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Abstract

Recent advancements in large language mod-
els (LLMs) have enabled LLM-based agents to
successfully tackle interactive planning tasks.
However, despite their successes, existing ap-
proaches often suffer from planning hallucina-
tions and require retraining for each new agent.
To address these challenges, we propose the
Meta Plan Optimization (MPQO) framework,
which enhances agent planning capabilities by
directly incorporating explicit guidance. Un-
like previous methods that rely on complex
knowledge, which either require significant
human effort or lack quality assurance, MPO
leverages high-level general guidance through
meta plans to assist agent planning and en-
ables continuous optimization of the meta plans
based on feedback from the agent’s task execu-
tion. Our experiments conducted on two rep-
resentative tasks demonstrate that MPO signif-
icantly outperforms existing baselines. More-
over, our analysis indicates that MPO provides
a plug-and-play solution that enhances both
task completion efficiency and generalization
capabilities in previous unseen scenarios.

1 Introduction

Recent advancements in large language mod-
els (LLMs) (Achiam et al., 2023; Liu et al., 2024;
Yang et al., 2024a) have enabled LLM-based agents
to tackle complex multi-step tasks, including em-
bodied housework (Shridhar et al., 2020) and sci-
ence experiments (Wang et al., 2022). These tasks
require sophisticated planning abilities, as agents
need to understand long-term dependencies (Zhang
et al., 2024), reason about sequential actions, and
adapt to dynamic environments (Yao et al., 2022).
The planning quality of these agents plays a crucial
role in determining their overall performance.
Current mainstream LLM-based agents primar-
ily develop their planning capabilities through
implicit methods, either directly leveraging the
model’s inner ability or fine-tuning from expert
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Figure 1: Unlike previous implicit plan enhancing meth-
ods that require agent parameter updates, our method
incorporates meta plans into prompts for direct planning
guidance and can improve them based on feedback.

trajectories. For example, ReAct (Yao et al., 2022)
and Reflexion (Shinn et al., 2024) perform plan-
ning on-the-fly during task execution and are prone
to getting lost due to planning hallucination (Zhu
et al., 2024). The works including AgentTun-
ing (Zeng et al., 2023), Lumos (Yin et al., 2023),
and ETO (Song et al., 2024b) employ trajectory
tuning to enhance implicit planning capabilities
and require retraining for each new agent, resulting
in huge computational cost (Figure 1(a)).

Beyond implicit planning, a few studies have
begun exploring the use of explicit knowledge to
guide agents in task execution (Zhu et al., 2024;
Qiao et al., 2024). While these works bring in ad-
vantages such as explicit guidance, interpretability,
and low integration costs for agents, they either
require substantial manual design efforts or lack
quality assurance in the process of complex knowl-
edge acquisition, resulting in inconsistent improve-
ments for agents (Wang et al., 2024). Building on
these efforts, we introduce the concept of Meta
Plan, which provides high-level, abstract guidance



to assist in agent planning. As shown in Figure
1(b), for the task "put some watch on safe," the
meta plan outlines an abstract strategy for general
task completion. Unlike previous implicit plans
obtained in the execution process, the meta plan is
decoupled from specific environmental details (e.g.
“cabinet 17, “cabinet 4”) and complex agent trajec-
tories, making it more amenable to optimization.

Furthermore, to automatically improve the qual-
ity of the meta plan, we propose an optimiza-
tion framework, Meta Plan Optimization (MPO),
which consists of a meta planner and an agent. The
meta planner is responsible for generating high-
level meta plans, while the agent provides feedback
on the execution to assess the quality of the in-
putted meta plans and help refine the meta planner.
Initially, we collect meta plans from expert trajec-
tories and perform a cold start on the meta planner
through supervised fine-tuning. To further opti-
mize the meta planner, we use Monte Carlo (MC)
sampling to estimate the task completion rate of
the agent as feedback. Specifically, given a task,
the planner generates multiple meta plans through
sampling. Then for each meta plan, the agent is
also sampled to produce multiple execution trajec-
tories, and the task completion rate is estimated
accordingly. After identifying contrastive meta
plan pairs—those leading to the highest and lowest
task completion rates—we apply DPO (Rafailov
et al., 2024) to refine the meta planner on these
plan pairs. Finally, the trained meta planner can be
detached from the MPO framework and function
as a plug-and-play component, capable of generat-
ing high-quality meta plans for tasks in the target
environment. This facilitates task completion for
any new agent without incurring additional training
costs.

We evaluate our approach on two representative
benchmarks: ALFWorld (Shridhar et al., 2020) for
embodied household task and ScienceWorld (Wang
et al., 2022) for textual science experiment task.
Across all test tasks, agents equipped with our
meta planner significantly outperform those with-
out it, achieving performance improvements of up
to 100%. Additionally, the meta planner is compat-
ible with various existing agent frameworks. When
combined with these methods, out approach deliv-
ers even greater performance gains, which demon-
strates its effectiveness in a larger application scope.
Further analysis reveals that our generated meta
plans significantly increase the agent’s average re-
ward per action, thereby improving task completion

efficiency.

In summary, our contributions are as follows:

* We introduce the MPO, which leverages meta
plan optimization to improve the performance of
LLM agents. This progress offers an innovative
approach to enhance agents’ planning capabili-
ties in a plug-and-play manner, while remaining
its compatibility with existing frameworks.

» Extensive experiments conducted on two rep-
resentative benchmarks demonstrate that our
method has significantly improved the perfor-
mance of existing LLLM agents.

e Further analysis indicates that: (1) Our proposed
method substantially boosts the agent’s task com-
pletion efficiency; (2) A lightweight meta planner
can guide more powerful agents in their planning.
and (3) MPO increases the correctness, followa-
bility, and standardization of the meta plan.

