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ABSTRACT

Large language models (LLMs) have shown promise in generating program work-
flows for visual tasks. However, previous approaches often rely on closed-source
models, lack systematic reasoning, and struggle with long-form video question
answering (videoQA). To address these challenges, we introduce the FS-VisPR
framework, an adaptive visual program reasoning approach that balances fast
reasoning for simple queries with slow reasoning for difficult ones. First, we
design efficient visual modules (e.g., key clip retrieval and subtitle retrieval) to
support long-form video tasks. Then, we construct a diverse and high-quality
fast-slow reasoning dataset with a strong LLM to align open-source language
models’ ability to generate visual program workflows as FS-LLM. Next, we de-
sign a fast-slow reasoning framework with FS-LLM: Simple queries are directly
solved by VideoLLMs, while difficult ones invoke visual program reasoning, mo-
tivated by human-like reasoning processes. During this process, low-confidence
fast-thinking answers will trigger a second-stage slow-reasoning process, and a
fallback mechanism to fast reasoning is activated if the program execution fails.
Moreover, we improve visual programs through parameter search during both
training and inference. By adjusting the parameters of the visual modules within
the program, multiple variants are generated: during training, programs that yield
correct answers are selected, while during inference, the program with the highest
confidence result is applied. Experiments show that FS-VisPR improves both ef-
ficiency and reliability in visual program workflows. It achieves 50.4% accuracy
on LVBench, surpassing GPT-4o, matching the performance of Qwen2.5VL-72B
on VideoMME.

1 INTRODUCTION

Video Question Answering (VideoQA) requires models to reason over dynamic visual content to
answer natural language queries (Yu et al., 2019; Ning et al., 2023; Chen et al., 2023; Fang et al.,
2024; Li et al., 2024c; Fu et al., 2024; Li et al., 2024b). Recent advances in Video Large Language
Models (VideoLLMs) have shown impressive progress in this area (Li et al., 2023; Zhang et al.,
2023b; Lin et al., 2023; Li et al., 2024a; Bai et al., 2025b; Zhang et al., 2024c). However, these
models still struggle with long-form videos (Wu et al., 2024; Fu et al., 2024; Wang et al., 2024a),
where query-relevant information is sparse and widely distributed across the video. Processing hun-
dreds or thousands of frames requires a high computational cost, and the lack of task decomposition
reduces both planning and interpretability. A promising direction is to leverage LLMs to generate
visual program workflows that integrate powerful vision modules (Gupta & Kembhavi, 2023; Sub-
ramanian et al., 2023; Surı́s et al., 2023; Mahmood et al., 2024; Choudhury et al., 2023). By execut-
ing structured modules, this approach enables step-by-step reasoning and provides interpretability.
However, prior efforts have focused mainly on short clips or image-based tasks (Choudhury et al.,
2023; Surı́s et al., 2023) and lack an efficient module design tailored for long-form VideoQA. Fur-
thermore, reliance on closed-source models with few-shot prompting (Brown et al., 2020) and the
absence of adaptive reasoning strategies hinder both efficiency and scalability. Intuitively, not all
questions require visual program reasoning: For simple queries, a VideoLLM can often provide
reliable answers directly (Cheng et al., 2023; Zhu et al., 2023). Inspired by dual-process theories
of human reasoning (Evans, 2008; Evans & Stanovich, 2013; Xiong et al., 2023; Taubenfeld et al.,
2025), we observe that the confidence of a VideoLLM response can serve as an effective signal
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Dataset Cor. InCor. ∆

LongVideoBench 0.74 0.45 0.29

VideoMME 0.72 0.48 0.24

LVBench 0.67 0.46 0.22

Table 1: Average confidence scores for cor-
rect and incorrect predictions, including the gap
(Correct − Incorrect). Confidence is derived
from the decoded probabilities of options.

Figure 1: Prediction Accuracy for Samples
Above the Confidence Threshold.

of response reliability (see Figure 1 and Table 1). This motivates an adaptive fast-and-slow rea-
soning paradigm, where simple queries are handled via fast reasoning, while difficult cases invoke
program-based reasoning.

Building on these insights, we propose FS-VisPR, an adaptive visual program reasoning frame-
work for long-form videoQA. We first design a set of efficient long-video modules, including key
clip retrieval, subtitle-audio retrieval, object detection, trimming, and cropping etc., to enable pro-
grammatic reasoning over both temporal and multimodal cues. Next, we employ strong LLMs to
generate quality and diverse visual program workflows (which can reach the correct choices and
the module diversity), including the planning annotations and module calls. We identify simple
queries that VideoLLM can answer directly and integrate fast-reasoning logic code into the visual
program workflows. This logic enables VideoLLM to provide immediate responses with confidence
scores, which are used to determine whether to return the answer directly. Then, we fine-tune the
open-source language model as FS-LLM, aligning it with both fast and slow reasoning abilities.
During inference, FS-LLM adopts robust strategies: low-confidence fast answers trigger a second-
stage slow reasoning process, and failures in slow reasoning are back to fast reasoning. Moreover,
inspired by human hyperparameter search to optimize programs, we introduce a parameter search
for the modules to further enhance robustness. By varying the parameter values (e.g., Top k = {1,
3, 5}), multiple (three) candidate programs are generated. During training, programs that yield cor-
rect answers are retained, while during inference, the candidate program with the highest confidence
result is applied. Our main contributions can be summarized as follows:

• We design effective vision modules for long-form VideoQA, enabling efficient frame and
subtitle retrieval, and construct diverse, high-quality visual workflows with strong LLMs
to align open-source models with the ability to fast-slow reasoning as FS-LLM.

• We propose FS-VisPR, a fast-slow reasoning framework that leverages response confidence
as a control signal. FS-LLM generates the visual program workflows, where VideoLLM
directly handles simple queries as fast reasoning, while difficult queries are addressed using
visual program reasoning, achieving adaptive reasoning across varying difficulty levels.

