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ABSTRACT

Articulated objects are ubiquitous and important in robotics, AR/VR, and digital
twins. Most self-supervised methods for articulated object modeling reconstruct
discrete interaction states and relate them via cross-state geometric consistency,
yielding representational fragmentation and drift that hinder smooth control of ar-
ticulated configurations. We introduce PD2GS, a novel framework that learns a
shared canonical Gaussian field and models the arbitrary interaction state as its
continuous deformation, jointly encoding geometry and kinematics. By associ-
ating each interaction state with a latent code and refining part boundaries using
generic vision priors, PD2GS enables accurate and reliable part-level decoupling
while enforcing mutual exclusivity between parts and preserving scene-level co-
herence. This unified formulation supports part-aware reconstruction, fine-grained
continuous control, and accurate kinematic modeling, all without manual super-
vision. To assess realism and generalization, we release RS-Art, a real-to-sim
RGB-D dataset aligned with reverse-engineered 3D models, supporting real-world
evaluation. Extensive experiments demonstrate that PD2GS surpasses prior meth-
ods in geometric and kinematic accuracy, and in consistency under continuous
control, both on synthetic and real data.

1 INTRODUCTION

Articulated objects, from hinged doors and sliding drawers to foldable laptops, are ubiquitous in
physical and virtual environments. Accurate 3D representations of articulated objects are critical
for robotics (Simeonov et al., 2022; Si et al., 2024; Zhao et al., 2024), AR/VR (Yang et al., 2024;
Mangalam et al., 2024), and digital twins (Anaya et al., 2024; Guo et al., 2024). Prior work on
articulated object modeling often builds on access to precisely annotated 3D models with dense
part and kinematic labels (Wang et al., 2019; Yan et al., 2019; Mu et al., 2021; Jiang et al., 2022;
Wei et al., 2022; Wang et al., 2024). Such strong supervision, together with simplified appearance
models and coarse geometric priors, limits applicability to objects with simple kinematic structure
and low part diversity.

Recent advances in neural rendering, including NeRF (Mildenhall et al., 2021) and 3DGS (Kerbl
et al., 2023), enable multi-view learning of appearance and geometry, offering a foundation for
annotation-efficient articulated object modeling. PARIS (Liu et al., 2023) first employs a NeRF
backbone (Mildenhall et al., 2021) for part-level modeling across two distinct interaction states.
Subsequent studies (Guo et al., 2025; Wu et al., 2025), incorporating 3DGS (Kerbl et al., 2023), im-
prove rendering fidelity and convergence speed. However, these methods typically assume a single
movable part across two states, limiting them to simple single-joint objects. In response, several ap-
proaches infer multi-part decompositions by contrasting two state-specific 3D representations (Weng
et al., 2024; Liu et al., 2025), typically via explicit Marching-Cubes meshes and per-state Gaussian
fields with subsequent joint alignment. This discretization confines optimization to pairwise geomet-
ric matching between the two states, typically augmented with physics-based alignment constraints,
which relies on exact correspondences and precludes modeling continuous part motion. Addition-
ally, operating on exactly two interaction states provides only sparse observations of the articulation,
which limits estimation accuracy and hampers the resolution of motion ambiguities.
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(a) Unified 3DGS Representation

Canonical State State k

(c) Multi-Part Decoupled Deformation

...

State KState 1

...

Input

State 1

State K 
(K≥ 2)

(b) Articulated Object Modeling

...State Code ��

Figure 1: Given multi-view image sets at arbitrary interaction states, our framework (a) builds a
unified 3D Gaussian representation for articulated objects, (b) achieves part-level articulated ob-
ject reconstruction and joint motion analysis, and (c) enables continuous deformation of articulated
objects with multi-part decoupling by interpolating latent codes.

Our key insight is that each interaction state of an articulated object can be modeled as a continuous
deformation of a shared canonical 3D Gaussian field, with per-primitive deformation trajectories
coherent within parts and distinct across parts, thereby inducing part semantics and enabling unsu-
pervised part-level grouping. Building on this idea, we introduce PD2GS, which realizes Part-Level
Decoupling and Continuous Deformation via Gaussian Splatting, enabling part-aware reconstruc-
tion and smooth transitions to previously unseen configurations (Fig. 1). We design Deformable
Gaussian Splatting that represents each interaction state with a latent code used to parameterize per-
primitive transformations of a shared canonical Gaussian field. To enable part-level decoupling of
Gaussian primitives, we propose a coarse-to-fine segmentation procedure. We first obtain a coarse
grouping by clustering primitives according to deformation-trajectory similarity with guidance from
a vision–language model. We then refine part boundaries via a boundary-aware splitting stage that
employs a tailored 3D-2D prompting scheme for SAM, yielding sharp interfaces and fine-grained
per-primitive labels while preserving smooth part motion. Accordingly, our framework operates en-
tirely within the 3DGS optimization paradigm, is agnostic to the number of interaction states, and
avoids imposing geometric or physics-based constraints that are not expressible within the Gaussian
primitive parameterization.

Moreover, most prior studies (Liu et al., 2023; Weng et al., 2024; Liu et al., 2025; Wu et al., 2025)
evaluate at most one instance per category on PartNet-Mobility (Xiang et al., 2020), a synthetic
corpus with limited intra-category diversity and weak evidence for real-world generalization. We
enlarge per-category coverage on PartNet-Mobility and additionally release RS-Art, a real-to-sim
evaluation dataset that pairs multi-view RGB captures of real objects with their reverse-engineered
3D models, enabling more rigorous assessment of sim-to-real performance.

Our contributions can be summarized as follows:

• We introduce PD2GS, a self-supervised framework that learns a canonical Gaussian field and
realizes interaction states as its continuous deformations, enabling part-level decoupling and
the joint recovery of geometry, appearance, and kinematics.

• We propose a coarse-to-fine segmentation of Gaussian primitives driven by deformation tra-
jectories, with boundary refinement for sharp part interfaces and smooth part motion, yielding
accurate part-aware segmentation.

• We evaluate multiple instances per category and release RS-Art, a real-to-sim evaluation dataset
pairing real RGB captures with reverse-engineered 3D models. Comprehensive experiments
demonstrate that PD2GS outperforms prior methods.

2 RELATED WORK

Articulated object modeling. Early methods like PointNet require dense supervision and CAD-
quality inputs (Qi et al., 2017a;b; Yan et al., 2019). Implicit SDFs relax input needs but demand
watertight meshes, pre-aligned frames, and usually two interaction states (Mu et al., 2021; Wei et al.,
2022; Jiang et al., 2022). Label-free NeRF and 3DGS approaches (Liu et al., 2023; Guo et al., 2025;
Wu et al., 2025) support only single-joint, two-state objects. Recent two-field registration methods
handle multiple parts but still assume known part counts and similar state configs (Weng et al., 2024;
Liu et al., 2025). PD2GS overcomes these limitations with a latent-conditioned deformation field
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that supports arbitrary states and infers part structure from motion, enabling fully self-supervised
multi-part articulation modeling.

Dynamic Gaussian splatting. Recent work extends static 3D Gaussians by making the Gaussian
parameters continuous functions of time. Dynamic 3D Gaussians (Luiten et al., 2024) use a time-
conditioned MLP to enforce locally rigid motions, while 4D Gaussian Splatting (Wu et al., 2024)
embeds Gaussians in a space-time. DynGS (Sun et al., 2024) and Explicit-4D Gaussian (Lee et al.,
2024) drive motion via learned trajectory and regularize appearance. Later work focuses on com-
pression or semantic enrichment (Labe et al., 2024). However, these approaches rely on a single
continuous time parameter, making them unsuitable for discrete states or multimodal motions. In
contrast, PD2GS uses a latent-conditioned deformation field to explicitly model arbitrary discrete
states, enabling direct mapping between configurations.

SAM-based 3D segmentation. Recent efforts lift SAM (Kirillov et al., 2023) to neural field seg-
mentation by projecting 2D masks or distilling them into Gaussian features. SA3D (Cen et al., 2023)
and SANeRF HQ (Liu et al., 2024) propagate and aggregate SAM masks in NeRF using multi-view
and density cues. Within the Gaussian domain, SAGA (Cen et al., 2025) and SAGD (Hu et al., 2024)
learn instance-aware embeddings or refine boundaries, while Gaussian Grouping (Ye et al., 2024)
and SAM3D (Yang et al., 2023) directly lift 2D masks to 3D reconstructions. These approaches
treat segmentation as static and depend on external 2D prompts or per-frame masks, failing to lever-
age motion cues across states. Our framework instead analyzes Gaussian motion trajectories to
auto-generate state-aware prompts, then refines segments via SAM-guided splitting, enabling fully
automatic part segmentation.