2 Task Formulation

LLM Agent Planning The primary scope of
this study is the planning of LLM agents interact-
ing with the environment and receiving feedback
for task solution. Following Song et al. (2024b),
the agent’s task planning trajectory can be repre-
sented as e = (u,a1,01,...,a,), where u € U
is the task instruction, a € A the agent actions,
and o € O the observation from the environment.
At each time step ¢, the agent performs implicit
planning and generates the corresponding action
a; ~ mg(-|u,ay,01,...,0._1). The probability of
generating the task planning trajectory is given by:

n

7T9(€|'LL) = Hﬂ'g(at|u, a17017"'70t71) (1)
t=1

Finally, the final reward r(u, e) € [0, 1] represent-
ing the task completion rate is calculated.

Meta Plan The meta plan serves as high-level,
natural guidance to assist in agent planning. It out-
lines an abstract, general strategy for task comple-
tion that is decoupled from specific environmental
details, indicating its potential to generalize across
various agents. For instance, given the instruction
"look at the CD under the desklamp", the meta
plan could be: "1. Go to where the CD may be
placed. 2. Take the CD from where you found it.
3. Go to where the desklamp is located. 4. Use
the desklamp to look at the CD." A low-quality
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Figure 2: The overall architecture of MPO. The meta planner is first supervised fine-tuned on the seed meta
plan (MP) set. Then we optimize the meta planner through preference learning on contrastive meta plan pairs.

meta plan might mislead the agent’s planning pro-
cess. To ensure meta plan quality, MPO develops a
lightweight parameterized meta planner 7, to gen-
erate meta plans, which can be further optimized
to produce better results. After incorporating the
meta plan, the probability of the agent generating
trajectory e is formulated as:

 01-1)7g (pu)
2

n
= Hﬂ-e(at|uapa ai, ...
t=1

7I'9(€|U,p)

3 Method

The overall framework of our method is illustrated
in Figure 2. First, we construct a seed meta plan
training set to initialize a basic meta planner (§ 3.1).
Then, we develop the MC method to assess the
quality of the meta plan through exploration (§ 3.2).
Finally, we further enhance the meta planner via
preference-based optimization using contrastive
meta plan pairs (§ 3.3).

3.1 Supervised Fine-tuning Initialization

To equip the meta planner with the foundational
capabilities to generate meta plans based on task
instructions and the environmental state, we initial-
ize the model using supervised fine-tuning. How-
ever, existing agent datasets only provide golden
task completion trajectories without corresponding
meta plans. Therefore, we first need to construct
a training dataset for meta plan generation. To
achieve this, we leverage GPT-4o to assist in cre-
ating the dataset. We provide the model with the

original task instruction w and the corresponding
golden trajectory e as the prompt, allowing it to
summarize a generalizable plan p from the trajec-
tory. The specific prompt template can be found in
Appendix E.1. To ensure the quality of the meta
plan p, we manually review the results generated
by GPT-40 and refine any meta plans that are incor-
rect, overly complex, or non-standard. This quality
control process ensures that each meta plan p rep-
resents a reusable planning strategy that effectively
assists agents in task completion. The detailed pro-
cess for controlling the quality of the seed meta
plan set can be found in Appendix C. Since the
meta planner needs to generate plans without ac-
cess to golden trajectories during inference, we
remove them from the training data, thus obtaining
the initialization dataset for the meta planner:

@\
D, = {(wn)®} 3
We then fine-tune the model on the auto-regressive
loss the get the initialized meta planner 7:

Lspr = —E(y p)~p, [log 74 (p|u)] “)

3.2 Meta Plan Quality Evaluation

To further enhance the meta planner, we need to
evaluate the quality of its generated meta plans.
While prior studies typically rely on reward models
trained on human preference annotations (Bai et al.,
2022a; Ouyang et al., 2022; Dubey et al., 2024) or
advanced Al (Bai et al., 2022b; Lee et al., 2023)
models to assess model outputs, these approaches
have limitations. They not only incur additional



costs for human labeling or API calls, but may also
be less applicable to LLLM agents, as their prefer-
ences for meta plans are not aligned with the agent
or task environment. To circumvent these chal-
lenges, we adopt an exploration-based approach to
evaluate the quality of meta plans.

Intuitively, a higher-quality meta plan should
enable the agent to more easily succeed in the task.
Therefore, for a give meta plan p, we insert it into
the prompt of the agent and have the agent attempt
to complete the task N times. This results in N
task completion trajectories generated by the agent:

{eV)i=1,... N} ~ my(elu,p)  (5)

For each trajectory e(?), the environment returns the
task completion rate 7(u, (). Thus, the quality of
the meta plan p is determined by the agent success
rate in completing the task based on it, which can
be represented as:

A=y Lt ©
In this paper, we use Llama-3.1-8B-Instruct (Dubey
et al., 2024) as the agent to evaluate the quality of
the meta plans. This model demonstrates strong
instructing-following capabilities and is already ef-
fective at completing agent tasks. Moreover, the
meta plans evaluated with this model can be gener-
alized to agents based on other models, which we
verify in the experiments later.

3.3 Meta Planner DPO Training

After we are able to automatically evaluate the
quality of meta plans, we can further optimize the
SFT-initialized meta planner through reinforcement
learning. We choose DPO (Rafailov et al., 2024)
as our optimization algorithm due to its training
stability and low resource consumption. The DPO
algorithm requires paired preference data to opti-
mize the meta planner, specifically pairs of high-
and low-quality meta plans. We construct the DPO
preference dataset D, from the task training set,
where the SFT-initialized meta planner generates
M meta plans {p;|i = 1,..., M} ~ m4(p|u). We
then compute scores for each meta plan using the
MC method described in Section 3.2. The highest
and lowest quality meta plans are selected as the
chosen and rejected pairs p,, and p;. If all meta
plans are of the same quality, we skip this sample.
This forms our preference training dataset:

De

De = { (w,pup)? } ™

i=1

Dataset Train Test Seen Test Unseen Action Space
ScienceWorld 1483 194 241 19
ALFWorld 3321 140 134 13

i

Table 1: Statistics overview of test datasets. ‘“Test Seen’
and “Test Unseen” are test set with seen and unseen
scenarios respectively.