• We develop a module parameter search mechanism for visual program adjustment, gener-
ating diverse program variants during training to reach the correct answer, and selecting the
most confident result at inference.

Extensive experiments on long-form VideoQA benchmarks show that FS-VisPR is both effec-
tive and efficient. It achieves 50.4% accuracy on LVBench, surpassing GPT-4o, and outperforms
Qwen2.5VL-72B by about 2% on LongVideoBench, all while relying on a 7B VideoLLM.

2 RELATED WORK

2.1 LARGE LANGUAGE MODELS AND VISUAL PROGRAM REASONING

Large Language Models (LLMs) have made significant progress in language understanding and
reasoning (Huang et al., 2022; Wang et al., 2022; Wei et al., 2022; Kojima et al., 2022). Beyond
text, LLMs are increasingly applied to program generation. Early works focused on mapping natural
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Figure 2: Fast–Slow Visual Program Reasoning framework: Fast–slow dataset construction aligns
model as FS-LLMs to perceive query difficulty and adopt dual-reasoning strategies during inference.

language prompts to code (Chen et al., 2021; Li et al., 2022), while later studies extended this to pro-
grammatic workflows for multi-step tasks (Gao et al., 2023; Chen et al., 2022), across domains such
as math (Chen et al., 2022), planning (Silver et al., 2022; 2024), and multimodal reasoning (Johnson
et al., 2017; Gupta & Kembhavi, 2023; Surı́s et al., 2023; Choudhury et al., 2023). For instance,
ViperGPT (Surı́s et al., 2023) integrates visual modules for image and short-video QA (Choudhury
et al., 2023), while VURF (Mahmood et al., 2024) enhances program reliability. These efforts po-
sition LLMs as general-purpose planners for decomposing complex tasks into interpretable steps.
However, many rely on closed-source models and resource-intensive prompting, often lacking ef-
fective visual modules for long-form VideoQA, which limits scalability.

2.2 LONG-FORM VIDEOQA AND VIDEO-LLMS

Long-form VideoQA requires reasoning over extended sequences and capturing temporal and causal
dependencies (Xiao et al., 2021; Wu et al., 2024; Fu et al., 2024; Wang et al., 2024a). Recent Video-
LLMs extend temporal visual encoders for joint spatial-temporal reasoning (Bai et al., 2025b; Zhang
et al., 2024a;b; Li et al., 2024a; Cheng et al., 2024), but face memory and computational bottlenecks
with long videos. To address this, some strategies use captioning or keyframe summarization to
create textual representations for LLMs (Zhang et al., 2023a; Wang et al., 2024b; 2025), which
improve scalability but can lose fine-grained temporal details and require multiple inference steps.
These limitations motivate FS-VisPR, which dynamically focuses on key segments and employs
visual program reasoning.

2.3 DUAL-PROCESS REASONING IN AI MODELS

Dual-process theory distinguishes between fast (intuitive) and slow (deliberative) reasoning (Evans,
2003; 2008). Recent AI research has adopted fast-slow paradigms (Xiao et al., 2025; Sun et al.,
2025; Zhang et al., 2025; Sun et al., 2024), where fast reasoning efficiently handles simple queries,
and slow reasoning is used for complex tasks. Previous methods often treat these modes separately
and do not integrate them with visual program generation, limiting efficiency-accuracy trade-offs.
Our framework adaptively switches between fast and slow reasoning based on model confidence:
queries are initially addressed by fast reasoning, triggering slow reasoning when confidence is low,
with a fallback to fast reasoning if the slow reasoning fails.

3 METHOD

In this section, we present FS-VisPR, an adaptive visual-program reasoning framework for long-
form VideoQA. The central idea is simple and effective: the FS-LLM first estimates the query’s
difficulty based on its learned perception. For queries deemed difficult, FS-VisPR directly employs
slow reasoning, utilizing structured visual programs with external modules. For queries judged as
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easy, the model attempts fast reasoning by directly generating an answer together with a confidence
score. If confidence is high, the fast answer is returned; otherwise, FS-VisPR falls back to slow
reasoning for more reliable computation. Additionally, if the visual program cannot be executed,
the fast reasoning answer is returned as a fallback.

3.1 CONFIDENCE ANALYSIS

Given a video V = {f1, . . . , fT } and a query Q, the VideoLLM pθ autoregressively generates an
answer sequence Â = [â1, . . . , âm]. We define the model confidence as the exponential of the
average log-likelihood of the decoded tokens:

Conf(V,Q) = exp

(
1

m

m∑
t=1

log pθ(ât | V,Q, â<t)

)
(1)

To examine the reliability of this measure, we conduct experiments in three long-form VideoQA
benchmarks using QwenVL-2.5 as the backbone. As shown in Table 1, the model exhibits sub-
stantially higher confidence for correct predictions (mean ∼ 0.70) than for incorrect ones (mean
∼ 0.45), with a gap of about 25%. Furthermore, Figure 1 shows that accuracy increases mono-
tonically with the confidence threshold, confirming that confidence is a strong indicator of answer
quality and motivating FS-VisPR.

Modules Parameters Description

GetClips video path, query, top k Retrieves the top-k video clips most relevant to
the given query.

GetSubtitles video path, query, top k Retrieves the top-k subtitle segments most
relevant to the given query.

TrimBefore video path, timestamp,
intervals

Retrieves frames preceding the specified
timestamp, with duration defined by intervals.

TrimAfter video path, timestamp,
intervals

Retrieves frames following the specified
timestamp, with duration defined by intervals.

TrimRange video path, start, end Retrieves frames within the temporal range from
start to end.

QueryMC frames, query, choices Answers a multiple-choice question using the
given frames and candidate choices.

QueryYN frames, query Answers a binary (yes/no) question using visual
evidence in the frames.

RunOCR frame Performs optical character recognition on the
input frame and returns recognized text.

DetectObject frame, text Detects objects in the frame conditioned on a
textual prompt; returns bounding boxes.

