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Abstract

In recent advancements, large language models (LLMs) have exhibited
proficiency in code generation and chain-of-thought reasoning, laying the
groundwork for tackling automatic formal planning tasks. This study
evaluates the potential of LLMs to understand and generate Planning Do-
main Definition Language (PDDL), an essential representation in artificial
intelligence planning.
We conduct an extensive analysis across 20 distinct models spanning 7
major LLM families, both commercial and open-source. We focus exclu-
sively on general-purpose, off-the-shelf models, excluding recent reasoning-
centric models, to avoid confounding from task-specific architectural scaf-
folding and to evaluate the native planning fluency of widely deployed
LLMs. Our comprehensive evaluation sheds light on the zero-shot LLM
capabilities of parsing, generating, and reasoning with PDDL. Our find-
ings indicate that while some models demonstrate notable effectiveness
in handling PDDL, others pose limitations in more complex scenarios re-
quiring nuanced planning knowledge. These results highlight the promise
and current limitations of LLMs in formal planning tasks, offering insights
into their application and guiding future efforts in AI-driven planning
paradigms.

1 Introduction

Automated planning has long been a cornerstone of artificial intelligence, traditionally
relying on explicit domain knowledge encoded in formal languages such as PDDL. In
recent years, the rapid evolution of large language models (LLMs) has sparked considerable
interest in their ability to bridge the gap between natural language descriptions and formal
planning representations.

Early studies by Zuo et al. (2024) and Oswald et al. (2024) demonstrated that LLMs are
capable of translating natural language descriptions into syntactically valid PDDL represen-
tations. However, these pioneering works also revealed significant gaps, as the generated
planning domains frequently diverge from gold-standard models, both syntactically and
semantically. This observation has spurred further research into the underlying reasoning
capabilities of LLMs and their potential role in executing complete planning tasks.

Recent developments have introduced LLMs explicitly optimized for reasoning, such as
OpenAI’s o1 model OpenAI et al. (2024) and DeepSeek’s R1 DeepSeek-AI et al. (2025).
These models incorporate internal mechanisms or intermediate representations designed
to facilitate formal reasoning. However, we intentionally exclude such reasoning-centric
models from our evaluation. Their architecture often obscures whether planning outputs
emerge from semantic understanding or embedded symbolic heuristics. Additionally, they
are not yet broadly accessible for integration in real-world planning pipelines. By focusing
on widely available, general-purpose LLMs, we aim to isolate natural language-to-PDDL
fluency without reasoning-specific scaffolding.

Advancement in LLMs fuelled recent efforts that looked into how these multi-billion pa-
rameter models can be best employed as agents Huang et al. (2024). Building on this
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momentum, several strategies have been proposed to map user instructions into PDDL
problems Pallagani et al. (2023); Liu et al. (2023a); Dagan et al. (2023); Gestrin et al. (2024);
Zhang et al. (2024), without however providing conclusive evidence for the feasibility of the
task in the general domain. These studies underscore both the promise and the challenges
inherent in leveraging LLMs for complex planning and reasoning tasks, where transforming
natural language into an executable agentic workflow remains a non-trivial endeavor.

In this study, we step back to examine the fluency of twenty LLMs from seven major families
in the PDDL language, focusing on their ability to parse, generate, and reason with PDDL.
Specifically, we leverage the Planetarium benchmark Zuo et al. (2024) alongside the dataset
introduced by Oswald et al. (2024) to assess how well these models understand and generate
actions, problems, and plans. By analyzing a randomly sampled subset of over 13,000 (NL-
instruction, PDDL-problem) pairs, our results show that although some models demonstrate
moderate proficiency in handling PDDL, the majority struggle to convert natural language
instructions into fully correct PDDL representations. This challenge is especially evident in
smaller LLMs, which often fail to produce parsable PDDL.

It is important to note that our evaluation focuses exclusively on zero-shot prompting, as our
aim is to test the planning capabilities of off-the-shelf LLMs. Although few-shot prompting
approaches might further improve performance, they were not considered in this study to
maintain a clear assessment of the models in their unmodified state.

Our contributions are twofold: (1) an extensive evaluation of the zero-shot planning per-
formance of LLMs as reflected in their PDDL handling, and (2) an investigation into the
feasibility of employing these models as co-pilots in planning tasks. Importantly, we do not
perform a detailed error analysis aimed at improving model outputs. Instead, our focus is to
characterize the current capabilities of off-the-shelf LLMs—assessing how well they perform
out-of-the-box and whether they are viable for use as planning assistants. Understanding
and addressing specific model errors is left to future work.