Given the preference dataset D., DPO optimizes
the model to increase the likelihood of the chosen
meta plan p,, over the rejected one p;. We fine-tune
the meta planner by minimizing the DPO loss:

7o (puw|n)

7Tref(pw‘u)

rog ) )]
ﬂ'ref(pl|“)

EDPO (71—9; ﬂ—'ref) = _E(u,pw,pl)ch IOg U(ﬂ lOg

This equation reflects the goal of maximizing the
probability of generating the higher-quality meta
plan p,, over the lower-quality meta plan p; for a
given task instruction u. By constructing the pref-
erence dataset and applying DPO optimization, the
meta planner becomes more effective at generating
high-quality meta plans, therefore better guiding
the agent planning process.

4 Experiments

4.1 Experiment Settings

Datasets We conducted experiments on two rep-
resentative agent datasets: ScienceWorld (Wang
et al., 2022) for textual science experiment tasks
and ALFWorld (Shridhar et al., 2020) for em-
bodied household tasks. ScienceWorld provides
dense final rewards ranging from O to 1, whereas
ALFWorld offers only binary rewards, indicating
whether a task has been completed. For details of
the datasets, please refer to Appendix A.

The statistical information of our datasets is pre-
sented in Table 1. It is important to note that in addi-
tion to the in-distribution test sets, both ALFWorld
and ScienceWorld include test sets that include out-
of-distribution unseen variations. These additional
test sets enable us to evaluate the generalization
capabilities of the meta planner.

Implementation Details We use Llama-3.1-8B-
Instruct (Dubey et al., 2024) as the base model to
construct the meta planner. For SFT initialization,
we set the batch size to 32, the learning rate to le-
5 and employ a cosine scheduler with 3 training
epochs. For DPO (Rafailov et al., 2024) training,
we configure the meta planner to generate M = 5



| ScienceWorld ~ ALFWorld

‘ Average

Model w/o Exp. Guid.
‘ Seen Unseen Seen Unseen ‘

Agents w/o Training
GPT-40 (Achiam et al., 2023) X 60.0 56.0 78.6 83.6 69.6
GPT-40-mini (Achiam et al., 2023) X 49.1 42.7 32.1 41.0 41.2
Llama-3.1-8B-Instruct (Dubey et al., 2024) X 47.7 42.2 229 28.4 35.3
Qwen2.5-7B-Instruct (Yang et al., 2024a) X 38.5 38.8 71.4 75.4 56.0
Llama-3.1-70B-Instruct (Dubey et al., 2024) X 72.6 70.2 78.6 73.9 73.8
Llama-3.1-8B-Instruct + MPO v 56.5 55.5 50.0 52.2 53.6
GPT-40 + MPO v 67.3 67.8 89.3 93.3 79.4
Llama-3.1-70B-Instruct + MPO v 80.4 79.5 85.7 86.6 83.1

Agents w/ Training
Llama-3.1-8B-Instruct + SFT (Zeng et al., 2023) X 65.3 57.0 79.3 71.6 68.3
Llama-3.1-8B-Instruct + ETO (Song et al., 2024b) X 81.3 74.1 77.1 76.4 77.2
Llama-3.1-8B-Instruct + KnowAgent (Zhu et al., 2024) v 81.7 69.6 80.0 74.9 76.6
Llama-3.1-8B-Instruct + WKM (Qiao et al., 2024) v 82.1 76.5 77.1 78.2 78.5
Llama-3.1-8B-Instruct-SFT + MPO v 70.2 65.9 80.7 81.3 74.5
Llama-3.1-8B-Instruct-ETO + MPO v 834 80.8 85.0 79.1 82.1

Table 2: Performance of different methods on two datasets. MPO-optimized meta plans significantly improve
performance across various models or agent frameworks, surpassing other explicit guidance (Exp. Guid.) methods.

meta plans per task with a generation temperature
of 0.7. To evaluate meta plan quality, we set the
agents to generate N = 5 task completion trajec-
tories for each meta plan, also using a temperature
of 0.7. We utilize vLLM (Kwon et al., 2023) to ac-
celerate the generation process. For DPO training,
the batch size is 32, and the learning rate is le-5
with a 3% warm-up phase, and a cosine scheduler
is used. The S parameter in the DPO loss func-
tion is set to 0.1 for both the ALFWorld and Sci-
enceWorld datasets, with training conducted over
3 epochs. All training procedures are implemented
using Llama-Factory (Zheng et al., 2024) with full
parameter fine-tuning. The experiments are con-
ducted on 8 NVIDIA A100 80GB GPUs.

Base Agents We evaluate our method on two
types of agents, guided by MPO-optimized meta
plans: (1) Agents without training, which de-
ploy the ReAct framework using foundation mod-
els without additional training. We test two pro-
prietary models, including GPT-40 and GPT-40-
mini (Achiam et al., 2023) as well as several open-
source models, including Llama-3.1-8B-Instruct,
Llama-3.1-70B-Instruct (Dubey et al., 2024), and
Qwen2.5-7B-Instruct (Yang et al., 2024a). (2)
Agents with training, which enhance agent plan-
ning capabilities via parameter updates to founda-
tion models. We examine two agent frameworks:
AgentTuning (Zeng et al., 2023), which uses Super-

vised Fine-Tuning from expert trajectories to im-
prove the agent capabilities of the base model, and
ETO (Song et al., 2024b), which learns from failed
trajectories and proposes an exploration-based tra-
jectory optimization method to enhance the task-
solving process. We also compare with KnowA-
gent (Zhu et al., 2024) and WKM (Qiao et al.,
2024), which also inject explicit guidance into the
agent planning process. These two methods re-
quire fine-tuning the base models, making them
incompatible with other agent frameworks.