GetSubsRange video path, start, end Retrieves subtitles within the temporal range
from start to end.

GetCapsRange video path, start, end Retrieves captions within the temporal range
from start to end.

GetSubtitleHint video path, query Retrieves subtitle segments or hints semantically
relevant to the query.

Crop frame, box Crops the specified region from a frame to enable
focused analysis.

ExtractFrames video path Extracts all frames from the video for subsequent
processing.

SplitVideo video path Segments the video into candidate intervals based
on scene structure.

FastThink video path, query VideoLLM directly generate the answer and
confidence score.

Table 2: Modules and their parameters in FS-VisPR for long-form VideoQA.

3.2 LONG-VIDEO MODULE DESIGN

To enable modular reasoning over long-form videos, FS-VisPR builds upon structured and efficient
modules M and an associated parameter space Q (Table 2). Each module m ∈ M is designed as
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a composable function with tunable arguments p ∈ Q, allowing flexible program construction tai-
lored to different queries. The module set M spans a broad range of capabilities: retrieval-oriented
modules such as GetClips and GetSubtitles return the top-k relevant video segments or subtitle
spans; temporal-control modules including TrimBefore, TrimAfter, and TrimRange enable precise
interval selection; reasoning-support modules like QueryMC and QueryYN handle multiple-choice
and yes/no questions, while RunOCR and DetectObject extract textual and object-level evidence
from frames. Additional utilities such as GetSubsRange, GetCapsRange, and GetSubtitleHint pro-
vide finer-grained control over subtitle and caption data. By exposing reasoning as a sequence
of function calls from M, FS-VisPR treats video understanding as program execution rather than
monolithic prediction. This design enhances interpretability and modularity. Compared with the
previous design (Choudhury et al., 2023), we refine the vision module by achieving more precise
subtitle localization, key frame extraction, and leveraging VideoLLM for improved reasoning. Full
specifications of M and Q are provided in Appendix A.1.

3.3 DATASET CONSTRUCTION

We start from a training dataset Dtrain = {(Vi, Qi, Ai)}Ni=1, where Vi denotes a video, Qi a natural-
language query, and Ai the ground-truth answer. Based on this, we construct a visual program rea-
soning dataset D = {(Vi, Qi, Ai, Pi)}Ni=1, where each Pi is an executable visual program consisting
of vision module plans and calls such that exec(Pi) = Ai. To generate Pi, we manually curate a
small support set of samples S = {(Qs, As, Ps)}, which serve as few-shot prompts for a strong lan-
guage model pϕ. For each new instance, the model proposes a candidate program P̂i ∼ pϕ(S, Qi),
and we retain only those satisfying exec(P̂i) = Ai as high-quality data. To annotate the query diffi-
culty in the training set Dtrain, we use the VideoLLM pθ to obtain both the predicted answer and the
associated confidence according to Eq. 1. Âi, γi = pθ(Vi, Qi), and assign a difficulty label as

yi =

{
easy, if Âi = Ai and γi > τ,

difficult, otherwise,
τ = 0.75. (2)

The difficulty labels are embedded in the output prompts: “This is an easy question” triggers fast
reasoning, while “This is a difficult question” invokes visual program reasoning. This supervision
helps the model perceive query difficulty and adjust its reasoning strategy. To ensure balanced and
diverse module usage, we track the frequency of each module in D. If any module appears in fewer
than 50 examples, we use pϕ for query rewriting to augment the dataset. As shown in Figure 3,
the dataset enables FS-LLM to perform fast reasoning on easy queries and structured reasoning on
difficult ones. Further details are in Appendix A.2.

3.4 PARAMETER SEARCH

To improve the robustness of program execution, FS-VisPR performs a parameter search over the
module set M and associated parameter space Q. Given a program P = {m1(p1), . . . ,mk(pk)},
we vary one parameter pi ∈ Q at a time to generate program variants P ′, keeping all other arguments
fixed from the original program. Multiple variants of the program can be run in parallel, enabling
efficient exploration of different parameter configurations. During training, variants that yield the
correct answer are retained to enrich the program space. During inference, the candidate program
with the highest confidence result is applied. Key parameters include top-k for retrieval modules,
intervals for temporal modules, and num frames for frame extraction. This procedure enables the
model to systematically explore alternative module arguments, improving execution reliability with-
out compromising modularity. Full details are provided in Appendix A.1.

3.5 ADAPTIVE FAST-SLOW REASONING

FS-VisPR integrates all components into an adaptive reasoning process. For a query q, the FS-
LLM pθ first predicts the difficulty label yi as either easy or difficult. Then, for easy queries, fast
reasoning generates an answer and confidence γi. If γi > c, the answer is returned; otherwise, slow
reasoning is invoked. For difficult queries, slow reasoning directly constructs a structured program
from M, executes it, and optionally explores parameter variations over Q. The candidate with
the highest confidence is selected. A fallback mechanism returns the fast reasoning prediction if
program execution fails. This adaptive fast-slow process is shown in Figure 2 and Algorithm 1.
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Instruction (Fast-thinking): 
When the protagonist was kneading 

white plasticine, what did he finally get?

A. Four stars and a few clouds

B. Ten petals and a small basket .....

output: 
def execute_command():

    #  Fast Thinking   

    # Simple question that VideoLLM can solve.

    flag, answer  = fast_thinking(video,question)

    if flag:

        return answer
    

    # <thinking> First, retrieve ..... </thinking>  

    clips = get_clips (question, top_k = 2)

    frames =extract_frames (clips, num_frames=8 )

    ....... (Other API)

    final_frames = []

    for frame in frames:

 if detect_object (frame, "plasticine" )  

             final_frames.append (frame)

     prompt = f"what did he finally get?"

    answer, conf = query_mc (final_frames, prompt)       

    return conf, answer

Instruction  (Slow-thinking): 
when the sign with the subtitle 

'since1936' appears, what are the 

numbers under 'since1936'?   

