
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

ADAPTIVE FAST-AND-SLOW VISUAL PROGRAM REA-
SONING FOR LONG-FORM VIDEOQA

Anonymous authors
Paper under double-blind review

ABSTRACT

Large language models (LLMs) have shown promise in generating program work-
flows for visual tasks. However, previous approaches often rely on closed-source
models, lack systematic reasoning, and struggle with long-form video question
answering (videoQA). To address these challenges, we introduce the FS-VisPR
framework, an adaptive visual program reasoning approach that balances fast
reasoning for simple queries with slow reasoning for difficult ones. First, we
design efficient visual modules (e.g., key clip retrieval and subtitle retrieval) to
support long-form video tasks. Then, we construct a diverse and high-quality
fast-slow reasoning dataset with a strong LLM to align open-source language
models’ ability to generate visual program workflows as FS-LLM. Next, we de-
sign a fast-slow reasoning framework with FS-LLM: Simple queries are directly
solved by VideoLLMs, while difficult ones invoke visual program reasoning, mo-
tivated by human-like reasoning processes. During this process, low-confidence
fast-thinking answers will trigger a second-stage slow-reasoning process, and a
fallback mechanism to fast reasoning is activated if the program execution fails.
Moreover, we improve visual programs through parameter search during both
training and inference. By adjusting the parameters of the visual modules within
the program, multiple variants are generated: during training, programs that yield
correct answers are selected, while during inference, the program with the highest
confidence result is applied. Experiments show that FS-VisPR improves both ef-
ficiency and reliability in visual program workflows. It achieves 50.4% accuracy
on LVBench, surpassing GPT-4o, matching the performance of Qwen2.5VL-72B
on VideoMME.

1 INTRODUCTION

Video Question Answering (VideoQA) requires models to reason over dynamic visual content to
answer natural language queries (Yu et al., 2019; Ning et al., 2023; Chen et al., 2023; Fang et al.,
2024; Li et al., 2024c; Fu et al., 2024; Li et al., 2024b). Recent advances in Video Large Language
Models (VideoLLMs) have shown impressive progress in this area (Li et al., 2023; Zhang et al.,
2023b; Lin et al., 2023; Li et al., 2024a; Bai et al., 2025b; Zhang et al., 2024c). However, these
models still struggle with long-form videos (Wu et al., 2024; Fu et al., 2024; Wang et al., 2024a),
where query-relevant information is sparse and widely distributed across the video. Processing hun-
dreds or thousands of frames requires a high computational cost, and the lack of task decomposition
reduces both planning and interpretability. A promising direction is to leverage LLMs to generate
visual program workflows that integrate powerful vision modules (Gupta & Kembhavi, 2023; Sub-
ramanian et al., 2023; Surı́s et al., 2023; Mahmood et al., 2024; Choudhury et al., 2023). By execut-
ing structured modules, this approach enables step-by-step reasoning and provides interpretability.
However, prior efforts have focused mainly on short clips or image-based tasks (Choudhury et al.,
2023; Surı́s et al., 2023) and lack an efficient module design tailored for long-form VideoQA. Fur-
thermore, reliance on closed-source models with few-shot prompting (Brown et al., 2020) and the
absence of adaptive reasoning strategies hinder both efficiency and scalability. Intuitively, not all
questions require visual program reasoning: For simple queries, a VideoLLM can often provide
reliable answers directly (Cheng et al., 2023; Zhu et al., 2023). Inspired by dual-process theories
of human reasoning (Evans, 2008; Evans & Stanovich, 2013; Xiong et al., 2023; Taubenfeld et al.,
2025), we observe that the confidence of a VideoLLM response can serve as an effective signal

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Dataset Cor. InCor. ∆

LongVideoBench 0.74 0.45 0.29

VideoMME 0.72 0.48 0.24

LVBench 0.67 0.46 0.22

Table 1: Average confidence scores for cor-
rect and incorrect predictions, including the gap
(Correct − Incorrect). Confidence is derived
from the decoded probabilities of options.

Figure 1: Prediction Accuracy for Samples
Above the Confidence Threshold.

of response reliability (see Figure 1 and Table 1). This motivates an adaptive fast-and-slow rea-
soning paradigm, where simple queries are handled via fast reasoning, while difficult cases invoke
program-based reasoning.

Building on these insights, we propose FS-VisPR, an adaptive visual program reasoning frame-
work for long-form videoQA. We first design a set of efficient long-video modules, including key
clip retrieval, subtitle-audio retrieval, object detection, trimming, and cropping etc., to enable pro-
grammatic reasoning over both temporal and multimodal cues. Next, we employ strong LLMs to
generate quality and diverse visual program workflows (which can reach the correct choices and
the module diversity), including the planning annotations and module calls. We identify simple
queries that VideoLLM can answer directly and integrate fast-reasoning logic code into the visual
program workflows. This logic enables VideoLLM to provide immediate responses with confidence
scores, which are used to determine whether to return the answer directly. Then, we fine-tune the
open-source language model as FS-LLM, aligning it with both fast and slow reasoning abilities.
During inference, FS-LLM adopts robust strategies: low-confidence fast answers trigger a second-
stage slow reasoning process, and failures in slow reasoning are back to fast reasoning. Moreover,
inspired by human hyperparameter search to optimize programs, we introduce a parameter search
for the modules to further enhance robustness. By varying the parameter values (e.g., Top k = {1,
3, 5}), multiple (three) candidate programs are generated. During training, programs that yield cor-
rect answers are retained, while during inference, the candidate program with the highest confidence
result is applied. Our main contributions can be summarized as follows:

• We design effective vision modules for long-form VideoQA, enabling efficient frame and
subtitle retrieval, and construct diverse, high-quality visual workflows with strong LLMs
to align open-source models with the ability to fast-slow reasoning as FS-LLM.

• We propose FS-VisPR, a fast-slow reasoning framework that leverages response confidence
as a control signal. FS-LLM generates the visual program workflows, where VideoLLM
directly handles simple queries as fast reasoning, while difficult queries are addressed using
visual program reasoning, achieving adaptive reasoning across varying difficulty levels.

• We develop a module parameter search mechanism for visual program adjustment, gener-
ating diverse program variants during training to reach the correct answer, and selecting the
most confident result at inference.

Extensive experiments on long-form VideoQA benchmarks show that FS-VisPR is both effec-
tive and efficient. It achieves 50.4% accuracy on LVBench, surpassing GPT-4o, and outperforms
Qwen2.5VL-72B by about 2% on LongVideoBench, all while relying on a 7B VideoLLM.

2 RELATED WORK

2.1 LARGE LANGUAGE MODELS AND VISUAL PROGRAM REASONING

Large Language Models (LLMs) have made significant progress in language understanding and
reasoning (Huang et al., 2022; Wang et al., 2022; Wei et al., 2022; Kojima et al., 2022). Beyond
text, LLMs are increasingly applied to program generation. Early works focused on mapping natural

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Confidence
Judege

Visual program 

Question:  
What is the 
woman with the 
pink hat wearing?

Few-Shot 

Visual program:
clips=retrieval (question, top_k)
frames=detect_object(clips, ‘woman’)
answer=query_mc(frames,question)
return answr 

Qwen-2.5vl Easy & Difficutly
Question

Multi-task -Tuning

Training Dataset (video&QA）

Confidence & ACC. 
Filtering

Easy Question:
Input: {Question}
Output:This a easy question VideoLLM 
can answer it. (query percetion)
{Visual program with Fast_Answer Api}

Difficult Question:
Input: {Question}
Output:This a difficulty question need 
API to help answer. (query percetion)
 {API Visual program}

SFT -DATA
Data control

Easy query   & 
Difficult query

Test Dataset (video&QA）

   Fast_ Answer API 

 Parameter search 
visual program for  
answer via
confidence.
(Slow reasoning 
answer)

Answer & 
Confidence Visual program

Fast-reasoning     
answer 2) Interence stage

    GPT-4o

1) Training stage

1.1  Fast-Slow-Reasoning Data Construction

FS-LLMS

FS-LLMS

1.2 Model Tuning

Query 
Perception

Module - Design
1.Retrieval_clips
2.Retrieval_subtitles
3.Ocr
4. Detect_object ......