Evaluation To ensure experimental reproducibil-
ity, we set the decoding temperature to O for both
meta plan generation by the meta planner and task
trajectory generation by the agent. For meta plan
generation, we employ a zero-shot prompting ap-
proach. When generating task completion trajec-
tories, we include a 1-shot in-context example for
each task. The detailed prompts are provided in
Appendix E.2. Note that once the meta plans for
the test set tasks are generated by the meta plan-
ner, we use them across all agents without further
modification. Our primary evaluation metric is the
Average Reward, which calculates the mean re-
ward across all test set task instances. We also
report the Success Rate in Appendix B. We will
release the generated meta plans and parameters of
the optimized meta planner upon acceptance.



Base LLM Setting | SciWorld ALFWorld Base LLM | Type | SciWorld ALFWorld
- 56.0 83.6 Inst. 67.8 93.3
SFT 59.5 91.0 GPT-40 Thou. 65.3 85.1
GPT-4o RFT 61.8 89.6 Obs. 67.6 91.8
MPO 678 933 Inst. 55.5 52.2
- 422 28.4 Llama-3.1-8B Thou. 38.0 343
Liama3. 1.8B.mns | ST 45.6 433 Obs. | 533 50.8
RFT 50.5 47.8
MPO 55.5 522 Inst. 65.9 81.3
. ’ Llama-3.1-8B-SFT | Thou. 479 25.4
- 38.8 75.4 Obs. 60.6 67.2
SFT 37.4 739
Qwen2.5-7B-Ins ) . . .
RFT 41.9 78.3 Table 4: The impact of different meta plan insertion
MPO 43.7 82.8 positions on agent performance.

Table 3: Ablation study on meta planner optimization
methods.

4.2 Results

As shown in Table 2, the incorporation of MPO-
optimized meta plans consistently improves agent
performance across all tasks and frameworks, with
the average performance increasing by up to 51.8%
for the Llama-3.1-8B-Instruct based agent. More-
over, our meta planner is compatible with other
agent training frameworks. The MPO-enhanced
Llama-3.1-8B-Instruct-ETO achieves an average
reward 3.6 higher the the current SOTA explicit
guidance method, WKM. These results demon-
strate that our general high-level meta plan, op-
timized through agent feedback, outperforms com-
plex knowledge-based guidance that relies heavily
on manual efforts, lacks generalization ability, and
offers no quality assurance. These results high-
light the effectiveness of our method in enhanc-
ing agent performance. Furthermore, our method
demonstrates strong effectiveness in unseen sce-
narios. For the unseen parts of ScienceWorld and
ALFWorld, despite never having encountered these
tasks, the meta planner is able to generalize to them
and generate high-quality meta plans. This im-
proves the success rate of GPT-40 on the unseen
part of ALFWorld by 11.1, achieving a success rate
of 93.3. These results underscore that MPO can fur-
ther enhance the agent’s generalization capabilities,
particularly in out-of-distribution scenarios.

5 Analysis

5.1 Ablation Study

We conduct ablation experiments on the training
methods of the meta planner. For ScienceWorld
and ALFWorld, we evaluate on the unseen test set.
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Figure 3: The average reward per step.

As shown in Table 3, the meta planner optimized by
MPO leads to greater improvements in agent per-
formance compared to other training methods, sug-
gesting that exploring the environment and learning
from comparisons help the meta planner generate
higher-quality meta plans. Additionally, when us-
ing SFT-initialized meta plans, the performance of
the Qwen2.5-7B-Instruct model decreases on both
evaluation datasets, indicating that a low-quality
meta plan may mislead the agent planning process.

5.2 How to Use Meta Plan?

In our main experiments, the meta plan is incorpo-
rated into the task instructions to guide the agent
planning process. Here, we investigate the im-
pact of different insertion positions on agent per-
formance: in the task instruction, in the agent’s
thought process and in the environment observation.
As shown in Table 4, we find that insertion into the
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Figure 4: The effectiveness of MPO across agents with
different parameter sizes.

task instruction consistently yields the best perfor-
mance across all agents and tasks, while insertion
into the thought process leads to the worst perfor-
mance. This suggests that disrupting the agent’s
normal reasoning process negatively affects plan-
ning accuracy. Additionally, we observe that insert-
ing the meta plan at other positions causes greater
performance drops in agent frameworks with train-
ing, likely because the training data does not in-
volve meta plans. In contrast, insertion into the
instruction causes minimal disruption to the origi-
nal task completion process. These results suggest
that inserting the meta plan in the task instruction
ensures optimal performance.

5.3 Efficiency Analysis

Another advantage of incorporating high-quality
meta plans is that it prevents agents from unneces-
sary exploration, thus improving their task comple-
tion efficiency. Following Xiong et al. (2024), we
evaluate action efficiency using the average reward
per step, calculated for each task as the ratio of
the final reward to the number of steps required
to complete the task, and then averaging these val-
ues across the entire test set. Figure 3 shows the
significant improvements in average step rewards
achieved by our MPO compared to both the no-

meta-plan (N/A) and SFT-initialized meta plans. It
is also clear that for the unseen test tasks, MPO
leads to an even greater increase in average reward
per step, demonstrating its strong generalization to
out-of-distribution tasks. These results underscore
the superior performance of MPO, confirming its
effectiveness in enhancing agent action efficiency.

5.4 Effect on Agents with Scaling Parameters

To further validate the effectiveness of our method,
we conduct experiments on models with different
parameter sizes. We choose the Qwen2.5-Instruct
family as the test models, selecting a range of pa-
rameter sizes from small to large: 3B, 7B, 14B,
32B, and 72B, and evaluate their performance on
both the seen and unseen parts of ScienceWorld
and ALFWorld. The effectiveness of MPO across
agents with different parameter sizes is shown in
Figure 4. We observe that as the parameter size of
the agents increases, the performance improvement
from MPO initially increases and then decreases.
This may be because the 72B model already has
strong planning capabilities, making the improve-
ment from MPO relatively limited. Additionally,
for the 3B model, due to its limited instruction-
following ability, the model struggles to effectively
utilize the meta plan. As a result, inserting the
meta plan into the prompt actually leads to a perfor-
mance decrease. These results suggest that MPO
can enhance agent performance across a wide range
of parameter sizes, with the most significant im-
provements observed in agents with medium-sized
parameters. Moreover, as a lightweight model, the
meta planner has the potential to enhance more
powerful agents in a plug-and-play manner without
the need for retraining the agents.

