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Abstract

Text Segmentation involves dividing text into
coherent sections, typically defined by topics.
Over the past decade, lots of research has gone
into furthering the development of supervised
techniques to approach TS tasks, which has
largely left unsupervised TS techniques with
less advancement. With the onset of Large Lan-
guage Models and the accessibility of them be-
coming more commonplace, unsupervised TS
can benefit. By leveraging an LLM’s strong un-
derstanding of natural language, prompting ap-
propriately, and feeding in valuable context, we
show that, even with locally run, open source
LLM models, we can achieve state-of-the-art
unsupervised TS results as benchmarked by Py
and WindowDiff scores.

1 Introduction

Text Segmentation (TS) is a task in Natural Lan-
guage Processing (NLP), involving the division
of text into coherent sections based on topics
or themes. Although significant advances have
been made in the development of supervised tech-
niques for TS (Badjatiya et al., 2018; Koshorek
et al., 2018; Somasundaran et al., 2020; Bar-
row et al., 2020; Lo et al., 2021; Inan et al.,
2022), the progress in unsupervised methods has
lagged (Glavas et al., 2016; Riedl and Biemann,
2012a). This disparity is particularly notable given
the potential of unsupervised approaches to handle
diverse and unstructured text without the need for
labeled data.

With the advent of Large Language Models
(LLMs) and their increasing accessibility, LLMs
can offer a promising avenue for improving unsu-
pervised TS techniques, especially with their deep
understanding of natural language. By designing
TS-specific prompts and leveraging contextual in-
formation, it is possible to apply LLMs to TS to
achieve state-of-the-art (SOTA) results.

Retrieval-Augmented Generation (RAG) (Lewis
et al., 2020) has revolutionized how we interact
with data by enabling models to incorporate new
data contexts when answering user queries and ex-
tracting insights. A critical pre-processing step
that underpins RAG’s remarkable capabilities is
chunking. This process involves dividing large
texts or documents into smaller, fixed-size seg-
ments. By focusing on these smaller units, the
retriever can process and analyze the text more ef-
fectively and efficiently, significantly enhancing
the performance of RAG-powered models. Kshir-
sagar (2024)’s exploration of different chunking
techniques illustrates the importance of effective
chunking for RAG-based systems; further bolster-
ing the critical role a strong TS system could play
in enhancing LLMs’ and RAGs’ capabilities.

In this paper, we experiment with two different
LLM-based approaches to extracting and compar-
ing overarching topics within text. When previous
segment context is provided, an LLM can surpasses
existing unsupervised and some supervised tech-
niques. Our results, benchmarked using the P;, and
WindowDiff scores, demonstrate that even local
open source models can achieve competitive per-
formance, marking a step forward in the field of
unsupervised TS.

2 Related Works

2.1 Text Segmentation

TS has seen substantial advancements over the past
decade. Initially, Hearst (1997) introduced Text-
Tiling, an unsupervised algorithm that segments
text based on lexical overlaps. Similarly, Choi
(2000) demonstrated the effectiveness of unsuper-
vised methods by analyzing sentence similarities,
classifying their work within linear TS methodolo-
gies. These pioneering efforts set a new benchmark
in the field.

The advent of advanced word and sentence em-



beddings revolutionized TS, enabling the devel-
opment of supervised techniques. Kicking off a
wave of supervised TS research, Koshorek et al.
(2018) explored the potential of processing large
TS datasets using a Bi-LSTM, which analyzes three
sentences at a time to understand their interrela-
tions. Building on this, Badjatiya et al. (2018) pro-
posed a sentence-wise model that utilizes attention
mechanisms to further enhance performance. Re-
cent supervised approaches have increasingly incor-
porated LSTMs and Transformers as core compo-
nents, as evidenced in the works of Somasundaran
et al. (2020), Barrow et al. (2020), Lo et al. (2021),
and Inan et al. (2022). These studies highlight the
effectiveness of integrating topic information and
emphasizing sentence contextuality to achieve top-
tier results.

