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Abstract

Text Segmentation involves dividing text into001
coherent sections, typically defined by topics.002
Over the past decade, lots of research has gone003
into furthering the development of supervised004
techniques to approach TS tasks, which has005
largely left unsupervised TS techniques with006
less advancement. With the onset of Large Lan-007
guage Models and the accessibility of them be-008
coming more commonplace, unsupervised TS009
can benefit. By leveraging an LLM’s strong un-010
derstanding of natural language, prompting ap-011
propriately, and feeding in valuable context, we012
show that, even with locally run, open source013
LLM models, we can achieve state-of-the-art014
unsupervised TS results as benchmarked by Pk015
and WindowDiff scores.016

1 Introduction017

Text Segmentation (TS) is a task in Natural Lan-018

guage Processing (NLP), involving the division019

of text into coherent sections based on topics020

or themes. Although significant advances have021

been made in the development of supervised tech-022

niques for TS (Badjatiya et al., 2018; Koshorek023

et al., 2018; Somasundaran et al., 2020; Bar-024

row et al., 2020; Lo et al., 2021; Inan et al.,025

2022), the progress in unsupervised methods has026

lagged (Glavaš et al., 2016; Riedl and Biemann,027

2012a). This disparity is particularly notable given028

the potential of unsupervised approaches to handle029

diverse and unstructured text without the need for030

labeled data.031

With the advent of Large Language Models032

(LLMs) and their increasing accessibility, LLMs033

can offer a promising avenue for improving unsu-034

pervised TS techniques, especially with their deep035

understanding of natural language. By designing036

TS-specific prompts and leveraging contextual in-037

formation, it is possible to apply LLMs to TS to038

achieve state-of-the-art (SOTA) results.039

Retrieval-Augmented Generation (RAG) (Lewis 040

et al., 2020) has revolutionized how we interact 041

with data by enabling models to incorporate new 042

data contexts when answering user queries and ex- 043

tracting insights. A critical pre-processing step 044

that underpins RAG’s remarkable capabilities is 045

chunking. This process involves dividing large 046

texts or documents into smaller, fixed-size seg- 047

ments. By focusing on these smaller units, the 048

retriever can process and analyze the text more ef- 049

fectively and efficiently, significantly enhancing 050

the performance of RAG-powered models. Kshir- 051

sagar (2024)’s exploration of different chunking 052

techniques illustrates the importance of effective 053

chunking for RAG-based systems; further bolster- 054

ing the critical role a strong TS system could play 055

in enhancing LLMs’ and RAGs’ capabilities. 056

In this paper, we experiment with two different 057

LLM-based approaches to extracting and compar- 058

ing overarching topics within text. When previous 059

segment context is provided, an LLM can surpasses 060

existing unsupervised and some supervised tech- 061

niques. Our results, benchmarked using the Pk and 062

WindowDiff scores, demonstrate that even local 063

open source models can achieve competitive per- 064

formance, marking a step forward in the field of 065

unsupervised TS. 066

2 Related Works 067

2.1 Text Segmentation 068

TS has seen substantial advancements over the past 069

decade. Initially, Hearst (1997) introduced Text- 070

Tiling, an unsupervised algorithm that segments 071

text based on lexical overlaps. Similarly, Choi 072

(2000) demonstrated the effectiveness of unsuper- 073

vised methods by analyzing sentence similarities, 074

classifying their work within linear TS methodolo- 075

gies. These pioneering efforts set a new benchmark 076

in the field. 077

The advent of advanced word and sentence em- 078
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beddings revolutionized TS, enabling the devel-079