A. 2279-8045 3F     ......

output: 
def execute_command():

   #  Slow Thinking 

    # Difficutly question that need API.

    # <thinking> First, retrieve......</thinking>  

    clips = get_clips ("sign ........", top_k = 2)

    frames =extract_frames (clips)

    final_frames = []

   ......

    

for frame in frames:

        if  run_ocr ( frame ) 

              text= run_cor (f rame ) 

              final_frames.append (frame)

     prompt = text + "Identify the numbers ....."

    answer,conf = query_mc (final_frames, prompt)

    return conf, answer

        Parameters Search
1. clips = get_clips ("sign ...=", top_k = 1)
2. clips = get_clips ("sign ...", top_k = 3) 
3.  clips = get_clips ("sign ...", top_k = 5)

Relpace

Fast-thinking code:
High confidence returns; 
low confidence triggers 
visual program reasoning. 

Figure 3: Fast-Slow Dataset: enabling LLMs to
adaptively choose between fast reasoning for sim-
ple queries, confidence-guided slow reasoning un-
der uncertainty, and full slow reasoning for diffi-
cult queries as FS-LLM.

Algorithm 1 Adaptive Fast-and-Slow Visual
Program Reasoning
1: Input: FS-LLM pθ , video v, question q, vision modules
M, parameter setQ, confidence threshold θ

2: Fast-slow reasoning:
3: ot← pθ(q, stop = ’return answer’)

4: if ’fast reasoning’ in ot then
5: (confid, answer)←M[fast think](v, q)

6: if confid ≥ θ then
7: return answer ▷ Return Fast-reasoning answer.
8: else
9: ot← pθ(q, ot) ▷ Trigger Slow-reasoning.
10: end if
11: end if
12: Execute the slow reasoning visual program:
13: result← exec(ot,M)

14: if fail:
15: returnM[fast think](v, q)[’answer’]

16: Parameters Search:
17: results← [result]

18: for each p ∈ Q do
19: for each value ∈ p do
20: output′ ← replace(ot, p, value)
21: results.append(exec(output′,M))

22: end for
23: end for
24: return r.answer
25: where r = argmaxr′∈results r′.confidence ▷ Return

the answer corresponding to the result with the highest con-
fidence

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP.

We construct the fast–slow reasoning dataset based on CG-Bench (Chen et al., 2024a), which con-
tains 12K multiple-choice QA instances. Visual programs are generated using strong LLM, GPT-
4.1 (OpenAI, 2025), and each query is labeled as easy or difficult according to confidence scores
from Qwen2.5-VL (Bai et al., 2025a). The FS-LLM is fine-tuned on 5K diverse samples for three
epochs with up to four NVIDIA H100 GPUs. Training and inference are conducted with LLa-
MAFactory (Zheng et al., 2024) and VLLM (Kwon et al., 2023), using Qwen3-8B (Yang et al., 2025;
Hui et al., 2024) as the backbone for visual program code generation. For fast reasoning, Qwen2.5-
VL supports the query mc and query yn modules, processing up to 64 frames. We evaluate
FS-VisPR against both open-source baselines, LongVILALA (Chen et al., 2024b), VideoRAG (Ren
et al., 2025), VideoMind (Liu et al., 2025), VideoXL (Shu et al., 2025), and Video-R1 (Feng et al.,
2025), and proprietary models, GPT-4o (Hurst et al., 2024), Gemini 1.5 Pro (Team et al., 2024),
and Seed 1.5VL-Pro (Guo et al., 2025). Benchmarks include LongVideoBench (Wu et al., 2024),
VideoMME (Fu et al., 2024), and LVBench (Wang et al., 2024a). For LVBench, subtitles are gener-
ated from audio using FFmpeg and Whisper (Radford et al., 2023). All decoding follows the official
configurations with the setting frames. The confidence threshold is by default 0.75. More dataset
details are provided in Appendix A.3.

4.2 MAIN RESULTS

As shown in Table 3, FS-VisPR with a 7B VideoLLM achieves 50.4% on LVBench, surpassing GPT-
4o (48.9%), 62.2% on VideoMME, slightly below Qwen2.5-VL-72B (64.6%) but above Qwen2.5-
VL-7B (57.6%), and 62.2% on LongVideoBench, exceeding Qwen2.5-VL-72B (60.3%). Scaling to
34B as VideoLLM further improves results to 51.2%, 63.6%, and 64.8%. These results highlight FS-
VisPR’s consistent advantage over baseline VideoLLMs, its robustness across long-form video QA,
and the benefit of modular, confidence-guided fast–slow reasoning. Table 4 analyzes the contribution
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Model #Frame LVBench VideoMME (w sub, Long) LongVideoBench Avg

Closed-source Models
GPT-4o (Hurst et al., 2024) 384 48.9 72.1 66.7 62.6
Gemini-1.5-pro (Team et al., 2024) 256 33.1 77.4 64.0 58.2
Seed1.5VL-pro (Team, 2025) 32 46.1 63.3 63.7 57.7

Open-source Models
LongVILA-7B (Chen et al., 2024b) 256 - 52.1 57.7 -
LongVILA-7B + Video-RAG (Ren et al., 2025) 32 - 55.7 - -
VideoMind-7B (Liu et al., 2025) 2/FPS 40.8 49.2 - -
Video-XL-7B (Shu et al., 2025) 256 - 54.9 50.7 -
Video-R1-7B (Feng et al., 2025) 64 - 52.2 - -
InternVL3-8B (Zhu et al., 2025) 64 – - – -
Qwen2.5VL-7B (Bai et al., 2025a) 128 44.8 57.6 56.7 53.0
Qwen2.5VL-7B-RAG (Bai et al., 2025a) 128 47.2 58.2 58.4 54.6
Qwen2.5VL-72B (Bai et al., 2025a) 128 47.4 64.6 60.3 57.4

FS-VisProgV-8B (w/ Qwen2.5VL-7B) 64 50.4 62.2 62.2 58.3
FS-VisProgV-8B (w/ Qwen2.5VL-34B) 64 51.2 63.6 64.8 60.5

Table 3: Evaluation results on LVBench, VideoMME (long w/ subtitle), and LongVideoBench. FS-VisProg
achieves the better performance among open-source methods and is competitive with closed-source models.