 Parameter search 
visual program for  
answer via
confidence.
(Fast-then-Slow 
reasoning answer)

Low Confidence

Difficult

Eas
y

Figure 2: Fast–Slow Visual Program Reasoning framework: Fast–slow dataset construction aligns
model as FS-LLMs to perceive query difficulty and adopt dual-reasoning strategies during inference.

language prompts to code (Chen et al., 2021; Li et al., 2022), while later studies extended this to pro-
grammatic workflows for multi-step tasks (Gao et al., 2023; Chen et al., 2022), across domains such
as math (Chen et al., 2022), planning (Silver et al., 2022; 2024), and multimodal reasoning (Johnson
et al., 2017; Gupta & Kembhavi, 2023; Surı́s et al., 2023; Choudhury et al., 2023). For instance,
ViperGPT (Surı́s et al., 2023) integrates visual modules for image and short-video QA (Choudhury
et al., 2023), while VURF (Mahmood et al., 2024) enhances program reliability. These efforts po-
sition LLMs as general-purpose planners for decomposing complex tasks into interpretable steps.
However, many rely on closed-source models and resource-intensive prompting, often lacking ef-
fective visual modules for long-form VideoQA, which limits scalability.

2.2 LONG-FORM VIDEOQA AND VIDEO-LLMS

Long-form VideoQA requires reasoning over extended sequences and capturing temporal and causal
dependencies (Xiao et al., 2021; Wu et al., 2024; Fu et al., 2024; Wang et al., 2024a). Recent Video-
LLMs extend temporal visual encoders for joint spatial-temporal reasoning (Bai et al., 2025b; Zhang
et al., 2024a;b; Li et al., 2024a; Cheng et al., 2024), but face memory and computational bottlenecks
with long videos. To address this, some strategies use captioning or keyframe summarization to
create textual representations for LLMs (Zhang et al., 2023a; Wang et al., 2024b; 2025), which
improve scalability but can lose fine-grained temporal details and require multiple inference steps.
These limitations motivate FS-VisPR, which dynamically focuses on key segments and employs
visual program reasoning.

2.3 DUAL-PROCESS REASONING IN AI MODELS

Dual-process theory distinguishes between fast (intuitive) and slow (deliberative) reasoning (Evans,
2003; 2008). Recent AI research has adopted fast-slow paradigms (Xiao et al., 2025; Sun et al.,
2025; Zhang et al., 2025; Sun et al., 2024), where fast reasoning efficiently handles simple queries,
and slow reasoning is used for complex tasks. Previous methods often treat these modes separately
and do not integrate them with visual program generation, limiting efficiency-accuracy trade-offs.
Our framework adaptively switches between fast and slow reasoning based on model confidence:
queries are initially addressed by fast reasoning, triggering slow reasoning when confidence is low,
with a fallback to fast reasoning if the slow reasoning fails.

3 METHOD

In this section, we present FS-VisPR, an adaptive visual-program reasoning framework for long-
form VideoQA. The central idea is simple and effective: the FS-LLM first estimates the query’s
difficulty based on its learned perception. For queries deemed difficult, FS-VisPR directly employs
slow reasoning, utilizing structured visual programs with external modules. For queries judged as

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

easy, the model attempts fast reasoning by directly generating an answer together with a confidence
score. If confidence is high, the fast answer is returned; otherwise, FS-VisPR falls back to slow
reasoning for more reliable computation. Additionally, if the visual program cannot be executed,
the fast reasoning answer is returned as a fallback.

3.1 CONFIDENCE ANALYSIS

Given a video V = {f1, . . . , fT } and a query Q, the VideoLLM pθ autoregressively generates an
answer sequence Â = [â1, . . . , âm]. We define the model confidence as the exponential of the
average log-likelihood of the decoded tokens:

Conf(V,Q) = exp

(
1

m

m∑
t=1

log pθ(ât | V,Q, â<t)

)
(1)

To examine the reliability of this measure, we conduct experiments in three long-form VideoQA
benchmarks using QwenVL-2.5 as the backbone. As shown in Table 1, the model exhibits sub-
stantially higher confidence for correct predictions (mean ∼ 0.70) than for incorrect ones (mean
∼ 0.45), with a gap of about 25%. Furthermore, Figure 1 shows that accuracy increases mono-
tonically with the confidence threshold, confirming that confidence is a strong indicator of answer
quality and motivating FS-VisPR.

Modules Parameters Description

GetClips video path, query, top k Retrieves the top-k video clips most relevant to
the given query.

GetSubtitles video path, query, top k Retrieves the top-k subtitle segments most
relevant to the given query.

TrimBefore video path, timestamp,
intervals

Retrieves frames preceding the specified
timestamp, with duration defined by intervals.

TrimAfter video path, timestamp,
intervals

Retrieves frames following the specified
timestamp, with duration defined by intervals.

TrimRange video path, start, end Retrieves frames within the temporal range from
start to end.

QueryMC frames, query, choices Answers a multiple-choice question using the
given frames and candidate choices.

QueryYN frames, query Answers a binary (yes/no) question using visual
evidence in the frames.

RunOCR frame Performs optical character recognition on the
input frame and returns recognized text.

DetectObject frame, text Detects objects in the frame conditioned on a
textual prompt; returns bounding boxes.

GetSubsRange video path, start, end Retrieves subtitles within the temporal range
from start to end.

GetCapsRange video path, start, end Retrieves captions within the temporal range
from start to end.

GetSubtitleHint video path, query Retrieves subtitle segments or hints semantically
relevant to the query.

Crop frame, box Crops the specified region from a frame to enable
focused analysis.

ExtractFrames video path Extracts all frames from the video for subsequent
processing.

SplitVideo video path Segments the video into candidate intervals based
on scene structure.

FastThink video path, query VideoLLM directly generate the answer and
confidence score.

Table 2: Modules and their parameters in FS-VisPR for long-form VideoQA.

3.2 LONG-VIDEO MODULE DESIGN

To enable modular reasoning over long-form videos, FS-VisPR builds upon structured and efficient
modules M and an associated parameter space Q (Table 2). Each module m ∈ M is designed as

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

a composable function with tunable arguments p ∈ Q, allowing flexible program construction tai-
lored to different queries. The module set M spans a broad range of capabilities: retrieval-oriented
modules such as GetClips and GetSubtitles return the top-k relevant video segments or subtitle
spans; temporal-control modules including TrimBefore, TrimAfter, and TrimRange enable precise
interval selection; reasoning-support modules like QueryMC and QueryYN handle multiple-choice
and yes/no questions, while RunOCR and DetectObject extract textual and object-level evidence
from frames. Additional utilities such as GetSubsRange, GetCapsRange, and GetSubtitleHint pro-
vide finer-grained control over subtitle and caption data. By exposing reasoning as a sequence
of function calls from M, FS-VisPR treats video understanding as program execution rather than
monolithic prediction. This design enhances interpretability and modularity. Compared with the
previous design (Choudhury et al., 2023), we refine the vision module by achieving more precise
subtitle localization, key frame extraction, and leveraging VideoLLM for improved reasoning. Full
specifications of M and Q are provided in Appendix A.1.

3.3 DATASET CONSTRUCTION

We start from a training dataset Dtrain = {(Vi, Qi, Ai)}Ni=1, where Vi denotes a video, Qi a natural-
language query, and Ai the ground-truth answer. Based on this, we construct a visual program rea-
soning dataset D = {(Vi, Qi, Ai, Pi)}Ni=1, where each Pi is an executable visual program consisting
of vision module plans and calls such that exec(Pi) = Ai. To generate Pi, we manually curate a
small support set of samples S = {(Qs, As, Ps)}, which serve as few-shot prompts for a strong lan-
guage model pϕ. For each new instance, the model proposes a candidate program P̂i ∼ pϕ(S, Qi),
and we retain only those satisfying exec(P̂i) = Ai as high-quality data. To annotate the query diffi-
culty in the training set Dtrain, we use the VideoLLM pθ to obtain both the predicted answer and the
associated confidence according to Eq. 1. Âi, γi = pθ(Vi, Qi), and assign a difficulty label as

yi =

{
easy, if Âi = Ai and γi > τ,

difficult, otherwise,
τ = 0.75. (2)

The difficulty labels are embedded in the output prompts: “This is an easy question” triggers fast
reasoning, while “This is a difficult question” invokes visual program reasoning. This supervision
helps the model perceive query difficulty and adjust its reasoning strategy. To ensure balanced and
diverse module usage, we track the frequency of each module in D. If any module appears in fewer
than 50 examples, we use pϕ for query rewriting to augment the dataset. As shown in Figure 3,
the dataset enables FS-LLM to perform fast reasoning on easy queries and structured reasoning on
difficult ones. Further details are in Appendix A.2.

3.4 PARAMETER SEARCH

To improve the robustness of program execution, FS-VisPR performs a parameter search over the
module set M and associated parameter space Q. Given a program P = {m1(p1), . . . ,mk(pk)},
we vary one parameter pi ∈ Q at a time to generate program variants P ′, keeping all other arguments
fixed from the original program. Multiple variants of the program can be run in parallel, enabling
efficient exploration of different parameter configurations. During training, variants that yield the
correct answer are retained to enrich the program space. During inference, the candidate program
with the highest confidence result is applied. Key parameters include top-k for retrieval modules,
intervals for temporal modules, and num frames for frame extraction. This procedure enables the
model to systematically explore alternative module arguments, improving execution reliability with-
out compromising modularity. Full details are provided in Appendix A.1.