opment of supervised techniques. Kicking off a080

wave of supervised TS research, Koshorek et al.081

(2018) explored the potential of processing large082

TS datasets using a Bi-LSTM, which analyzes three083

sentences at a time to understand their interrela-084

tions. Building on this, Badjatiya et al. (2018) pro-085

posed a sentence-wise model that utilizes attention086

mechanisms to further enhance performance. Re-087

cent supervised approaches have increasingly incor-088

porated LSTMs and Transformers as core compo-089

nents, as evidenced in the works of Somasundaran090

et al. (2020), Barrow et al. (2020), Lo et al. (2021),091

and Inan et al. (2022). These studies highlight the092

effectiveness of integrating topic information and093

emphasizing sentence contextuality to achieve top-094

tier results.095

Despite the prominence of supervised models,096

unsupervised TS techniques remain promising.097

Misra et al. (2009) revisited the classic TextTil-098

ing method, refining it with LDA to identify more099

precise keywords. Riedl and Biemann (2012b)100

combined LDA with TextTiling, while introduc-101

ing more novel boundary adjustment methods as102

an innovative unsupervised solution. Additionally,103

Glavaš et al. (2016) introduced a novel graph-based104

method that treats sentences as nodes within a105

graph to predict segment boundaries. These un-106

supervised models demonstrate the ongoing explo-107

ration and diversity in TS methodologies. Although108

unsupervised TS remains important due its flexibil-109

ity and lack of need for domain-specific training110

data, there has been a recent resurgence of interest111

in these methods. For instance, Xing and Carenini112

(2021) developed a Transformer-based unsuper-113

vised TS approach, fine-tuning the model to en-114

hance performance. Another technique by Solbiati115

et al. (2021) involves grouping sentences together,116

stacking them, and performing max pooling to cre-117

ate a matrix for comparison. John et al. (2017)118

utilized an LDA-based TextTiling approach that119

yielded strong results but was hindered by the pre-120

training requirements of LDA. While their bound-121

ary adjustment technique was innovative, it did not122

fully achieve unsupervised status.123

2.2 Large Language Models124

Large Laungage Models (LLMs) represent a leap125

in the evolution of language models, characterized126

by their larger number of parameters and extraordi-127

nary learning capabilities (Chen et al., 2021; Kas-128

neci et al., 2023; Zhang et al., 2023b). LLMs such129

as GPT-3 (Floridi and Chiriatti, 2020) and GPT- 130

4 (Achiam et al., 2023) leverage the self-attention 131

mechanism introduced by the Transformer archi- 132

tecture (Vaswani et al., 2017). The self-attention 133

mechanism allows these models to efficiently pro- 134

cess and generate sequential data by attending to 135

different parts of the input sequence simultaneously, 136

capturing long-range dependencies, and enabling 137

parallel processing. 138

A key interaction technique with LLMs is 139

prompt engineering, where users craft specific 140

prompts to guide the model in generating desired 141

responses or performing specific tasks (Clavié et al., 142

2023; White et al., 2023; Zhang et al., 2023a). 143

Prompt engineering involves designing input texts 144

that effectively communicate the task requirements 145

to the LLM, enabling it to produce accurate and 146

relevant outputs. This technique is widely adopted 147

in various evaluation and practical applications of 148

LLMs, as it leverages the model’s ability to un- 149

derstand and respond to nuanced language cues. 150

Through prompting, LLMs also have the ability 151

to understand the structure of the contextual text 152

provided to it, before performing its task (e.g., un- 153

derstanding the start of a new paragraph to predict 154

the beginning of a new segment). 155

3 Methodology 156

To prompt the system accordingly, we use a prompt 157

to instruct the LLM to predict whether the current 158

sentence continues the previously provided para- 159

graph. The previous paragraph is given as part of 160

the context window into the LLM. When the LLM 161

predicts a “false” value (i.e., indicating the current 162

sentence is not a continuation and as of such, the 163

start of a new segment), we dump all the prior sen- 164

tences in the segment. This allows the system to 165

start rebuilding its context window over time. 166

We also test this approach without providing the 167

previous sentences as context, to evaluate improve- 168

ment. 169

3.1 Metrics 170

Two common metrics for evaluating TS systems 171

are Pk and WindowDiff (WD), both of which are 172

standard in the field. The Pk metric estimates the 173

likelihood that two sentences, separated by a dis- 174

tance of k, are incorrectly classified as belonging to 175

the same segment. Both Pk and WD use a sliding 176

window of size w to compare predicted segments 177

against reference segments, with k typically set 178
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to half the average true segment size in the docu-179