Dataset Reasoning Samples Short ↑ Medium ↑ Long ↑ Avg ↑ Output. Len ↓ Avg. Runtime ↓

VideoMME
Fast 1611 85.1 79.8 71.2 79.3 366 2.4s
Slow 1089 43.6 49.1 52.0 48.9 1350 6.2s
Overall 2700 73.1 66.2 62.1 62.2 762 3.9s

LongVideoBench
Fast 737 83.7 80.7 76.5 80.4 366 2.8s
Slow 598 51.3 50.0 44.3 47.4 1696 6.8s
Overall 1335 70.5 64.0 55.5 62.2 964 4.6s

Table 4: Accuracy, output length, average runtime, and sample distribution of fast, slow reasoning
across video durations. Fast reasoning corresponds to direct responses from the VideoLLM, while
slow reasoning arises either when the model directly generates a visual program for perception or
when fast reasoning yields low confidence, triggering a second-stage inference. Most samples are
resolved by fast reasoning (e.g., 1611/2700 on VideoMME and 737/1335 on LongVideoBench).

of fast and slow reasoning. Fast reasoning corresponds to direct VideoLLM answers, achieving
strong accuracy on short videos (e.g., 85.1% on VideoMME) with concise outputs (366 length on
average), but degrading on longer videos. Slow reasoning is triggered either when the model directly
generates a visual program or when fast reasoning falls below the confidence threshold, producing
longer programs (up to 1696 length) while maintaining stable accuracy around 50%, and computed
the average runtime per sample, including the time for generating and executing the visual program,
to demonstrate the efficiency of FS-VisPR. We also present the results obtained using VideoLLM
(as Fast-thinking) for the 598 slow-reasoning samples in LongVideoBench and the 1,089 samples in
VideoMME in Appendix A.4.

4.3 ABLATION STUDIES

Confidence Threshold We examine the effect of the confidence threshold θ, which determines
whether the model accepts an answer from fast reasoning or switches to slow reasoning. As shown
in Figure 4, increasing θ from 0.4 to 0.75 yields an accuracy gain of over 3%. However, further
raising the threshold leads to performance degradation. A low threshold (θ = 0.4) causes the model
to rely predominantly on fast reasoning, whereas a high threshold (θ = 0.9) shifts most decisions
to slow reasoning. These results suggest that fast reasoning is effective for simple queries, while
slow reasoning is better suited for difficult ones. Overall, adaptively choosing between fast and slow
reasoning based on confidence surpasses either strategy alone.

Visual Modules Table 6 reports the impact of different module settings on FS-VisPR performance
for LongVideoBench and LVBench. For retrieval modules, increasing Top-k improves accuracy,
with LongVideoBench peaking at 61.2 for Top-k = 3 and LVBench at 49.2 for Top-k = 5,
while omitting retrieval reduces accuracy to 57.8 and 46.3, respectively. Temporal control via
Trim achieves the best accuracy on LongVideoBench at 60.7 with 30-second intervals, whereas
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Figure 4: Performance of the FS-VisPR at
varying confidence threshold on Long-form
VideoQA.

Parameter Set Voting Conf. (Ours)

None 44.7 44.7

Num frames 44.5 44.9

Intervals 44.4 44.4

Top k 44.5 46.2

Num frames + Top k 43.8 46.9

Num frames + Intervals 44.2 46.8

All 44.4 47.1

Table 5: The Parameter Search results on
LongVideoBench slow-reasoning data. Voting se-
lects the most frequent prediction; Confidence se-
lects the prediction with the highest confidence.
“None” indicates no parameter search integration.

Dataset Modules Setting Parameter

LongVideoBench

Retrieval Top-k N/A 1 3 5 —
Acc. (%) 57.8 60.2 61.2 60.1 —

Trim Intervals N/A 10 20 30 60
Acc. (%) 58.7 60.4 60.4 60.7 60.5

Detect object Text-thr N/A 0.25 0.50 0.70 —
Acc. (%) 59.8 60.9 60.4 60.4 —

Extract frames Num frames 8 16 32 64 —
Acc. (%) 58.2 59.5 60.2 60.8 —

LVB
Retrieval Top-k N/A 1 3 5 —

Acc. (%) 46.3 46.7 48.8 49.2 —

Extract frames Num frames 8 16 32 64 —
Acc. (%) 44.8 46.4 44.2 45.8 —

Table 6: Ablation study of different Modules on LongVideoBench and LVB. For each Module
and parameter, the first row lists parameter values, while the second row reports the corresponding
accuracy. The ”N/A” label indicates that the Module is not activated in visual program reasoning.

disabling trimming lowers performance to 58.7. For object detection, adjusting the text threshold
(Text-thr) provides modest gains (60.9), while skipping detection reduces accuracy to 59.8. In-
creasing the number of extracted frames consistently benefits LongVideoBench (up to 60.8), though
improvements on LVBench are mixed; removing frame extraction lowers LongVideoBench accuracy
to 58.2. These findings highlight the contribution of each Module and underscore the importance of
proper parameter settings for robust long-form VideoQA.