5.5 What Makes a Good Meta Plan?

We further investigate why the meta plans opti-
mized through exploration in MPO outperform
those obtained soly through SFT initialization. We
evaluate the meta plans from three perspectives:
correctness, followability, and standardization, us-
ing GPT-4o0 for automated assessment. The eval-
uation details and prompts can be found in Ap-
pendix E.3. As shown in Figure 5, MPO-optimized
meta plans consistently outperform SFT-initialized
ones across all three dimensions. The advantages
in correctness and followability make it easier for
the agent to effectively plan and execute tasks, lead-
ing to higher task completion rates. Please refer to
Appendix D for a more detailed case study.
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Figure 5: The comparison of SFT-initialized and MPO-optimized meta plans on ALFWorld.
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Table 5: MPO vs alternatives: MPO offers explicit guid-
ance to agent planning in a plug-and-play manner and
leverages environmental feedback for optimization.

6 Related Work

LLM as Agents With advancements in reasoning
and instruction-following capabilities of large lan-
guage models (Wei et al., 2022a), researchers have
begun using prompting methods (Wei et al., 2022b;
Song et al., 2023) or more complex strategies (Koh
et al., 2024) to build agents capable of leveraging
tools (Qin et al., 2023), solving problems, writing
code (Qian et al., 2023), and completing real-world
tasks (Patil et al., 2023; Gur et al., 2023; Yang et al.,
2024b). To enhance the capabilities of open-source
models as agents, some works (Zeng et al., 2023;
Song et al., 2024a) have begun using expert trajec-
tories for supervised fine-tuning LLMs, while oth-
ers (Song et al., 2024b; Xiong et al., 2024) enable
agents to explore the environment autonomously
and leverage reinforcement learning to learn from
failed experiences. However, these methods re-
quire retraining each time a new agent is deployed,
leading to significant computational overhead.

Planning in LLM Agents Planning (Huang
et al., 2024) is essential for intelligent agents to
complete real-world tasks, involving the decompo-
sition of complex instructions into sub-tasks and
acting on them sequentially. Previous works (Yao
et al., 2022; Shinn et al., 2024) primarily focus on
implicit planning, where planning occurs through
interleaved reasoning and action generation. To

task execution. However, these methods often re-
quire manually designed prompt templates or task
procedures, making it difficult to transfer across
different environments. Some works (Zhou et al.,
2023; Ye et al., 2023; Fu et al., 2024) use language
models to automate task knowledge synthesis, but
the generated knowledge cannot be further opti-
mized through exploration and environmental feed-
back, leading to suboptimal performance. In con-
trast, our MPO introduces an automatically gen-
erated meta plan that provides high-level, abstract
guidance to assist in agent planning, while also al-
lowing for further quality enhancement based on
feedback from the agent task completion process.

A comparison of MPO with several alternatives
in Table 5 highlights the advantages of our method
in enhancing LLLM agents planning capabilities.

7 Conclusion

In this paper, we present MPO, a novel framework
for enhancing the planning capabilities of LLM-
based agents. MPO integrates abstract, high-level
guidance through meta plans, providing a plug-and-
play solution to efficiently improve agent perfor-
mance. By utilizing feedback from the agent’s task
execution, MPO enables continuous enhancement
of the meta plan quality. Extensive experiments on
two benchmarks demonstrate that our framework
consistently outperforms existing baselines and is
applicable to agents across a wide range of param-
eter sizes. These findings highlight the potential
of our approach to advance agent planning capa-
bilities, paving the way for future developments in
artificial general intelligence.



Limitations

Despite achieving superior performance compared
to other baselines, it is important to acknowledge
several limitations of this work. 1) Our approach
uses Llama-3.1-8B-Instruct as the base model to
construct the meta planner. However, it is worth
exploring the potential differences when utilizing
other base models or models with varying parame-
ter sizes for the meta planner. Future work could
investigate the use of more lightweight models,
such as those with as few as 1B parameters, to
enhance computational efficiency. 2) Our method
only focuses on constructing a separate meta plan-
ner for each individual task. However, building a
meta planner that incorporates data from multiple
tasks may allow it to learn from diverse knowledge
sources, resulting in higher-quality meta plans. Fu-
ture research could develop a unified meta planner
that is applicable to various tasks. 3) In the meta
planner DPO training, we employ simple sampling
and Monte Carlo methods to construct contrastive
meta plan pairs. Future work could explore the
application of MCTS methods to improve the effi-
ciency of the sampling process.

Ethics Statement

This work fully complies with the ACL Ethics Pol-
icy. We declare that there are no ethical issues in
this paper, to the best of our knowledge.
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A Dataset Details

ScienceWorld ScienceWorld (Wang et al., 2022)
is a text-based virtual environment that provides
a testing platform for Al research, specifically de-
signed to evaluate and improve Al systems’ scien-
tific reasoning abilities. Researchers can use this
platform to assess the performance of Al agents in
open, complex environments. ScienceWorld sim-
ulates tasks from standard elementary school sci-
ence curricula, covering areas such as state changes
of matter, measurement, electricity, life sciences,
plant growth, chemical reactions, and genetics.
Agents are deployed in an embodied interactive
environment to understand and apply complex sci-
entific concepts. Tasks in ScienceWorld involve
several subgoals, and the overall final reward is cal-
culated based on the completion of these subgoals.

The original test set of ScienceWorld includes
unseen task variations. For example, in the train-
ing set, a task may involve boiling water, while in
the test set, the task may be boiling lead. Follow-
ing Song et al. (2024b), we use the original test set
to evaluate the generalization ability of our meta
planner in unseen scenarios, and the original vali-
dation set serves as our test set for seen scenarios.