ment. Lower scores for both metrics indicate better180

performance.181

Pk is widely accepted in TS evaluation, but WD182

was introduced as an improvement. While Pk fo-183

cuses on the probability of misclassifying two seg-184

ments, WD also penalizes oversegmentation, ad-185

dressing false positives—a limitation of Pk. Both186

metrics range from 0 to 1, with 0 representing per-187

fect segmentation. WD is often preferred for its188

ability to penalize false positives, making it more189

robust than Pk (Pevzner and Hearst, 2002). We190

report all our findings using both metrics.191

3.2 Prompting192

To ensure consistent results from the LLM through-193

out the prediction process, a restrictive prompt is194

used to restrain the LLM from providing an expla-195

nation. The prompt is as follows:196

Given the following paragraph:197

{prev_paragraph}198

Does the following sentence continue the199

paragraph?200

{sentence}201

If it does, output “True”. If they are not,202

output “False”. Do not provide any ex-203

planation. Ensure your answer is limited204

to “True” or “False”.205

Where sentence and prev_paragraph are the206

current sentence and prior sentences in the segment207

respectively. Using the definitive output of the208

LLM, we can rely on a simple “True” or “False” to209

indicate the prediction.210

3.3 Models211

We elected to work with an out-of-the-box open212

source LLM–Mistral (Jiang et al., 2023). The in-213

tuition behind this decision was to show the effi-214

cacy of an approach like this without the need for215

expensive on-the-cloud LLMs. Additionally, this216

decision allows a local tool to be developed with-217

out the need for data transfer and the accrual of218

transfer-based latency.219

To accomplish this, we use a tool called Ollama1220

that allows for the hosting and serving of local221

LLMs. We used Mistral 7B (Jiang et al., 2023) in222

all of our testing due to its strong performance and223

its accessibility through the Ollama tool.224

1https://ollama.com/

Mistral 7B uses 4.1GB of system memory and 225

takes roughly 500ms per inference. All testing 226

was done on an Apple MacBook Air with 16GB of 227

RAM and an M3 Apple Silicon processor. Running 228

inference on 100 samples of data in the Choi dataset 229

took 1 minute and 10 seconds. 230

4 Data 231

Unsupervised TS methods are often evaluated us- 232

ing constructed datasets, which amalgamate seg- 233

ments from varied sources into composite docu- 234

ments, as evidenced by studies from Choi (2000) 235

and Galley et al. (2003). 236

4.1 Choi Dataset: 237

Introduced by Choi (2000), this dataset has be- 238

come a staple for TS research, referenced in works 239

by Misra et al. (2009), Brants et al. (2002), Fragkou 240

et al. (2004), Glavaš et al. (2016), Sun et al. (2008), 241

and Galley et al. (2003). It is crafted from the 242

Brown corpus, containing 700 documents that sim- 243

ulate real text structure. The compilation includes 244

400 documents with segments varying from 3–11 245

sentences, alongside 100 documents for each seg- 246

ment length category: 3–5, 6–8, and 9–11 sen- 247

tences. 248

4.2 WikiSection Dataset: 249

To complement the synthetic Choi dataset, we also 250

test the effectiveness of this approach on the Wiki- 251

Section dataset (Arnold et al., 2019). This dataset 252

was recently introduced in 2019 and includes two 253

sections: “City” and “Disease”. 254

5 Results 255

We report improvements over the SOTA unsuper- 256

vised results in TS. Specifically, we evaluate our 257

approach on two key datasets: Choi’s synthetic 258

dataset (Choi, 2000) and the WikiSection dataset 259

introduced by Arnold et al. (2019). Our findings 260

demonstrate the potential of leveraging LLMs for 261

TS tasks across diverse datasets. 262

On both Pk and WindowDiff metrics, our LLM- 263

based TS approach with context outperforms pre- 264

vious SOTA unsupervised methods on Choi’s syn- 265

thetic dataset. However, we observe no improve- 266

ment on Choi’s 9–11 dataset when evaluated using 267

Pk, which we attribute to the larger segment sizes 268

present in this subset. This limitation is discussed 269

in more detail in Section 6, where we explore po- 270

tential reasons and implications for future work. 271
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3 – 5 6 – 8 9 – 11 3 – 11

Pk ↓ WD ↓ Pk ↓ WD ↓ Pk ↓ WD ↓ Pk ↓ WD ↓

Choi (2000) 12.0 – 9.0 – 9.0 – 12.0 –
Brants et al. (2002) 7.4 – 8.0 – 6.8 – 10.7 –
Fragkou et al. (2004) 5.5 – 3.0 – 1.3 – 7.0 –
Misra et al. (2009) 23.0 – 15.8 – 14.4 – 16.1 –
Glavaš et al. (2016) 5.6 8.7 7.2 9.4 6.6 9.6 7.2 9.0
Maraj et al. (2024a) 4.4 6.2 3.1 3.3 2.5 2.6 4.0 4.4
Maraj et al. (2024b) 4.5 4.6 2.7 2.7 2.1 2.1 2.9 3.1
LLM TS 0.76 2.41 2.10 3.52 2.88 4.07 3.65 4.27
LLM TS w/context 0.15 1.05 1.43 2.26 2.16 2.76 2.13 3.43

Table 1: Results on the synthetic Choi (Choi, 2000) dataset, where our approach w/context includes sentences from the current
paragraph within the context window.

Model City Disease
Pk ↓ WD ↓ Pk ↓ WD ↓

Inan et al. (2022)* 7.1 – 15 –
Lo et al. (2021)* 8.2 – 18.8 –
Lee et al. (2023)* 4.6 5.2 13.7 14.7
Maraj et al. (2024a) 36.0 77.2 25.8 75.3
LLM TS 23.4 50.8 10.5 14.0
LLM TS w/context 8.1 27.4 6.1 8.0

Table 2: LLM-based TS results on a newer WikiSection dataset compared to both supervised and unsupervised methods. When
context is provided, an LLM can outperform even supervised SOTA methods, as shown in the “Disease” dataset. Works with an
asterisk (*) are supervised. Best scores are bolded and second best scores are underlined.

