. We plot the evalu-637

ation curves of CoLA (Figure 12), STS-B (Fig-638

ure 13), MRPC (Figure 14), RTE (Figure 15) to639

further demonstrate the advantages of our proposed640

method SPD. In each figure, the x-axis is the train-641

ing steps while the y-axis represents evaluation642

metrics. To obtain the curves, we use the same643

settings as Table 2.644

Moreover, we describe the hyper-parameters set-645

tings in detail. For CoLA, we set the max sequence646

length as 128, the learning rate as 5.0e−4, the graft-647

ing probability during pruning as 0.8, the number648

of training epochs as 60, and the number of pruning649

epochs as 30. For STS-B, we use the same setting650

as CoLA. For MRPC, we set the max sequence651

length as 128, the learning rate as 6.4 × e−4, the652

grafting probability during pruning as 0.8, the num-653

ber of training epochs as 60, and the number of654

pruning epochs as 30. For RTE, we set the max se-655

quence length as 128, the learning rate as 3.0×e−5,656

the grafting probability during pruning as 0.6, the657

number of training epochs as 60, and the number658

of pruning epochs as 30.659

0 1000 2000 3000 4000
Training steps

0.5

0.6

0.7

Ac
cu

ra
cy

Best choice

lr=2.0e-5
lr=4.0e-5

lr=6.0e-5
lr=1.6e-4

lr=3.2e-4
lr=6.4e-4

End of pruning
End of grafting

Figure 10: Sensitivity analysis of learning rate on RTE
(dev set).

Figure 11: Sensitivity analysis of learning rate on STS-
B (dev set).

0 2000 4000 6000 8000 10000120001400016000
training steps

0.1

0.2

0.3

0.4

m
cc

End of pruning
End of grafting

Figure 12: Evaluation on CoLA (dev set). Target prun-
ing rate is 0.95.

0 2000 4000 6000 8000 10000
training steps

0.7

0.8

sp
ea

rm
an

r

End of pruning
End of grafting

Figure 13: Evaluation on STS-B (dev set). Target prun-
ing rate is 0.95.

0 1000 2000 3000 4000 5000 6000 7000
training steps

0.6

0.8

f1

End of pruning
End of grafting

Figure 14: Evaluation on MRPC (dev set). Target prun-
ing rate is 0.95.

0 1000 2000 3000 4000
training steps

0.5

0.6

0.7

ac
cu

ra
cy

End of pruning
End of grafting

Figure 15: Evaluation on RTE (dev set). Target pruning
rate is 0.95.

11