ALFWorld ALFWorld (Shridhar et al., 2020)
are household tasks that require agents to explore
rooms and use commonsense reasoning to perform
tasks, such as "put a pencil on the desk". The en-
vironment provides the outcome on whether the
agent successfully completes the task within given
steps. The original ALFWorld dataset comprises
both seen and unseen evaluation sets. The seen set
is designed to assess in-distribution generalization,
whereas the unseen set with new tasks measures
out-of-distribution generalization of the agents.

B Success Rate

We report the success rate of our experiments in
Table 7. Note that the definition of success rate dif-
fers between the two tasks. For ScienceWorld, the
original paper does not provide a specific definition
for success rate. However, based on the official
environment, a trajectory is considered successful
if the agent reaches a predefined latent state, even
if the reward is not exactly 1.0. For ALFWorld,
since it only provides binary final rewards, the suc-
cess rate is equivalent to the average final reward.
After inserting the MPO-optimized meta plan, all
agents show consistent and significant success rate
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improvements across both tasks.

C Seed Meta Plans Quality Control

A high-quality seed meta plan training set is crucial
for initializing a more effective meta planner. As
such, we carefully control the quality of the meta
plans generated by GPT-40. We have identified
several key issues with the meta plans it produces:
(1) they often include excessively detailed steps
or environmental information, which makes them
difficult to generalize and optimize; (2) they some-
times feature manipulation types that are not appli-
cable to the environment; (3) they fail to adhere to
the predefined meta plan format. To address the
first two issues, we adjust the temperature during
GPT-40’s generation and re-summarize the meta
plan. For the third issue, we additionally prompt
GPT-4o to extract correctly formatted meta plans
from the response. Although manual verification
is required to ensure quality, the human effort in-
volved in this process is negligible compared to
the manual construction of knowledge in Zhu et al.
(2024).

D Case Study

Here we provide a detailed comparison of agent
trajectories on the same task within ALFWorld, af-
ter inserting meta plans optimized by two different
methods: SFT and MPO. This comparison demon-
strates how MPO provides higher-quality plan guid-
ance. The case is shown in Figure 11. The agent
used in this case study is Llama-3.1-8B-Instruct.

In the ALFWorld scenario, the meta plan gener-
ated by the SFT-initialized meta planner mistakenly
includes the instruction "go to sidetable", which
misleads the agent into repeatedly executing the
erroneous plan "I can try to go to sidetable first,"
resulting in plan hallucination. In contrast, the
MPO-optimized meta planner generates a higher-
quality meta plan: "go to where the first pillow
may be located." This plan outlines an abstract,
general task completion strategy, decoupled from
specific environmental details, and correctly guides
the agent in planning to locate the pillow in the
environment with "I can check one by one, starting
from armchair 1."

E Prompts Used in Our Work

E.1 Prompt for Seed Meta Plans Collection

We show the prompt for GPT-40 to generate the
seed meta plan dataset based on the task instruc-
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Table 6: The average reward comparison of different agents after incorporating MPO-optimized meta plans on two
datasets.

ScienceWorld ALFWorld

‘Average
Seen Unseen Seen Unseen‘

Model w/o Meta Plan

Agents w/o Training

59.8 57.8 78.6 83.6 70.0
61.3 65.9 89.3 933 71.5

38.7 28.9 32.1 41.0 352
41.2 41.2 64.3 79.9 56.7

25.8 25.6 22.9 28.4 25.7
47.9 53.6 50.0 522 50.9

22.7 30.8 714 754 50.1
32.0 33.2 81.4 82.8 57.4

67.5 64.9 78.6 739 71.2
71.7 69.7 85.7 86.6 78.4

GPT-40 (Achiam et al., 2023)

GPT-40-mini (Achiam et al., 2023)

Llama-3.1-8B-Instruct (Dubey et al., 2024)

Qwen2.5-7B-Instruct (Yang et al., 2024a)

N X[ NSX|[NSX |\ %|\x%

Llama-3.1-70B-Instruct (Dubey et al., 2024)

Agents w/ Training

593 649 793 716 68.8
68.6 720  80.7 81.3 75.7

75.8 71.17 77.1 78.4 71.3
80.9 18.7 85.0 79.1 80.9

Llama-3.1-8B-Instruct + SFT (Zeng et al., 2023)

N X | N %

Llama-3.1-8B-Instruct + ETO (Song et al., 2024b)

Table 7: The success rate comparison of different agents after incorporating MPO-optimized meta plans on two
datasets. For ALFWorld, the success rate is equivalent to the average final reward.
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tions. We provide the task instruction, environmen-
tal information, and the current task completion
trajectory, then prompt GPT-40 to extract a meta
plan that includes environmental priors and can
guide the task completion process. The prompt is
shown in Figure 6 and Figure 7.

E.2 Prompt for Evaluation

We show the instruction prompts for ScienceWorld
and ALFWorld in Figure 8 and 9, respectively.

E.3 Prompt for GPT Automated Assessment

We show the prompt in Figure 10 that enables
GPT-40 to automatically evaluate the quality of
the MPO-optimized meta plan from three aspects:
correctness, followability, and standardization. Cor-
rectness assesses whether the plan accurately ful-
fills the task requirements, followability evaluates
whether the plan is clear, easy to understand, and
whether the steps are reasonable, while standard-
ization checks if the meta plan follows a consistent
and standardized format. For each dimension, GPT-
4o is asked to first identify which set of plans is
better and provide the reasoning procedure. Finally,
an overall assessment is given.
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Prompt for ScienceWorld Meta Plan Collection

Please generate a step-by-step meta plan for a scientific task:

<task>

You are a helpful assistant to do some scientific experiment in an environment.

In the environment, there are several rooms: kitchen, foundry, workshop, bathroom, outside, living
room, bedroom, greenhouse, art studio, hallway.

{task}

</task>

You should explore the environment and find the items you need to complete the experiment. You
can teleport to any room in one step.