Module Parameter Search We evaluate the module parameter search on LongVideoBench
(1,089 slow-reasoning samples). As shown in Table 5, varying Num frames (8, 16, 32, 64) from
the ExtractFrames, and Top k from the GetClips (1, 3, 5) yields seven program variants under the
“Num frames + Top k” setting, while the “All” configuration integrates all tested parameter sets.
For aggregation, majority voting selects the most frequent prediction, whereas confidence-based
selection chooses the prediction with the highest confidence. Confidence consistently outperforms
voting (e.g., 46.9 vs. 43.8 on “Num frames + Top k”), and for single-parameter searches, Top k
proves more effective compared to Num frames and Intervals, achieving a result of 46.2. The “All”
configuration achieves the best accuracy of 47.1, representing a 2.4 improvement over the 44.7 result
without parameter search integration. These results demonstrate that combining diverse parameter
configurations enhances both the robustness and accuracy of visual program reasoning.
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Question: The entire video of duration 522 seconds. On the black table, there 
is a white tray and bowl. The tray has a dark-colored bottle with a white 
paper label on it, and the bowl contains a white powder. A hand covered 
with a sleeve is mixing the contents with a kitchen utensil. After the subtitle 
'basic muffin butter mixed with a cup of', what appears on the screen?
Choices: \nA. silver kitchen utensils\nB. white bowl\nC. red fruit\nD. 
butterfly\nE. white water bottle

Output:
def execute_command(video, question, choices, duration):
    # === Fast answer attempt ===
    .......
    flag, answer, confidence = fast_thinking(video_path,question,choices) 
    if flag:
        return answer, flag  (python_exec(output): flag=0, answer=‘A’)
# <thinking> First, retrieve the intervals where the subtitle 'basic muffin 
butter mixed with a cup of. Then, extract frames from these clips and apply 
OCR to find the subtitle "basic muffin butter mixed with a cup of". After 
this subtitle, trim the video to the next segment and query the model to 
determine what appears on the screen. </thinking>
    intervals = get_informative_subtitles(
        video_path,
        "basic muffin butter mixed with a cup of", top_k=1)
    interval = intervals[0]
    start, end = interval
    frames = trim_after(video_path, end, intervals=30,num_frames=16)
    ocr_texts, ocr_frames  = [], []
    for frame in frames:
        text = run_ocr(frame)
        if text and "basic muffin butter mixed with a cup of" in text.lower():
            ocr_texts.append(text)
            ocr_frames.append(frame)
    if not ocr_frames:
        ocr_frames = frames
    ....... (Other API)
    prompt =  f"OCR text from frames: {' '.join(ocr_texts)}\n"
        f"After the subtitle 'basic muffin butter mixed with a cup of', what 
appears on the screen?")
    answer = query_mc(ocr_frames prompt, choices)
    return answer   (python_exec(output): answer=‘C’, confidence=0.80)

Question: The entire video of duration 23 seconds. On the table in the 
kitchen, a person is adding yellow lemon slices to a glass jar filled with 
yellow squash slices. When the subtitle says 'I'm a New York Medicine 
Ave,' what other objects are present in the room?
Choices: A. Refrigerator \nB. Red flowers\nC. Yellow flowers\nD. 
Green plants\nE. Oven

Output:
def execute_command(video, question, choices, duration):
    # === Fast answer attempt ===
    # This is a simple question that videollm can solve directly. Return the 
fast and slow answers with their confidence scores.
    flag, answer, confidence = fast_thinking(video_path,question,choices) 
    if flag:
        return answer, flag (python_exec(output): flag=1, answer=‘B’) 

Fast-Reasoning

Question: The entire video of duration 3828 seconds. What color are the 
runes on the bottom of the girl's feet at 38:18 in the video? 
Choices: \nA. Golden \n B. White \nC. Red \ND. Black

Output:
def execute_command(video_path, question, choices, duration):
# === slow thinking ===
# This is a difficult question that need api to solve.
# <thinking> Trim the video around 38:18 (2300 seconds), extract 
frames, crop the bottom part of each frame to focus on the girl's feet, and 
query the model to identify the color of the runes on the bottom of her 
feet. </thinking>
    timestamp = 2300
    frames = trim_around(video_path, timestamp, intervals=30, 
num_frames=16)
    cropped_frames = []
    for frame in frames:
        cropped_frames.append(crop_bottom(frame))
    ....... (Other API)
    prompt = "What color are the runes on the bottom of the girl's feet at 
38:18 in the video?"
    answer = query_mc(cropped_frames, prompt, choices)
    return answer (python_exec(output): answer=‘A’, confidence=0.9)

Slow Reasoning  

✅ ❌

✅

Fast-Then-Slow Reasoning

✅

Figure 5: FS-VisPR case study: Three primary reasoning modes: direct fast reasoning via Vide-
oLLM, slow reasoning through generated visual programs, and slow reasoning triggered when fast
reasoning yields low confidence.

4.4 CASE ANALYSIS

We present representative cases from Figure 8 to illustrate FS-VisPR’s adaptive, query-aware reason-
ing. For a short 23-second video, the model uses fast reasoning to correctly answer a simple object
query. In a long 3828-second video, slow reasoning is required: FS-VisPR perceives the query’s
difficulty, locates the timestamp, extracts and crops frames, and identifies the correct answer, high-
lighting both temporal-spatial precision and interpretability via visual programs. In two-stage infer-
ence, low-confidence fast reasoning triggers slow reasoning with frame retrieval and OCR to obtain
the correct result. All visual programs employ parameter search to select the highest-confidence
outcome, providing transparent and explainable reasoning steps. These examples demonstrate that
FS-VisPR not only adapts its strategy based on perceived query difficulty but also delivers inter-
pretable, program-based evidence. We also show some failure cases in Appendix A.5.

5 CONCLUSION

In this work, we introduced FS-VisPR, an adaptive visual program reasoning framework for long-
form VideoQA. Leveraging model confidence as a reliable signal, FS-VisPR dynamically balances
fast reasoning for simple queries with slow, program-based reasoning for difficult queries. By gener-
ating explicit visual programs, the framework enhances interpretability, allowing users to understand
how answers are derived. We developed a set of efficient modules, constructed a fast-slow aligned
dataset, and proposed a parameter search mechanism to improve program diversity and robustness.
Extensive experiments demonstrate that FS-VisPR achieves effective, adaptive, and interpretable
video question answering, outperforming existing VideoLLMs.
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ETHICS STATEMENT

This work adheres to the ICLR Code of Ethics. No human subjects or animal experimentation were
involved in this study. All datasets used, including CG-Bench (Chen et al., 2024a), VideoMME (Fu
et al., 2024), LongVideoBench (Wu et al., 2024), and LVBench (Wang et al., 2024a), were sourced in
accordance with the relevant usage guidelines, ensuring compliance with privacy standards. We have
made efforts to prevent any biases or discriminatory outcomes throughout our research. No person-
ally identifiable information was used, and no experiments were conducted that could raise privacy
or security concerns. We remain committed to upholding transparency and integrity throughout the
research process.