2 Extensive PDDL capability evaluation

From a high-level point of view, PDDL involves three types of elements: the domains to
represent the possible actions available in a certain space, the problems which roughly
encode the premise and the goal of a real world operation to be performed in a defined space
(i.e. domain) and finally the plans that represent the effective set of actions to be run to
perform the real world operation, achieving the goal (refer to Appendix A to read more).

Therefore, practically, we stressed the considered LLMs to generate all or part of the afore-
mentioned elements, while maintaining a wide set of evaluation scores across the involved
steps to fuel the discussion and draw conclusions.

2.1 Action Generation

Task Signature = [input: NL instruction, PDDL domain predicates; output: PDDL action]

We rely on the benchmark proposed by Oswald et al. (2024) to evaluate the action
generation capabilities: given a seed domain file and the NL description of an action, we let
the LLM generate it in proper PDDL syntax. In their article, the authors shared a set of 32
NL-to-Action instructions distributed across 9 popular PDDL domains. We enriched these
by generating 4 NL-variations for each NL-to-instruction pair to obtain a dataset of 160
[(1 + 4)× 32] instructions.

To assess the results, we score along the following dimensions: Parsable: Determines if the
output conforms to correct PDDL syntax. Solvable: Measures how well the action integrates
into the target domain (e.g. the action may be syntactically correct but involving type
mismatches, wrong number of variables for some predicates,. . . ). Equivalent: Syntactically
valid PDDL that integrates with the desired domain under the domain equivalence heuristic.

To measure the similarity between the generated action and the gold standard, we calculate
the normalised differences in their preconditions and effects, and then subtract this value
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from one to derive a similarity score.

Similarity = 1 −
|Apre∆Âpre|+ |Aef∆Âef|
|Apre ∪ Âpre|+ |Aef ∪ Âef|

Where Apre, Aef are preconditions and effects in the gold action and Âpre, Âef are precondi-
tions and effects in the LLM generated action.

2.2 Problem Generation

Task Signature = [input: NL instruction, PDDL domain; output: PDDL problem]

We choose the Planetarium benchmark to evaluate the problem generation capabili-
ties of models Zuo et al. (2024). The benchmark was primarily selected due its size that
enabled a comprehensive evaluation on our side. In particular, we randomly selected 10%
of the full dataset, resulting in a test set consisting of 13 203 (NL-instruction, PDDL-problem)
pairs. Metrics for this set of experiments are as above (with a slight difference): Parsable:
generated PDDL adheres to the syntactic rules of the language, Solvable: the generated
problem can be effectively processed by existing PDDL planners, reflecting its practical
utility, Equivalent: matches the gold standard in both structure and semantics.

When it comes to measure the similarity between the gold and the generated PDDL problem,
we use ChrF Popović (2015) as it is a standard metric to evaluate code generation tasks
Evtikhiev et al. (2023). By employing the ChrF metric, we can objectively assess subtle differ-
ences between the generated and reference PDDL code, offering a nuanced understanding
of each model’s translation accuracy.

2.3 Plan Generation

Task Signature = [input: PDDL domain, PDDL problem; output: Plan]

Finally, although LLMs are not expected to outperform conventional planners1—since
their reasoning capabilities rely on intrinsic parametric knowledge rather than explicit
logical reasoning2—we also aimed to assess their ability to plan in PDDL when provided
with pairs of domain and problem. For this purpose, we selected domain-problem
pairs from the Planetarium benchmark to prompt the models for plan generation. To
evaluate generalisation, we categorised these problems based on their level of abstractness,
classifying descriptions as either explicit or abstract. Explicit descriptions are direct
propositions found in the PDDL problem (e.g., “block1 is on block2”), whereas abstract
descriptions summarise a state (e.g., “all blocks are in a single tower”). Because these
descriptions encapsulate both the initial and goal states, there are four possible categories:
(1) Abstract initial and goal states, (2) Abstract initial but explicit goal, (3) Explicit initial but
abstract goal and (4) Explicit initial and goal states. In total, we selected 40 representatives
from each category, yielding 160 pairs. The correctness of the generated plans is then
verified using VAL3, a tool that assesses whether a plan is compatible with the specified
PDDL domain and problem.

2.4 Considered LLMs

To review the capabilities of language models to deal with PDDL, we utilised LLMs from
several leading organisations, ensuring that both general-purpose and specialist models
(i.e. chatting, code generation or instruction-following modes) are considered. Our set of
models includes LLMs from

1See Frances et al. (2017) for an extensive evaluation of PDDL planners, which also showcases the
planner used as reference in our study: BFWS-FF Lipovetzky & Geffner (2017a;b).

2Mirzadeh et al. (2024) provides a more nuanced understanding of LLMs’ capabilities and limita-
tions in (mathematical) reasoning.