All containers in the environment have already been opened, you can directly get items from the
containers.

The available actions are:
open OBJ: open a container
close OBIJ: close a container
activate OBJ: activate a device
deactivate OBJ: deactivate a device
connect OBJ to OBJ: connect electrical components
disconnect OBJ: disconnect electrical components
use OBJ [on OBJ]: use a device/item
look around: describe the current room
examine OBJ: describe an object in detail
look at OBJ: describe a container’s contents
read OBJ: read a note or book
move OBJ to OBJ: move an object to a container
pick up OBJ: move an object to the inventory
pour OBJ into OBJ: pour a liquid into a container
mix OBJ: chemically mix a container
teleport to LOC: teleport to a specific room
focus on OBIJ: signal intent on a task object
wait: task no action for 10 steps
waitl: task no action for a step

Below is the standard and detailed procedure for solving this task:
<conversation>

{conversation}

</conversation>

You need to conclude abstract steps as a meta plan, which can be used to solve similar tasks in the
future.

The meta plan should be a commonly-reused routine of the tasks.

The generated meta plan should be written in the following format:

<meta_plan>

Step 1: ...

Step 2: ...

</meta_plan>
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Figure 6: Prompt for ScienceWorld Meta Plan Collection.

Prompt for ALFWorld Meta Plan Collection

Please generate a step-by-step meta plan for a house holding task:
<task>

{task}

</task>

The action list you can take:
1. go to recep

. task obj from recep

. put obj in/on recep

. open recep

. close recep

. toggle obj recep

. clean obj with recep

. heat obj with recep
9. cool obj with recep

where obj and recep correspond to objects and receptacles.

0NN AW

Below is the standard and detailed procedure for solving this task:
<conversation>

{conversation}

</conversation>

The generated meta plan should be written in the following format:
<meta_plan>

Step 1: ...

Step 2: ...

</meta_plan>

Figure 7: Prompt for ALFWorld Meta Plan Collection.

Instruction Prompt for ScienceWorld

You are a helpful assistant to do some scientific experiment in an environment.

In the environment, there are several rooms: kitchen, foundry, workshop, bathroom, outside, living
room, bedroom, greenhouse, art studio, hallway.

You should explore the environment and find the items you need to complete the experiment. You
can teleport to any room in one step.

All containers in the environment have already been opened, you can directly get items from the
containers.

For each of your turn, you will be given the observation of the last turn. You should choose from
two actions: "Thought" or "Action". If you choose "Thought", you should first think about the
current condition and plan for your future actions, and then output your action in this turn. Your
output must strictly follow this format:"Thought: your thoughts.\n Action: your next action"; If
you choose "Action", you should directly output the action in this turn. Your output must strictly
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follow this format:"Action: your next action". Remember that you can only output one "Action:"
in per response.

The available actions are:
open OBJ: open a container
close OBIJ: close a container
activate OBJ: activate a device
deactivate OBJ: deactivate a device
connect OBJ to OBJ: connect electrical components
disconnect OBJ: disconnect electrical components
use OBJ [on OBJ]: use a device/item
look around: describe the current room
examine OBJ: describe an object in detail
look at OBJ: describe a container’s contents
read OBJ: read a note or book
move OBJ to OBJ: move an object to a container
pick up OBJ: move an object to the inventory
pour OBJ into OBJ: pour a liquid into a container
mix OBJ: chemically mix a container
teleport to LOC: teleport to a specific room
focus on OBJ: signal intent on a task object
wait: task no action for 10 steps
waitl: task no action for a step
Here is an example.
{example}

Now, it’s your turn and here is the task.
{task_instruction }

This meta plan maybe helpful for you to complete the task:
{meta_plan}

Figure 8: Instruction prompt for ScienceWorld.

Instruction Prompt for ALFWorld

Interact with a household to solve a task. Imagine you are an intelligent agent in a household
environment and your target is to perform actions to complete the task goal. At the beginning of
your interactions, you will be given the detailed description of the current environment and your
goal to accomplish.

For each of your turn, you will be given the observation of the last turn. You should choose from
two actions: "Thought" or "Action". If you choose "Thought", you should first think about the
current condition and plan for your future actions, and then output your action in this turn. Your
output must strictly follow this format:"Thought: your thoughts.\n Action: your next action"; If
you choose "Action", you should directly output the action in this turn. Your output must strictly
follow this format:"Action: your next action".

The available actions are:
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. go to recep
. take obj from recep
. put obj in/on recep
. open recep
. close recep
. toggle obj recep
. clean obj with recep
. heat obj with recep
9. cool obj with recep
where obj and recep correspond to objects and receptacles.
After your each turn, the environment will give you immediate feedback based on which you plan
your next few steps. if the envrionment output "Nothing happened", that means the previous action
is invalid and you should try more options.
Reminder:
1. The action must be chosen from the given available actions. Any actions except provided
available actions will be regarded as illegal.
2. Think when necessary, try to act directly more in the process.

0NN L AN

Here is an example.
{example}

Now, it’s your turn and here is the task.
{task_instruction}

This meta plan maybe helpful for you to complete the task:
{meta_plan}

Figure 9: Instruction prompt for ALFWorld.