REPRODUCIBILITY STATEMENT

We have made every effort to ensure that the results presented in this paper are reproducible. We in-
troduce a pipeline for dataset generation in Section 3.3, which outlines the construction of the slow-
fast reasoning data. A comprehensive description of the pipeline, including the specific prompts
used, is provided in Appendix A.2. For evaluation, baseline models and their configurations, as
well as the training strategies and datasets employed to enhance model performance, are discussed
in Section 4.1. We believe these measures will enable other researchers to reproduce our work and
further advance the field.
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A APPENDIX

A.1 MODULE DETAILS

We design a suite of modules to support video understanding and reasoning. Each module is for-
mally specified by its parameters and parameter search space as follows.

• GetClips
– Parameters: video path, query, top k
– Description: Segments the video into 10-second clips, encodes each with
LanguageBind Video (Zhu et al., 2023), and retrieves the top-k clips most rel-
evant to the query.

– Parameter Search: top k ∈ {1, 3, 5}
• GetSubtitles

– Parameters: video path, query, top k
– Description: Retrieves subtitles (generated by Whisper since LVBench lacks tran-

scripts) (Zhu et al., 2023) and returns the top-k segments aligned with the query and
their timestamps.

– Parameter Search: top k ∈ {1, 3, 5}
• TrimBefore

– Parameters: video path, timestamp, intervals
– Description: Removes all content before the given timestamp, retaining only the

following intervals.
– Parameter Search: intervals ∈ {10, 20, 30, 60}

• TrimAfter
– Parameters: video path, timestamp, intervals
– Description: Removes all content after the given timestamp, retaining only the

preceding intervals.
– Parameter Search: intervals ∈ {10, 20, 30, 60}

• TrimRange
– Parameters: video path, start, end
– Description: Extracts the segment between the start and end timestamps.
– Parameter Search: intervals ∈ {10, 20, 30, 60}

• QueryMC
– Parameters: frames, query, choices
– Description: Answers multiple-choice questions using videoLLM and Qwen2.5-vl

(7B/34B), returning both the predicted answer and confidence score.
– Parameter Search: None

• QueryYN
– Parameters: frames, query
– Description: Answers binary yes/no questions using videoLLM and Qwen2.5-vl

(7B/34B).
– Parameter Search: None

• RunOCR
– Parameters: frame
– Description: Performs OCR on the input frame using EasyOCR and returns the rec-

ognized text.
– Parameter Search: None

• DetectObject
– Parameters: frame, text, text thr, box thr
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– Description: Detects objects in a frame conditioned on a textual query using
DEVA (Cheng et al., 2023), and outputs bounding boxes.

– Parameter Search: text thr and box thr control detection thresholds.

• GetSubsRange

– Parameters: video path, start, end
– Description: Retrieves subtitle segments between start and end.
– Parameter Search: None

• GetCapsRange

– Parameters: video path, start, end
– Description: Retrieves captions within the specified range, similar to GetSubsRange.
– Parameter Search: None

• GetSubtitleHint

– Parameters: video path, query
– Description: Provides query-based subtitle hints using Qwen3-8B (Yang et al., 2025).
– Parameter Search: None

• Crop

– Parameters: frame, box
– Description: Crops the specified region of interest from a frame for fine-grained anal-

ysis.
– Parameter Search: None

• ExtractFrames

– Parameters: video path, num frames

– Description: Extracts frames from the video for subsequent processing.
– Parameter Search: num frames controls the number of sampled frames.

• SplitVideo

– Parameters: video path

– Description: Splits the video into candidate intervals based on scene boundaries for
fine-grained analysis using scenedetect package.

– Parameter Search: None

A.2 PROMPTS

We provide GPT-4.1 few-shot prompts to generate visual reasoning programs for CG-Bench, includ-
ing the reasoning (thinking) process and module workflows, as shown in Figure 6. We also supply
code for question and workflow refinement to diversify module usage in the training data, illustrated
in Figure 7.

A.3 DATASETS

LongVideoBench (Wu et al., 2024) is a benchmark for long video understanding, containing 3,763
videos (up to 1 hour) with subtitles and 6,678 human-annotated multiple-choice QA pairs across
17 categories. VideoMME (Fu et al., 2024) provides 900 videos (254 hours) with 2,700 human-
curated QA pairs across six domains and 30 subcategories. Videos range from 11 seconds to 1 hour
and include frames, subtitles, and audio to evaluate multimodal reasoning. LVBench (Wang et al.,
2024a) targets extreme long video comprehension, featuring videos from 70 seconds to 4 hours.
It covers single-scene, multi-scene, and full-scene settings with diverse reasoning types, such as
temporal, spatial, causal, hypothetical, and external knowledge.
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<Prompt>

You are a video reasoning agent. Your task is to analyze a video question and generate a program with available 

APIs.  ## API Reference:

retrieval functions:

    get_informative_clips(query, video_path, top_k=3, total_duration=duration)  # Returns intervals, files (time 

intervals and file paths)

    get_informative_subtitles(query, video_path, top_k=1, total_duration=duration)  # Returns subtitles list

analysis_manager functions:

    query_mc(frames, query, choices)  # Answers a multiple-choice question using the frames.

    query_yn(frames, query)  # Answers yes/no questions.

    trim_after(video_path, timestamp)  # Trims the video after the timestamp.

    trim_before(video_path, timestamp)  # Trims the video before the timestamp.

    trim_frames(video_path, start_timestamp, end_timestamp)  # Trims the video between given timestamps.

    run_ocr(frame)  # Performs OCR on a frame and returns recognized text.

    detect_object(frame, text)  # Detects an object in a frame based on text, returns bounding boxes.

    crop(frame, box)  # Crops the given region in a frame.

other functions:

    extract_frames(video_path)  # Extracts frames from the video.

    split_video(video_path) # Split the video into candidate temporal intervals.

    get_subtitles_in_range(video_path, start_timestamp, end_timestamp)  # Gets subtitles in the specified range.

    get_captions_in_range(video_path, start_timestamp, end_timestamp)  # Gets captions in the specified range.

