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ABSTRACT

Vision-language models (VLMs) have shown remarkable progress in offline tasks
such as image captioning and video question answering. However, real-time inter-
active environments impose new demands on VLMs, requiring them to generate
utterances that are not only semantically accurate but also precisely timed. We
identify two core capabilities necessary for such settings—perceptual updating
and contingency awareness—and propose a new benchmark task, Temporally-
Grounded Language Generation (TGLG), to evaluate them. TGLG requires
models to generate utterances in response to streaming video such that both con-
tent and timing align with dynamic visual input. To support this benchmark,
we curate evaluation datasets from sports broadcasting and egocentric human in-
teraction domains, and introduce a new metric, TRACE, to evaluate TGLG by
jointly measuring semantic similarity and temporal alignment. Finally, we present
Vision-Language Model with Time-Synchronized Interleaving (VLM-TSI), a
model that interleaves visual and linguistic tokens in a time-synchronized manner,
enabling real-time language generation without relying on turn-based assump-
tions. Experimental results show that VLM-TSI significantly outperforms a strong
baseline, yet overall performance remains modest—highlighting the difficulty of
TGLG and motivating further research in real-time VLMs.

1 INTRODUCTION

With the success of large language models (LLMs) in producing fluent and contextually coherent
text, turn-based chatbots have become one of the most widespread applications. This alignment
between turn-based interaction and LLM optimization extends naturally to current vision-language
models (VLMs), which pair vision encoders with pretrained LLMs to create multimodal chatbots
capable of processing images or short video clips. While effective for tasks like image captioning
and visual question answering, this paradigm breaks down in real-time or embodied environments,
where inputs are continuous and responses must be generated on-the-fly without clear interaction
boundaries.

Recent work (Bao et al., 2023; Chen et al., 2024) has identified the limitations of adapting turn-based
VLMs to real-time settings, noting either high response latency or excessive computational over-
head. A promising advance is VideoLLM-Online (Chen et al., 2024), which introduces a streaming
EOS prediction task to allow VLMs to decide, frame-by-frame, whether to generate a response.
However, VideoLLM-Online still assumes that the environment pauses during language generation–
that is, it effectively assumes zero-latency responses–which in practice leads to delayed or overlap-
ping utterances when deployed in real-time.

In this work, we focus on two key capabilities essential for real-time interactive VLMs: percep-
tual updating, the ability to revise ongoing interpretations based on new input, and contingency
awareness, the ability to adjust actions based on their effects. To systematically evaluate these capa-
bilities, we introduce Temporally-Grounded Language Generation (TGLG), a benchmark task
that requires models to generate utterances that are both semantically accurate and precisely timed
in response to streaming visual input.
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To support TGLG, we curate video-text datasets from two domains: play-by-play soccer broadcasts
(SoccerNet (Cioppa et al., 2022)) to test perceptual updating, and egocentric human interactions
(HoloAssist (Wang et al., 2023)) to test contingency awareness. We further introduce Temporal
Responsiveness and Alignment Coherence Evaluation (TRACE), a metric that jointly measures
semantic relevance and temporal alignment between generated and ground-truth utterances.

Finally, we propose Vision-Language Models with Time-Synchronized Interleaving (VLM-
TSI), a new class of VLMs that align vision and text tokens along a shared timeline, enabling
fluid, frame-by-frame generation without freezing observation. Our evaluations show that VLM-
TSI outperforms the turn-based baseline, VideoLLM-Online, on TGLG under the TRACE metric,
highlighting a promising direction for real-time VLM development.

Our contributions are fourfold: 1) we introduce the TGLG benchmark and the TRACE metric;
2) we curate datasets specifically targeting perceptual updating and contingency awareness; 3) we
propose VLM-TSI, a real-time capable VLM architecture; and 4) we conduct extensive evaluations
demonstrating VLM-TSI’s advantages in real-time interaction scenarios.

2 RELATED WORK

2.1 VIDEO UNDERSTANDING BENCHMARKS

Early video understanding benchmarks (Chen & Dolan, 2011; Xu et al., 2016; Yu et al., 2019),
inspired by the success of action recognition datasets (Soomro et al., 2012; Kay et al., 2017; Kuehne
et al., 2011), focused on short video captioning. Following the success of LLMs and VLMs, a range
of video question-answering benchmarks (Xu et al., 2017; Jang et al., 2017; Yu et al., 2019; Maaz
et al., 2024) emerged.

The identification of “single-frame bias” (Lei et al., 2023), where a single frame suffices to answer
questions, shifted attention toward long-form video understanding. EgoSchema (Mangalam et al.,
2023) introduced “certificate length” to quantify how much video evidence is needed for verification,
inspiring a wave of long-form benchmarks (Zhou et al., 2024a; Fu et al., 2024; Wang et al., 2024).

However, these benchmarks assume offline access to all frames. Recent work (Zhang et al., 2024;
Zhou et al., 2024c; Xiong et al., 2025; Yang et al., 2025; Lin et al., 2024) targets streaming set-
tings, where frames arrive sequentially. Motivated by these gaps, we propose a new benchmark that
addresses real-time language generation under streaming video input.

2.2 VISION-LANGUAGE MODELS FOR STREAMING VIDEO

A growing body of research focuses on VLMs for streaming video, contrasting with earlier mod-
els for offline settings. Problem formulations vary widely: some emphasize real-time understand-
ing (Lin et al., 2024; Zhang et al., 2024), while others prioritize embodied task execution (Bao et al.,
2023; Wang et al., 2023).

Initial models targeted dense captioning (Zhou et al., 2024b) but lacked dialogue capabilities. Flash-
VStream (Zhang et al., 2024) introduced dialogue over streaming input via a memory system but
remains reactive. VideoLLM-Online (Chen et al., 2024) advanced toward proactive generation,
dynamically responding to evolving content.

We extend this proactive direction by proposing a time-synchronized interleaving strategy and a
benchmark focused on evaluating perceptual updating and contingency awareness.