Despite the prominence of supervised models,
unsupervised TS techniques remain promising.
Misra et al. (2009) revisited the classic TextTil-
ing method, refining it with LDA to identify more
precise keywords. Riedl and Biemann (2012b)
combined LDA with TextTiling, while introduc-
ing more novel boundary adjustment methods as
an innovative unsupervised solution. Additionally,
Glavas et al. (2016) introduced a novel graph-based
method that treats sentences as nodes within a
graph to predict segment boundaries. These un-
supervised models demonstrate the ongoing explo-
ration and diversity in TS methodologies. Although
unsupervised TS remains important due its flexibil-
ity and lack of need for domain-specific training
data, there has been a recent resurgence of interest
in these methods. For instance, Xing and Carenini
(2021) developed a Transformer-based unsuper-
vised TS approach, fine-tuning the model to en-
hance performance. Another technique by Solbiati
et al. (2021) involves grouping sentences together,
stacking them, and performing max pooling to cre-
ate a matrix for comparison. John et al. (2017)
utilized an LDA-based TextTiling approach that
yielded strong results but was hindered by the pre-
training requirements of LDA. While their bound-
ary adjustment technique was innovative, it did not
fully achieve unsupervised status.

2.2 Large Language Models

Large Laungage Models (LLMs) represent a leap
in the evolution of language models, characterized
by their larger number of parameters and extraordi-
nary learning capabilities (Chen et al., 2021; Kas-
neci et al., 2023; Zhang et al., 2023b). LLMs such

as GPT-3 (Floridi and Chiriatti, 2020) and GPT-
4 (Achiam et al., 2023) leverage the self-attention
mechanism introduced by the Transformer archi-
tecture (Vaswani et al., 2017). The self-attention
mechanism allows these models to efficiently pro-
cess and generate sequential data by attending to
different parts of the input sequence simultaneously,
capturing long-range dependencies, and enabling
parallel processing.

A key interaction technique with LLMs is
prompt engineering, where users craft specific
prompts to guide the model in generating desired
responses or performing specific tasks (Clavié et al.,
2023; White et al., 2023; Zhang et al., 2023a).
Prompt engineering involves designing input texts
that effectively communicate the task requirements
to the LLM, enabling it to produce accurate and
relevant outputs. This technique is widely adopted
in various evaluation and practical applications of
LLMs, as it leverages the model’s ability to un-
derstand and respond to nuanced language cues.
Through prompting, LLMs also have the ability
to understand the structure of the contextual text
provided to it, before performing its task (e.g., un-
derstanding the start of a new paragraph to predict
the beginning of a new segment).

3 Methodology

To prompt the system accordingly, we use a prompt
to instruct the LLM to predict whether the current
sentence continues the previously provided para-
graph. The previous paragraph is given as part of
the context window into the LLM. When the LLM
predicts a “false” value (i.e., indicating the current
sentence is not a continuation and as of such, the
start of a new segment), we dump all the prior sen-
tences in the segment. This allows the system to
start rebuilding its context window over time.

We also test this approach without providing the
previous sentences as context, to evaluate improve-
ment.

3.1 Metrics

Two common metrics for evaluating TS systems
are P, and WindowDiff (WD), both of which are
standard in the field. The P, metric estimates the
likelihood that two sentences, separated by a dis-
tance of k, are incorrectly classified as belonging to
the same segment. Both P, and WD use a sliding
window of size w to compare predicted segments
against reference segments, with & typically set



to half the average true segment size in the docu-
ment. Lower scores for both metrics indicate better
performance.

Py, is widely accepted in TS evaluation, but WD
was introduced as an improvement. While Py, fo-
cuses on the probability of misclassifying two seg-
ments, WD also penalizes oversegmentation, ad-
dressing false positives—a limitation of Py. Both
metrics range from O to 1, with O representing per-
fect segmentation. WD is often preferred for its
ability to penalize false positives, making it more
robust than P (Pevzner and Hearst, 2002). We
report all our findings using both metrics.

3.2 Prompting

To ensure consistent results from the LLM through-
out the prediction process, a restrictive prompt is
used to restrain the LLM from providing an expla-
nation. The prompt is as follows:

Given the following paragraph:
{prev_paragraph}

Does the following sentence continue the
paragraph?

{sentence}

If it does, output “True”. If they are not,
output “False”. Do not provide any ex-
planation. Ensure your answer is limited
to “True” or “False”.

Where sentence and prev_paragraph are the
current sentence and prior sentences in the segment
respectively. Using the definitive output of the
LLM, we can rely on a simple “True” or “False” to
indicate the prediction.