3.5 ADAPTIVE FAST-SLOW REASONING

FS-VisPR integrates all components into an adaptive reasoning process. For a query q, the FS-
LLM pθ first predicts the difficulty label yi as either easy or difficult. Then, for easy queries, fast
reasoning generates an answer and confidence γi. If γi > c, the answer is returned; otherwise, slow
reasoning is invoked. For difficult queries, slow reasoning directly constructs a structured program
from M, executes it, and optionally explores parameter variations over Q. The candidate with
the highest confidence is selected. A fallback mechanism returns the fast reasoning prediction if
program execution fails. This adaptive fast-slow process is shown in Figure 2 and Algorithm 1.

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Instruction (Fast-thinking): 
When the protagonist was kneading 

white plasticine, what did he finally get?

A. Four stars and a few clouds

B. Ten petals and a small basket .....

output: 
def execute_command():

    #  Fast Thinking   

    # Simple question that VideoLLM can solve.

    flag, answer  = fast_thinking(video,question)

    if flag:

        return answer
    

    # <thinking> First, retrieve ..... </thinking>  

    clips = get_clips (question, top_k = 2)

    frames =extract_frames (clips, num_frames=8 )

    ....... (Other API)

    final_frames = []

    for frame in frames:

 if detect_object (frame, "plasticine" )  

             final_frames.append (frame)

     prompt = f"what did he finally get?"

    answer, conf = query_mc (final_frames, prompt)       

    return conf, answer

Instruction  (Slow-thinking): 
when the sign with the subtitle 

'since1936' appears, what are the 

numbers under 'since1936'?   

A. 2279-8045 3F     ......

output: 
def execute_command():

   #  Slow Thinking 

    # Difficutly question that need API.

    # <thinking> First, retrieve......</thinking>  

    clips = get_clips ("sign ........", top_k = 2)

    frames =extract_frames (clips)

    final_frames = []

   ......

    

for frame in frames:

        if  run_ocr ( frame ) 

              text= run_cor (f rame ) 

              final_frames.append (frame)

     prompt = text + "Identify the numbers ....."

    answer,conf = query_mc (final_frames, prompt)

    return conf, answer

        Parameters Search
1. clips = get_clips ("sign ...=", top_k = 1)
2. clips = get_clips ("sign ...", top_k = 3) 
3.  clips = get_clips ("sign ...", top_k = 5)

Relpace

Fast-thinking code:
High confidence returns; 
low confidence triggers 
visual program reasoning. 

Figure 3: Fast-Slow Dataset: enabling LLMs to
adaptively choose between fast reasoning for sim-
ple queries, confidence-guided slow reasoning un-
der uncertainty, and full slow reasoning for diffi-
cult queries as FS-LLM.

Algorithm 1 Adaptive Fast-and-Slow Visual
Program Reasoning
1: Input: FS-LLM pθ , video v, question q, vision modules
M, parameter setQ, confidence threshold θ

2: Fast-slow reasoning:
3: ot← pθ(q, stop = ’return answer’)

4: if ’fast reasoning’ in ot then
5: (confid, answer)←M[fast think](v, q)

6: if confid ≥ θ then
7: return answer ▷ Return Fast-reasoning answer.
8: else
9: ot← pθ(q, ot) ▷ Trigger Slow-reasoning.
10: end if
11: end if
12: Execute the slow reasoning visual program:
13: result← exec(ot,M)

14: if fail:
15: returnM[fast think](v, q)[’answer’]

16: Parameters Search:
17: results← [result]

18: for each p ∈ Q do
19: for each value ∈ p do
20: output′ ← replace(ot, p, value)
21: results.append(exec(output′,M))

22: end for
23: end for
24: return r.answer
25: where r = argmaxr′∈results r′.confidence ▷ Return

the answer corresponding to the result with the highest con-
fidence

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP.

We construct the fast–slow reasoning dataset based on CG-Bench (Chen et al., 2024a), which con-
tains 12K multiple-choice QA instances. Visual programs are generated using strong LLM, GPT-
4.1 (OpenAI, 2025), and each query is labeled as easy or difficult according to confidence scores
from Qwen2.5-VL (Bai et al., 2025a). The FS-LLM is fine-tuned on 5K diverse samples for three
epochs with up to four NVIDIA H100 GPUs. Training and inference are conducted with LLa-
MAFactory (Zheng et al., 2024) and VLLM (Kwon et al., 2023), using Qwen3-8B (Yang et al., 2025;
Hui et al., 2024) as the backbone for visual program code generation. For fast reasoning, Qwen2.5-
VL supports the query mc and query yn modules, processing up to 64 frames. We evaluate
FS-VisPR against both open-source baselines, LongVILALA (Chen et al., 2024b), VideoRAG (Ren
et al., 2025), VideoMind (Liu et al., 2025), VideoXL (Shu et al., 2025), and Video-R1 (Feng et al.,
2025), and proprietary models, GPT-4o (Hurst et al., 2024), Gemini 1.5 Pro (Team et al., 2024),
and Seed 1.5VL-Pro (Guo et al., 2025). Benchmarks include LongVideoBench (Wu et al., 2024),
VideoMME (Fu et al., 2024), and LVBench (Wang et al., 2024a). For LVBench, subtitles are gener-
ated from audio using FFmpeg and Whisper (Radford et al., 2023). All decoding follows the official
configurations with the setting frames. The confidence threshold is by default 0.75. More dataset
details are provided in Appendix A.3.

4.2 MAIN RESULTS

As shown in Table 3, FS-VisPR with a 7B VideoLLM achieves 50.4% on LVBench, surpassing GPT-
4o (48.9%), 62.2% on VideoMME, slightly below Qwen2.5-VL-72B (64.6%) but above Qwen2.5-
VL-7B (57.6%), and 62.2% on LongVideoBench, exceeding Qwen2.5-VL-72B (60.3%). Scaling to
34B as VideoLLM further improves results to 51.2%, 63.6%, and 64.8%. These results highlight FS-
VisPR’s consistent advantage over baseline VideoLLMs, its robustness across long-form video QA,
and the benefit of modular, confidence-guided fast–slow reasoning. Table 4 analyzes the contribution

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Model #Frame LVBench VideoMME (w sub, Long) LongVideoBench Avg

Closed-source Models
GPT-4o (Hurst et al., 2024) 384 48.9 72.1 66.7 62.6
Gemini-1.5-pro (Team et al., 2024) 256 33.1 77.4 64.0 58.2
Seed1.5VL-pro (Team, 2025) 32 46.1 63.3 63.7 57.7

Open-source Models
LongVILA-7B (Chen et al., 2024b) 256 - 52.1 57.7 -
LongVILA-7B + Video-RAG (Ren et al., 2025) 32 - 55.7 - -
VideoMind-7B (Liu et al., 2025) 2/FPS 40.8 49.2 - -
Video-XL-7B (Shu et al., 2025) 256 - 54.9 50.7 -
Video-R1-7B (Feng et al., 2025) 64 - 52.2 - -
InternVL3-8B (Zhu et al., 2025) 64 – - – -
Qwen2.5VL-7B (Bai et al., 2025a) 128 44.8 57.6 56.7 53.0
Qwen2.5VL-7B-RAG (Bai et al., 2025a) 128 47.2 58.2 58.4 54.6
Qwen2.5VL-72B (Bai et al., 2025a) 128 47.4 64.6 60.3 57.4

FS-VisProgV-8B (w/ Qwen2.5VL-7B) 64 50.4 62.2 62.2 58.3
FS-VisProgV-8B (w/ Qwen2.5VL-34B) 64 51.2 63.6 64.8 60.5

Table 3: Evaluation results on LVBench, VideoMME (long w/ subtitle), and LongVideoBench. FS-VisProg
achieves the better performance among open-source methods and is competitive with closed-source models.