3 LIMITATIONS OF TURN-BASED VLMS IN REAL-TIME ENVIRONMENTS

VLMs owe most of their powerful capabilities, such as visual reasoning and understanding, to their
LLM backbones. As a result, they inherit a fundamental assumption from LLMs: that interactions
are turn-based, where the environment pauses while the model generates responses (i.e., zero-latency
language generation) and vice versa. Unfortunately, this assumption introduces significant latency
and coherence issues in real-time embodied environments, where turns are not clearly defined and
inputs arrive continuously.
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(a) In practice, frames continue to stream while the
model generates. As a result, the turn-based model’s
utterance about the yellow frame’s appearance de-
lays the processing of the blue frame. Red boxes in-
dicate utterances that are generated out of sync with
the visual context.

(b) A real-time model begins responding when the
yellow frame appears and detects the blue frame
mid-generation. It updates the utterance (red box)
to reflect this new perceptual evidence, maintaining
temporal alignment with the environment.

Figure 1: Turn-based VLMs fail to operate effectively in real-time environments, because they can-
not process new perceptual input while generating responses. [EOS] denotes no generation.

To illustrate, consider a simple scenario in which a VLM is tasked with notifying a user when a
colored frame appears. Assume that the environment is represented as a stream of video frames,
with each frame arriving at the same rate the model can generate a single token. A turn-based VLM
such as VideoLLM-Online erroneously assumes that once it begins generating an utterance (e.g., to
notify the user that a yellow frame has appeared), the environment effectively pauses and no new
frames are streamed. In practice, video frames continue to arrive while the model generates its
response. This results in a mismatch: the model’s utterance about the yellow frame’s appearance
delays recognizing and responding to the blue frame (Figure 1a). These misalignments compound
as the interaction continues, leading to increasingly out-of-sync and less useful responses.

While this may seem like a simple issue of timing, it reveals a deeper limitation: the model cannot
revise or adapt its output in response to new input that arrives mid-generation. This deficiency points
to the absence of two core capabilities identified in cognitive psychology as essential for real-time
interaction. The first is perceptual updating—the ability to continuously integrate new sensory input
and revise ongoing interpretations accordingly. The second is contingency awareness—the ability
to understand how one’s actions influence the environment and adjust behavior in response. A turn-
based VLM, by design, cannot update its output on the fly or respond to how its utterances impact
the environment, making it fundamentally misaligned with the demands of real-time, interactive
environments.

In contrast, a real-time VLM would begin generating an utterance when the yellow frame appears,
detect the blue frame mid-generation, and revise the ongoing utterance accordingly to reflect this
change (Figure 1b). This behavior highlights the real-time adaptation needed to enable both per-
ceptual updating and contingency awareness—capabilities fundamentally at odds with turn-based
assumptions. This motivates a shift toward models that continuously couple perception and genera-
tion, allowing new input to inform and revise ongoing output in real time.
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 Only Aguero in the box, Navas joining him now though for City. It's Aguero!Human And it's off target again.

Here's De Bruyne, and now Sterling.

It's a big chance, he's in the right place to follow up, but David De Gea... Well, he says he can'��

VideoLLM-Online Aguero was his target, and he's got it.

Aguero goes for the ball, not the man there.Sergio Aguero.VLM-TSI And he's lost it to David Silva.

Figure 2: Sports broadcast datasets like SoccerNet (Cioppa et al., 2022) contain dynamic visual
events that require robust perceptual updating. Turn-based models like VideoLLM-Online produce
semantically and temporally inaccurate utterances with unrealistic overlaps, while real-time models
like VLM-TSI generate semantically aligned and precisely timed utterances without overlaps.

4 TEMPORALLY-GROUNDED LANGUAGE GENERATION

To our knowledge, there are currently no benchmarks that jointly evaluate perceptual updating and
contingency awareness in VLMs operating under real-time constraints. As discussed in Section 3,
generating utterances that are both semantically meaningful and temporally aligned is essential for
supporting these two capabilities. While “on-policy” evaluation would be ideal, building such a
protocol is tantamount to solving real-time interactive environments themselves. In contrast, a well-
designed “off-policy” evaluation is far easier to construct and use, enabling faster iteration and model
development. We formalize these requirements in a new task, which we call Temporally-Grounded
Language Generation (TGLG), to facilitate the development and evaluation of VLMs in real-time
environments.

4.1 DATA CURATION

Perceptual updating and contingency awareness are fundamentally tied to the ability to generate
utterances that are not only semantically appropriate but also precisely timed. To ensure that our
benchmark meaningfully tests these capabilities, we carefully curate evaluation datasets in which
both the content and timing of model responses are critical.

4.1.1 PERCEPTUAL UPDATING

To evaluate a model’s capacity for perceptual updating, we seek interactions where the visual scene
changes rapidly and continuously, sometimes even within a single utterance. Sports broadcasting
provides a natural setting for this: commentators, especially “play-by-play” commentators (who
narrate unfolding events) rather than “color” commentators (who provide analysis and background),
must respond quickly to unfolding gameplay, often revising or elaborating on their observations as
new events occur in real time.

We use the SoccerNet dataset (Cioppa et al., 2022) as our source of sports broadcasting videos with
live commentary audio (Figure 2). The audio is transcribed with WhisperX (Bain et al., 2023),
and we filter out clips with no speech, non-English speech, or non–play-by-play segments such as
analysis, banter, and advertisements (see Section A for details). From the remaining play-by-play
commentary, we extract evaluation interaction histories as defined in Section 4.2, ensuring that each
segment exhibits tight temporal coupling between video events and commentary.

The final dataset is split into training and test sets in an 80/20 ratio, with the training set further
divided into training and validation splits using the same proportion.

4.1.2 CONTINGENCY AWARENESS

To evaluate contingency awareness, we seek interactions where the model’s utterances directly in-
fluence the visual scene. Egocentric human interaction datasets, often used for the development of
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It's right below your hand. It’s that long piece of metal.Instructor

You're doing great! Keep going.VideoLLM-Online

VLM-TSI That's the one! Now, adjust the shift arm on the mounting peg.