3.3 Models

We elected to work with an out-of-the-box open
source LLM-Mistral (Jiang et al., 2023). The in-
tuition behind this decision was to show the effi-
cacy of an approach like this without the need for
expensive on-the-cloud LLMs. Additionally, this
decision allows a local tool to be developed with-
out the need for data transfer and the accrual of
transfer-based latency.

To accomplish this, we use a tool called Ollama'
that allows for the hosting and serving of local
LLMs. We used Mistral 7B (Jiang et al., 2023) in
all of our testing due to its strong performance and
its accessibility through the Ollama tool.

"https://ollama.com/

Mistral 7B uses 4.1GB of system memory and
takes roughly 500ms per inference. All testing
was done on an Apple MacBook Air with 16GB of
RAM and an M3 Apple Silicon processor. Running
inference on 100 samples of data in the Choi dataset
took 1 minute and 10 seconds.

4 Data

Unsupervised TS methods are often evaluated us-
ing constructed datasets, which amalgamate seg-
ments from varied sources into composite docu-
ments, as evidenced by studies from Choi (2000)
and Galley et al. (2003).

4.1 Choi Dataset:

Introduced by Choi (2000), this dataset has be-
come a staple for TS research, referenced in works
by Misra et al. (2009), Brants et al. (2002), Fragkou
et al. (2004), Glavas et al. (2016), Sun et al. (2008),
and Galley et al. (2003). It is crafted from the
Brown corpus, containing 700 documents that sim-
ulate real text structure. The compilation includes
400 documents with segments varying from 3—11
sentences, alongside 100 documents for each seg-
ment length category: 3-5, 6-8, and 9-11 sen-
tences.

4.2 WikiSection Dataset:

To complement the synthetic Choi dataset, we also
test the effectiveness of this approach on the Wiki-
Section dataset (Arnold et al., 2019). This dataset
was recently introduced in 2019 and includes two
sections: “City” and “Disease”.

5 Results

We report improvements over the SOTA unsuper-
vised results in TS. Specifically, we evaluate our
approach on two key datasets: Choi’s synthetic
dataset (Choi, 2000) and the WikiSection dataset
introduced by Arnold et al. (2019). Our findings
demonstrate the potential of leveraging LL.Ms for
TS tasks across diverse datasets.

On both P, and WindowDiff metrics, our LLM-
based TS approach with context outperforms pre-
vious SOTA unsupervised methods on Choi’s syn-
thetic dataset. However, we observe no improve-
ment on Choi’s 9—11 dataset when evaluated using
Py, which we attribute to the larger segment sizes
present in this subset. This limitation is discussed
in more detail in Section 6, where we explore po-
tential reasons and implications for future work.



3-5 6-8 9-11 3-11

Pyl WD | Pyl WD | Pyl WD | Pyl WD |
Choi (2000) 12.0 - 9.0 - 9.0 - 12.0 -
Brants et al. (2002) 7.4 - 8.0 - 6.8 - 10.7 -
Fragkou et al. (2004) 5.5 - 3.0 - 1.3 - 7.0 -
Misra et al. (2009) 23.0 - 15.8 - 144 - 16.1 -
Glavas et al. (2016) 5.6 8.7 72 9.4 6.6 9.6 72 9.0
Maraj et al. (2024a) 44 6.2 3.1 33 2.5 2.6 4.0 44
Maraj et al. (2024b) 4.5 4.6 2.7 2.7 2.1 2.1 29 3.1
LLM TS 0.76 241 2.10 3.52 2.88 4.07 3.65 4.27
LLM TS w/context 0.15 1.05 1.43 2.26 2.16 2.76 2.13 343

Table 1: Results on the synthetic Choi (Choi, 2000) dataset, where our approach w/context includes sentences from the current

paragraph within the context window.

Model City Disease

Pl WD | I WD |
Inan et al. (2022)* 7.1 — 15 —
Lo et al. (2021)* 8.2 — 18.8 —
Lee et al. (2023)* 4.6 5.2 13.7 14.7
Maraj et al. (2024a) 36.0 77.2 25.8 75.3
LLM TS 23.4 50.8 10.5 14.0
LLM TS w/context 8.1 274 6.1 8.0

Table 2: LLM-based TS results on a newer WikiSection dataset compared to both supervised and unsupervised methods. When
context is provided, an LLM can outperform even supervised SOTA methods, as shown in the “Disease” dataset. Works with an
asterisk (*) are supervised. Best scores are bolded and second best scores are underlined.