3https://github.com/KCL-Planning/VAL
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B. Problem generation
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C. Plan creation

init:abs|goal:abs init:abs|goal:exp
init:exp|goal:abs init:exp|goal:exp

GPT Claude3 Gemini LLaMA-3.1 Mistral Qwen Instruct DeepSeek

Figure 1: LLM performances across the three benchmarks (higher the better).

• OpenAI (GPT-3.5-turbo, GPT-4o-mini, GPT-4o),

• Anthropic (Claude-3-Haiku and Claude-3-Sonnet),
• Google (Gemini-1.5-Pro, Gemini-1.5-Flash and Gemma-2-9B-it),
• Meta (LLaMA-3.1-8B-Instruct, LLaMA-3.1-70B-Instruct, and LLaMA3.1-405B-

Instruct),
• Mistral (Large2, 7B-Instruct, and Codestral),
• DeepSeek (Coder-V2 and Chat-V2),

• Alibaba (Qwen2-1.5B-Instruct, Qwen2.5-7B-Instruct, Qwen2.5-Coder-7B-Instruct, and
Qwen2.5-72B-Instruct).

Overall, this set involves members of 7 distinct providers, including commercial and open
LLMs. In addition, this set allows us to compare behaviors and performances across different
parameter numbers and specialities.
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2.5 Results

Domain (Fig.1A) We review the performance of 20 distinct LLMs in populating PDDL
domain files with new actions based on NL instructions. While most LLMs perform well in
generating correct actions, a notable decline in performance is observed in their ability to
produce equivalent actions. Among the models, GPT-4o, Qwen2.5-72B-instruct, and Mistral-
Large2 stand out as the top performers across all three metrics for action generation. In
contrast, some models consistently fail to adhere to the required action syntax. Notably, the
entire LLaMA family performs very poorly, irrespective of the number of parameters. It is
worthwhile noting that all the models have their respective parsable and solvable values very
close, in other words the difference between them for a model is of few points. This implies
that not only models are able to generate proper PDDL syntax (parsable) but they comply
with the given domain (solvable), such a property could be useful if the models were used as
assistants, see Figure 2 and its associated discussion for more details.

Problem (Fig.1B) We next assessed the ability of LLMs to generate complete PDDL prob-
lems based on NL instructions and a corresponding PDDL domain. While most models
can produce syntactically correct and parsable PDDL problems, their performance de-
clines significantly when required to solve the problem for generating a plan or producing
problems equivalent to the gold. Interestingly, the LLaMA family, which struggled with
syntax in action evaluations, demonstrates improved accuracy for this task. Even though
LLaMA-3.1-405B achieves the highest equivalency rate at about 32%, its performance –and
that of all off-the-shelf models– remains inadequate for this task, suggesting that further
techniques such as few-shot prompting, fine-tuning, or other enhancements are necessary to
assist PDDL problem generation, as explored by Zuo et al. (2024) for instance. Furthermore,
models are not consistent through the three metrics: for instance GPT-40-mini which has
the bext score for parsable ends up being in the worst when it comes to equivalent, a similar
behaviour goes for Codestral too.

Plan (Fig.1C) Investigating the plan generation, as expected, we find that given a PDDL
domain and problem, the models struggle to generate PDDL plans. This was tested on
160 data points, with Gemini-1.5-pro performing the best, yet achieving a valid plan in only
16.87% of the cases. In contrast, the BFWS-FF planner succeeded in generating a conclusive
plan 86.25% of the time. Additionally, we explored the plan generation relative to the
abstractness of the initial state and goal of the PDDL problem. Across all LLMs, we observe
that they perform better when the initial state of the PDDL problem is abstract, though, no
such pattern is noticed regarding the abstractness of the goal. Once again, the models are
not performing similarly across the different tasks. Typically, our smallest model in the mix
(Qwen2-1.5B-Instruct) which had scores almost all null for the domain and problem tasks,
happens to be in the top-5 for the plan generation.

2.6 Discussions

Our results indicate that while most LLMs can generate syntactically correct PDDL, they
largely lack the capacity to generate effective problems and plans for addressing the in-
put instructions. This behaviour becomes increasingly evident as the complexity of the
experimental setup rises.

Parameter Number With the exception of the LLaMa family, an increased number of
parameters in LLMs does not consistently lead to better PDDL fluency. This suggests
that current pre- and post-training approaches are not effectively scaling these models
to meet the demands of complex PDDL generation, including, but not limited to, long-
horizon planning tasks. A clear challenge emerges with models like the LLaMA family
(see Fig.1), which, while effective in problem generation, struggle significantly with action
generation. This issue stems from a syntactic bias: for example, instead of the correct
keyword “:precondition”, they generate “:preconditions”, making actions unparsable.
Similar patterns are observed in Gemma-2-9B-it, Mistral-7B-Instruct, or Qwen2.5-72B-Instruct,
which incorrectly output “(action. . . )” rather than “(:action. . . )”. Similarly, while
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Figure 2: Performances of LLMs as co-pilots: closeness (%) of generations to the “gold”.

generating problems, models often struggle with maintaining correct action sequences in
the goal, occasionally placing semantically similar actions in the goal that are not defined in
the domain, leading to mismatches.