Structure 

from Motion

Canonical 3D 

Gaussian Splatting

3.2 Deformable Gaussian Splatting

Deformed 3D 

Gaussian Splatting

MLP

Latent Code 𝛂𝑘𝜖ℝ
𝐷

State = 1, 2, …, K

(∆𝝁, ∆𝒒, ∆𝒔)

(∆𝝁, ∆𝒒, ∆𝒔)

3.4 Refined Part-Level Segmentation of Gaussian Primitives

3.3 Coarse Part-Level 
Segmentation of Gaussian 

Primitives

VLM
𝐼𝑘𝑖
(𝑣𝑝) 𝐼𝑘𝑗

(𝑣𝑞)

Prompt

Input: Multi-view 

RGB Images

Output: Refined, Part-

aware Gaussian Field
SAM

2D splitting

𝑛parts

𝑔 = (𝛍, 𝚺, 𝐜, 𝛂)

State = 1, 2, …, K

ℒtotal

Prompt 𝒫
𝑝+
(𝑣)

Motion-driven separation

Trajectory-based 

clustering

Local 

refinement

Visibility-aware 

prompt generation

Boundary-aware 

Gaussian splitting
ℒtotal

𝒢

𝑓def

𝒢stat 𝒢dyn

ℳ𝑝
(𝑣)

𝒢(𝜶) = {𝒢𝑝
(𝜶)

}𝑝=1
𝑛parts

Figure 2: Overview of the PD2GS pipeline. Solid arrows indicate differentiable modules that
participate in the joint optimization, whereas dashed arrows correspond to non-differentiable post-
processing stages executed outside the optimization loop.

3 METHODOLOGY

This section explains the pipeline shown in Fig. 2. We first review the basics of 3D Gaussian Splat-
ting (Sec. 3.1) and then attach a latent-conditioned deformation network that maps a canonical Gaus-
sian field to every interaction state (Sec. 3.2). On the resulting state-specific fields, we detect rigid
parts from motion cues (Sec. 3.3) and refine their boundaries with visibility-guided SAM prompting
followed by boundary-aware Gaussian splitting (Sec. 3.4). The refined part-aware Gaussian field
then supports the multi-task modeling of each articulated object (Sec. 3.5).

3.1 PRELIMINARIES: 3D GAUSSIAN SPLATTING

3D Gaussian Splatting (3DGS) (Kerbl et al., 2023) represents a scene by a finite set of oriented
anisotropic Gaussian primitives

G =
{
gi = (µi, Σi, ci, αi)

}N

i=1
, (1)

3
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where µi ∈ R3 denotes the center of the i-th Gaussian, Σi ∈ R3×3 its full covariance that encodes
both scale and orientation, ci ∈ [0, 1]3 the RGB color, and αi ∈ [0, 1] the opacity.

A perspective camera is modeled by a projection Π : R3→R2. Linearization Π at µi maps the 3D
covariance to a 2D screen-space covariance Si ∈ R2×2 and the mean pixel coordinates ui = Π(µi).
Each primitive therefore induces the density

ρi(x) = αi exp
(
− 1

2 (x− ui)
⊤S−1

i (x− ui)
)
, x ∈ R2. (2)

With a depth ordering that proceeds from front to back, α compositing yields the pixel radiance

C(x) =

N∑
i=1

wi(x) ci, wi(x) = ρi(x)
∏
j<i

[
1− ρj(x)

]
. (3)

All parameters {µi,Σi, ci, αi}Ni=1 are optimized by minimizing a photometric loss between the
rendered color C(x) and the corresponding ground-truth image.

3.2 DEFORMABLE GAUSSIAN SPLATTING

To capture the full continuum of interaction states we train an implicit network, conditioned on a
latent code, that warps a canonical Gaussian field into state-specific configurations.

Each Gaussian primitive is gi = (µi,Σi, ci, αi), with the covariance factorised as

Σi = R(qi) Diag(si) R(qi)
⊤
, (4)

where R(qi) converts the unit quaternion qi ∈ SO(3) into its 3 × 3 rotation matrix, and Diag(si)
places the positive scale vector si ∈ R3

>0 on the diagonal of a 3× 3 matrix. This factorization sepa-
rates orientation from per-axis stretch, keeping subsequent rotation and scale updates both intuitive
and numerically stable.

Given a latent code α∈RD that encodes one interaction state, a multi-layer perceptron fdef predicts
per-primitive offsets

(∆µi,∆qi,∆si) = fdef(µi,qi, si | α), (5)

with ∆µi ∈R3, ∆si ∈R3, and an unconstrained four-vector ∆qi that is normalized to SO(3) by
∆qi ← ∆qi/∥∆qi∥2.

Applying the learned offsets converts the canonical Gaussian field into the configuration of a partic-
ular interaction state k:

µ
(k)
i = µi +∆µi, s

(k)
i = si +∆si, q

(k)
i = ∆qi ⊗ qi, (6)

where⊗ denotes multiplication of quaternions. Normalizing ∆qi produces a unit quaternion, so q
(k)
i

remains a valid orientation. Eq. equation 6 therefore converts the canonical Gaussians {µi, si, qi}
into the state-specific set {µ(k)

i , s
(k)
i , q

(k)
i } that describes the interaction state k.

For the K observed interaction states of the object, we jointly optimize the network parameters θfdef ,
the latents {zk}Kk=1, and the canonical Gaussian parameters by minimizing the results.

Ltotal =
∑
k,v

∑
x∈Ω

(v)
k

∥C(v)
k (x)− I

(v)
k (x)∥1

︸ ︷︷ ︸
Lphoto

+LDSIMM , (7)

where C
(v)
k is the color rendered in pixel x, I(v)k is the corresponding ground truth image, and

LDSIMM is the canonical 3DGS density similarity term that discourages overlapping Gaussians with
dissimilar colors.

After convergence, every latent αk produces a state-specific geometry {µ(k)
i , s

(k)
i , q

(k)
i }Ni=1 while

sharing the appearance attributes {ci, αi}Ni=1. A single model therefore yields a coherent Gaussian
scene for each interaction state and jointly encodes geometry, appearance, and articulation.

4
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3.3 COARSE PART-LEVEL SEGMENTATION OF GAUSSIAN PRIMITIVES

Motion-driven separation of static and dynamic Gaussians. Without object masks or semantic
priors, we detect dynamic primitives by computing the maximum Euclidean displacement of each
Gaussian center across the K interaction states. Let µ(k)

i ∈ R3 be the center of Gaussian primitives
gi in state k. We define its maximal displacement is

di = max
j,k∈{1,...,K}

∥∥µ(j)
i − µ

(k)
i

∥∥
2
, d̂i = di/max

r
dr ∈ [0, 1]. (8)

Gaussians with d̂i ≥ τmot form the dynamic set Gdyn, and the remainder Gstat is static, where the
threshold τmot ∈ [0, 1] specifies the fraction of the maximum displacement of the entire scene that
qualifies as motion.

Estimating the number of motion parts via a VLM. To infer how many rigid parts appear in
Gdyn we sample M image pairs (I

(vp)
ki

, I
(vq)
kj

) with different states ki ̸= kj . A visual language
model (VLM) (Dai et al., 2023) is queried with the fixed prompt:

“Compare the two images. How many components moved?”
“Answer: ‘Number of moved components: [N]’.”

The number of parts nparts is set in the mode of the VLM predictions M , i.e., the integer that occurs
most frequently, making the estimate insensitive to occasional miscounts.

Trajectory-based clustering of dynamic Gaussians. For each gi ∈ Gdyn we assemble a motion
descriptor

fi =
[
∆̂µ

(1)
i , ∥∆µ

(1)
i ∥2, . . . , ∆̂µ

(K−1)
i , ∥∆µ

(K−1)
i ∥2

]
∈ R4(K−1), (9)

where

∆µ
(k)
i = µ

(k+1)
i − µ

(k)
i , ∆̂µ

(k)
i =

∆µ
(k)
i

∥∆µ
(k)
i ∥2 + ε

. (10)

Unit directions encode orientation and lengths keep relative travel, so the descriptor is transla-
tion/rotation aware yet scale balanced. After normalization of ℓ2, we cluster the descriptors with
K-means (Arthur & Vassilvitskii, 2006) using K = nparts. On the unit sphere, Euclidean distance
equals cosine distance, therefore Gaussians that share one rigid motion, even at different amplitudes,
are grouped together.

Clusters containing fewer than 2% of dynamic Gaussians are regarded noise and merged into the
nearest larger cluster. Each dynamic primitive then receives a part label ci ∈ {1, . . . , nparts}, while
static ones are labeled 0. These coarse labels initialize the fine-grained stage that follows.

3.4 REFINED PART-LEVEL SEGMENTATION OF GAUSSIAN PRIMITIVES

Visibility-aware prompt generation for SAM. To sharpen the coarse part labels in Sec. 3.3 we
first render each part through a visibility filter and then draw sparse point prompts for the Segment
Anything Model (SAM) (Kirillov et al., 2023).