Dataset Reasoning Samples Short ↑ Medium ↑ Long ↑ Avg ↑ Output. Len ↓ Avg. Runtime ↓

VideoMME
Fast 1611 85.1 79.8 71.2 79.3 366 2.4s
Slow 1089 43.6 49.1 52.0 48.9 1350 6.2s
Overall 2700 73.1 66.2 62.1 62.2 762 3.9s

LongVideoBench
Fast 737 83.7 80.7 76.5 80.4 366 2.8s
Slow 598 51.3 50.0 44.3 47.4 1696 6.8s
Overall 1335 70.5 64.0 55.5 62.2 964 4.6s

Table 4: Accuracy, output length, average runtime, and sample distribution of fast, slow reasoning
across video durations. Fast reasoning corresponds to direct responses from the VideoLLM, while
slow reasoning arises either when the model directly generates a visual program for perception or
when fast reasoning yields low confidence, triggering a second-stage inference. Most samples are
resolved by fast reasoning (e.g., 1611/2700 on VideoMME and 737/1335 on LongVideoBench).

of fast and slow reasoning. Fast reasoning corresponds to direct VideoLLM answers, achieving
strong accuracy on short videos (e.g., 85.1% on VideoMME) with concise outputs (366 length on
average), but degrading on longer videos. Slow reasoning is triggered either when the model directly
generates a visual program or when fast reasoning falls below the confidence threshold, producing
longer programs (up to 1696 length) while maintaining stable accuracy around 50%, and computed
the average runtime per sample, including the time for generating and executing the visual program,
to demonstrate the efficiency of FS-VisPR. We also present the results obtained using VideoLLM
(as Fast-thinking) for the 598 slow-reasoning samples in LongVideoBench and the 1,089 samples in
VideoMME in Appendix A.4.

4.3 ABLATION STUDIES

Confidence Threshold We examine the effect of the confidence threshold θ, which determines
whether the model accepts an answer from fast reasoning or switches to slow reasoning. As shown
in Figure 4, increasing θ from 0.4 to 0.75 yields an accuracy gain of over 3%. However, further
raising the threshold leads to performance degradation. A low threshold (θ = 0.4) causes the model
to rely predominantly on fast reasoning, whereas a high threshold (θ = 0.9) shifts most decisions
to slow reasoning. These results suggest that fast reasoning is effective for simple queries, while
slow reasoning is better suited for difficult ones. Overall, adaptively choosing between fast and slow
reasoning based on confidence surpasses either strategy alone.

Visual Modules Table 6 reports the impact of different module settings on FS-VisPR performance
for LongVideoBench and LVBench. For retrieval modules, increasing Top-k improves accuracy,
with LongVideoBench peaking at 61.2 for Top-k = 3 and LVBench at 49.2 for Top-k = 5,
while omitting retrieval reduces accuracy to 57.8 and 46.3, respectively. Temporal control via
Trim achieves the best accuracy on LongVideoBench at 60.7 with 30-second intervals, whereas

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Figure 4: Performance of the FS-VisPR at
varying confidence threshold on Long-form
VideoQA.

Parameter Set Voting Conf. (Ours)

None 44.7 44.7

Num frames 44.5 44.9

Intervals 44.4 44.4

Top k 44.5 46.2

Num frames + Top k 43.8 46.9

Num frames + Intervals 44.2 46.8

All 44.4 47.1

Table 5: The Parameter Search results on
LongVideoBench slow-reasoning data. Voting se-
lects the most frequent prediction; Confidence se-
lects the prediction with the highest confidence.
“None” indicates no parameter search integration.

Dataset Modules Setting Parameter

LongVideoBench

Retrieval Top-k N/A 1 3 5 —
Acc. (%) 57.8 60.2 61.2 60.1 —

Trim Intervals N/A 10 20 30 60
Acc. (%) 58.7 60.4 60.4 60.7 60.5

Detect object Text-thr N/A 0.25 0.50 0.70 —
Acc. (%) 59.8 60.9 60.4 60.4 —

Extract frames Num frames 8 16 32 64 —
Acc. (%) 58.2 59.5 60.2 60.8 —

LVB
Retrieval Top-k N/A 1 3 5 —

Acc. (%) 46.3 46.7 48.8 49.2 —

Extract frames Num frames 8 16 32 64 —
Acc. (%) 44.8 46.4 44.2 45.8 —

Table 6: Ablation study of different Modules on LongVideoBench and LVB. For each Module
and parameter, the first row lists parameter values, while the second row reports the corresponding
accuracy. The ”N/A” label indicates that the Module is not activated in visual program reasoning.

disabling trimming lowers performance to 58.7. For object detection, adjusting the text threshold
(Text-thr) provides modest gains (60.9), while skipping detection reduces accuracy to 59.8. In-
creasing the number of extracted frames consistently benefits LongVideoBench (up to 60.8), though
improvements on LVBench are mixed; removing frame extraction lowers LongVideoBench accuracy
to 58.2. These findings highlight the contribution of each Module and underscore the importance of
proper parameter settings for robust long-form VideoQA.

Module Parameter Search We evaluate the module parameter search on LongVideoBench
(1,089 slow-reasoning samples). As shown in Table 5, varying Num frames (8, 16, 32, 64) from
the ExtractFrames, and Top k from the GetClips (1, 3, 5) yields seven program variants under the
“Num frames + Top k” setting, while the “All” configuration integrates all tested parameter sets.
For aggregation, majority voting selects the most frequent prediction, whereas confidence-based
selection chooses the prediction with the highest confidence. Confidence consistently outperforms
voting (e.g., 46.9 vs. 43.8 on “Num frames + Top k”), and for single-parameter searches, Top k
proves more effective compared to Num frames and Intervals, achieving a result of 46.2. The “All”
configuration achieves the best accuracy of 47.1, representing a 2.4 improvement over the 44.7 result
without parameter search integration. These results demonstrate that combining diverse parameter
configurations enhances both the robustness and accuracy of visual program reasoning.

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Question: The entire video of duration 522 seconds. On the black table, there 
is a white tray and bowl. The tray has a dark-colored bottle with a white 
paper label on it, and the bowl contains a white powder. A hand covered 
with a sleeve is mixing the contents with a kitchen utensil. After the subtitle 
'basic muffin butter mixed with a cup of', what appears on the screen?
Choices: \nA. silver kitchen utensils\nB. white bowl\nC. red fruit\nD. 
butterfly\nE. white water bottle

Output:
def execute_command(video, question, choices, duration):
    # === Fast answer attempt ===
    .......
    flag, answer, confidence = fast_thinking(video_path,question,choices) 
    if flag:
        return answer, flag  (python_exec(output): flag=0, answer=‘A’)
# <thinking> First, retrieve the intervals where the subtitle 'basic muffin 
butter mixed with a cup of. Then, extract frames from these clips and apply 
OCR to find the subtitle "basic muffin butter mixed with a cup of". After 
this subtitle, trim the video to the next segment and query the model to 
determine what appears on the screen. </thinking>
    intervals = get_informative_subtitles(
        video_path,
        "basic muffin butter mixed with a cup of", top_k=1)
    interval = intervals[0]
    start, end = interval
    frames = trim_after(video_path, end, intervals=30,num_frames=16)
    ocr_texts, ocr_frames  = [], []
    for frame in frames:
        text = run_ocr(frame)
        if text and "basic muffin butter mixed with a cup of" in text.lower():
            ocr_texts.append(text)
            ocr_frames.append(frame)
    if not ocr_frames:
        ocr_frames = frames
    ....... (Other API)
    prompt =  f"OCR text from frames: {' '.join(ocr_texts)}\n"
        f"After the subtitle 'basic muffin butter mixed with a cup of', what 
appears on the screen?")
    answer = query_mc(ocr_frames prompt, choices)
    return answer   (python_exec(output): answer=‘C’, confidence=0.80)

Question: The entire video of duration 23 seconds. On the table in the 
kitchen, a person is adding yellow lemon slices to a glass jar filled with 
yellow squash slices. When the subtitle says 'I'm a New York Medicine 
Ave,' what other objects are present in the room?
Choices: A. Refrigerator \nB. Red flowers\nC. Yellow flowers\nD. 
Green plants\nE. Oven

Output:
def execute_command(video, question, choices, duration):
    # === Fast answer attempt ===
    # This is a simple question that videollm can solve directly. Return the 
fast and slow answers with their confidence scores.
    flag, answer, confidence = fast_thinking(video_path,question,choices) 
    if flag:
        return answer, flag (python_exec(output): flag=1, answer=‘B’) 

Fast-Reasoning

Question: The entire video of duration 3828 seconds. What color are the 
runes on the bottom of the girl's feet at 38:18 in the video? 
Choices: \nA. Golden \n B. White \nC. Red \ND. Black

Output:
def execute_command(video_path, question, choices, duration):
# === slow thinking ===
# This is a difficult question that need api to solve.
# <thinking> Trim the video around 38:18 (2300 seconds), extract 
frames, crop the bottom part of each frame to focus on the girl's feet, and 
query the model to identify the color of the runes on the bottom of her 
feet. </thinking>
    timestamp = 2300
    frames = trim_around(video_path, timestamp, intervals=30, 
num_frames=16)
    cropped_frames = []
    for frame in frames:
        cropped_frames.append(crop_bottom(frame))
    ....... (Other API)
    prompt = "What color are the runes on the bottom of the girl's feet at 
38:18 in the video?"
    answer = query_mc(cropped_frames, prompt, choices)
    return answer (python_exec(output): answer=‘A’, confidence=0.9)

Slow Reasoning  

✅ ❌

✅

Fast-Then-Slow Reasoning

✅

Figure 5: FS-VisPR case study: Three primary reasoning modes: direct fast reasoning via Vide-
oLLM, slow reasoning through generated visual programs, and slow reasoning triggered when fast
reasoning yields low confidence.