User

Yeah, you want to attach that onto the mounting peg.

This?Model Context

Figure 3: Egocentric interaction datasets like HoloAssist (Wang et al., 2023) capture complex coop-
erative interactions that require robust contingency awareness. Turn-based models like VideoLLM-
Online may produce temporally aligned utterances, but they struggle to generate useful instructions
because they fail to account for the consequences of their prior outputs. In contrast, real-time models
like VLM-TSI reason over their past utterances and adapt to the evolving scene, resulting in more
context-aware guidance.

task-guidance systems, naturally support this property. These datasets typically involve a human
user performing a task while wearing an egocentric camera, guided by a human instructor who is-
sues instructions in response to the live egocentric video feed of the user. As a result, the instructor’s
utterances directly shape the user’s actions, which in turn alter the egocentric visual input.

We use the HoloAssist dataset (Wang et al., 2023) as our source of egocentric human interac-
tion videos (Figure 3). HoloAssist includes transcribed dialogues annotated with fine-grained
dialogue acts, which we use to identify moments that require contingency awareness. Specif-
ically, we extract interactions that begin with an instruction from the instructor (dialogue act:
instructor-start-conversation describing high-level instruction) and
end with a correction (dialogue act: instructor-start-conversation correct the
wrong action). These segments capture scenarios where the instructor’s initial utterance
prompts an action, a mistake is observed, and a corrective instruction follows, resulting in visual
scene changes that depend on earlier model outputs.

Due to the limited number of such interactions, we use the entire curated subset as a held-out test
set.

Detailed dataset statistics are provided in Section B. Note that while our benchmark is curated from
two domains, it targets the general capabilities of perceptual updating and contingency awareness
rather than domain-specific knowledge, and thus we expect the evaluation results to generalize well
beyond these settings.

4.2 TASK DEFINITION

We define TGLG (Temporally-Grounded Language Generation) using timestamped utterances from
curated datasets. To illustrate the task, consider the following example from HoloAssist:

1. 33.2-43.3: “Assistant: Now remove the indicated component that’s damaged, . . . ”
2. 45.3-46.6: “User: Oh, this thing?”
3. 46.6-47.4: “Assistant: To the right.”
4. 47.9-49.2: “Assistant: The small cube.”
5. 49.3-49.8: “Assistant: Yes.”

This segment illustrates both perceptual updating and contingency awareness: the assistant must
detect and correct the user’s misunderstanding (utterances 3–4) and confirm the correct action (ut-
terance 5). Concretely, we provide the model with utterances 1 and 2 along with their associated
video frames, then stream the remaining frames. The model must generate grounded, time-sensitive
responses based on the streamed frames. If it exhibits perceptual updating and contingency aware-
ness, its generated utterances should closely match the human references (utterances 3-5) in both
timing and content. Note that utterance 1 would be used as the human reference for the previous
evaluation instance. For models that do not emit explicit end timestamps, we estimate utterance

5
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durations based on token count and a fixed speech rate. Further details and formal definitions are
provided in Appendix C.

4.3 METRIC

To evaluate perceptual updating and contingency awareness in real-time settings, we introduce
Temporal Responsiveness and Alignment Evaluation (TRACE), a comprehensive metric for the
TGLG benchmark.

TRACE jointly measures semantic accuracy and timing precision by aligning generated and ground-
truth utterances based on temporal proximity. The final score is a weighted combination:

TRACE = αSa + (1− α)St (1)

where Sa captures semantic accuracy and St reflects timing alignment. The timing score St is
further decomposed into:

St = αstartS
start + αendS

end + (1− αstart − αend)S
overlap (2)

where Sstart and Send measure start and end time alignment, and Soverlap penalizes overlapping ut-
terances. All components are scaled by an F1-based alignment score to penalize over- and under-
generation.

By jointly evaluating what is said and when it is said, TRACE captures the dual demands of real-time
interaction: adapting to new observations (perceptual updating) and responding to the consequences
of prior actions (contingency awareness). It also promotes natural, human-like generation by evalu-
ating model outputs against gold-standard human utterances. Because it focuses on these fundamen-
tal capabilities rather than domain-specific knowledge, TRACE supports evaluation that generalizes
beyond sports broadcasting and egocentric interaction. Full details of calculating TRACE are pro-
vided in Appendix D.

5 VISION-LANGUAGE MODEL WITH TIME-SYNCHRONIZED INTERLEAVING

Current VLMs, such as VideoLLM-Online, assume turn-based interactions where the environment is
effectively paused while the model generates a full utterance (i.e., zero-latency language generation)
and vice versa. This design causes them to struggle in real-time settings where perceptual updat-
ing and contingency awareness are critical. To address this limitation, we introduce a new class
of VLMs, called Vision-Language Models with Time-Synchronized Interleaving (VLM-TSI),
which drop the turn-based assumption and serve as a baseline for the TGLG task.

5.1 TIME-SYNCHRONIZED INTERLEAVING

The core idea behind VLM-TSI is that language generation and visual observation should proceed
along a shared timeline, rather than in alternating turns. Unlike conventional VLMs that generate
complete utterances before resuming observation, VLM-TSI alternates between ingesting new video
frames and generating text tokens in a temporally synchronized manner. Specifically, it interleaves
vision tokens vt (produced by the vision encoder) and text tokens xτ into a single sequence ordered
by timestamp such that each xτ is conditioned on all visual and linguistic context observed up to
that point (Figure 4).

5.2 TRAINING

VLM-TSI is trained using standard causal language modeling, with losses computed only for text
tokens (using right-shifted labels). This is a departure from the “streaming EOS prediction” task
used by VideoLLM-Online, which uses the EOS token as the label for vision tokens to signify
silence. Chen et al. (2024) have observed that the streaming EOS prediction task tends to bias the
model toward silence due to label imbalance, and they mitigate this by introducing a probability
threshold below which EOS is not emitted. VLM-TSI instead focuses solely on learning when to
generate text by predicting the BOS token following visual input. Our results empirically show that
this strategy resolves the label imbalance without requiring threshold-based heuristics.