LLMs as copilots However, our findings, in Fig.2, reveal that despite these challenges,
LLM-generated PDDL actions and problems demonstrate a high degree of closeness to the
gold standard. 8 of the 20 models achieved over 80% similarity for both domain-action
generation and problem generation, and showcased near-accurate generation of formal
planning structures. This suggests that, while the models (off-the-shelf) may not yet be fully
reliable for independent use, they hold strong potential as supportive tools. By generating
near-accurate PDDL structures, these models can serve as co-pilots, streamlining the drafting
process and allowing experts to focus on refinement and optimization rather than building
from the ground up.

The position articulated in Kambhampati et al. (2024) underscores that, although LLMs may
not inherently plan effectively, they can nonetheless play a significant supportive role in
LLM-modulo planning frameworks. This further reinforces our findings, highlighting the
viability of these models as valuable assistants in structured problem-solving tasks. PDDL is
actively used in a variety of high-impact disciplines, including robotics, automated logistics,
satellite tasking, and mission planning for space exploration systems such as NASA’s
MAPGEN Ai-Chang et al. (2004). In these settings, domain experts are often required to
manually encode goals, constraints, and available actions into formal PDDL representations
—a process that is both time-consuming and error-prone. LLMs can alleviate these burdens
by assisting in the initial drafting of domain and problem files, identifying potential syntax
issues, and even proposing plausible but incomplete plans that serve as starting points. For
instance, in autonomous warehouse operations or planetary rover scheduling, LLMs could
support engineers by converting high-level goals into draft PDDL structures, accelerating
development cycles.

This co-pilot role aligns with human-in-the-loop paradigms4, where automated assistance
augments expert reasoning without fully replacing it. Our evaluation suggests that current
LLMs, while insufficient as planners, are nonetheless effective collaborators in real-world
planning pipelines.

Horizon Distance In order to explore how the number of actions (context) in a PDDL
problem might affect the generation, in Table 1, we analyse the performance of models with
three horizons: Short (up to 10 actions), Medium (from 11 to 50) and Long (more than 50).

4See e.g. the recent Magentic-UI initiative by Microsoft adding human feedback on top of their
Magentic-One orchestrator Fourney et al. (2024).
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Table 1: Horizon scores: (%) for the problem equivalence.
LLM Short Medium Long

GPT-3.5-turbo 20.98 3.09 1.13
GPT-4o-mini 1.13 3.23 3.19

GPT-4o 20.42 28.08 11.32
Claude-3-Haiku 0.36 0.04 0.0
Claude-3-Sonnet 15.52 19.29 6.42
Gemini-1.5-Pro 5.71 11.98 1.51

Gemini-1.5-Flash 0.0 0.0 0.0
Gemma-2-9B-it 4.24 7.71 1.13

LLaMA-3.1-8B-Instruct 0 0.02 0
LLaMA-3.1-70B-Instruct 0 8.58 1.51

LLaMA-3.1-405B-Instruct 32.27 33.29 10.65
Mistral-7B-Instruct 3.15 1.23 1.13

Codestral 5.43 6.72 4.74
Mistral-Large2 11.27 16.03 35.5

Qwen2-1.5B-Instruct 0.0 0.0 0.0
Qwen2.5-Coder-7B-Instruct 27.44 13.15 0.38

Qwen2.5-7B-Instruct 0.0 0.0 0.0
Qwen2.5-72B-Instruct 13.48 13.49 4.45

DeepSeek-Coder-V2 11.83 20.79 2.26
DeepSeek-Chat-V2 6.55 14.05 1.88

While short horizons perform decently as they are straightforward to process, they often
lack the necessary context to provide sufficient information for optimal model performance.
In contrast, medium horizons offer a richer and more comprehensive context, enabling
the model to achieve results that are not only comparable to those with short horizons
but often surpass them (Table 1). This suggests that medium horizons strike a balance by
providing enough information to enhance generation for more complex queries without
overwhelming the models.

The extended context and complexity of PDDL problems exacerbate these issues, as models
find it challenging to sustain coherence and alignment across the entire generation process,
as scores decrease with long-horizon planning. As described in Chen et al. (2024), long-
horizon planning tasks involve “extended sequences of actions” or span “over a prolonged
period of time”. Reasoning over longer context windows has been a traditional challenge
associated with language models, especially in tasks requiring understanding of complex,
long-range dependencies Li et al. (2024). We find that this behaviour exacerbates in the
context of generating longer, expressive problems. We believe that problem decomposition
strategies, that would seek to split and hierarchically construct an expected problem in a
bottom-up fashion could offer promising directions for future work.