4.4 CASE ANALYSIS

We present representative cases from Figure 8 to illustrate FS-VisPR’s adaptive, query-aware reason-
ing. For a short 23-second video, the model uses fast reasoning to correctly answer a simple object
query. In a long 3828-second video, slow reasoning is required: FS-VisPR perceives the query’s
difficulty, locates the timestamp, extracts and crops frames, and identifies the correct answer, high-
lighting both temporal-spatial precision and interpretability via visual programs. In two-stage infer-
ence, low-confidence fast reasoning triggers slow reasoning with frame retrieval and OCR to obtain
the correct result. All visual programs employ parameter search to select the highest-confidence
outcome, providing transparent and explainable reasoning steps. These examples demonstrate that
FS-VisPR not only adapts its strategy based on perceived query difficulty but also delivers inter-
pretable, program-based evidence. We also show some failure cases in Appendix A.5.

5 CONCLUSION

In this work, we introduced FS-VisPR, an adaptive visual program reasoning framework for long-
form VideoQA. Leveraging model confidence as a reliable signal, FS-VisPR dynamically balances
fast reasoning for simple queries with slow, program-based reasoning for difficult queries. By gener-
ating explicit visual programs, the framework enhances interpretability, allowing users to understand
how answers are derived. We developed a set of efficient modules, constructed a fast-slow aligned
dataset, and proposed a parameter search mechanism to improve program diversity and robustness.
Extensive experiments demonstrate that FS-VisPR achieves effective, adaptive, and interpretable
video question answering, outperforming existing VideoLLMs.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

ETHICS STATEMENT

This work adheres to the ICLR Code of Ethics. No human subjects or animal experimentation were
involved in this study. All datasets used, including CG-Bench (Chen et al., 2024a), VideoMME (Fu
et al., 2024), LongVideoBench (Wu et al., 2024), and LVBench (Wang et al., 2024a), were sourced in
accordance with the relevant usage guidelines, ensuring compliance with privacy standards. We have
made efforts to prevent any biases or discriminatory outcomes throughout our research. No person-
ally identifiable information was used, and no experiments were conducted that could raise privacy
or security concerns. We remain committed to upholding transparency and integrity throughout the
research process.

REPRODUCIBILITY STATEMENT

We have made every effort to ensure that the results presented in this paper are reproducible. We in-
troduce a pipeline for dataset generation in Section 3.3, which outlines the construction of the slow-
fast reasoning data. A comprehensive description of the pipeline, including the specific prompts
used, is provided in Appendix A.2. For evaluation, baseline models and their configurations, as
well as the training strategies and datasets employed to enhance model performance, are discussed
in Section 4.1. We believe these measures will enable other researchers to reproduce our work and
further advance the field.

REFERENCES

Shuai Bai, Keqin Chen, Xuejing Liu, Jialin Wang, Wenbin Ge, Sibo Song, Kai Dang, Peng Wang,
Shijie Wang, Jun Tang, Humen Zhong, Yuanzhi Zhu, Mingkun Yang, Zhaohai Li, Jianqiang Wan,
Pengfei Wang, Wei Ding, Zheren Fu, Yiheng Xu, Jiabo Ye, Xi Zhang, Tianbao Xie, Zesen Cheng,
Hang Zhang, Zhibo Yang, Haiyang Xu, and Junyang Lin. Qwen2.5-vl technical report. arXiv
preprint arXiv:2502.13923, 2025a.

Shuai Bai, Keqin Chen, Xuejing Liu, Jialin Wang, Wenbin Ge, Sibo Song, Kai Dang, Peng Wang,
Shijie Wang, Jun Tang, et al. Qwen2. 5-vl technical report. arXiv preprint arXiv:2502.13923,
2025b.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in neural information processing systems, 33:1877–1901, 2020.

Guo Chen, Yicheng Liu, Yifei Huang, Yuping He, Baoqi Pei, Jilan Xu, Yali Wang, Tong Lu, and
Limin Wang. Cg-bench: Clue-grounded question answering benchmark for long video under-
standing. arXiv preprint arXiv:2412.12075, 2024a.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde De Oliveira Pinto, Jared
Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, et al. Evaluating large
language models trained on code. arXiv preprint arXiv:2107.03374, 2021.

Wenhu Chen, Xueguang Ma, Xinyi Wang, and William W Cohen. Program of thoughts prompt-
ing: Disentangling computation from reasoning for numerical reasoning tasks. arXiv preprint
arXiv:2211.12588, 2022.

Xiuyuan Chen, Yuan Lin, Yuchen Zhang, and Weiran Huang. Autoeval-video: An automatic bench-
mark for assessing large vision language models in open-ended video question answering. arXiv
preprint arXiv:2311.14906, 2023.

Yukang Chen, Fuzhao Xue, Dacheng Li, Qinghao Hu, Ligeng Zhu, Xiuyu Li, Yunhao Fang, Haotian
Tang, Shang Yang, Zhijian Liu, et al. Longvila: Scaling long-context visual language models for
long videos. arXiv preprint arXiv:2408.10188, 2024b.

Ho Kei Cheng, Seoung Wug Oh, Brian Price, Alexander Schwing, and Joon-Young Lee. Tracking
anything with decoupled video segmentation. In ICCV, 2023.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Zesen Cheng, Sicong Leng, Hang Zhang, Yifei Xin, Xin Li, Guanzheng Chen, Yongxin Zhu, Wenqi
Zhang, Ziyang Luo, Deli Zhao, and Lidong Bing. Videollama 2: Advancing spatial-temporal
modeling and audio understanding in video-llms. arXiv preprint arXiv:2406.07476, 2024. URL
https://arxiv.org/abs/2406.07476.

Rohan Choudhury, Koichiro Niinuma, Kris M Kitani, and László A Jeni. Zero-shot video question
answering with procedural programs. arXiv preprint arXiv:2312.00937, 2023.

Jonathan St BT Evans. In two minds: dual-process accounts of reasoning. Trends in cognitive
sciences, 7(10):454–459, 2003.

Jonathan St BT Evans. Dual-processing accounts of reasoning, judgment, and social cognition.
Annu. Rev. Psychol., 59(1):255–278, 2008.

Jonathan St BT Evans and Keith E Stanovich. Dual-process theories of higher cognition: Advancing
the debate. Perspectives on psychological science, 8(3):223–241, 2013.

Xinyu Fang, Kangrui Mao, Haodong Duan, Xiangyu Zhao, Yining Li, Dahua Lin, and Kai Chen.
Mmbench-video: A long-form multi-shot benchmark for holistic video understanding. arXiv
preprint arXiv:2406.14515, 2024.

Kaituo Feng, Kaixiong Gong, Bohao Li, Zonghao Guo, Yibing Wang, Tianshuo Peng, Junfei Wu,
Xiaoying Zhang, Benyou Wang, and Xiangyu Yue. Video-r1: Reinforcing video reasoning in
mllms. arXiv preprint arXiv:2503.21776, 2025.

Chaoyou Fu, Yuhan Dai, Yongdong Luo, Lei Li, Shuhuai Ren, Renrui Zhang, Zihan Wang, Chenyu
Zhou, Yunhang Shen, Mengdan Zhang, et al. Video-mme: The first-ever comprehensive evalua-
tion benchmark of multi-modal llms in video analysis. arXiv preprint arXiv:2405.21075, 2024.

Luyu Gao, Aman Madaan, Shuyan Zhou, Uri Alon, Pengfei Liu, Yiming Yang, Jamie Callan, and
Graham Neubig. Pal: Program-aided language models. In International Conference on Machine
Learning, pp. 10764–10799. PMLR, 2023.

Dong Guo, Faming Wu, Feida Zhu, Fuxing Leng, Guang Shi, Haobin Chen, Haoqi Fan, Jian Wang,
Jianyu Jiang, Jiawei Wang, et al. Seed1. 5-vl technical report. arXiv preprint arXiv:2505.07062,
2025.

Tanmay Gupta and Aniruddha Kembhavi. Visual programming: Compositional visual reasoning
without training. In Proceedings of the IEEE/CVF conference on computer vision and pattern
recognition, pp. 14953–14962, 2023.