To further validate our approach, we tested it on272

the WikiSection dataset, which is notable for its273

novel introduction as a TS benchmark and its strong274

performance with supervised techniques. On the275

“Disease” section of the dataset, our LLM-based276

method, when provided with context, outperforms277

all prior unsupervised and supervised approaches.278

On the “City” section, the model delivers compet-279

itive results, demonstrating its robustness across280

different domains.281

These results underscore the effectiveness of in-282

corporating LLMs into TS workflows, particularly283

when contextual information is leveraged. They284

also highlight the versatility of this approach in285

handling datasets with varying characteristics and286

segment structures. While the improvements are287

promising, further exploration is needed to address288

specific challenges, such as varying segment sizes,289

and to extend the applicability of LLM-based TS290

to broader use cases.291

6 Limitations 292

As segment sizes increase, the performance of the 293

LLM tends to decline, as observed in Choi’s 9—11 294

and 3—11 datasets. Furthermore, varying segment 295

sizes, such as those found in Choi’s 3—11 dataset, 296

present additional challenges for the LLM. These 297

issues may stem from the diversity in segment sizes 298

within the provided context. 299

The prompts used in this study do not explic- 300

itly define what constitutes a “segment,” leaving 301

the LLM to interpret this concept without clear 302

guidance. The current prompt is intentionally 303

broad and subjective, requiring the LLM to de- 304

termine whether a given sentence is a continuation 305

of the preceding paragraph. We hypothesize that 306

a more specific and nuanced prompt, which pro- 307

vides clearer explanations of segment characteris- 308

tics, could improve the LLM’s decision-making in 309

this context. 310

This research employs an unsupervised ap- 311

proach, as the system does not rely on training 312
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or fine-tuning with labeled data. However, due to313

the opaque nature of the training process, there314

is a possibility that the datasets used for evalua-315

tion could have been included in the LLM’s pre-316

training corpus. While it is impossible to confirm317

this, it is unlikely that the LLM was trained specifi-318

cally for a TS task. In other words, while the text319

may have contributed to the pretraining of the lan-320

guage model, it would not have been used to teach321

the LLM to explicitly identify segment boundaries322

based on dataset labels.323

7 Future Work324

Due to their inherit understanding of natural lan-325

guage, LLMs have become a strong option for tack-326

ling various NLP tasks. Similarly, this work is an327

introduction into the strength an LLM can bring328

toward TS. Although the inclusion of previous con-329

text in the context window shows performance im-330

provements, the LLM is still only aware of the cur-331

rent segment for that inference. Building a more332

thorough prompt though the inclusion of document333

understanding could provide valuable insight for334

the LLM to understand variations in segment sizes.335

For instance, the system iterates through the docu-336

ment, builds a graph of related sentences and words,337

then uses that graph to understand structure of pre-338

vious segments in the document. An augmenta-339

tion like this could give the LLM more context340

when making predictions. A similar technique was341

adopted in Maraj et al. (2024b)’s work, where they342

leverage a graph to store previous keywords.343

8 Conclusion344

This research leverages the inherent ability of345

LLMs to comprehend and interpret structural ele-346

ments within text, such as paragraph beginnings347

and topic transitions. By combining these struc-348

tural cues with sentence embeddings, we demon-349

strate that our approach surpasses prior unsuper-350

vised benchmarks in the field of TS.351

Our experimental results on the Choi and Wiki-352

Section datasets illustrate that LLMs can perform353

competitively across diverse TS datasets. These354

findings suggest that LLMs, when paired with ad-355

vanced embedding techniques, can address com-356

plex segmentation challenges effectively. This357

achievement underscores the potential of LLMs358

as a robust tool for TS tasks, offering competitive359

results without the need for supervised fine-tuning.360

While this study marks an advancement in un-361

supervised TS methodologies, it also opens new 362

avenues for further exploration. Future research 363

could focus on refining prompt designs, incorporat- 364

ing task-specific pretraining, or developing hybrid 365

models that integrate LLMs with domain-specific 366

knowledge. Additionally, exploring methods to 367

handle variability in segment sizes and context 368

lengths, as well as addressing limitations posed by 369

the black-box nature of LLM training, could yield 370

even greater improvements. Overall, this work pro- 371

vides an optimistic outlook for TS performance and 372

serves as a foundation for continued innovation in 373

the field. 374
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