Allowed Utility Functions:

    Use standard Python constructs like if, for, len(), max(), sorted(), etc.

---

Analyze the video question and generate Python code using the APIs.

Your output must define a Python function in the following format:

<code>

def execute_command(video_path, question, choices, duration):

    # Step-by-step reasoning using available APIs, with the <thinking> </thinking> tag.

   # The visual program code.

    ...

    return result

</code>]

Here are some examples:

<Few-shot examples>

Figure 6: The GPT-4.1 prompt used to generate visual program reasoning data.

A.4 MORE RESULTS

As shown in Table 7, the results based on slow reasoning (1,089 samples from VideoMME and 598
samples from LongVideoBench) are compared with the results obtained using fast reasoning on the
same samples. In both datasets, the performance of fast reasoning is consistently lower than that of
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<Prompt>

Keep the underlying logic, scenario, and expected action consistent with the example, but you can freely vary any 

aspect such as wording, descriptions of characters or objects,  their positions, appearance, clothing, location, 

background elements, or any other relevant detail.  You may also rephrase options, change their order, or 

introduce reasonable variations,  as long as the main reasoning and correct answer type remain valid.  The goal is 

to produce diverse, natural, and logically consistent new examples.

Example:

Instruction:

{example['instruction']}

Output:

{example['output']}

Now generate one new example following the same format (Instruction + Output). 

{generalized_instruction}

Figure 7: The GPT-4.1 prompt used to rewrite queries and workflows to generate diverse module
data.

Dataset Type Short ↑ Medium ↑ Long ↑ Avg ↑

VideoMME Fast 38.3 42.2 36.8 39
Slow 43.6 49.1 52.0 48.9

LongVideoBench Fast 47.2 39.3 36.4 38.3
Slow 51.3 50.0 44.3 47.4

Table 7: Most results are based on the 1,089 slow-reasoning samples from VideoMME and the 598
slow-reasoning samples from LongVideoBench, compared with the fast reasoning results.

slow reasoning across all categories (Short, Medium, Long, and Avg.). These comparisons demon-
strate that slow reasoning yields better results, especially when handling more complex queries
where fast reasoning tends to perform less effectively.

A.5 CASE STUDIES: FAILURE ANALYSIS

In addition to successful cases, we highlight two classes of failure cases. First, when the VideoLLM
is overconfident in an incorrect answer, confidence-based triggering may fail to activate slow rea-
soning. This limitation could be mitigated by adopting stronger baseline VideoLLMs with improved
calibration. Second, there exist queries that cannot be resolved even with slow reasoning. Such cases
point to the need for expanding the advanced module library, underscoring the extensibility of the
FS-VisPR framework.

A.6 USAGE OF LLMS IN PAPER WRITING

Large Language Models (LLMs) were used to aid in the writing and polishing of the manuscript.
Specifically, we used an LLM to assist in refining the language, improving readability, and ensuring
clarity in various sections of the paper. The model helped with tasks such as sentence rephrasing,
grammar checking, and enhancing the overall flow of the text.
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It is important to note that the LLM was not involved in the ideation, research methodology, or
experimental design. All research concepts, ideas, and analyses were developed and conducted by
the authors. The contributions of the LLM were solely focused on improving the linguistic quality
of the paper, with no involvement in the scientific content or data analysis.

The authors take full responsibility for the content of the manuscript, including any text generated
or polished by the LLM. We have ensured that the LLM-generated text adheres to ethical guidelines
and does not contribute to plagiarism or scientific misconduct.
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The entire video of duration 3665 seconds. Question: What does the 
protagonist see through the window after she is taken to the utility room?
(A) A group of monks sitting cross-legged in the snow
(B) A group of citizens chatting together
(C) A group of warriors practicing swords
(D) A group of samurais eatingOutput:
def execute_command(video, question, choices, duration):
    # === Fast answer attempt ===
    .......
    flag, answer, confidence = fast_thinking(video_path,question,choices) 
    if flag:
        return answer, flag  (python_exec(output): flag=1, answer=‘A’)

Question: The entire video of duration 2548 seconds.
Question: How many doors have colored lights at 00:29?Choices: \nA. 2 \n 
B.1 \nC.3\ND.0
def execute_command(video_path, question, choices, duration):
# === slow thinking ===
<think>
......
</think>

<code>
def execute_command(video_path, question, choices, duration):
# === slow thinking ===
# This is a difficult question that need api to solve.
# <thinking> Trim the video around 29 seconds to focus on the relevant 
scene. 
    # Extract frames and detect doors with colored lights in each frame. 
    # Count the number of such doors per frame, and use the maximum count 
from all frames. 
    # Finally, query the model to select the correct answer from the choices. 
</thinking>
    timestamp = 29
    frames = trim_around(video_path, timestamp, intervals=16, 
num_frames=16)
    ....... (Other API)
    prompt = (
        f"Question: How many doors have colored lights at 00:29?"
    )
    answer = query_mc(frames, prompt, choices)
    return answer
</code>  (python_exec(output): confidence=0.94, answer=‘B’)

Slow Reasoning  

❌

Fast Reasoning

❌

Overconfidence in VideoLLMs

Figure 8: Error case study: VideoLLM errors caused by overconfidence and limited counting ability
in the query mc Module.
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