3 Related Work — PDDL ∩ LLM

The generation of PDDL domains and problems has recently garnered significant attention
as a means to enhance planning via large language models (LLMs) Strobel & Kirsch (2020);
Silver & Chitnis (2020); Silver et al. (2022); Vyas et al. (2025). In parallel, the advent of sophis-
ticated prompting techniques has unlocked new applications for LLMs Liu et al. (2023b);
Graux et al. (2024). Nonetheless, while LLMs have demonstrated planning capabilities
Huang et al. (2024), they continue to struggle with long-horizon planning, uncertainty in
generated plans, and generalisation to unseen domains Sermanet et al. (2023). Consequently,
several works have aimed to bridge the gap between the probabilistic nature of LLMs
and the deterministic requirements of PDDL-based planners. For instance, Collins et al.
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(2022) compared the out-of-distribution robustness of PDDL-augmented LLMs with human
reasoning, highlighting clear limitations in current LLM approaches.

In many settings, LLMs have proven more effective at translating natural language into
formal representations rather than performing the planning itself, as noted in works such as
Alford et al. (2009); Helmert (2009); Xie et al. (2023). This observation has spurred strategies
that decompose the problem into translating user instructions into PDDL problems, solving
these problems via formal logic within the PDDL framework, and then translating the
resulting plans back into natural language Pallagani et al. (2023); Liu et al. (2023a); Dagan
et al. (2023); Silver et al. (2024); Gestrin et al. (2024); Mahdavi et al. (2024); Zhang et al. (2024).

More recent contributions have further refined the dialogue between LLMs and planning.
Hao et al. (2023) propose that reasoning with a language model can be reinterpreted as
planning with an integrated world model, while Rossetti et al. (2024) explore the learning
of general policies for planning directly via GPT models. In addition, benchmark efforts
such as PlanBench introduced by Valmeekam et al. Valmeekam et al. (2023) and critical
investigations into LLM planning abilities Valmeekam et al. (2023) provide valuable insights
into the performance and limitations of current models.

Novel benchmarks such as PlanBench Valmeekam et al. (2023), AutoPlanBench Stein et al.
(2024), Planetarium Zuo et al. (2024), and the domain benchmark from Oswald et al. (2024)
have been introduced to assess LLMs’ planning capabilities using PDDL. However, to
the best of our knowledge, the recent families of foundational models have not yet been
extensively benchmarked to reveal their inherent robustness and reliability in handling
PDDL generation. In this study, we explore the capacity of these foundational models
to generate both PDDL domains and problems, thereby extending prior evaluations and
situating our work alongside the latest advances in planning with LLMs.

4 Conclusion

In this study, we experimentally reviewed the PDDL capabilities of a large panel of language
models: twenty in total, representing multiple dimensions of the current state-of-the-art,
while keeping aside the most recent reasoning one in order to focus on general-purpose
LLMs. Our evaluations show that (some) LLMs can be used to generate actions to complete
PDDL domains, they may also be used to assist in the task of generating PDDL problems
from NL instructions. However, as expected, they reveal being poor planners and it is
better to rely on “real” planners which have been developed by the community for decades.
Surprisingly also, behaviours given a specific model are not uniform across tasks as good
performers (even leaders) for a certain PDDL aspect may turn out to be among the worst
ones later. Nevertheless, when reviewing how far LLMs are with domain and problem to
the gold answers, we witnessed that models could be used as assistants since they often are
“not-too-far” from being correct. As a consequence, general-purpose LLMs could then be
involved to help experts in their daily tasks.

As previously mentioned, the focus of this study was not to improve LLMs’ capabilities with
PDDL formal understanding but rather shedding light on current general capabilities where
we showed that these capabilities would be more useful for an expert than for lay-users.
However, the obtained results, through our benchmarking experiments, may also benefit
research in the domain of formal language model reasoning and may lead researchers to
finding new directions. That is why we provide all the results as supplementary material
(see Appendix D) for further analysis.

Overall, we hope to pave the road to future efforts in AI-driven planning challenges.
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Zhou, Pavlos Vougiouklis, Ruofei Lai, Yang Ren, Keshuang Li, and Jeff Z. Pan. From An
LLM Swarm To A PDDL-Empowered HIVE: Planning Self-Executed Instructions In A
Multi-Modal Jungle. International Conference on Learning Representations (ICLR), 2025.

Yaqi Xie, Chen Yu, Tongyao Zhu, Jinbin Bai, Ze Gong, and Harold Soh. Translating natural
language to planning goals with large-language models, 2023. URL https://arxiv.org/
abs/2302.05128.