• Per-Gaussian contribution at a pixel. For a pixel x in view v, the contribution weight w(v)
i (x)

from Gaussian gi = (µi,Σi, ci, αi) is obtained by first evaluating its screen-space density ρ
(v)
i (x)

(Eq. equation 2) and then applying the front-to-back compositing rule (Eq. equation 3), which
together map every three-dimensional primitive to a continuous weight field whose value at x
equals w(v)

i (x).
• Part specific visibility confidence. For each pixel we accumulate the weight of part p as
w

(v)
p (x) =

∑
gi∈Gp

w
(v)
i (x) and compare it with the strongest competitor w

(v)
max,⌝p(x) =

maxq ̸=p w
(v)
q (x). The pixel is assigned to part p when

w(v)
p (x)/{w(v)

max,⌝p(x) + ε} > τvis, (11)
where τvis is a visibility threshold, tuned on one or two representative instances, and ε avoids
division by zero. The winner margin test keeps only pixels in which part p clearly dominates, thus
reducing the ambiguity at overlaps.

5
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• Sampling prompts. We define the set of visible pixels corresponding to part p in view v as
Ω

(v)
p+ = {x | pixel assigned to part p} and the non-contributing set as Ω(v)

p− = {x | w(v)
p (x) = 0}.

Furthest point sampling (FPS) on Ω
(v)
p+ and Ω

(v)
p− selects ten positive prompts P(v)

p+ and twenty

negative prompts P(v)
p− , which together with the RGB image are fed to SAM to obtain the mask

M(v)
p .

Boundary-aware Gaussian splitting. For each Gaussian gi we find its nearest view vnear by ray
sampling and project the ellipsoid to a two-dimensional ellipse. If the ellipse major axis extends
beyond the mask of the partM(vnear)

p , the Gaussian becomes a boundary candidate.

We follow SAGD (Hu et al., 2024) to split each candidate, as shown in the bottom part of Fig. 2. The
fraction of the major axis that lies inside the mask is measured in image space and the same ratio is
applied to the center µi and the scale vector si, resulting in two children g

(part)
i and g

(bg)
i . The part

child retains the in-mask portion and the background child captures the overflow. The background
child g

(bg)
i is re-evaluated in its nearest view; if its ellipse still crosses another part mask the split is

applied recursively until every descendant lies inside exactly one mask.

Part-aware Gaussian field via local refinement. Finally, parameters of unsplit Gaussians remain
fixed, whereas all new children are locally fine-tuned for a few iterations on Ltotal (updating q and
α only) to restore the photo consistency. The recursive split-and-tune process produces sharply
aligned, mask-consistent part boundaries while leaving the converged Gaussian field undisturbed.

The entire procedure yields a refined, part-aware Gaussian field with inteactive state

G(α) =
{
G(α)
p

}nparts

p=1
, G(α)

p =
{
(µ

(α)
i ,Σ

(α)
i , ci, αi)

}
i∈Gp

, (12)

where α ∈ A indexes the interaction state (|A| = K) and Gp denotes the set of Gaussian indices
belonging to part p. Each state-specific field G(α) encodes a coherent multi-part configuration, while
the union over all α compactly describes the full articulated motion range of the object.

3.5 MULTI-TASK MODELING FOR ARTICULATED OBJECTS

Given the part-aware Gaussian field G(α) = {G(α)
p }nparts

p=1 , we extract three part-level outputs. First,

every subset G(α)
p is rendered in depth and color images in all calibrated views; marching cubes

applied to the resulting volume produce the meshMp ∈ R|Vp|×3. Second, to classify the type of
joint part p, we align two interaction states with the Kabsch algorithm (Lawrence et al., 2019) and
inspect the residual displacement: a low-rank residual indicates a revolute joint, while a full-rank
residual indicates a prismatic joint. Third, the trajectories of the Gaussian centroids belonging to
part p are fitted with a minimal motion model. A revolute joint is parameterised by a pivot point
p ∈ R3 and a unit quaternion q ∈ R4 with ∥q∥ = 1. A prismatic joint is parameterised by a unit
slide axis a ∈ R3 with ∥a∥ = 1 and a translation distance d ∈ R. More details are provided in
Sec. A of the Appendix.

4 THE RS-ART DATASET

We establish RS-Art, a high-quality, multi-modal benchmark that bridges the gap between syn-
thetic and real-scene evaluation for articulated-object modeling. It comprises real-world captures
of articulated objects alongside their reverse-engineered, part-level digital counterparts, providing
a rare combination of dense sensory data and precise structural ground truth. Covering six rep-
resentative object categories (drawers, desk lamps, eyeglasses, floppy-disk drives, woven baskets,
and phone/laptop stands), the dataset includes three diverse instances per category. Each object is
recorded in seven distinct articulation states, spanning both compound multi-joint configurations
and single-joint extrema, resulting in over 400 wide-baseline RGB-D observations per instance. For
every object, we reconstruct a high-fidelity, textured, multi-part mesh annotated with joint axes and
motion limits. All assets are released in URDF format, enabling direct deployment in physics-based
simulators for downstream tasks and rigorous, physically grounded evaluation. Further details of
the dataset are provided in Sec. B of the Appendix.

6
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5 EXPERIMENTS

5.1 EXPERIMENTAL SETTING

Datasets. Most studies evaluate only one object per category, which limits the statistical power. We
extend PartNet-Mobility (Xiang et al., 2020) by selecting eight categories and two to three instances
per category, each with two movable parts, so all methods face the same kinematic complexity. We
also include four objects with three movable parts to test the robustness under higher joint counts.
Real-scene performance is measured on the RS-Art we proposed. Together, the enlarged PartNet-
Mobility split and RS-Art form a well-balanced platform for both synthetic and real-world scenarios.

Baselines. We compare our method with recent SOTA methods. We compare our method with
recent SOTA methods. The single-joint baselines include PARIS (Liu et al., 2023) and Articu-
latedGS (Guo et al., 2025). Each single-joint pipeline was run once for every joint: in each run,
the input images show motion of a single joint while the other parts remain fixed, and the per-joint
outputs were merged for evaluation. The multi-joint baselines include DTArt (Weng et al., 2024)
and ArtGS (Liu et al., 2025). Both baselines require a prespecified part count, whereas our method

Table 1: Results on the Partnet-Mobility Dataset. A superscript ∗ denotes that the method failed to
obtain a valid result for at least one object in the corresponding category.

Metric Method Synthetic Objects MeanBox Door Eyeglasses Faucet Oven Fridge Storage Table

Axis ↓
Ang 0

PARIS (Liu et al., 2023) 36.27 24.83 64.35∗ 13.75∗ 54.88 69.12 27.05 15.60 38.23
ArticulatedGS (Guo et al., 2025) 0.98 1.43 2.25 5.14 4.13 14.14 23.24 1.35 6.58
DTArt (Weng et al., 2024) 20.65 0.38 18.18 1.06 3.37 40.99 0.46 0.40 10.69
ArtGS (Liu et al., 2025) 0.01 0.35 0.06 8.05 2.33∗ 0.13∗ 6.05 1.98 2.37
PD2GS (Ours) 0.49 0.31 0.06 0.88 0.34 0.09 0.21 0.25 0.33

Axis↓
Ang 1

PARIS (Liu et al., 2023) 2.89 31.69 3.25∗ 2.65∗ 17.29 49.39 18.00 48.61 21.72
ArticulatedGS (Guo et al., 2025) 5.12 0.77 2.12 4.12 5.25 2.13 0.12 0.52 2.52
DTArt (Weng et al., 2024) 42.60 0.75 1.62 1.44 14.21 2.17 0.22 18.12 10.14
ArtGS (Liu et al., 2025) 1.36 0.68 0.08 17.02 9.24∗ 1.41∗ 0.01 7.66 4.68
PD2GS (Ours) 0.28 0.49 1.22 0.58 0.12 0.73 0.04 0.28 0.47

Axis↓
Pos 0

PARIS (Liu et al., 2023) 0.14 0.50 1.12∗ 0.99∗ 0.29 0.13 0.10 0.29 0.45
ArticulatedGS (Guo et al., 2025) 0.97 0.26 2.11 0.24 3.46 0.26 0.74 0.79 1.10
DTArt (Weng et al., 2024) 7.09 0.01 4.96 0.02 14.89 11.35 0.07 0.03 4.80
ArtGS (Liu et al., 2025) 0.06 0.03 0.06 0.01 1.9∗ 0.02∗ 1.28 39.14 5.31
PD2GS (Ours) 0.06 0.02 0.02 0.04 0.27 0.16 0.03 0.01 0.08

Axis↓
Pos 1

PARIS (Liu et al., 2023) 0.33 0.40 0.77∗ 0.44∗ 0.11 0.18 0.20 0.02 0.31
ArticulatedGS (Guo et al., 2025) 0.24 0.62 0.24 1.24 2.15 0.15 0.24 0.65 0.69
DTArt (Weng et al., 2024) 3.96 0.21 11.75 0.02 32.87 0.15 0.01 0.01 6.12
ArtGS (Liu et al., 2025) 0.51 0.03 0.04 0.05 6.24∗ 0.04∗ 0.01 5.98 1.61
PD2GS (Ours) 0.00 0.02 0.09 0.04 0.08 0.03 0.00 0.01 0.03