6
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Visual Tokens

Text Tokens

Time

Model Input

Figure 4: VLM-TSI interleaves vision tokens vt and text tokens xτ in a temporally synchronized
manner. For simplicity, each frame ft is encoded as a single vision token vt.

5.3 INFERENCE

At inference time, VLM-TSI receives one visual token per timestep (or more if video frames are
sampled faster than text generation) and performs one decoding step. If the model predicts a token
other than BOS (i.e., it is not the start of a new utterance), it is discarded and the model waits for
the next visual input. On the other hand, if the predicted token is a BOS token, the model enters
text generation mode and continues decoding until the next vision token arrives, or an EOS or BOS
token is generated, signaling utterance completion or new utterance start.

All generated text tokens are added to the context while BOS and EOS tokens are not. This process
allows VLM-TSI to start and stop speaking dynamically in response to incoming visual observations
without freezing the timeline.

6 EVALUATION

We now present the evaluation results of two baseline VLMs on the TGLG benchmark: VideoLLM-
Online (Chen et al., 2024) and our proposed VLM-TSI.

6.1 EXPERIMENTAL SETUP

We use VideoLLM-Online as the primary baseline for TGLG and introduce VLM-TSI as a strong
alternative that natively supports TGLG. We do not include conventional offline VLMs as additional
baselines, as they are ill-suited for real-time settings: their per-frame autoregressive decoding over
entire utterances incurs high computational costs, making them impractical for streaming applica-
tions where tokens must be generated frame-by-frame.

To ensure a fair comparison, we closely follow the training recipe from VideoLLM-Online Chen
et al. (2024), modifying only the token interleaving strategy during fine-tuning. All models are
trained with a video frame sampling rate of 2 FPS and use LoRA (Hu et al., 2022) with rank 128
and scaling factor 256 applied to all linear layers.

For perceptual updating, both models are initialized from the pretrained
VideoLLM-online-8B-v1+ checkpoint and fine-tuned on our curated SoccerNet training
split (Section 4.1) for 5 epochs, which takes about 2 hours on four 48GB L40S nodes. For
contingency awareness, we fine-tune VLM-TSI on the Ego4D Goal-Step streaming narration and
dialogue data (Song et al., 2023; Chen et al., 2024), which is similar in domain to HoloAssist, for 2
epochs. This takes approximately 19 hours on two 48GB A40 nodes. Since VideoLLM-Online is
already pre-trained on this dataset, we do not fine-tune it further. Furthermore, both models receive
the summary of each activity, provided in HoloAssist, as part of the system message to provide
high-level task context.

We set the EOS prediction threshold for VideoLLM-Online to the default value of 0.725 Chen et al.
(2024) for perceptual updating. For contingency awareness, we increase this threshold to 0.8, as the
model otherwise generated too few utterances.

For all evaluations, we set αstart = 0.4, αend = 0.4, and α = 0.5. For the sentence embedder emb(·),
we use all-mpnet-base-v2 from SentenceTransformers (Reimers & Gurevych, 2019).
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Table 1: TGLG evaluation results. Best scores in bold.

Capability Model TRACE Sa St Sstart Send Soverlap F1

Perceptual
Updating

VLM-TSI 39.1 45.7 32.4 29.1 15.6 72.8 72.8
VideoLLM-Online 27.1 32.4 21.8 24.4 11.1 37.9 51.0

Contingency
Awareness

VLM-TSI 18.8 23.0 14.5 11.9 6.0 36.7 36.7
VideoLLM-Online 9.6 12.3 6.8 5.9 4.0 14.4 18.2

6.2 RESULTS

In this section, we first present the overall evaluation results on both capabilities, followed by de-
tailed analyses for each dataset.

6.2.1 OVERALL RESULTS

Table 1 summarizes overall TGLG evaluation results for VLM-TSI and VideoLLM-Online. VLM-
TSI outperforms VideoLLM-Online across both capabilities and all sub-metrics, demonstrating
more effective real-time behavior.

The most substantial gains come from the overlap score (Soverlap), where VLM-TSI nearly doubles
the performance of VideoLLM-Online. This reflects a key architectural strength: VLM-TSI inter-
leaves vision and language along a shared timeline, enforcing non-overlapping utterance generation
by design. In contrast, turn-based models like VideoLLM-Online often produce overlapping utter-
ances due to their delayed decoding behavior.

VLM-TSI also achieves better alignment in Sstart and Send, though the relatively low absolute scores,
especially for Send, highlight a persistent challenge: models are better at detecting when to begin
speaking than when to stop. Accurately terminating generation based on continuously evolving
perceptual input remains difficult, particularly under tight latency constraints.

Both models perform worse on contingency awareness than on perceptual updating, consistent with
the intuition that passively describing visual input (as in SoccerNet) is easier than generating lan-
guage that influences downstream user actions (as in HoloAssist). This gap reinforces the difficulty
of reasoning about causality and long-term consequences in real time.

Notably, even VLM-TSI achieves only moderate TRACE scores (e.g., 39.1 for perceptual updat-
ing, 18.8 for contingency awareness), underscoring that TGLG remains a challenging benchmark.
The TRACE metric helps clarify these limitations by separately evaluating semantic and temporal
alignment. Qualitative examples of common failure modes, such as delayed generation, premature
cutoffs, and overlapping utterances, are included in Appendix G.

As for computational efficiency–an important consideration for real-time settings–VLM-TSI shares
the same architecture as VideoLLM-Online aside from input token structuring, and thus inherits
similar runtime characteristics. On an NVIDIA RTX 4090, we observe a throughput of 11.4 FPS
without using the FIFO queue employed by VideoLLM-Online to parallelize video frame encoding
with LLM decoding. This is comparable to reported VideoLLM-Online performance (10–15 FPS
on an NVIDIA A100 and 5–10 FPS on a NVIDIA RTX 3090 (Chen et al., 2024)).