Instruction Prompt for GPT Automated Assessment

Please act as a professional instruction evaluator and assess the following two sets of meta plans.
Task description: {task}

DPO Plan:
{dpo}

SFT Plan:
{sft}

Please compare these two sets of meta plans across the following three dimensions:

1. Correctness - Does the meta plan accurately fulfill the task requirements?

2. Followability - Is the meta plan clear, easy to understand, and are the steps reasonable?
3. Standardization - Does the meta plan follow a consistent and standardized format?
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For each dimension, please indicate which meta plan is better and provide reasoning. Finally,
provide an overall assessment.
Please output the result in JSON format, including the following fields:

{
"correctness_better": "dpo"/"sft"/"tie",

n,on

"correctness_reason": "reason”,
"followability_better": "dpo"/"sft"/"tie",
"followability_reason": "reason",
"standardization_better": "dpo"/"sft"/"tie",

"standardization_reason": "reason",
"overall_better": "dpo"/"sft"/"tie"

Figure 10: Instruction prompt for GPT automated assessment.
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Case Study of ALFWorld

SFT

Task Instruction: You are in the middle of a
room. Looking quickly around you, you see a
armchair 1, a cabinet 4, a cabinet 3, a cabinet 2,
acabinet 1, a drawer 5, a drawer 4, a drawer 3, a
drawer 2, a drawer 1, a dresser 1, a garbagecan
1, a safe 1, a shelf 12, a shelf 11, a shelf 10, a
shelf 9, a shelf 8, a shelf 7, a shelf 6, a shelf 5, a
shelf 4, a shelf 3, a shelf 2, a shelf 1, a sidetable
1, and a sofa 1. Your task is to: find two pillow
and put them in sofa.

# Bad Meta Plan

Meta Plan: Step 1: go to sofa. Step 2: go to
sidetable. Step 3: take pillow from sidetable.
Step 4: go to sofa. Step 5: put pillow in/on sofa.
Step 6: go to sidetable. Step 7: take another
pillow from sidetable. Step 8: go to sofa. Step
9: put second pillow in/on sofa.

Thought: To solve the task, I need to find two
pillow and put them in sofa. The meta plan
suggests that I should go to sofa first, then go
to sidetable.

Action: go to sofa

Observation: Nothing happens.

Thought: It seems that the action "go to sofa"
is invalid. I can try to go to sofa again, or [ can
try to go to sidetable first.

Action: go to sidetable

Observation: Nothing happens.

Thought: It seems that the action "go to
sidetable" is also invalid. I can try to go to
sofa again, or I can try to go to a cabinet or a
drawer instead.

Action: go to cabinet 1

Observation: The cabinet 1 is closed.
Thought: Now that I am in front of the cabinet
1, I can try to open it to see if there are any
pillow inside.

Action: open cabinet 1

Observation: You open the cabinet 1. The cab-
inet 1 is open. In it, you see a tissuebox 1.
Thought: It seems that there is no pillow in the
cabinet 1. I can try to go to sidetableagain/to
see if there is a pillow.

Action: go to sidetable

Observation: Nothing happens.
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MPO

Task Instruction: You are in the middle of a
room. Looking quickly around you, you see a
armchair 1, a cabinet 4, a cabinet 3, a cabinet 2,
acabinet 1, a drawer 5, a drawer 4, a drawer 3, a
drawer 2, a drawer 1, a dresser 1, a garbagecan
1, a safe 1, a shelf 12, a shelf 11, a shelf 10, a
shelf 9, a shelf 8, a shelf 7, a shelf 6, a shelf 5, a
shelf 4, a shelf 3, a shelf 2, a shelf 1, a sidetable
1, and a sofa 1. Your task is to: find two pillow
and put them in sofa.

# Good Meta Plan

Meta Plan: Step 1: go to where the first pillow
may be located. Step 2: take first pillow. Step
3: go to where sofa is. Step 4: put first pillow
in/on sofa. Step 5: go to where the second
pillow may be located. Step 6: take second
pillow. Step 7: go back to sofa. Step 8: put
second pillow in/on sofa.

Thought: A pillow is more likely to appear
in armchair (1), cabinet (1-4), drawer (1-5),
dresser (1), shelf (1-12), sofa (1). I can check
one by one, starting with armchair 1.

Action: go to armchair 1

Observation: On the armchair 1, you see a
pillow 2, a pillow 1, and a remotecontrol 1.
Thought: Now I find the first pillow (1). Next,
I need to take it. I can find the second pillow
(2) later in armchair 1.

Action: take pillow 1 from armchair 1
Observation: You pick up the pillow 1 from
the armchair 1.

Thought: Now I take the first pillow (1). Next,
I need to put it in/on sofa. I can directly go to
sofa.

Action: go to sofa 1

Observation: On the sofa 1, you see nothing.
Thought: Now I go to sofa. Next, I need to put
the first pillow in/on sofa. I can directly put the
first pillow in/on sofa.

Action: put pillow 1 in/on sofa 1
Observation: You put the pillow 1 in/on the
sofa 1.

Thought: Now I put the first pillow in sofa.
Next, I need to find the second pillow. I can
directly go to armchair 1.




Thought: It seems that the action "go to
sidetable" is still invalid. I can try to go to
sofa again to start the workflow.

Action: go to sofa

Observation: Nothing happens.

Thought: It seems that the action "go to sofa"
is still invalid. I can try to go to a drawer in-
stead, as the workflow does not specify which
drawer to go to.

Action: go to drawer 1

Observation: The drawer 1 is closed.

Thought: It seems that there is no pillow in the
cabinet 2. I can try to go to a different cabinet
or location.

Action: go to cabinet 3

Observation: The cabinet 3 is closed.
Thought: Now that I am in front of the cabinet
3, I can try to open it to see if there are any
pillow inside.

Action: open cabinet 3

Observation: You open the cabinet 3. The
cabinet 3 is open. In it, you see a box 3, and a
tissuebox 2.

Reward: 0.0

Action: go to armchair 1

Observation: On the armchair 1, you see a
pillow 2, and a remotecontrol 1.

Thought: Now I find the second pillow (2).
Next, I need to take it.

Action: take pillow 2 from armchair 1
Observation: You pick up the pillow 2 from
the armchair 1.

Thought: Now I take the second pillow (2).
Next, [ need to put it in/on sofa.

Action: go to sofa 1

Observation: On the sofa 1, you see a pillow
1.

Thought: Now I go to sofa. Next, I need to put
the second pillow in/on sofa. I can directly put
the second pillow in/on sofa.

Action: put pillow 2 in/on sofa 1
Observation: You put the pillow 2 in/on the
sofa 1.

Reward: 1.0

Figure 11: Case study of ALFWorld.
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