Jiaxin Huang, Shixiang Shane Gu, Le Hou, Yuexin Wu, Xuezhi Wang, Hongkun Yu, and Jiawei
Han. Large language models can self-improve. arXiv preprint arXiv:2210.11610, 2022.

Binyuan Hui, Jian Yang, Zeyu Cui, Jiaxi Yang, Dayiheng Liu, Lei Zhang, Tianyu Liu, Jiajun Zhang,
Bowen Yu, Keming Lu, et al. Qwen2. 5-coder technical report. arXiv preprint arXiv:2409.12186,
2024.

Aaron Hurst, Adam Lerer, Adam P Goucher, Adam Perelman, Aditya Ramesh, Aidan Clark, AJ Os-
trow, Akila Welihinda, Alan Hayes, Alec Radford, et al. Gpt-4o system card. arXiv preprint
arXiv:2410.21276, 2024.

Justin Johnson, Bharath Hariharan, Laurens Van Der Maaten, Judy Hoffman, Li Fei-Fei,
C Lawrence Zitnick, and Ross Girshick. Inferring and executing programs for visual reason-
ing. In Proceedings of the IEEE international conference on computer vision, pp. 2989–2998,
2017.

Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yutaka Matsuo, and Yusuke Iwasawa. Large
language models are zero-shot reasoners. Advances in neural information processing systems,
35:22199–22213, 2022.

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin Zheng, Cody Hao Yu, Joseph E.
Gonzalez, Hao Zhang, and Ion Stoica. Efficient memory management for large language model
serving with pagedattention. In Proceedings of the ACM SIGOPS 29th Symposium on Operating
Systems Principles, 2023.

11

https://arxiv.org/abs/2406.07476


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Bo Li, Yuanhan Zhang, Dong Guo, Renrui Zhang, Feng Li, Hao Zhang, Kaichen Zhang, Peiyuan
Zhang, Yanwei Li, Ziwei Liu, et al. Llava-onevision: Easy visual task transfer. arXiv preprint
arXiv:2408.03326, 2024a.

KunChang Li, Yinan He, Yi Wang, Yizhuo Li, Wenhai Wang, Ping Luo, Yali Wang, Limin Wang,
and Yu Qiao. Videochat: Chat-centric video understanding. arXiv preprint arXiv:2305.06355,
2023.

Kunchang Li, Yali Wang, Yinan He, Yizhuo Li, Yi Wang, Yi Liu, Zun Wang, Jilan Xu, Guo Chen,
Ping Luo, et al. Mvbench: A comprehensive multi-modal video understanding benchmark. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp.
22195–22206, 2024b.

Yujia Li, David Choi, Junyoung Chung, Nate Kushman, Julian Schrittwieser, Rémi Leblond, Tom
Eccles, James Keeling, Felix Gimeno, Agustin Dal Lago, et al. Competition-level code generation
with alphacode. Science, 378(6624):1092–1097, 2022.

Yunxin Li, Xinyu Chen, Baotian Hu, Longyue Wang, Haoyuan Shi, and Min Zhang. Videovista:
A versatile benchmark for video understanding and reasoning. arXiv preprint arXiv:2406.11303,
2024c.

Bin Lin, Bin Zhu, Yang Ye, Munan Ning, Peng Jin, and Li Yuan. Video-llava: Learning united
visual representation by alignment before projection. arXiv preprint arXiv:2311.10122, 2023.

Ye Liu, Kevin Qinghong Lin, Chang Wen Chen, and Mike Zheng Shou. Videomind: A chain-of-lora
agent for long video reasoning. arXiv preprint arXiv:2503.13444, 2025.

Ahmad Mahmood, Ashmal Vayani, Muzammal Naseer, Salman Khan, and Fahad Shahbaz Khan.
Vurf: A general-purpose reasoning and self-refinement framework for video understanding. arXiv
preprint arXiv:2403.14743, 2024.

Munan Ning, Bin Zhu, Yujia Xie, Bin Lin, Jiaxi Cui, Lu Yuan, Dongdong Chen, and Li Yuan.
Video-bench: A comprehensive benchmark and toolkit for evaluating video-based large language
models. arXiv preprint arXiv:2311.16103, 2023.

OpenAI. Introducing gpt-4.1 model family, 2025. URL https://openai.com/index/
gpt-4-1/. Accessed: 2025-07-09.

Alec Radford, Jong Wook Kim, Tao Xu, Greg Brockman, Christine McLeavey, and Ilya Sutskever.
Robust speech recognition via large-scale weak supervision. In International conference on ma-
chine learning, pp. 28492–28518. PMLR, 2023.

Xubin Ren, Lingrui Xu, Long Xia, Shuaiqiang Wang, Dawei Yin, and Chao Huang. Vide-
orag: Retrieval-augmented generation with extreme long-context videos. arXiv preprint
arXiv:2502.01549, 2025.

Yan Shu, Zheng Liu, Peitian Zhang, Minghao Qin, Junjie Zhou, Zhengyang Liang, Tiejun Huang,
and Bo Zhao. Video-xl: Extra-long vision language model for hour-scale video understanding.
In Proceedings of the Computer Vision and Pattern Recognition Conference, pp. 26160–26169,
2025.

Tom Silver, Varun Hariprasad, Reece S Shuttleworth, Nishanth Kumar, Tomás Lozano-Pérez, and
Leslie Pack Kaelbling. Pddl planning with pretrained large language models. In NeurIPS 2022
foundation models for decision making workshop, 2022.

Tom Silver, Soham Dan, Kavitha Srinivas, Joshua B Tenenbaum, Leslie Kaelbling, and Michael
Katz. Generalized planning in pddl domains with pretrained large language models. In Proceed-
ings of the AAAI conference on artificial intelligence, volume 38, pp. 20256–20264, 2024.

Sanjay Subramanian, Medhini Narasimhan, Kushal Khangaonkar, Kevin Yang, Arsha Nagrani,
Cordelia Schmid, Andy Zeng, Trevor Darrell, and Dan Klein. Modular visual question answering
via code generation. arXiv preprint arXiv:2306.05392, 2023.

12

https://openai.com/index/gpt-4-1/
https://openai.com/index/gpt-4-1/


648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Guangyan Sun, Mingyu Jin, Zhenting Wang, Cheng-Long Wang, Siqi Ma, Qifan Wang, Tong Geng,
Ying Nian Wu, Yongfeng Zhang, and Dongfang Liu. Visual agents as fast and slow thinkers.
arXiv preprint arXiv:2408.08862, 2024.

Yiliu Sun, Yanfang Zhang, Zicheng Zhao, Sheng Wan, Dacheng Tao, and Chen Gong. Fast-slow-
thinking: Complex task solving with large language models. arXiv preprint arXiv:2504.08690,
2025.

Dı́dac Surı́s, Sachit Menon, and Carl Vondrick. Vipergpt: Visual inference via python execution
for reasoning. In Proceedings of the IEEE/CVF international conference on computer vision, pp.
11888–11898, 2023.

Amir Taubenfeld, Tom Sheffer, Eran Ofek, Amir Feder, Ariel Goldstein, Zorik Gekhman, and Gal
Yona. Confidence improves self-consistency in llms. arXiv preprint arXiv:2502.06233, 2025.

ByteDance Seed Team. Seed1.5-vl technical report. arXiv preprint arXiv:2505.07062, 2025.

Gemini Team, Petko Georgiev, Ving Ian Lei, Ryan Burnell, Libin Bai, Anmol Gulati, Garrett Tanzer,
Damien Vincent, Zhufeng Pan, Shibo Wang, et al. Gemini 1.5: Unlocking multimodal under-
standing across millions of tokens of context. arXiv preprint arXiv:2403.05530, 2024.

Weihan Wang, Zehai He, Wenyi Hong, Yean Cheng, Xiaohan Zhang, Ji Qi, Xiaotao Gu, Shiyu
Huang, Bin Xu, Yuxiao Dong, et al. Lvbench: An extreme long video understanding benchmark.
arXiv preprint arXiv:2406.08035, 2024a.

Xiaohan Wang, Yuhui Zhang, Orr Zohar, and Serena Yeung-Levy. Videoagent: Long-form video
understanding with large language model as agent. In European Conference on Computer Vision,
pp. 58–76. Springer, 2024b.

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc Le, Ed Chi, Sharan Narang, Aakanksha Chowdh-
ery, and Denny Zhou. Self-consistency improves chain of thought reasoning in language models.
arXiv preprint arXiv:2203.11171, 2022.

Ziyang Wang, Shoubin Yu, Elias Stengel-Eskin, Jaehong Yoon, Feng Cheng, Gedas Bertasius, and
Mohit Bansal. Videotree: Adaptive tree-based video representation for llm reasoning on long
videos. In Proceedings of the Computer Vision and Pattern Recognition Conference, pp. 3272–
3283, 2025.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny
Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. Advances in
Neural Information Processing Systems, 35:24824–24837, 2022.