6.2.2 SOCCERNET RESULTS

We conduct further analysis on SoccerNet (perceptual updating). Using annotations from the Soc-
cerNet Action Spotting Challenge Deliege et al. (2021), we first align each utterance with nearby
game events (˜5 seconds from start and end times). We then group the events into six high-level
categories (Section E) and compute the difference in TRACE scores between the two models within
each group.

As shown in Table 2, VLM-TSI outperforms VideoLLM-Online across all action categories, demon-
strating its robust perceptual updating capabilities. The performance gap is narrowest for the
“Goal/Penalty” category. We hypothesize that this is because such events are rare and temporally
atomic, typically covered with a single utterance, so the delayed decoding pattern of turn-based
models like VideoLLM-Online does not lead to significant performance degradation.
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Table 2: Per-action comparison on SoccerNet: Difference in TRACE scores between VLM-TSI and
VideoLLM-Online. Positive values indicate VLM-TSI outperforms VideoLLM-Online.

Action Group # actions ∆TRACE ∆Sa ∆St

Attempts 3 .12 .12 .12
Discipline 3 .10 .09 .10

Goal/Penalty 2 .06 .09 .03
Infractions 2 .11 .12 .11

Restarts 6 .14 .14 .13
Substitution 1 .12 .15 .08

Table 3: Per-task comparison on HoloAssist: Difference in TRACE scores between VLM-TSI and
VideoLLM-Online. Positive values indicate VLM-TSI outperforms VideoLLM-Online.

Task Group # tasks ∆TRACE ∆Sa ∆St

Assemble Furniture 4 .13 .16 .10
Disassemble Furniture 4 .14 .16 .12

Make Coffee 2 .11 .13 .08
Repair Machinery 3 -.01 -.02 -.01
Setup Electronics 7 .09 .11 .08

Notably, VideoLLM-Online did not generate any utterances aligned with the “Yellow→Red card”
action from the “Infractions” category. We believe this highlights a key advantage of VLM-TSI’s
time-synchronized interleaving strategy. These actions consist of two rapid sub-events—a yellow
card immediately followed by a red card—and are difficult to describe coherently in a single turn.
VideoLLM-Online struggles to capture this sequence due to its turn-based decoding: once it begins
generating, it cannot adjust its generation based on new visual input. In contrast, VLM-TSI can
begin generating an utterance in response to the yellow card and seamlessly adapt mid-generation
when the red card is shown, resulting in more accurate and temporally aligned output.

6.2.3 HOLOASSIST RESULTS

To further analyze model performance on HoloAssist (contingency awareness), we group the tasks
into five categories (Section F) and compare TRACE scores between the two models within each
group.

As shown in Table 3, VLM-TSI outperforms VideoLLM-Online across all task categories except
“Repair Machinery,” where VideoLLM-Online slightly outperforms. We hypothesize that this ex-
ception stems from the nature of these tasks: repair sequences typically involve long, well-delimited,
and visually salient steps. In such cases, the delayed decoding of turn-based models like VideoLLM-
Online is less problematic.

In contrast, tasks such as “Assemble/Disassemble Furniture” often involve small, hard-to-distinguish
physical manipulations, while “Make Coffee” and “Setup Electronics” frequently require interacting
with appliances that display status updates or prompts on small screens. In these scenarios, VLM-
TSI’s ability to incorporate visual input incrementally and adjust utterances mid-generation provides
a significant advantage, helping it better track and describe nuanced visual cues in real time.

7 CONCLUSION

In this work, we introduce TGLG, a benchmark task for evaluating two core capabilities essential to
real-time VLMs: perceptual updating and contingency awareness. Alongside curated video–text
datasets from sports broadcasts and egocentric interactions, we propose TRACE, a metric that
jointly evaluates semantic relevance and timing precision, and VLM-TSI, a baseline that interleaves
vision and text tokens along a shared timeline. Together, these contributions establish a founda-
tion for building VLMs that are accurate, responsive, temporally adaptive, and capable of seamless
real-time interaction.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REPRODUCIBILITY STATEMENT

Full task definitions, as well as the details of dataset curation and metric definitions, are provided in
Sections 4. Full model definitions are provided in Section 5. The curated datasets for TGLG and the
code for baseline training and evaluation will be fully released upon acceptance.
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A NON-PLAY-BY-PLAY COMMENTARY FILTERING

Play-by-play announcers are trained professionals whose role is to narrate matches in real time
with high semantic and temporal precision. Their utterances are typically short, declarative, and
event-driven, often featuring player or team names and concise descriptions of unfolding actions.
For example, “Swansea corner,” “Routledge goes down inside the box,” or “Good pressing again
from Manchester United” illustrate this temporally grounded style. Such commentary is readily
distinguished from analysis, banter, or advertisements based on text alone, without requiring frame-
level review.

To automate filtering, we first manually annotated utterances from five matches with binary la-
bels (play-by-play vs. other), then split them into training, validation, and test sets (70/15/15). A
lightweight LSTM classifier trained on this data achieved 94% accuracy on the test set, identifying
58,031 play-by-play utterances out of 148,533 total (39%). Alignment between commentary and
video content was further verified during development by inspecting paired examples.

B DATASET STATISTICS

Table 4: Dataset statistics for perceptual updating (SoccerNet Cioppa et al. (2022)) and contingency
awareness (HoloAssist Wang et al. (2023)) benchmarks. Size indicates the number of datapoints.
Avg. Utt. is the average number of utterances per datapoint. Avg. Len. is the average number of
tokens per utterance. Avg. Gap is the average time in seconds between successive utterances within
each datapoint.