Part↓
Motion 0

PARIS (Liu et al., 2023) 93.80 151.50 97.24∗ 65.79∗ 59.28 99.33 45.24 16.38 78.57
ArticulatedGS (Guo et al., 2025) 4.24 2.65 34.24 2.46 6.35 3.35 2.33 0.36 7.00
DTArt (Weng et al., 2024) 42.85 0.35 13.91 0.07 70.02 36.73 0.07 0.55 20.57
ArtGS (Liu et al., 2025) 2.78 0.05 0.07 6.80 1.67∗ 0.03∗ 6.69 8.97 3.38
PD2GS (Ours) 2.09 0.05 0.02 0.95 0.74 0.10 0.43 0.32 0.59

Part↓
Motion 1

PARIS (Liu et al., 2023) 47.89 33.11 87.44∗ 19.35∗ 28.29 150.42 57.09 81.32 63.11
ArticulatedGS (Guo et al., 2025) 20.04 7.24 0.63 9.24 2.58 19.87 0.90 0.23 7.59
DTArt (Weng et al., 2024) 63.48 89.31 104.92 1.44 65.79 4.91 0.05 0.21 41.26
ArtGS (Liu et al., 2025) 15.68 0.05 0.08 16.89 3.87∗ 0.03∗ 0.16 24.09 7.60
PD2GS (Ours) 0.87 0.05 0.02 0.50 0.34 0.02 0.21 0.06 0.26

CD-s ↓

PARIS (Liu et al., 2023) 6.93 17.90 23.35∗ 9.36∗ 13.45 18.96 10.44 3.45 12.98
ArticulatedGS (Guo et al., 2025) 18.17 167.53 15.14 0.97 29.43 23.80 16.18 5.92 34.64
DTArt (Weng et al., 2024) 2.45 20.60 49.28 0.49 2.60 4.06 1.27 8.65 11.17
ArtGS (Liu et al., 2025) 3.48 0.35 0.13 1.05 5.44∗ 9.69∗ 5.10 9.04 4.29
PD2GS (Ours) 1.97 0.80 0.11 0.64 1.66 4.15 2.78 4.27 2.05

CD-m 0 ↓

PARIS (Liu et al., 2023) 82.05 42.22 86.37∗ 34.79∗ 107.25 212.08 182.85 16.58 95.52
ArticulatedGS (Guo et al., 2025) 9.65 0.84 26.88 35.63 1.91 11.24 7.32 7.24 12.59
DTArt (Weng et al., 2024) 363.75 0.22 47.24 0.22 157.26 0.63 0.23 46.30 76.98
ArtGS (Liu et al., 2025) 2.47 0.44 0.16 0.38 8.89∗ 0.86∗ 3.46 143.78 20.06
PD2GS (Ours) 2.44 0.15 0.09 0.71 1.79 0.82 0.03 5.40 1.43

CD-m 1 ↓

PARIS (Liu et al., 2023) 128.58 32.08 98.54∗ 48.86∗ 301.18 76.82 125.06 76.18 110.91
ArticulatedGS (Guo et al., 2025) 8.78 0.44 13.47 0.27 10.92 1.15 179.27 12.82 28.39
DTArt (Weng et al., 2024) 198.70 1.17 1133.05 0.22 140.52 0.36 0.27 0.22 184.31
ArtGS (Liu et al., 2025) 3.35 0.42 0.17 0.46 8.47∗ 0.86∗ 2.25 1145.91 145.23
PD2GS (Ours) 1.84 0.43 0.13 0.74 2.15 0.27 0.11 0.76 0.80

CD-w ↓

PARIS (Liu et al., 2023) 6.30 12.59 17.24∗ 9.98∗ 10.93 18.89 8.86 2.81 10.95
ArticulatedGS (Guo et al., 2025) 13.75 12.59 19.03 2.78 23.22 18.89 50.59 5.81 18.33
DTArt (Weng et al., 2024) 1.08 1.40 0.15 0.50 1.73 0.98 10.17 1.39 2.18
ArtGS (Liu et al., 2025) 5.91 1.56 0.17 0.58 7.35∗ 16.82∗ 8.66 12.73 6.72
PD2GS (Ours) 4.07 1.24 0.13 0.47 1.48 10.16 5.48 1.14 3.02
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infers the parts automatically. For the dataset setup, baselines with two interaction states sample 100
random views per state (a total of 200 RGB images). To match the total image budget of the other
methods, our method sample four interaction states in the experiments, capturing 50 random views
per state, producing the same 200 images input. For more information on our method restricted to
two interaction states, refer to Sec. D.1 of the Appendix.

Metrics. We adopt exactly the evaluation metrics defined in DTArt (Weng et al., 2024), covering the
geometry reconstruction and precision of the joint parameter. CD-w, CD-s, and CD-m are used to
measure the Chamfer Distance for the whole object, static parts, and movable parts in mesh recon-
struction. Axis Ang, Axis Pos, and Part Motion are used to evaluate the errors between predicted and
ground-truth joint axes parameters. The only extension is that our reported scores are aggregated
over all movable parts of an object, rather than being limited to a single target part.

Additional implementation details are in Sec. C of the Appendix.

PARIS DTAArticulatedGSGT Ours ArtGS

Fridge

Table

Figure 3: Qualitative multi-task modeling results on multi-part articulated objects.

5.2 COMPARISON ON OBJECTS WITH MULTIPLE MOVABLE PARTS

Tab. 1 reports quantitative results on our expanded PartNet-Mobility split, which contains objects
with two independently actuated parts. Previous studies usually average across several runs, yet we
observe large run-to-run variance in several baselines, to reveal this sensitivity, we list the first run
for every method. These numbers are not cherry-picked, and subsequent runs often produce even
lower scores. PD2GS needs no manual part specification and still outperforms the baselines in most
metrics. Fig. 3, which also shows an object with three movable parts, qualitatively confirms that our
joint estimates align more closely with the ground truth. DTArt (Weng et al., 2024) benefits from
depth supervision and therefore renders smoother surfaces, but still lags behind in articulation accu-
racy. Overall, the use of a latent-conditioned deformation field spanning multiple interaction states
yields markedly higher stability than single-state or pairwise pipelines. Results on more objects with
three movable parts are presented in Sec. D.2 of the Appendix, where the same trend persists.

5.3 GENERALIZATION TO UNSEEN INTERACTION STATES

DTArt

Start state End stateInterpolation state

PARIS

Ours

Figure 4: Interpolation results of intermediate
states.

Fig. 4 and Fig. 5 illustrate that our method is
the only one that is capable of disentangling and
controlling the motion of several parts indepen-
dently while maintaining plausible geometry in
interaction states never shown during training.
Fig. 4 specifically demonstrates how we per-
form interpolation between the start state and
the end state. By interpolating the latent code
and deforming only the Gaussians that belong
to a chosen part, we generate smooth, collision-
free trajectories for every drawer and for the
door. In contrast, PARIS (Liu et al., 2023) can-
not keep the parts separated, often leading to
part overlap or blending due to the inherent multi-solution nature of its method. The capacity to
vary multiple joints independently and to synthesize genuinely novel poses represents a substantial
step toward high-fidelity digital twin modeling of articulated objects.

8
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Movable part 2
(cabinet door)

Latent Code Interpolation

Movable part 0
(drawer)

PARISGT State Ours

Figure 5: Generalization to unseen interaction states. We interpolate the latent code while deforming
only the Gaussians that belong to a chosen part.

5.4 RESULT ON THE RS-ART DATASET

Fig. 6 shows qualitative results on a real object from our RS-Art dataset. Despite sensor noise
and challenging lighting, the method reconstructs detailed part-level geometry and texture and reli-
ably extrapolates to interaction states not seen during training. These observations indicate that our
method remains stable on real data. Further results are provided in Sec. D.3 of the Appendix.

Real-World Object Part-level Reconstruction Latent Code Interpolation

Figure 6: Real object validation on RS-Art.

5.5 ABLATION STUDIES

w/o Refine

w/ Refine

Figure 7: Ablation on the coarse–to–fine refine-
ment.

The most informative ablation is to remove the
coarse-to-fine refinement stage introduced in
Sec. 3.3 and Sec. 3.4. Fig. 7 contrasts the results
without of the refinement stage (top) with those
with of it (bottom) in a cabinet that contain mul-
tiple movable panels. For the variant without
refinement, we reconstruct multiple parts di-
rectly from the K-means clusters obtained in
the coarse stage. Without refinement, the re-
constructed parts bleed into one another and ex-
hibit artifacts; after refinement, the mesh shows
clean separation, sharper boundaries, and no in-
terpenetration. The improvement stems from
visibility-guided SAM prompting and boundary-aware Gaussian splitting, which force the Gaussian
field to conform to the per-part masks. We provide additional visual and quantitative comparisons,
along with further ablation analysis on movable-component count estimation via VLM, SAM-based
segmentation, and each pipeline module, in Sec. D.4 of the Appendix.

