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ABSTRACT

Multiobjective optimization (MOO) is prevalent in numerous real-world applica-
tions, in which a Pareto front (PF) is constructed to display optima under various
preferences. Previous methods commonly utilize the set of Pareto objectives (par-
ticles) to represent the entire Pareto front. However, the corresponding discrete
distribution of the points on the PF is less studied, which may impede the gen-
eration of diverse and representative Pareto objectives in previous methods. To
bridge the gap, we highlight in this paper the benefits of uniformly distributed
Pareto objectives on the PF, which alleviate the limited diversity found in previ-
ous multiobjective optimization (MOO) approaches. In particular, we introduce
new techniques for measuring and analyzing the uniformity of Pareto objectives,
and accordingly propose a new method to generate asymptotically uniform Pareto
objectives in an adaptive manner. Our proposed method is validated through ex-
periments on real-world and synthetic problems, which demonstrates its efficacy
in generating high-quality uniform Pareto objectives on the Pareto front.

1 INTRODUCTION
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Figure 1: The proposed method generates uniform objectives
on the PF. (a) MOEA/D solutions. (b) Proposed solutions.

Real-world applications such as
recommendation systems (Zheng
& Wang, 2022; Jannach, 2022),
autonomous agent planning (Xu
et al., 2020; Hayes et al., 2022),
and industrial design (Schulz et al.,
2017; Wang et al., 2011) often in-
volve multiobjective optimization
(MOO) problems. For instance, one
may expect a robot to strike a
balance between its forward speed
and energy consumption (Basaklar
et al., 2022; Xu et al., 2020). In
MOO problems, despite the small
objective size, achieving optimal values for all objectives is often extremely challenging. Hence,
learning the set of Pareto solutions (Miettinen, 1999) that are not dominated by other solutions and
provide different trade-offs among objectives, is a preferable choice for addressing MOO problems.
An illustrative example of Pareto solutions for a two-objective problem can be seen in Figure 1. The
collection of Pareto solutions is referred to as the Pareto set (PS), with their corresponding objective
vectors forming the Pareto front (PF).

In the past few decades, a large amount of MOO algorithms have been proposed for constructing a
finite set of solutions (dubbed a “population” in MOO) to approximate the Pareto front. The multi-
objective evolutionary algorithms (MOEAs) are the most popular methods among them due to their
ability to avoid bad local optima and to obtain a set of solutions in a single run (Blank & Deb,
2020; Caramia et al., 2020). The MOEAs can be mainly divided into three different types, namely,
the decomposition-based method (e.g., MOEA/D (Zhang & Li, 2007; Zhang et al., 2008; Qi et al.,
2014; Ma et al., 2017)), the domination-based method (e.g., NSGAs (Deb et al., 2002a; Ibrahim
et al., 2016; Deb & Jain, 2013; Jain & Deb, 2013)), and the indicator-based method (e.g., SMS-
EMOA (Beume et al., 2007)).
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One crucial challenge for the current MOO research is how to efficiently generate a set of Pareto
objectives uniformly distributed on the whole Pareto front. Such a uniform objective set can well
represent diverse optimal trade-offs among different objectives, which supports flexible decision-
making and is desirable for many real-world applications. Although some efforts have been made,
the current MOEAs still struggle to obtain a set of uniformly distributed solutions, especially for
practical problems with unbalanced objectives and complicated objective landscapes. An illustration
example can be found in Figure 1(a), where the solutions generated by classical MOEA/D are biased
to a local region and cannot sufficiently cover the Pareto front.

In this work, we introduce a theoretical tool to measure the uniformity of Pareto objectives on the
Pareto front. The results (Proposition 1 and Theorem 2) illustrate the benefits of uniform Pareto ob-
jectives for MOO and explain why previous MOO methods are unable to produce uniform Pareto
objectives, both theoretically (Theorem 1) and empirically. Based on these findings, we then propose
MOEA/D-UAWA, a practical algorithm in the MOEA/D framework to generate Uniform Pareto ob-
jectives on the Pareto front utilizing Adaptive Weight Adjustment. The weight adjustment is guided
by a neural model on an estimated Pareto front as illustrated in Figure 1(b). Through extensive ex-
periments, we demonstrate that MOEA/D-UAWA consistently produces high-quality and uniform
Pareto objectives for both synthetic and real-world MOO problems and achieves better uniformity
of Pareto objectives compared to other MOEAs.

The contribution of this paper can be summarized as follows:

1. We present a comprehensive analysis of the uniform Pareto objectives on the Pareto front along
with the associated benefits. Additionally, We introduce new tools to measure uniformity and
thereby achieve uniform Pareto objectives.

2. We explore the reason behind the inability of previous methods to generate uniformly distributed
Pareto objectives. Accordingly, we propose a novel preference adjustment method that utilizes a
neural model to represent the Pareto objective distribution, enabling the generation of uniformly
distributed solutions on the Pareto front.