Capability Source Size Avg. Utter. Avg. Len. (tokens) Avg. Gap (s)

Perceptual Updating SoccerNet 16487 5.67 10.98 1.13
Contingency Awareness HoloAssist 1761 15.84 13.69 7.94

C TASK DEFINITION

In this section, we provide the full details of our proposed Temporally-Grounded Language Gen-
eration (TGLG) task. We consider the same example from HoloAssist presented in Section 4.2:

1. 33.2-43.3: “Assistant: Now remove the indicated component that’s damaged, . . . ”
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2. 45.3-46.6: “User: Oh, this thing?”
3. 46.6-47.4: “Assistant: To the right.”
4. 47.9-49.2: “Assistant: The small cube.”
5. 49.3-49.8: “Assistant: Yes.”

Each utterance ui = (si, ei, {xt | si ≤ t ≤ ei}) includes a start time si, an end time ei, and a
sequence of text tokens xt timestamped at t. The complete set of utterances in a video forms the
interaction history U = {ui | 1 ≤ i ≤ N}.

We define evaluation clusters {ui | i ∈ Ej} from this history. In HoloAssist, Ej contains instructor
utterances that test contingency awareness (e.g., {u3, u4, u5} in the example); in SoccerNet, it in-
cludes play-by-play commentary. Each cluster includes utterances whose start and end timestamps
fall within a 5-second window.

The evaluation interaction history is:
Hj = {ui | 1 ≤ i < min(Ej)} ∪ {ui | i ∈ Ej} (3)

which includes all prior utterances as context and the cluster utterances as targets (e.g., {u1, u2} ∪
{u3, u4, u5} in the example).

The model’s input context is:
Cj = {ft | s1 ≤ t < smin(Ej)} ∪ {xτ | s1 ≤ τ < smin(Ej)} (4)

where ft is the video frame at time t, and xτ is any observed token (system messages, prior dialogue,
etc.) at time τ . The video and text streams may have different sampling rates and are not assumed
to be aligned. In the example, Cj includes all frames up to 46.6 seconds and utterances {u1, u2}.

The model is evaluated on its outputs aligned to frames in:
{ft | smin(Ej) ≤ t ≤ emax(Ej)} (5)

and must produce utterances that are semantically appropriate and temporally aligned with the
ground-truth utterances in Ej (e.g., {u3, u4, u5} in the example).

Because most turn-based VLMs emit utterances without end times, we estimate durations by assum-
ing a speech rate of 150 words per minute 1 and 1.3 tokens per word 2 to infer the end time from the
number of generated tokens.

D METRIC

In this section, we provide the full details of our proposed evaluation metric for TGLG, Temporal
Responsiveness and Alignment Evaluation (TRACE).

D.1 ALIGNING GENERATED AND GROUND-TRUTH UTTERANCES

We begin by aligning the ground-truth utterances U = {ui | 1 ≤ i ≤ N} (defined in Section 4.2)
and the generated utterances Û = {ûj | 1 ≤ j ≤ M} through bi-partite matching based on temporal
proximity. We define a cost matrix A ∈ RN×M as:

Aij = − exp

(
−|si − ŝj |

τtime

)
(6)

where si and ŝj are the start times of the ground-truth and generated utterances, respectively, and
τtime is a time-scale parameter that downweights matches between utterances with large start-time
differences. This yields an initial one-to-one alignment based purely on temporal structure. Note
that some matched pairs may be pruned based on timing thresholds.

To avoid penalizing semantically accurate utterances that are generated slightly out of order, we
refine these matches via local optimization. Specifically, we compute a similarity matrix S ∈ RN×M

using cosine similarity between sentence embeddings:

Sij =
1 + cos (emb(ui), emb(ûj))

2
(7)

1Source: Baruch College Tools for Clear Speech
2Source: OpenAI token documentation
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where emb(·) denotes a pretrained sentence embedding model, and cosine similarities are rescaled
to lie in [0, 1]. We then iteratively refine the alignment by greedily swapping matched pairs (i, j)
and (i′, j′) if:

Sij + Si′j′ < Sij′ + Si′j (8)
and all four utterances involved fall within τwin of one another. This process is repeated for a fixed
number of passes or until convergence.

Finally, we discard any matched pair (i, j) for which |si− ŝj | > τwin, ensuring temporal plausibility
in the final alignment:

B = {(i, j) | ui ∈ U , ûj ∈ Û , (i, j) is a matched pair} (9)

For all evaluations, we set τtime = 3.0 and τwin = 5.0.

D.2 SEMANTIC ACCURACY SCORE

The semantic accuracy score is computed over the set of matched pairs B between generated and
ground-truth utterances. While this score can be derived from human evaluation or LLM-based
evaluation (Maaz et al., 2024), we adopt a semantic similarity-based approach (Yu et al., 2024) for
its efficiency and reproducibility. Specifically, we use the similarity matrix S defined in Equation 7
to calculate the mean similarity over all matched utterance pairs and scale it by the generation F1

score to penalize over- or under-generation:

Sa =
F1

|B|
∑

(i,j)∈B

Sij (10)

Here, F1 reflects the alignment quality between the full sets of generated and ground-truth utter-
ances:

Prec =
|B|
|Û |

, Recall =
|B|
|U|

, F1 =
2 · Prec · Recall
Prec + Recall

(11)

D.3 TIMING ACCURACY SCORE

The timing accuracy score is defined as a weighted sum of three components: the start score, end
score, and overlap score. We begin with the first two that are calculated over the matched pairs in
B:

Sstart
ij = exp

(
−|si − ŝj |

τpen

)
, Sstart =

F1

|B|
∑

(i,j)∈B

Sstart
ij (12)

Send
ij = exp

(
−|ei − êj |

τpen

)
, Send =

F1

|B|
∑

(i,j)∈B

Send
ij (13)

where τpen is a scaling factor that controls how severely to penalize temporal misalignment.