6 CONCLUSION

We introduce PD2GS, the fully self-supervised framework for articulated object modeling within a
unified 3D Gaussian Splatting paradigm. A latent-conditioned deformation network warps a canon-
ical Gaussian field across interaction states, and a visibility-guided coarse-to-fine scheme refines
deformation trajectories into part-aware Gaussian clusters. The resulting field supports part-level
mesh extraction, joint typing, and motion parameter estimation. In an expanded PartNet-Mobility
split and the novel RS-Art dataset, PD2GS surpasses existing methods without requiring part count
in advance, and its learned deformation space generalizes smoothly to unseen interaction states, a
property well suited to digital twin scenarios. The present implementation assumes accurate camera
poses and cannot reconstruct regions that remain fully occluded in all views, leaving robustness to
pose noise and reasoning about unseen structures as directions for future work.

9
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Rusinkiewicz, Chris Sweeney, Richard Newcombe, and Mira Slavcheva. Self-supervised neu-
ral articulated shape and appearance models. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pp. 15816–15826, 2022.

Yijia Weng, Bowen Wen, Jonathan Tremblay, Valts Blukis, Dieter Fox, Leonidas Guibas, and Stan
Birchfield. Neural implicit representation for building digital twins of unknown articulated ob-
jects. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pp. 3141–3150, 2024.

Di Wu, Liu Liu, Zhou Linli, Anran Huang, Liangtu Song, Qiaojun Yu, Qi Wu, and Cewu Lu.
Reartgs: Reconstructing and generating articulated objects via 3d gaussian splatting with geo-
metric and motion constraints. arXiv preprint arXiv:2503.06677, 2025.

Guanjun Wu, Taoran Yi, Jiemin Fang, Lingxi Xie, Xiaopeng Zhang, Wei Wei, Wenyu Liu, Qi Tian,
and Xinggang Wang. 4d gaussian splatting for real-time dynamic scene rendering. In Proceedings
of the IEEE/CVF conference on computer vision and pattern recognition, pp. 20310–20320, 2024.

Fanbo Xiang, Yuzhe Qin, Kaichun Mo, Yikuan Xia, Hao Zhu, Fangchen Liu, Minghua Liu, Hanxiao
Jiang, Yifu Yuan, He Wang, et al. Sapien: A simulated part-based interactive environment. In
Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp. 11097–
11107, 2020.

Zihao Yan, Ruizhen Hu, Xingguang Yan, Luanmin Chen, Oliver Van Kaick, Hao Zhang, and Hui
Huang. Rpm-net: recurrent prediction of motion and parts from point cloud. ACM Trans. Graph.,
38(6), November 2019. ISSN 0730-0301. doi: 10.1145/3355089.3356573. URL https://
doi.org/10.1145/3355089.3356573.

Jifan Yang, Steven Bednarski, Alison Bullock, Robin Harrap, Zack MacDonald, Andrew Moore,
and TC Nicholas Graham. Fostering the ar illusion: a study of how people interact with a shared
artifact in collocated augmented reality. Frontiers in Virtual Reality, 5:1428765, 2024.

Yunhan Yang, Xiaoyang Wu, Tong He, Hengshuang Zhao, and Xihui Liu. Sam3d: Segment anything
in 3d scenes. arXiv preprint arXiv:2306.03908, 2023.

Mingqiao Ye, Martin Danelljan, Fisher Yu, and Lei Ke. Gaussian grouping: Segment and edit
anything in 3d scenes. In European Conference on Computer Vision, pp. 162–179. Springer,
2024.

Zihang Zhao, Yuyang Li, Wanlin Li, Zhenghao Qi, Lecheng Ruan, Yixin Zhu, and Kaspar Althoefer.
Tac-man: Tactile-informed prior-free manipulation of articulated objects. IEEE Transactions on
Robotics, 2024.

12

https://doi.org/10.1145/3355089.3356573
https://doi.org/10.1145/3355089.3356573


648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Appendix
The supplementary material is organized as follows. Sec. A elaborates on the technical details;
Sec. B details the acquisition and reverse modeling pipeline used to construct the RS-Art dataset;
Sec. C lists the complete experimental settings; Sec. D presents additional quantitative and qualita-
tive results; and Sec. E discusses the current limitations of our approach and directions for future
work. All code and datasets will be released upon publication.

A METHOD DETAILS

A.1 BOUNDARY-AWARE GAUSSIAN SPLITTING

Selecting boundary candidates. For each 3D Gaussian primitive gi = (µi,Σi, ci, αi), we first
locate its ray–sampling nearest view vnear. Assuming a local affine projection, the covariance Σi is
mapped to the image plane by

Σ′
i = JWΣiW

⊤J⊤, (13)
where W and J denote the camera projection matrix and its Jacobian, respectively (Kerbl et al.,
2023). The resulting 2×2 matrix Σ′

i defines an ellipse; its major axis is aligned with the eigenvector
of Σ′

i that has the largest eigenvalue. If either end of this axis lies outside the part maskM(vnear)
p , the

primitive is marked as boundary candidate.

Geometric split ratio. Let A∗ and B∗ be the two end points of the projected major axis and let
O∗ be their intersection with the mask boundary (A∗ lies inside, B∗ outside). Following the split
strategy of Hu et al. (Hu et al., 2024), the in-mask proportion in image space is

λ2D =
∥O∗A∗∥
∥A∗B∗∥

. (14)

Because the projection is affine locally, the same ratio applies in 3D. With e denoting the unit
eigenvector of Σi that corresponds to its largest eigenvalue and si the length of the associated axis,
the two children are

• Part child: µpart
i = µi +

1−λ2D
2 sie, s

part
i = λ2D si;

• Background child: µbg
i = µi − λ2D

2 sie, s
bg
i = (1− λ2D) si.

Both children inherit color, opacity, and spherical harmonic coefficients to maintain visual consis-
tency.

Recursive splitting and mask consistency. The background child is re-evaluated in its own nearest
view; if its projected ellipse still crosses another part mask, the split is applied recursively until
every descendant ellipse is fully contained in a single mask. The recursion stops when the ellipse
lies entirely inside its mask or the new scale falls below a minimum threshold. After each split, the
children are queued in descending order of projected error, so the most inaccurate primitives are
processed first. Finally, a multiview voting scheme assigns a consistent mask label to every new
Gaussian, ensuring cross-view agreement.

A.2 MESH EXTRACTION FROM THE PART-AWARE GAUSSIAN FIELD

Given the part-aware Gaussian field G(α) = { G(α)
p }nparts

p=1 for the interaction state α, we recover ex-
plicit geometry by multiview depth rendering followed by implicit–to–explicit surface reconstruc-
tion. For each subset of parts G(α)

p , we render a depth map in every calibrated view, treating each
Gaussian primitive as an ellipsoid whose pose and covariance are projected onto the image plane
using the standard 3DGS rasterizer. The rendered depths are fused with a truncated signed-distance
function (TSDF); voxel size and the truncation threshold are chosen empirically to balance detail and
noise. The resulting TSDF volume provides an implicit surface for part p, from which we extract a
triangle mesh Mp∈R|Vp|×3 using the Marching Cubes algorithm implemented in Open3D (Huang
et al., 2024). This procedure yields a high-resolution, watertight mesh for every rigid part, faithfully
capturing its geometry while preserving the spatial correspondence with the underlying Gaussian
field.

13
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A.3 JOINT TYPE IDENTIFICATION

For a part p we gather Gaussian centroids in two states P = {pi} and Q = {qi}, and align them
with the Kabsch algorithm (Lawrence et al., 2019), which yields rotation R and translation t. The
residuals di = qi − (Rpi + t) are stacked in the 3× n matrix D = [ d1 · · · dn], where the n is the
number of Gaussian kernels.

A motion of revolute leaves points on a common axis, so D is rank-1; a motion of prismatic rigidly
translates the entire part, giving full rank. With singular values σ1 ≥ σ2 ≥ σ3, we compute r =
(σ2 + σ3)/σ1. We label the joint revolute if r < 0.05 and prismatic otherwise, a rule that proved
to be reliable across all reference objects.

A.4 JOINT PARAMETER ESTIMATION

Revolute joint. A revolute joint is parameterized by a pivot point p ∈ R3 and a unit quaternion
q ∈ R4 with ∥q∥ = 1. From the Kabsch alignment (Lawrence et al., 2019) we obtain a rotation
matrix R∈R3×3. Its rotation axis is the normalized eigenvector u that satisfies Ru = u, and the
rotation angle is θ = arccos

(
(tr(R) − 1)/2

)
. The pivot p is found by least-squares fitting the axis

to the static centroids Cstatic,

p = argmin
x

∑
c∈Cstatic

∥(x− c)× u∥2. (15)

Finally, the quaternion becomes q =
(
cos θ

2 , u sin θ
2

)
.

Prismatic joint. A prismatic joint is defined by a unit slide axis a∈R3 and a translation distance d.
Let P = {pi} and Q = {qi} be the part centroids in the two states. Their means are p̄ = 1

n

∑
i pi

and q̄ = 1
n

∑
i qi, so the rigid translation is t = q̄ − p̄. Hence a = t/∥t∥ and d = ∥t∥. These

parameters constitute the minimal motion model used in our evaluation.