Li Zhang, Peter Jansen, Tianyi Zhang, Peter Clark, Chris Callison-Burch, and Niket Tandon.
PDDLEGO: Iterative planning in textual environments. In Danushka Bollegala and Vered
Shwartz (eds.), 13th Joint Conf. on Lexical and Computational Semantics (*SEM 2024), pp.
212–221, Mexico City, Mexico, June 2024. Association for Computational Linguistics. doi:
10.18653/v1/2024.starsem-1.17. URL https://aclanthology.org/2024.starsem-1.17.

Max Zuo, Francisco Piedrahita Velez, Xiaochen Li, Michael L Littman, and Stephen H
Bach. Planetarium: A Rigorous Benchmark for Translating Text to Structured Planning
Languages. arXiv:2407.03321, 2024.

A Primer on PDDL

The Planning Domain Definition Language (PDDL) is a standard formalism developed for
representing planning problems in artificial intelligence. It was first introduced by Drew
McDermott and colleagues in 1998 to provide a unified format for comparing AI planners
in competitions such as the International Planning Competition (IPC). PDDL is inspired by
first-order logic and STRIPS-based action representations.

A planning problem in PDDL typically consists of three key components:
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• Domain: A domain file declares the types of objects in the world, predicates
(relations over those objects), and actions. Each action includes:

– :parameters – the variables used in the action.
– :precondition – a logical formula that must hold for the action to be applicable.
– :effect – the state changes caused by executing the action.

• Problem: A problem file defines a specific instance of the domain. It includes:
– :objects – the objects present in the instance.
– :init – the initial state described using ground predicates.
– :goal – the desired state (goal condition) that must be achieved.

• Plan: A plan is a sequence of instantiated actions (i.e., actions where parameters are
grounded with actual objects) that transitions the system from the initial state to a
state that satisfies the goal.

Domain Example

(define (domain transport)
(:predicates (at ?x ?loc) (connected ?from ?to))
(:action move
:parameters (?x ?from ?to)
:precondition (and (at ?x ?from) (connected ?from ?to))
:effect (and (not (at ?x ?from)) (at ?x ?to))))

Problem Example

(define (problem move-box)
(:domain transport)
(:objects box1 roomA roomB)
(:init (at box1 roomA) (connected roomA roomB))
(:goal (at box1 roomB)))

Plan Example

0: (move box1 roomA roomB)

PDDL supports additional features such as typing, negative preconditions, conditional
effects, temporal planning, and numeric fluents (in later versions such as PDDL 2.1+). In
this work, we focus on classical (non-temporal) PDDL constructs that form the foundation
of most LLM-based planning experiments. For further reference, readers may consult the
original PDDL specifications and tutorials such as Aeronautiques et al. (1998) or Alford et al.
(2009).

B Examples of 0-shot prompts

In order to give a better idea on the prompts we triggered at the language models, we
provide in this Appendix an example for each of the tested task, i.e. Action creation,
Problem generation and Plan creation. We refer the reader to the main body of the article
for more details, see e.g. Figure 1 (A, B and C) for details of the results5 . In particular, here
we provide:

• The action generation (put-down) for the BLOCKS domain;
• A problem generation in blocksworld domain (init=holding one);
• A plan generation in blocksworld domain (init=on table, goal=tower).

5Moreover, we will provide –once not double-blind anymore– a link toward our Github reposi-
tory which gathers all the benchmarks (including the prompts) that were used to assess the LLM
performances.
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Prompt and result for the action generation (put-down) for the BLOCKS domain

Given a description of an action in some domain, convert it to Planning Domain
Definition Language (PDDL) action. You may only use the allowed predicates for
each action.
Allowed Predicates:
- (handempty) : the hand is empty. - (holding ?x - block): block x is held.
- (clear ?x - block): block x is clear. - (on ?x - block ?y - block) : block x is on block y.
- (ontable ?x - block): block x is on the table.
Input: The action, “put-down” will have the hand put down a block.
PDDL Action:

( :action put-down
:parameters (?x - block)
:precondition (holding ?x)
:effect (and (not (holding ?x)) (clear ?x) (handempty) (ontable ?x)) )

A problem generation in blocksworld domain (init=holding one)