Haoning Wu, Dongxu Li, Bei Chen, and Junnan Li. Longvideobench: A benchmark for long-context
interleaved video-language understanding. Advances in Neural Information Processing Systems,
37:28828–28857, 2024.

Junbin Xiao, Xindi Shang, Angela Yao, and Tat-Seng Chua. Next-qa: Next phase of question-
answering to explaining temporal actions. In Proceedings of the IEEE/CVF conference on com-
puter vision and pattern recognition, pp. 9777–9786, 2021.

Wenyi Xiao, Leilei Gan, Weilong Dai, Wanggui He, Ziwei Huang, Haoyuan Li, Fangxun Shu,
Zhelun Yu, Peng Zhang, Hao Jiang, et al. Fast-slow thinking for large vision-language model
reasoning. arXiv preprint arXiv:2504.18458, 2025.

Miao Xiong, Zhiyuan Hu, Xinyang Lu, Yifei Li, Jie Fu, Junxian He, and Bryan Hooi. Can llms
express their uncertainty? an empirical evaluation of confidence elicitation in llms. arXiv preprint
arXiv:2306.13063, 2023.

An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang
Gao, Chengen Huang, Chenxu Lv, Chujie Zheng, Dayiheng Liu, Fan Zhou, Fei Huang, Feng Hu,
Hao Ge, Haoran Wei, Huan Lin, Jialong Tang, Jian Yang, Jianhong Tu, Jianwei Zhang, Jianxin
Yang, Jiaxi Yang, Jing Zhou, Jingren Zhou, Junyang Lin, Kai Dang, Keqin Bao, Kexin Yang,
Le Yu, Lianghao Deng, Mei Li, Mingfeng Xue, Mingze Li, Pei Zhang, Peng Wang, Qin Zhu, Rui

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Men, Ruize Gao, Shixuan Liu, Shuang Luo, Tianhao Li, Tianyi Tang, Wenbiao Yin, Xingzhang
Ren, Xinyu Wang, Xinyu Zhang, Xuancheng Ren, Yang Fan, Yang Su, Yichang Zhang, Yinger
Zhang, Yu Wan, Yuqiong Liu, Zekun Wang, Zeyu Cui, Zhenru Zhang, Zhipeng Zhou, and Zihan
Qiu. Qwen3 technical report. arXiv preprint arXiv:2505.09388, 2025.

Zhou Yu, Dejing Xu, Jun Yu, Ting Yu, Zhou Zhao, Yueting Zhuang, and Dacheng Tao. Activitynet-
qa: A dataset for understanding complex web videos via question answering. In Proceedings of
the AAAI Conference on Artificial Intelligence, volume 33, pp. 9127–9134, 2019.

Ce Zhang, Taixi Lu, Md Mohaiminul Islam, Ziyang Wang, Shoubin Yu, Mohit Bansal, and Gedas
Bertasius. A simple llm framework for long-range video question-answering. arXiv preprint
arXiv:2312.17235, 2023a.

Hang Zhang, Xin Li, and Lidong Bing. Video-llama: An instruction-tuned audio-visual language
model for video understanding. arXiv preprint arXiv:2306.02858, 2023b.

Pan Zhang, Xiaoyi Dong, Yuhang Zang, Yuhang Cao, Rui Qian, Lin Chen, Qipeng Guo, Haodong
Duan, Bin Wang, Linke Ouyang, Songyang Zhang, Wenwei Zhang, Yining Li, Yang Gao, Peng
Sun, Xinyue Zhang, Wei Li, Jingwen Li, Wenhai Wang, Hang Yan, Conghui He, Xingcheng
Zhang, Kai Chen, Jifeng Dai, Yu Qiao, Dahua Lin, and Jiaqi Wang. Internlm-xcomposer-2.5: A
versatile large vision language model supporting long-contextual input and output. arXiv preprint
arXiv:2407.03320, 2024a.

Shengjia Zhang, Junjie Wu, Jiawei Chen, Changwang Zhang, Xingyu Lou, Wangchunshu Zhou,
Sheng Zhou, Can Wang, and Jun Wang. Othink-r1: Intrinsic fast/slow thinking mode switching
for over-reasoning mitigation. arXiv preprint arXiv:2506.02397, 2025.

Yuanhan Zhang, Bo Li, haotian Liu, Yong jae Lee, Liangke Gui, Di Fu, Jiashi Feng, Ziwei Liu, and
Chunyuan Li. Llava-next: A strong zero-shot video understanding model, April 2024b. URL
https://llava-vl.github.io/blog/2024-04-30-llava-next-video/.

Yuanhan Zhang, Jinming Wu, Wei Li, Bo Li, Zejun Ma, Ziwei Liu, and Chunyuan Li. Video
instruction tuning with synthetic data. arXiv preprint arXiv:2410.02713, 2024c.

Yaowei Zheng, Richong Zhang, Junhao Zhang, Yanhan Ye, Zheyan Luo, Zhangchi Feng, and
Yongqiang Ma. Llamafactory: Unified efficient fine-tuning of 100+ language models. In Pro-
ceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume
3: System Demonstrations), Bangkok, Thailand, 2024. Association for Computational Linguis-
tics. URL http://arxiv.org/abs/2403.13372.

Bin Zhu, Bin Lin, Munan Ning, Yang Yan, Jiaxi Cui, Wang HongFa, Yatian Pang, Wenhao Jiang,
Junwu Zhang, Zongwei Li, Cai Wan Zhang, Zhifeng Li, Wei Liu, and Li Yuan. Language-
bind: Extending video-language pretraining to n-modality by language-based semantic alignment,
2023.

Jinguo Zhu, Weiyun Wang, Zhe Chen, Zhaoyang Liu, Shenglong Ye, Lixin Gu, Hao Tian, Yuchen
Duan, Weijie Su, Jie Shao, et al. Internvl3: Exploring advanced training and test-time recipes for
open-source multimodal models. arXiv preprint arXiv:2504.10479, 2025.

14

https://llava-vl.github.io/blog/2024-04-30-llava-next-video/
http://arxiv.org/abs/2403.13372


756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

A APPENDIX

A.1 MODULE DETAILS

We design a suite of modules to support video understanding and reasoning. Each module is for-
mally specified by its parameters and parameter search space as follows.

• GetClips
– Parameters: video path, query, top k
– Description: Segments the video into 10-second clips, encodes each with
LanguageBind Video (Zhu et al., 2023), and retrieves the top-k clips most rel-
evant to the query.

– Parameter Search: top k ∈ {1, 3, 5}
• GetSubtitles

– Parameters: video path, query, top k
– Description: Retrieves subtitles (generated by Whisper since LVBench lacks tran-

scripts) (Zhu et al., 2023) and returns the top-k segments aligned with the query and
their timestamps.

– Parameter Search: top k ∈ {1, 3, 5}
• TrimBefore

– Parameters: video path, timestamp, intervals
– Description: Removes all content before the given timestamp, retaining only the

following intervals.
– Parameter Search: intervals ∈ {10, 20, 30, 60}

• TrimAfter
– Parameters: video path, timestamp, intervals
– Description: Removes all content after the given timestamp, retaining only the

preceding intervals.
– Parameter Search: intervals ∈ {10, 20, 30, 60}

• TrimRange
– Parameters: video path, start, end
– Description: Extracts the segment between the start and end timestamps.
– Parameter Search: intervals ∈ {10, 20, 30, 60}

• QueryMC
– Parameters: frames, query, choices
– Description: Answers multiple-choice questions using videoLLM and Qwen2.5-vl

(7B/34B), returning both the predicted answer and confidence score.
– Parameter Search: None

• QueryYN
– Parameters: frames, query
– Description: Answers binary yes/no questions using videoLLM and Qwen2.5-vl

(7B/34B).
– Parameter Search: None

• RunOCR
– Parameters: frame
– Description: Performs OCR on the input frame using EasyOCR and returns the rec-

ognized text.
– Parameter Search: None

• DetectObject
– Parameters: frame, text, text thr, box thr

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

– Description: Detects objects in a frame conditioned on a textual query using
DEVA (Cheng et al., 2023), and outputs bounding boxes.

– Parameter Search: text thr and box thr control detection thresholds.

• GetSubsRange

– Parameters: video path, start, end
– Description: Retrieves subtitle segments between start and end.
– Parameter Search: None

• GetCapsRange

– Parameters: video path, start, end
– Description: Retrieves captions within the specified range, similar to GetSubsRange.
– Parameter Search: None

• GetSubtitleHint

– Parameters: video path, query
– Description: Provides query-based subtitle hints using Qwen3-8B (Yang et al., 2025).
– Parameter Search: None

• Crop

– Parameters: frame, box
– Description: Crops the specified region of interest from a frame for fine-grained anal-

ysis.
– Parameter Search: None

• ExtractFrames

– Parameters: video path, num frames

– Description: Extracts frames from the video for subsequent processing.
– Parameter Search: num frames controls the number of sampled frames.