B RS-ART DATASET

(a) Full green-screen booth (b) Seamless pedestal platform (c) Hand-held RGB-D capture

Figure 8: Capture platform.

Capture platform. Our data are acquired in a purpose-built chroma-key booth (Fig. 8). Four
aluminum beams support a seamless green curtain that encloses a 2.5m-high cubic volume and
blocks stray reflections while maintaining uniform ambient illumination. In the center stands a
square pedestal 0.5m×0.5m, fully wrapped in the same green fabric. The rear side of the cloth is
glued to the floor so that the pedestal merges smoothly with the ground plane, eliminating visible
seams in the depth and color images.

The operator mounts an Intel RealSense RGB-D camera (Keselman et al., 2017) rigidly on the lid
of a laptop, then walks a circular trajectory whose radius is chosen in real time from the live video
feed to keep the target object at the desired image scale. Each circuit produces a set of synchronized
RGB and depth frames that share a consistent chroma-key background, which simplifies subsequent
background removal and calibration.

Real-scene acquisition pipeline. As illustrated in Fig. 9, to keep the real data fully compatible
with the experimental settings used for the PartNet-Mobility dataset (Xiang et al., 2020), we record
two complementary interaction groups for each object. (i) Multi-part sequences: all movable parts

14
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state 0 state 1 state 2 state 3
prismatic part：0.55
revolute part：20°

prismatic part：0.46
revolute part：36.6°

prismatic part：0.38
revolute part：63.3°

prismatic part：0.3
revolute part：70°

state 4 state 5 state 6 state 7
prismatic part：0
revolute part：20°

prismatic part：0
revolute part：70°

prismatic part：0.55
revolute part：0

prismatic part：0.3
revolute part：0

Figure 9: Example of multi-state acquisition. Using a PartNet-Mobility object for illustration, we
capture eight interaction states that span the full motion range of every joint. States 0–3 (top row)
depict multi-part motion in which all movable components change pose simultaneously, whereas
States 4–7 (bottom row) show the single-part mode where one component moves while the others
remain fixed.

are actuated simultaneously, and the capture spans four evenly spaced configurations that bracket
the mechanical limits, for example, fully closed, half-open, three-quarter open, and fully open. (ii)
Single-part sequences: each rotational or translational part is moved while the others remain fixed;
for every part, we acquire two extreme poses corresponding to its minimum and maximum joint
limits.

For each interaction state, we sample RGB-D images along a circular path whose viewing elevation
is uniformly chosen in the range 30◦ ∼ 60◦. The operator walks once around the object with an
Intel RealSense camera (Keselman et al., 2017) rigidly mounted on a laptop lid, keeping the target
centered in the live preview.

(a) Real object capture (c) Part-level articulation model (b) Object reverse model

Figure 10: Reverse modeling of a basket object.

Modeling and registration workflow. All digital assets are created in Isaac Sim 4.2 (isa, 2024),
whose USD pipeline provides both photorealistic rendering and physically consistent simulation (see
Fig. 10 for a representative modeling scene). We first reverse-model each real object with calipers,
producing a watertight USD mesh; subparts are manually segmented according to functional affor-
dances and joint boundaries. High-resolution textures and PBR materials are authored in Blender
4.2.0 (ble, 2024) and imported into Isaac Sim without loss of visual fidelity. The physical properties
- mass, inertia, and friction - are assigned following the official Omniverse workflow (omn, 2024).
The joint pivots and motion limits are calibrated by system identification, ensuring that the articula-
tion of the digital twin in Isaac Sim reproduces the joint behavior observed on the physical object.
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The resulting USD files provide a pixel-accurate appearance and dynamics-ready articulation, form-
ing a reliable ground truth for both vision and physics experiments.

Figure 11: RS-Art Dataset directory layout.

Dataset structure. Fig. 11 outlines the RS-Art hierarchy. The dataset contains 18 articulated ob-
jects drawn from six everyday categories:drawer, lamp, eyeglasses, floppy-disk drive, basket, and
phone / laptop stand with three instances per class. For every object we supply the complete set
of multi-view RGB-D captures for each recorded interaction state together with the shared camera
intrinsics and the per-view extrinsics; a fully reverse-modeling digital twin comprising a USD file
that bundles part meshes, textures, physics properties, and joint definitions, a matching lightweight
URDF, and watertight PLY meshes for geometry evaluation; and a concise meta.json that enu-
merates all parts, joint types, axes, limits, and labels every state as either multi-part or single-part
motion. This combination of real imagery and fully articulated digital twins enables training, quanti-
tative evaluation, and sim-to-real studies for part-aware geometry reconstruction and joint parameter
estimation.

C EXPERIMENTS SETTINGS

To provide the most comprehensive comparison to date, we evaluated all publicly available meth-
ods that match our task definition of multiview, multi-state articulated object reconstruction. Since
competing pipelines differ in input assumptions and functional scope, we group them into three
categories and tailor the data acquisition protocol accordingly, aiming for maximum fairness while
respecting the design of each method.

Single-part assumptions (PARIS (Liu et al., 2023) and ArticulatedGS (Guo et al., 2025)). These
methods can reconstruct only one movable part at a time. For every movable part, we capture two
interaction states in which that part moves while all other parts remain fixed, and we run the pipeline
independently for each part. Each state is sampled with 100 random, calibrated RGB views, giving
200 images per part.

Multi-part, two-state methods (DTArt (Weng et al., 2024) and ArtGS(Liu et al., 2025)). These
pipelines accept two distinct object states and can handle several movable parts jointly, provided
that the part count is known. We therefore collect two interaction states and sample 100 random
views per state (total 200 RGB images). The ground-truth number of movable parts is passed to both
methods. As DTArt requires depth input, depth maps for every view are rendered in Gazebo (Koenig
& Howard, 2004).

Our method (PD2GS). PD2GS handles an arbitrary number of parts and interaction states without
knowing the part count. To match the total image budget of competing methods, we sample four
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interaction states in which multiple parts move simultaneously and capture 50 random views per
state, producing the same 200-image input. No depth or manual parts information is provided.

This protocol equalizes the per-run image budget to 200 views, making the inputs comparable across
methods. Note, however, that single-part baselines must be executed once for the each movable part,
so they ultimately consume 200× nparts images per object.

Table 2: Joint-level metrics for PartNet-Mobility objects that contain three movable parts. A dash
“–” marks entries that are not applicable because the corresponding joint is prismatic and therefore
has no pivot position.

Object Method Axis Ang 0↓ Axis Ang 1↓ Axis Ang 2↓ Axis Pos 0↓ Axis Pos 1↓ Axis Pos 2↓ Axis Mot 0↓ Axis Mot 1↓ Axis Mot 2↓

Box 102373

PARIS (Liu et al., 2023) 9.96 29.61 0.47 0.13 0.31 0.30 30.23 111.21 33.72
ArticulatedGS (Guo et al., 2025) 0.52 6.53 3.62 0.83 8.32 0.42 5.23 2.13 14.43
DTArt (Weng et al., 2024) 88.32 62.54 64.68 1.99 5.56 6.79 99.97 67.17 82.00
ArtGS (Liu et al., 2025) 0.29 0.05 0.21 0.19 0.01 0.39 15.89 0.17 6.02
PD2GS (Ours) 0.23 1.34 0.19 0.03 0.23 0.14 1.01 1.59 2.83

Storage 45194

PARIS (Liu et al., 2023) 64.47 59.08 38.69 0.29 0.13 – 116.73 109.94 0.32
ArticulatedGS (Guo et al., 2025) 20.43 4.12 2.32 1.31 0.21 – 13.11 3.12 1.31
DTArt (Weng et al., 2024) 27.60 0.20 78.01 4601.75 0.17 – 59.95 0.16 0.37
ArtGS (Liu et al., 2025) 54.17 1.68 0.75 0.29 0.08 – 96.54 1.66 0.02
PD2GS (Ours) 9.82 1.56 0.56 0.27 0.03 – 9.79 1.45 0.07

Storage 45271

PARIS (Liu et al., 2023) 0.77 87.40 76.58 – – 0.22 0.15 0.17 87.02
ArticulatedGS (Guo et al., 2025) 1.34 4.24 2.13 – – 0.73 0.42 0.14 0.84
DTArt (Weng et al., 2024) 4.23 80.96 74.26 – – 12.52 0.01 0.19 50.65
ArtGS (Liu et al., 2025) 0.02 0.85 0.03 – – 0.14 0.03 0.01 0.02
PD2GS (Ours) 0.00 0.34 0.26 – – 0.03 0.00 0.00 0.58

Table 23372

PARIS (Liu et al., 2023) 1.69 89.40 79.91 – 0.52 0.84 0.18 157.14 109.55
ArticulatedGS (Guo et al., 2025) 0.62 5.31 6.24 – 5.31 0.52 0.54 4.24 13.12
DTArt (Weng et al., 2024) 0.38 0.22 0.19 – 0.21 0.01 0.04 0.14 0.48
ArtGS (Liu et al., 2025) 0.02 89.03 14.64 – 0.57 1.79 0.02 75.13 13.43
PD2GS (Ours) 0.01 0.12 0.29 – 0.03 0.12 0.00 0.12 0.45

Table 3: Geometry-level metrics for PartNet-Mobility objects that contain three movable parts.