To discourage overlapping utterances, which can result in fragmented or poorly-timed interactions,
we define a penalty for each generated utterance ûj ∈ Û based on its overlap with all other generated
utterances:

overlap(j, j′) = min(êj , êj′)−max(ŝj , ŝj′), Oj =
∑
j ̸=j′

max(0, overlap(j, j′)) (14)

Soverlap
j = exp

(
− Oj

τpen

)
, Soverlap =

F1

|Û |

∑
j∈Û

Soverlap
j (15)

Note that overlap(j, j′) is positive only when utterances temporally intersect; otherwise, it is
clamped to zero.

The total timing accuracy score is then:

St = αstartS
start + αendS

end + (1− αstart − αend)S
overlap (16)

where αstart and αend are tunable weights. We set τpen to 1.0 for all our experiments.
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D.4 FINAL SCORE

The final TRACE score combines semantic and timing accuracy into a single metric:

TRACE = αSa + (1− α)St (17)

where α is a tunable weight that balances the two components. For all evaluations, we use the
following TRACE parameters:

αstart = 0.4, αend = 0.4, α = 0.5 (18)

TRACE is designed to be decomposable, enabling detailed analysis of VLM performance in real-
time settings. By jointly evaluating what is said and when it is said against gold-standard human
utterances, TRACE not only reflects the dual requirements of real-time interaction—adapting to new
observations (perceptual updating) and responding to the consequences of prior actions (contingency
awareness)—but also helps ensure that generated utterances feel natural to humans. We hope that
TGLG and TRACE provide a useful foundation for future research on automatic evaluation metrics
in real-time, interactive settings.

E ACTION CATEGORIES

• Attempts: Shots on target, Shots off target, Clearance

• Discipline: Yellow card, Red card, Yellow→red card

• Goal/Penalty: Goal, Penalty

• Infractions: Offside, Foul

• Restarts: Kick-off, Ball out of play, Throw-in, Corner, Direct free-kick, Indirect free-kick

• Substitution: Substitution

F TASK CATEGORIES

• Assemble Furniture: assemble nightstand, assemble stool, assemble tray table, assemble
utility cart

• Disassemble Furniture: disassemble nightstand, disassemble stool, disassemble tray ta-
ble, disassemble utility cart

• Make Coffee: make coffee with nespresso machine, make coffee with espresso machine

• Repair Machinery: change belt, change circuit breaker, fix motorcycle

• Setup Electronics: setup camera, setup switch, setup big printer, setup small printer, setup
gopro, assemble laser scanner, assemble computer

G QUALITATIVE EXAMPLES

G.1 PERCEPTUAL UPDATING

Below are qualitative examples for perceptual updating (SoccerNet). Proper-noun mismatch is ex-
pected, as the models were neither trained nor provided with the necessary context to handle proper
nouns such as player names. Replacing proper nouns with NER tags like <PLAYER> did not change
TRACE scores much, so we use the utterances with the original proper nouns.

G.1.1 VIDEOLLM-ONLINE EXAMPLES

We did not find clear successful examples for VideoLLM-Online.

Delayed Start
VIDEO / TIME: 2015-08-29 - 17-00 Manchester City 2 - 0
Watford/2 224p@1617.7s
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GENERATED: “And on to Silva, and on to Aguero, and away by . . . ”
GROUND TRUTH: “And here goes Sergio Aguero.”
SEMANTIC: 0.826 TIMING: 0.011 START: 0.007 END: 0.000 OVERLAP: 0.041

The utterance is semantically relevant but begins 5s late.

Premature Cutoff
VIDEO / TIME: 2015-02-24 - 22-45 Manchester City 1 - 2
Barcelona/1 224p@2596.6s
GENERATED: “Here’s Milner.”
GROUND TRUTH: “Oh, it’s a kind bounce off Milner now for Dani Alves.”
SEMANTIC: 0.796 TIMING: 0.617 START: 0.993 END: 0.049 OVERLAP: 1.000

Generation begins on time but ends 3s before the human commentary, omitting crucial detail.

Overlap
VIDEO / TIME: 2015-09-19 - 19-30 Manchester City 1 - 2 West
Ham/1 224p@205.4s
GENERATED: “And that’s it, that’s all you need, one little touch to get it away from the danger
zone. . . ”
GROUND TRUTH: “Collar off with a lovely ball for De Bruyne.”
SEMANTIC: 0.717 TIMING: 0.003 START: 0.009 END: 0.000 OVERLAP: 0.000

The model speaks for too long and drifts beyond the relevant action, producing an utterance that
overlaps with subsequent events.

G.1.2 VLM-TSI EXAMPLES

Success
VIDEO / TIME: 2016-11-19 - 18-00 Manchester United 1 - 1
Arsenal/1 224p@2727.7s
GENERATED: “Sanchez.”
GROUND TRUTH: “Sanchez again.”
SEMANTIC: 0.916 TIMING: 0.962 START: 0.990 END: 0.914 OVERLAP: 1.000

Delayed Start
VIDEO / TIME: 2015-02-24 - 22-45 Manchester City 1 - 2
Barcelona/1 224p@1699.7s
GENERATED: “Iniesta.”
GROUND TRUTH: “Iniesta.”
SEMANTIC: 1.000 TIMING: 0.263 START: 0.077 END: 0.079 OVERLAP: 1.000

VLM-TSI produces a semantically accurate utterance, but reacts a few seconds late to the event. The
timing lag suggests room for faster perceptual updating.

Over-extended
VIDEO / TIME: 2015-05-02 - 19-00 Atl. Madrid 0 - 0 Ath
Bilbao/2 224p@2872.3s
GENERATED: “Another decent ball played in, but once again, the offside flag up.”
GROUND TRUTH: “It’s offside again.”
SEMANTIC: 0.878 TIMING: 0.616 START: 0.983 END: 0.056 OVERLAP: 1.000

VLM-TSI triggers at the correct moment but runs longer than the human commentator, overshooting
the natural endpoint.