• SplitVideo

– Parameters: video path

– Description: Splits the video into candidate intervals based on scene boundaries for
fine-grained analysis using scenedetect package.

– Parameter Search: None

A.2 PROMPTS

We provide GPT-4.1 few-shot prompts to generate visual reasoning programs for CG-Bench, includ-
ing the reasoning (thinking) process and module workflows, as shown in Figure 6. We also supply
code for question and workflow refinement to diversify module usage in the training data, illustrated
in Figure 7.

A.3 DATASETS

LongVideoBench (Wu et al., 2024) is a benchmark for long video understanding, containing 3,763
videos (up to 1 hour) with subtitles and 6,678 human-annotated multiple-choice QA pairs across
17 categories. VideoMME (Fu et al., 2024) provides 900 videos (254 hours) with 2,700 human-
curated QA pairs across six domains and 30 subcategories. Videos range from 11 seconds to 1 hour
and include frames, subtitles, and audio to evaluate multimodal reasoning. LVBench (Wang et al.,
2024a) targets extreme long video comprehension, featuring videos from 70 seconds to 4 hours.
It covers single-scene, multi-scene, and full-scene settings with diverse reasoning types, such as
temporal, spatial, causal, hypothetical, and external knowledge.

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

<Prompt>

You are a video reasoning agent. Your task is to analyze a video question and generate a program with available 

APIs.  ## API Reference:

retrieval functions:

    get_informative_clips(query, video_path, top_k=3, total_duration=duration)  # Returns intervals, files (time 

intervals and file paths)

    get_informative_subtitles(query, video_path, top_k=1, total_duration=duration)  # Returns subtitles list

analysis_manager functions:

    query_mc(frames, query, choices)  # Answers a multiple-choice question using the frames.

    query_yn(frames, query)  # Answers yes/no questions.

    trim_after(video_path, timestamp)  # Trims the video after the timestamp.

    trim_before(video_path, timestamp)  # Trims the video before the timestamp.

    trim_frames(video_path, start_timestamp, end_timestamp)  # Trims the video between given timestamps.

    run_ocr(frame)  # Performs OCR on a frame and returns recognized text.

    detect_object(frame, text)  # Detects an object in a frame based on text, returns bounding boxes.

    crop(frame, box)  # Crops the given region in a frame.

other functions:

    extract_frames(video_path)  # Extracts frames from the video.

    split_video(video_path) # Split the video into candidate temporal intervals.

    get_subtitles_in_range(video_path, start_timestamp, end_timestamp)  # Gets subtitles in the specified range.

    get_captions_in_range(video_path, start_timestamp, end_timestamp)  # Gets captions in the specified range.

Allowed Utility Functions:

    Use standard Python constructs like if, for, len(), max(), sorted(), etc.

---

Analyze the video question and generate Python code using the APIs.

Your output must define a Python function in the following format:

<code>

def execute_command(video_path, question, choices, duration):

    # Step-by-step reasoning using available APIs, with the <thinking> </thinking> tag.

   # The visual program code.

    ...

    return result

</code>]

Here are some examples:

<Few-shot examples>

Figure 6: The GPT-4.1 prompt used to generate visual program reasoning data.

A.4 MORE RESULTS

As shown in Table 7, the results based on slow reasoning (1,089 samples from VideoMME and 598
samples from LongVideoBench) are compared with the results obtained using fast reasoning on the
same samples. In both datasets, the performance of fast reasoning is consistently lower than that of

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

<Prompt>

Keep the underlying logic, scenario, and expected action consistent with the example, but you can freely vary any 

aspect such as wording, descriptions of characters or objects,  their positions, appearance, clothing, location, 

background elements, or any other relevant detail.  You may also rephrase options, change their order, or 

introduce reasonable variations,  as long as the main reasoning and correct answer type remain valid.  The goal is 

to produce diverse, natural, and logically consistent new examples.

Example:

Instruction:

{example['instruction']}

Output:

{example['output']}

Now generate one new example following the same format (Instruction + Output). 

{generalized_instruction}

Figure 7: The GPT-4.1 prompt used to rewrite queries and workflows to generate diverse module
data.

Dataset Type Short ↑ Medium ↑ Long ↑ Avg ↑

VideoMME Fast 38.3 42.2 36.8 39
Slow 43.6 49.1 52.0 48.9

LongVideoBench Fast 47.2 39.3 36.4 38.3
Slow 51.3 50.0 44.3 47.4

Table 7: Most results are based on the 1,089 slow-reasoning samples from VideoMME and the 598
slow-reasoning samples from LongVideoBench, compared with the fast reasoning results.

slow reasoning across all categories (Short, Medium, Long, and Avg.). These comparisons demon-
strate that slow reasoning yields better results, especially when handling more complex queries
where fast reasoning tends to perform less effectively.

A.5 CASE STUDIES: FAILURE ANALYSIS

In addition to successful cases, we highlight two classes of failure cases. First, when the VideoLLM
is overconfident in an incorrect answer, confidence-based triggering may fail to activate slow rea-
soning. This limitation could be mitigated by adopting stronger baseline VideoLLMs with improved
calibration. Second, there exist queries that cannot be resolved even with slow reasoning. Such cases
point to the need for expanding the advanced module library, underscoring the extensibility of the
FS-VisPR framework.

A.6 USAGE OF LLMS IN PAPER WRITING

Large Language Models (LLMs) were used to aid in the writing and polishing of the manuscript.
Specifically, we used an LLM to assist in refining the language, improving readability, and ensuring
clarity in various sections of the paper. The model helped with tasks such as sentence rephrasing,
grammar checking, and enhancing the overall flow of the text.

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

It is important to note that the LLM was not involved in the ideation, research methodology, or
experimental design. All research concepts, ideas, and analyses were developed and conducted by
the authors. The contributions of the LLM were solely focused on improving the linguistic quality
of the paper, with no involvement in the scientific content or data analysis.

The authors take full responsibility for the content of the manuscript, including any text generated
or polished by the LLM. We have ensured that the LLM-generated text adheres to ethical guidelines
and does not contribute to plagiarism or scientific misconduct.

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

The entire video of duration 3665 seconds. Question: What does the 
protagonist see through the window after she is taken to the utility room?
(A) A group of monks sitting cross-legged in the snow
(B) A group of citizens chatting together
(C) A group of warriors practicing swords
(D) A group of samurais eatingOutput:
def execute_command(video, question, choices, duration):
    # === Fast answer attempt ===
    .......
    flag, answer, confidence = fast_thinking(video_path,question,choices) 
    if flag:
        return answer, flag  (python_exec(output): flag=1, answer=‘A’)

Question: The entire video of duration 2548 seconds.
Question: How many doors have colored lights at 00:29?Choices: \nA. 2 \n 
B.1 \nC.3\ND.0
def execute_command(video_path, question, choices, duration):
# === slow thinking ===
<think>
......
</think>

<code>
def execute_command(video_path, question, choices, duration):
# === slow thinking ===
# This is a difficult question that need api to solve.
# <thinking> Trim the video around 29 seconds to focus on the relevant 
scene. 
    # Extract frames and detect doors with colored lights in each frame. 
    # Count the number of such doors per frame, and use the maximum count 
from all frames. 
    # Finally, query the model to select the correct answer from the choices. 
</thinking>
    timestamp = 29
    frames = trim_around(video_path, timestamp, intervals=16, 
num_frames=16)
    ....... (Other API)
    prompt = (
        f"Question: How many doors have colored lights at 00:29?"
    )
    answer = query_mc(frames, prompt, choices)
    return answer
</code>  (python_exec(output): confidence=0.94, answer=‘B’)

Slow Reasoning  

❌

Fast Reasoning

❌

Overconfidence in VideoLLMs

Figure 8: Error case study: VideoLLM errors caused by overconfidence and limited counting ability
in the query mc Module.

20


	Introduction
	Related Work
	Large Language Models and Visual Program Reasoning
	Long-form VideoQA and Video-LLMs
	Dual-Process Reasoning in AI Models

	Method
	Confidence Analysis
	Long-Video Module Design
	Dataset Construction
	Parameter Search
	Adaptive Fast-Slow Reasoning

	Experiments
	Experimental Setup.
	Main results
	Ablation studies
	Case Analysis

	Conclusion
	Appendix
	Module details
	Prompts
	Datasets
	More results
	Case Studies: Failure Analysis
	Usage of LLMs in Paper Writing