Object Method CD-s↓ CD-m0 ↓ CD-m1 ↓ CD-m2 ↓ CD-w↓

Box 102373

PARIS (Liu et al., 2023) 17.70 22.36 279.47 184.97 16.66
ArticulatedGS (Guo et al., 2025) 16.86 13.59 23.99 5.18 13.23
DTArt (Weng et al., 2024) 3.88 121.66 199.49 2.25 0.72
ArtGS (Liu et al., 2025) 9.70 14.18 5.38 2.63 7.78
PD2GS (Ours) 6.70 0.88 0.39 2.21 5.75

Storage 45194

PARIS (Liu et al., 2023) 28.16 8.77 193.38 656.10 176.48
ArticulatedGS (Guo et al., 2025) 14.48 1.29 0.85 16.15 10.71
DTArt (Weng et al., 2024) 4.41 71.85 0.09 33.20 1.12
ArtGS (Liu et al., 2025) 50.88 19.00 1.78 2041.00 6.77
PD2GS (Ours) 8.88 0.49 0.51 4.53 6.04

Storage 45271

PARIS (Liu et al., 2023) 5.09 668.39 703.55 19.35 5.50
ArticulatedGS (Guo et al., 2025) 14.48 1.28 0.85 16.15 10.71
DTArt (Weng et al., 2024) 2.94 307.65 F 406.23 8.76
ArtGS (Liu et al., 2025) 1.40 0.38 0.46 0.14 1.41
PD2GS (Ours) 4.24 0.23 0.41 0.23 3.26

Table 23372

PARIS (Liu et al., 2023) 4.14 5.40 25.67 45.57 2.03
ArticulatedGS (Guo et al., 2025) 5.72 25.34 0.72 15.96 5.10
DTArt (Weng et al., 2024) 1.31 0.37 0.18 1.21 0.95
ArtGS (Liu et al., 2025) 3.38 4.50 1.34 1.05 2.84
PD2GS (Ours) 2.17 1.19 0.15 0.25 4.19

D ADDITIONAL RESULTS

D.1 RESULTS ON TWO INTERACTION STATES

Because the baselines can use only two states, we limit our method to a total of 200 RGB images as
input; our multi-state model therefore receives fewer views per state than the baselines, maintaining
a comparable degree of fairness across methods. We add more state = 2 results for direct side-by-side
comparison in the Tab. 4, further strengthening the fairness of the evaluation. All reported metrics
are averaged across all parts and object categories. This experiment extends the Tab. 1 setting of
main paper to directly assess performance under the two-state constraint. As shown in Tab. 4, our
method still maintains strong performance under these settings.

D.2 RESULTS ON OBJECTS WITH THREE MOVABLE PARTS

Sec. 5.2 in the main paper reported our main evaluation on objects that contain two movable parts.
Here, we extend the analysis to the more challenging subset, objects equipped with three indepen-
dently actuated components, and provide both quantitative and qualitative evidence of performance.
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Table 4: Quantitative results with our method restricted to two interaction states as input.

Metricc Box Door Eyeglasses Faucet Oven Fridge Storage Table Mean

Axis Ang↓ 1.08 8.70 0.35 2.40 1.59 2.64 2.46 3.70 2.87
Axis Pos↓ 0.37 1.19 0.26 0.21 0.10 0.24 0.36 0.51 0.41

Part Motion ↓ 6.86 3.25 7.73 2.96 8.06 9.54 1.74 3.55 5.46
CD-s↓ 9.21 6.38 18.55 1.11 2.16 14.31 7.64 4.28 7.96

CD-m ↓ 6.98 18.06 9.37 0.14 18.78 0.54 13.96 24.85 11.59
CD-w↓ 8.90 1.73 11.83 0.54 9.15 10.43 4.67 3.75 6.38

Tab. 2 and Tab. 3 compare all baselines in the three-part instances of PartNet-Mobility (Xiang et al.,
2020). Our method achieves the lowest or second–lowest error in nearly every joint metric (axis
angle, axis position, axis motion) and remains highly competitive in the geometry metrics (Chamfer
distances). The consistently smaller joint errors indicate that the latent–conditioned deformation
field captures the complex motion couplings that arise when three parts move independently, while
the geometry scores confirm that the boundary regions between parts are reconstructed sharply.

Fig. 12 compares our method with the baselines on the objects with three movable parts and vi-
sualizes all recovered outputs: part-aware geometry (colored meshes), joint axes (red arrows) and
part labels. The results demonstrate that our deformable-field formulation yields a coherent solution
across all three modalities: the reconstructed geometry is complete and well aligned, the estimated
axes coincide with the true joint locations and orientations, and the segmentation cleanly separates
the three movable parts. Together, these visual cues indicate that the latent-conditioned deformation
field is able to discover and model complex kinematic structures, even with three interacting joints,
without manual specification of part identities.

Storage

PARIS DTArtArticulatedGSGT Ours ArtGS

Box

Storage

Table

Figure 12: Qualitative multi-task modeling results on articulated objects with three movable parts.

D.3 RESULT ON THE RS-ART DATASET

Fig. 13 and Tab. 5 present qualitative and quantitative results on our RS-Art dataset. Although the
capture setup avoids strong specular highlights and cast shadows, the real objects still exhibit com-
plex materials, weak surface texture, and a narrower viewing envelope than in simulation, making the
task substantially harder than on PartNet-Mobility (Xiang et al., 2020). Among the baselines, only
ArtGS can be made to run reliably on the real data, so we compare against it on every instance that
yields a converged model. Across all evaluated objects, our method achieves lower joint parameter
and geometry errors and produces cleaner part segmentation, confirming that the deformation-field
formulation transfers to real scenes. Meanwhile, the results highlight the open challenges discussed
in Sec. E: fine surface details degrade under limited texture and grazing angles, and heavy occlusion
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Table 5: Results on the RS-Art Dataset.

Metric Method Real-World Objects MeanDrawers Desk Lamps Eyeglasses Floppy-Disk Drives Woven Baskets Phone/Laptop Stand

Axis ↓
Ang 0

ArtGS (Liu et al., 2025) 41.86 72.98 54.24 29.24 45.56 63.54 51.24
PD2GS (Ours) 0.84 0.32 4.45 1.71 0.88 0.54 1.46

Axis↓
Ang 1

ArtGS (Liu et al., 2025) 3.43 83.25 23.24 83.24 57.24 24.64 45.84
PD2GS (Ours) 0.25 0.34 0.90 1.08 0.58 15.27 3.07

Axis↓
Pos 0

ArtGS (Liu et al., 2025) – 8.89 2.54 – 352.35 35.77 99.89
PD2GS (Ours) – 0.36 2.07 – 0.89 1.17 1.12

Axis↓
Pos 1

ArtGS (Liu et al., 2025) – 8.56 12.23 – 83.35 45.35 37.37
PD2GS (Ours) – 0.32 0.36 – 0.40 9.31 2.60

Part↓
Motion 0

ArtGS (Liu et al., 2025) 36.75 14.94 9.12 14.56 92.69 14.35 30.40
PD2GS (Ours) 0.58 0.87 0.63 1.62 9.46 1.79 2.49

Part↓
Motion 1

ArtGS (Liu et al., 2025) 16.38 13.07 43.33 63.45 150.35 5.35 48.65
PD2GS (Ours) 0.36 0.58 0.74 2.27 4.97 5.04 2.33

CD-s ↓ ArtGS (Liu et al., 2025) 41.39 11.38 25.24 53.53 6.34 14.35 25.37
PD2GS (Ours) 13.13 6.25 10.19 26.88 4.05 13.36 12.31

CD-m 0 ↓ ArtGS (Liu et al., 2025) 121.69 39.09 33.24 104.35 58.24 26.49 63.85
PD2GS (Ours) 3.09 4.83 7.19 10.37 5.63 10.08 6.86

CD-m 1 ↓ ArtGS (Liu et al., 2025) 180.57 34.18 234.24 156.35 62.64 43.98 118.66
PD2GS (Ours) 8.57 3.86 9.41 13.47 0.27 41.44 12.84

CD-w ↓ ArtGS (Liu et al., 2025) 7.96 6.09 20.35 96.35 36.25 35.96 33.83
PD2GS (Ours) 16.55 3.05 14.80 19.03 12.78 29.90 14.35

can still disturb the 3DGS reconstruction. These observations underline the necessity of RS-Art as
a bridge between synthetic evaluation and real-world deployment.

Real World
ArtGS Ours

Interpolation
Reconstruction

--

Modeling
ArtGS Ours

--

--

--

Figure 13: Qualitative comparison on real objects from RS-Art.
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Table 6: Quantitative ablation study on the refinement stage.