Premature Cutoff
VIDEO / TIME: 2017-01-31 - 23-00 Liverpool 1 - 1
Chelsea/1 224p@1105.3s
GENERATED: “Here’s Matic.”
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GROUND TRUTH: “Here’s Matic, he’s closed down quickly there by Roberto Firmino, didn’t
have the time that he thought he’d got.”
SEMANTIC: 0.819 TIMING: 0.596 START: 0.981 END: 0.008 OVERLAP: 1.000

VLM-TSI triggers at the correct moment but cuts off early, failing to capture the full play description
present in the human commentary.

G.2 EXAMPLES OF IMPROVEMENTS OF VLM-TSI OVER VIDEOLLM-ONLINE

Big Timing Gain
VIDEO / TIME: 2016-01-03 - 16-30 Crystal Palace 0 - 3
Chelsea/2 224p@2337.0s
VLM-TSI GENERATED: “Here’s Costa.”
VIDEOLLM-ONLINE GENERATED: long, off-topic filler (“And it’s. . . I mean, they’ve
just. . . They’ve been. . . ”)
GROUND TRUTH: “Costa.”
VLM-TSI SEM: 0.904 T: 0.799 S: 0.780 E: 0.718 O: 1.000
VIDEOLLM-ONLINE SEM: 0.540 T: 0.023 S: 0.058 E: 0.000 O: 0.000

VLM-TSI calls the play at the exact moment; VideoLLM-Online is late and drifts into rambling
commentary.

Fixes Overlap
VIDEO / TIME: 2015-09-19 - 19-30 Manchester City 1 - 2 West
Ham/1 224p@2669.4s
VLM-TSI GENERATED: “Sergio Aguero.”
VIDEOLLM-ONLINE GENERATED: “It’s a big chance, . . . , and he’s right.”
GROUND TRUTH: “It’s Aguero!”
VLM-TSI SEM: 0.859 T: 0.611 S: 0.619 E: 0.407 O: 1.000
VIDEOLLM-ONLINE SEM: 0.673 T: 0.021 S: 0.050 E: 0.000 O: 0.006

VLM-TSI delivers a concise, non-overlapping call; VideoLLM-Online rambles and overlaps heavily.

G.3 CONTINGENCY AWARENESS

Below are qualitative examples for contingency awareness (HoloAssist).

G.3.1 VIDEOLLM-ONLINE EXAMPLES

Success
VIDEO / TIME: z102-july-13-22-dslr@69.9s
GENERATED: “Now please turn on the camera.”
GROUND TRUTH: “Please turn on the camera.”
SEMANTIC: 0.952 TIMING: 0.842 START: 0.883 END: 0.722 OVERLAP: 1.000

Delayed Start
VIDEO / TIME: z127-aug-10-22-printer big@23.1s
GENERATED: “You’re almost there! Just place the paper stack. . . ”
GROUND TRUTH: “The next step is to add some paper in the printer. . . ”
SEMANTIC: 0.879 TIMING: 0.010 START: 0.018 END: 0.004 OVERLAP: 0.005

The instruction is correct but arrives several seconds after the user has already loaded paper.

Delayed Start
VIDEO / TIME: z198-sep-18-22-dslr@54.3s
GENERATED: “I’ll repeat. We will now detach the lens cover.”
GROUND TRUTH: “The next step is to detach the lens cover.”
SEMANTIC: 0.846 TIMING: 0.016 START: 0.013 END: 0.005 OVERLAP: 0.045
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Again, the command is semantically correct but lags behind the moment the human has already
started removing the cover.

Incorrect Correction
VIDEO / TIME: R194-25Oct-GraphicsCard@54.3s
GENERATED: “That’s it! You’ve successfully removed the graphics card.”
GROUND TRUTH: “Outside. On the outside.”
SEMANTIC: 0.497 TIMING: 0.599 START: 0.699 END: 0.299 OVERLAP: 1.000

Despite good timing, the model declares task completion for the wrong object, demonstrating a
causal misunderstanding of its own prior instruction.

G.3.2 VLM-TSI EXAMPLES

Success
VIDEO / TIME: R124-15Aug-Circuit-Breaker@119.1s
GENERATED: “Go ahead and press that button.”
GROUND TRUTH: “Go and click that.”
SEM: 0.752 TIMING: 0.751 START: 0.552 END: 0.824 OVERLAP: 1.000

Delayed Start
VIDEO / TIME: z092-july-11-22-knarrevik assemble@23.1s
GENERATED: “You’re doing well! You’ve inspected the table. . . ”
GROUND TRUTH: “Please start by assembling one leg to one table.”
SEMANTIC: 0.823 TIMING: 0.203 START: 0.007 END: 0.000 OVERLAP: 1.000

The instruction arrives too late, failing to guide the user’s immediate next step.

Incorrect Correction
VIDEO / TIME: z018-june-20-22-printer big@17.3s
GENERATED: “You’re doing great! Remember to take your time. . . ”
GROUND TRUTH: “It’s the moon icon on the right.”
SEMANTIC: 0.468 TIMING: 0.595 START: 0.956 END: 0.031 OVERLAP: 1.000

Despite being well-timed, the guidance is irrelevant to the user’s current task, showing a misunder-
standing.

G.4 EXAMPLES OF IMPROVEMENTS OF VLM-TSI OVER VIDEOLLM-ONLINE

Semantic & Timing Gain
VIDEO / TIME: R200-7Nov-ATV@47.7s
VLM-TSI GENERATED: “That’s the one! Now, adjust the shift arm on the mounting peg. Make
sure it’s securely attached.”
VIDEOLLM-ONLINE GENERATED: “You’re doing great! Keep going.”
GROUND TRUTH: “Yeah, you want to attach that onto, mmmm the mounting peg.”
VLM-TSI SEM: 0.724 T: 0.874 S: 0.711 E: 0.974 O: 1.000
VIDEOLLM-ONLINE SEM: 0.506 T: 0.559 S: 0.847 E: 0.049 O: 1.000

VLM-TSI delivers the correct, specific instruction at the precise moment, while VideoLLM-Online
issues a generic prompt without adapting to the user’s actions.
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