To further validate our approach, we tested it on
the WikiSection dataset, which is notable for its
novel introduction as a TS benchmark and its strong
performance with supervised techniques. On the
“Disease” section of the dataset, our LLM-based
method, when provided with context, outperforms
all prior unsupervised and supervised approaches.
On the “City” section, the model delivers compet-
itive results, demonstrating its robustness across
different domains.

These results underscore the effectiveness of in-
corporating LL.Ms into TS workflows, particularly
when contextual information is leveraged. They
also highlight the versatility of this approach in
handling datasets with varying characteristics and
segment structures. While the improvements are
promising, further exploration is needed to address
specific challenges, such as varying segment sizes,
and to extend the applicability of LLM-based TS
to broader use cases.

6 Limitations

As segment sizes increase, the performance of the
LLM tends to decline, as observed in Choi’s 9—11
and 3—11 datasets. Furthermore, varying segment
sizes, such as those found in Choi’s 3—11 dataset,
present additional challenges for the LLM. These
issues may stem from the diversity in segment sizes
within the provided context.

The prompts used in this study do not explic-
itly define what constitutes a “segment,” leaving
the LLM to interpret this concept without clear
guidance. The current prompt is intentionally
broad and subjective, requiring the LLM to de-
termine whether a given sentence is a continuation
of the preceding paragraph. We hypothesize that
a more specific and nuanced prompt, which pro-
vides clearer explanations of segment characteris-
tics, could improve the LLM’s decision-making in
this context.

This research employs an unsupervised ap-
proach, as the system does not rely on training



or fine-tuning with labeled data. However, due to
the opaque nature of the training process, there
is a possibility that the datasets used for evalua-
tion could have been included in the LLM’s pre-
training corpus. While it is impossible to confirm
this, it is unlikely that the LLM was trained specifi-
cally for a TS task. In other words, while the text
may have contributed to the pretraining of the lan-
guage model, it would not have been used to teach
the LLM to explicitly identify segment boundaries
based on dataset labels.

7 Future Work

Due to their inherit understanding of natural lan-
guage, LLMs have become a strong option for tack-
ling various NLP tasks. Similarly, this work is an
introduction into the strength an LLM can bring
toward TS. Although the inclusion of previous con-
text in the context window shows performance im-
provements, the LLM is still only aware of the cur-
rent segment for that inference. Building a more
thorough prompt though the inclusion of document
understanding could provide valuable insight for
the LLM to understand variations in segment sizes.
For instance, the system iterates through the docu-
ment, builds a graph of related sentences and words,
then uses that graph to understand structure of pre-
vious segments in the document. An augmenta-
tion like this could give the LLM more context
when making predictions. A similar technique was
adopted in Maraj et al. (2024b)’s work, where they
leverage a graph to store previous keywords.

8 Conclusion

This research leverages the inherent ability of
LLMs to comprehend and interpret structural ele-
ments within text, such as paragraph beginnings
and topic transitions. By combining these struc-
tural cues with sentence embeddings, we demon-
strate that our approach surpasses prior unsuper-
vised benchmarks in the field of TS.

Our experimental results on the Choi and Wiki-
Section datasets illustrate that LLMs can perform
competitively across diverse TS datasets. These
findings suggest that LLMs, when paired with ad-
vanced embedding techniques, can address com-
plex segmentation challenges effectively. This
achievement underscores the potential of LLMs
as a robust tool for TS tasks, offering competitive
results without the need for supervised fine-tuning.

While this study marks an advancement in un-

supervised TS methodologies, it also opens new
avenues for further exploration. Future research
could focus on refining prompt designs, incorporat-
ing task-specific pretraining, or developing hybrid
models that integrate LLMs with domain-specific
knowledge. Additionally, exploring methods to
handle variability in segment sizes and context
lengths, as well as addressing limitations posed by
the black-box nature of LLM training, could yield
even greater improvements. Overall, this work pro-
vides an optimistic outlook for TS performance and
serves as a foundation for continued innovation in
the field.
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