Object Method CD-s↓ CD-m 0↓ CD-m 1↓ CD-w↓

Box 100676 w/o Refined 11.66 2.12 2.14 10.16
w/ Refined 9.42 1.58 1.52 8.03

Oven 7187 w/o Refined 21.56 5.44 2.16 17.58
w/ Refined 16.58 0.32 0.54 13.91

Refrigerator 12248 w/o Refined 16.94 0.60 0.92 12.06
w/ Refined 13.63 0.21 0.23 9.53

Storage 47254 w/o Refined 13.63 2.91 1.24 9.53
w/ Refined 6.52 0.60 0.92 5.05

Table 7: Ablation on the number of interaction states K. Each column lists the performance
metrics obtained with the corresponding K, evaluated on the PartNet-Mobility object Door 9168.

Metric K=2 K=4 K=6 K=8 K=10

Axis Ang 0↓ 31.45 0.30 0.14 0.07 0.36
Axis Ang 1↓ 47.83 0.33 0.22 0.17 0.15
Axis Pos 0↓ 0.38 0.34 0.12 0.06 0.18
Axis Pos 1↓ 0.07 0.26 0.19 0.05 0.29

Part Motion 0↓ 57.60 1.44 1.35 1.24 1.03
Part Motion 1↓ 56.71 2.38 1.74 0.71 2.10

CD-s↓ 1.63 0.53 0.56 0.63 0.77
CD-m 0↓ 85.87 0.63 0.49 1.38 1.24
CD-m 1↓ 142.74 0.33 0.57 0.90 0.79
CD-w↓ 0.81 0.60 0.64 0.84 0.87

D.4 ABLATION STUDIES

Refinement stage. Sec. 5.5 in the main paper visualizes the qualitative benefit of coarse to fine
refinement. Tab. 6 complements that visual evidence with numerical results on four representative
objects. Across all geometry metrics, the refined model (w/ Refined) consistently outperforms the
same network trained without the refinement stage (w/o Refined). Averaged across the four objects,
the refinement reduces CD-s by 35% and CD-m by 60%. The greatest gains occur at part bound-
aries (CD-m columns), confirming that boundary-aware Gaussian splitting and local fine-tuning
markedly sharpen the reconstructed surfaces and prevent inter-penetration. These numbers corrob-
orate the qualitative observations in Sec. 5.5 and highlight the refinement stage as a key component
for accurate part-level geometry.

K = 2 K = 4 K = 6 K = 8 K = 10

Figure 14: Qualitative effect of the number of interaction states.

The number of interaction states. Tab. 7 and Fig. 14 show how our method reacts to different
numbers of input interaction states K. With just two interaction states (K = 2), the network sees
only a start-to-end displacement for each Gaussian. This limited evidence allows multiple trajectory
assignments to fit the same images, so Gaussians can drift between neighboring parts, leading to
inflated joint errors and indistinct part boundaries. As more states are provided, every primitive
must follow a longer and more distinctive trajectory. The stronger constraint eliminates ambiguity:
a Gaussian that does not truly belong to a part can no longer match the motion of that part in all
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Table 8: Movable-component count estimation accuracy (correct/total number) for three VLM
prompting schemes across eight object categories (instance counts in parentheses).

Method Box (2) Door (3) Eyeglasses (2) Faucet (2) Oven (2) Fridge (3) Storage (3) Table (3) Overall Accuracy

VLM-M1 1 / 2 3 / 3 2 / 2 1 / 2 2 / 2 3 / 3 3 / 3 3 / 3 90 %
VLM-M2 0 / 2 0 / 3 1 / 2 2 / 2 0 / 2 0 / 3 0 / 3 0 / 3 15 %

Ours 2 / 2 3 / 3 2 / 2 2 / 2 2 / 2 3 / 3 3 / 3 3 / 3 100 %

Table 9: Comparison of SAM-based segmentation accuracy between our approach and the SAGD
method.

Method Metric Box Door Eyeglasses Faucet Oven Fridge Storage Table Mean

IoU SAGD 45.37 42.79 28.49 34.71 38.32 45.02 44.70 58.04 42.18
SAM-Ours 84.20 89.61 69.40 83.72 75.33 87.09 78.06 79.25 80.83

Acc SAGD 94.63 97.14 97.96 97.46 91.64 95.23 94.54 97.79 95.80
SAM-Ours 98.06 98.75 99.57 99.47 98.70 99.37 97.92 98.76 98.82

F1-score SAGD 54.46 52.34 38.01 49.02 46.89 52.11 55.31 65.21 51.67
SAM-Ours 89.74 95.05 81.04 90.82 81.42 91.46 85.00 85.58 87.51

states, and the optimizer moves it to the correct rigid component, causing a rapid drop in error.
However, after each joint has appeared in several diverse poses, additional states add little fresh
kinematic information while still introducing measurement noise and extra training time, so the
accuracy curve levels off and may fluctuate slightly.

Prompting strategies on component-count estimation. Tab. 8 compares our approach with two
alternative prompting strategies, specifically single-view queries and generic cross-state queries, and
shows that our method provides the most stable and accurate component-count estimates. VLM-
M1 queries single views (“How many movable components does this object contain?”); VLM-M2
queries cross-state pairs (“How many movable parts are identifiable from these two states of the
same object?”). Final counts are determined by the most frequent response. This design eliminates
the need for manual nparts selection required in previous 3DGS pipelines.

SAM-based component segmentation. For SAM segmentation, as shown in Tab. 9, we compare
our approach to the current state-of-the-art point-prompt SAM-based 3DGS segmentation method,
SAGD(Hu et al., 2024). In all cases, these alternatives perform worse than the full pipeline, provid-
ing quantitative evidence for the value of each component.

Each pipeline modules. For each key module, we report a dedicated quantitative metric in the
Tab. 10. For Defomable GS reconstruction(Sec. 3.2), Chamfer distance demonstrates stable and
accurate geometric modeling across all categories. For VLM-based part counting (Sec. 3.3), Deliv-
ers consistently high accuracy, validating the effectiveness of our task-specific prompt. For Coarse
Gaussian Segmentation (Sec. 3.3), High accuracy confirms reliable part-level grouping, enabling ro-
bust downstream point prompt for SAM. For SAM with prompt (Sec. 3.4), Achieves precise seman-
tic segmentation. For Refined segmentation(Sec. 3.4), Post-refinement clustering further increases
accuracy, showing precise decoupling of part-level Gaussians. The consistency of these metrics
across all objects and scenes confirms that each module is robust and that the pipeline as a whole is
stable.

Table 10: Quantitative evaluation of each pipeline module on all object categories. All metrics are
averaged over parts. For Acc and IoU (reported as %), higher values are better; for CD-w (reported
in mm), lower values are better.

Module & Metric Box Door Eyeglasses Faucet Oven Fridge Storage Table Mean

Deformable GS (CD-w) 8.32 0.64 0.27 0.57 13.78 9.43 3.94 3.05 5.00
Coarse Seg. (Acc, %) 72.63 86.93 86.45 66.82 59.45 67.57 67.64 82.45 73.74

SAM+Prompt (IoU, %) 84.20 89.61 69.40 83.72 75.33 87.09 78.06 79.25 80.83
Refined Seg. (Acc,%) 95.83 95.41 98.64 99.53 99.23 96.41 85.76 98.29 96.14
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E LIMITATIONS

Incomplete part reconstruction under occlusion. Like other NeRF-based and 3D Gaussian
Splatting-based approaches, PD2GS may struggle to reconstruct complete geometry and texture for
every part of the object. This limitation arises in cases of severe occlusion, limited viewpoints, or
coupled articulation, where certain surfaces are never observed. In addition, the representation is not
surface-aware by design, with both the NeRF and 3DGS models radiance and density fields rather
than explicit meshes—which can lead to surface artifacts and coarse or noisy geometry. Real-scene
results also suggest that texture fidelity can degrade under challenging lighting conditions. Future
work may explore integrating surface priors or reflectance models to improve reconstruction quality
in under-constrained regions.

Limited articulation understanding from sparse states. PD2GS infers motion by comparing in-
teraction states, but reasoning about joint types and motion limits remains difficult. In particular,
screw-type joints are difficult to identify, as the motion between observed states may produce lit-
tle or no visible appearance change, making them indistinguishable from static or simpler joints
under visual comparison alone. Similarly, estimating articulation limits (e.g., joint range or end
stops) requires observing motions near those extremes, which sparse or biased sampling may not
capture. Incorporating additional interaction sequences or learning from temporal transitions could
help enrich articulation inference in future extensions.

Lack of physical properties for simulation. While PD2GS focuses on visual and kinematic model-
ing, it does not capture physical properties such as mass, friction, or compliance, which are essential
for high-fidelity digital twins. These properties are crucial for accurate simulation and downstream
robotic tasks, but are currently absent from most NeRF/3DGS-based pipelines. Bridging this gap
may require integrating material prediction models, learning from physical interactions, or coupling
neural reconstruction with differentiable simulation frameworks.
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