Provide me with the complete, valid problem PDDL file that describes the following
planning problem directly without further explanations or texts. The domain for the
planning problem is:
(define (domain blocksworld) (:requirements :strips) (:predicates (arm-empty) (clear
?x) (holding ?x) (on ?x ?y) (on-table ?x)) (:action pickup :parameters (?ob) :precondi-
tion (and (clear ?ob) (on-table ?ob) (arm-empty)) :effect (and (holding ?ob) (not (clear
?ob)) (not (on-table ?ob)) (not (arm-empty))) ) (:action putdown :parameters (?ob)
:precondition (holding ?ob) :effect (and (clear ?ob) (arm-empty) (on-table ?ob) (not
(holding ?ob))) ) (:action stack :parameters (?ob ?underob) :precondition (and (clear
?underob) (holding ?ob)) :effect (and (arm-empty) (clear ?ob) (on ?ob ?underob) (not
(clear ?underob)) (not (holding ?ob))) ) (:action unstack :parameters (?ob ?underob)
:precondition (and (on ?ob ?underob) (clear ?ob) (arm-empty)) :effect (and (holding
?ob) (clear ?underob) (not (on ?ob ?underob)) (not (clear ?ob)) (not (arm-empty))) ))
Planning problem:
You have 17 blocks. You are holding b1. b2 is clear. b2 is on the table. b3 is clear. b3
is on the table. b4 is clear. b4 is on the table. b5 is clear. b5 is on the table. b6 is clear.
b6 is on the table. b7 is clear. b7 is on the table. b8 is clear. b8 is on the table. b9 is
clear. b9 is on the table. b10 is clear. b10 is on the table. b11 is clear. b11 is on the
table. b12 is clear. b12 is on the table. b13 is clear. b13 is on the table. b14 is clear. b14
is on the table. b15 is clear. b15 is on the table. b16 is clear. b16 is on the table. b17 is
clear. b17 is on the table.
Your goal is to stack the blocks into a towers of heights 1, 1, 1, 2, 3, 9.
Problem PDDL:

(define (problem holding one to tower 1 1 1 2 3 9)
(:domain blocksworld)
(:requirements :strips)
(:objects b1 b10 b11 b12 b13 b14 b15 b16 b17 b2 b3 b4 b5 b6 b7 b8 b9)
(:init (clear b10) (clear b11) (clear b12) (clear b13) (clear b14) (clear b15) (clear b16)

(clear b17) (clear b2) (clear b3) (clear b4) (clear b5) (clear b6) (clear b7) (clear b8) (clear
b9) (holding b1) (on-table b10) (on-table b11) (on-table b12) (on-table b13) (on-table
b14) (on-table b15) (on-table b16) (on-table b17) (on-table b2) (on-table b3) (on-table
b4) (on-table b5) (on-table b6) (on-table b7) (on-table b8) (on-table b9))

(:goal (and (arm-empty) (clear b1) (on-table b1) (clear b2) (on-table b2) (clear b3)
(on-table b3) (clear b4) (on b4 b5) (on-table b5) (clear b6) (on b6 b7) (on b7 b8) (on-
table b8) (clear b9) (on b9 b10) (on b10 b11) (on b11 b12) (on b12 b13) (on b13 b14)
(on b14 b15) (on b15 b16) (on b16 b17) (on-table b17))) )
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Plan generation in blocksworld domain (init=on table, goal=tower)

Given a PDDL domain and a PDDL problem file, come up with the plan associated
with the problem. The domain describes the possible actions and their effects, while
the problem file details the specific scenario to be solved. Do not generate anything
but the correct plan
Domain PDDL:
(define (domain blocksworld) (:requirements :strips) (:predicates (arm-empty)
(clear ?x) (holding ?x) (on ?x ?y) (on-table ?x)) (:action pickup :parameters (?ob)
:precondition (and (clear ?ob) (on-table ?ob) (arm-empty)) :effect (and (holding
?ob) (not (clear ?ob)) (not (on-table ?ob)) (not (arm-empty))) ) (:action putdown
:parameters (?ob) :precondition (holding ?ob) :effect (and (clear ?ob) (arm-empty)
(on-table ?ob) (not (holding ?ob))) ) (:action stack :parameters (?ob ?underob)
:precondition (and (clear ?underob) (holding ?ob)) :effect (and (arm-empty) (clear
?ob) (on ?ob ?underob) (not (clear ?underob)) (not (holding ?ob))) ) (:action unstack
:parameters (?ob ?underob) :precondition (and (on ?ob ?underob) (clear ?ob)
(arm-empty)) :effect (and (holding ?ob) (clear ?underob) (not (on ?ob ?underob)) (not
(clear ?ob)) (not (arm-empty))) ))
Problem PDDL:
(define (problem on table to tower 1 1 1 1 3 13)(:domain
blocksworld)(:requirements :strips)(:objects b1 b10 b11 b12 b13 b14 b15 b16
b17 b18 b19 b2 b20 b3 b4 b5 b6 b7 b8 b9)(:init (arm-empty) (clear b1) (clear b10)
(clear b11) (clear b12) (clear b13) (clear b14) (clear b15) (clear b16) (clear b17) (clear
b18) (clear b19) (clear b2) (clear b20) (clear b3) (clear b4) (clear b5) (clear b6) (clear
b7) (clear b8) (clear b9) (on-table b1) (on-table b10) (on-table b11) (on-table b12)
(on-table b13) (on-table b14) (on-table b15) (on-table b16) (on-table b17) (on-table
b18) (on-table b19) (on-table b2) (on-table b20) (on-table b3) (on-table b4) (on-table
b5) (on-table b6) (on-table b7) (on-table b8) (on-table b9))(:goal (and (arm-empty)
(clear b1) (on-table b1) (clear b2) (on-table b2) (clear b3) (on-table b3) (clear b4)
(on-table b4) (clear b5) (on b5 b6) (on b6 b7) (on-table b7) (clear b8) (on b8 b9) (on b9
b10) (on b10 b11) (on b11 b12) (on b12 b13) (on b13 b14) (on b14 b15) (on b15 b16)
(on b16 b17) (on b17 b18) (on b18 b19) (on b19 b20) (on-table b20))))
Plan:

(define (problem on table to tower 1 1 1 1 3 13)
(:domain blocksworld) (:requirements :strips)
(:objects b1 b10 b11 b12 b13 b14 b15 b16 b17 b18 b19 b2 b20 b3 b4 b5 b6 b7 b8 b9)
(:init (arm-empty) (clear b1) (clear b10) (clear b11) (clear b12) (clear b13) (clear b14)

(clear b15) (clear b16) (clear b17) (clear b18) (clear b19) (clear b2) (clear b20) (clear b3)
(clear b4) (clear b5) (clear b6) (clear b7) (clear b8) (clear b9) (on-table b1) (on-table b10)
(on-table b11) (on-table b12) (on-table b13) (on-table b14) (on-table b15) (on-table
b16) (on-table b17) (on-table b18) (on-table b19) (on-table b2) (on-table b20) (on-table
b3) (on-table b4) (on-table b5) (on-table b6) (on-table b7) (on-table b8) (on-table b9))

(:goal (and (arm-empty) (clear b1) (on-table b1) (clear b2) (on-table b2) (clear b3)
(on-table b3) (clear b4) (on-table b4) (clear b5) (on b5 b6) (on b6 b7) (on-table b7)
(clear b8) (on b8 b9) (on b9 b10) (on b10 b11) (on b11 b12) (on b12 b13) (on b13 b14)
(on b14 b15) (on b15 b16) (on b16 b17) (on b17 b18) (on b18 b19) (on b19 b20) (on-table
b20))) )
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C How much did it cost?

Table 2: Costs (US$) of the 3 experi-
ments, NA when model-API is free.

LLM Cost
GPT-3.5-turbo 13.28
GPT-4o-mini 5.16

GPT-4o 83.16
Claude-3-Haiku 12.150
Claude-3-Sonnet 118.25
Gemini-1.5-Pro 46.19

Gemini-1.5-Flash 3.28
Gemma-2-9B-it 1.22

LLaMA-3.1-8B-Instruct 0.89
LLaMA-3.1-70B-Instruct 21.81

LLaMA-3.1-405B-Instruct 86.13
Mistral-7B-Instruct NA

Codestral 6.68
Mistral-Large2 71.51

Qwen2-1.5B-Instruct 0.32
Qwen2.5-Coder-7B-Instruct NA

Qwen2.5-7B-Instruct NA
Qwen2.5-72B-Instruct 8.84

DeepSeek-Coder-V2 3.24
DeepSeek-Chat-V2 3.24

Moreover, as highlighted in Table 2, these perfor-
mances are not correlated with the various LLM costs.
Indeed, overall, looking at the aggregated costs for
the whole experiments, we cannot say that most ex-
pensive models lead to best results, see for instance
the cases of Claude-3-Sonnet ($118) and Qwen2.5-
72B-Instruct ($8.8) which have similar scale of perfor-
mances. However, we can see that within an LLM-
family, the more expensive models usually allow for
better results, see e.g. OpenAI’s models where GPT-
4o is strictly better than the other two.

It is important to notice that the costs mentioned in
Table 2 were computed at the time of the experiments
i.e. in November 2024. Therefore, they may not be
accurate anymore, nevertheless, we still think that
the orders of magnitude can be interesting to com-
pare at-a-glance the ratio performances / costs for
the different families and models.

D Supplementary Material

Associated with this article, we provide a Github archive containing additional material
available from https://github.com/dgraux/PDDL-COLM-2025. This archive mainly con-
tains the benchmarks we used and the obtained results from the 20 LLMs we reviewed. The
hierarchy is as follows:

– README.md

– Domain/

| – action gen raw.json

| – action gen score.csv

– Problem/

| – planetarium test raw.json

| – problem gen score.csv

– Plan/

| – plan gen raw.json

| – plan gen score.csv
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