3. We perform extensive experiments on synthetic and real-world MOO problems. These experi-
ments demonstrate that our method efficiently generates uniformly distributed Pareto objectives.
Compared to previous MOEAs, our method outperforms them in terms of diversity and runtime.

For clarity, all the notations used in this paper can be found in Table 4 in Appendix A.2.

2 PRELIMINARIES
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Figure 2: An λ-exact Pareto solu-
tion is the intersection between the
Pareto front and vector λ.

In this section, we give a brief description of important con-
cepts in MOO. A multiobjective problem, which optimizes m
conflicting objectives, is formally denoted as

min
x∈X ⊂Rn

f(x) = (f1(x), . . . , fm(x)) , (1)

which admits multiple solutions under different preferences on
fi’s. For an MOO problem, it is difficult to compare two solu-
tions simply. The concepts of domination and Pareto solutions
are thereby introduced.
Definition 1 (Domination). A solution x(a) dominates x(b) if
there exists i ∈ [m] such that fi(x(a)) < fi(x

(b)) and ∀j ∈
[m] \ {i}, fj(x(a)) ≤ fj(x

(b)).
Definition 2 (Pareto solution). A solution x is a Pareto solu-
tion if no other solution x′ ∈ X dominates it. The set of all
Pareto solutions is denoted as the Pareto set PS, and its image
set T , where T = (f ◦ PS) is referred to as the Pareto front (PF).

The dominance of a solution x(a) over another solution x(b) implies that x(a) is strictly superior to
x(b), which indicates that x(b) cannot be regarded as an optimum in MOO. We additionally explain
the concept of weakly Pareto solution, which will be used later in this paper: x(a) is a weakly Pareto
solution if there is no other solution x(b) ∈ X such that f(x(b)) ≺ f(x(a)), where f(x(b)) ≺
f(x(a)) means fi(x(b)) < fi(x

(a)) for all i ∈ [m].
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Definition 3 (Pareto objective). For a Pareto solution x, y = f(x) ∈ Rm is the Pareto objective on
the Pareto front T .

It is very difficult to directly optimize all m objective f(x) due to their conflicting nature. A more
practical approach is to convert the objective vector f(x) into a single objective subproblem via the
aggregation function g(·, λ) with a specific preference λ. This function takes a preference vector
λ ∈ Ω as arguments to generate a specific Pareto solution (see the rigid definition in Appendix A.1),
where Ω is the support set of preference vectors. Many scalarization methods have been proposed
in the past few decades, and this work focuses on the the modified Tchebycheff (“mtche” in short)
aggregation function (Ma et al., 2017) with attractive property:

gmtche(y, λ) = max
i∈[m]

{
yi − zi
λi

}
, gmtche(·, λ) : Rm 7→ R, (2)

to produces λ-exact Pareto solutions (Mahapatra & Rajan, 2020) under mild conditions, where z
is a reference point. The optimal Pareto objective y∗ for the above problem (2) follows the pattern
y∗
1−z1
λ1

= . . . =
y∗
m−zm
λm

= C with some positive constant C (as shown in Figure 2).

3 RELATED WORK

Since we use an adaptive preference adjustment (AWA) by a neural model, we shall discuss the
difference between previous AWAs in Section 3.1. Then we show how previous MOO methods use
a neural model and discuss the differences with them in Section 3.2. Finally, we discuss the benefits
of the proposed method compared with gradient-based MOO methods in Section 3.3.

3.1 MOEA/D WITH ADAPTIVE PREFERENCE ADJUSTMENT (MOEA/D-AWA)

MOO researchers have proposed to use adaptive weight adjustments to achieve a more diverse Pareto
objectives, including PaLam (Siwei et al., 2011), Adaptive-MOEA/D (Li & Landa-Silva, 2011), and
MOEA/D-AWA (Qi et al., 2014). Compared to our proposed method, previous methods mainly use
manually-crafted rules to adjust preferences, e.g., MOEA/D-AWA removes the most crowded solu-
tion and retains the most sparse solution. The proposed method is instead motivated by a theoretical
analysis of the final solution distribution (c.f. Proposition 2), and utilizes a neural model to accelerate
optimization process.

3.2 LEARNING THE PARETO FRONT/SET BY A NEURAL MODEL

Pareto set learning (PSL) (Navon et al., 2020; Lin et al., 2022) aims to learn the entire Pareto set
through a single neural model xβ(·) : ∆m−1 7→ Rn 1, which maps a preference vector to a Pareto
solution. A PSL model xβ(·) is trained by the following loss minimization:

min
β

psl loss(β) = Eλ∼Unif(∆m−1) [g(f ◦ xβ(λ), λ)] , (3)

which is usually optimized by gradient descent (e.g., in Lin et al. (2022)). The gradient involved is
computed by the chain rule: ∇β psl loss(β) = Eλ∼Unif(∆m−1)

∂g
∂f

∂f
∂x

∂x
∂β . Previous PSL methods

sometimes fail to return globally optimal model when the objective f(·) has too many local optima.

We note our proposed Pareto front learning (PFL) model differs from PSL model. Firstly, as men-
tioned, PSL is a purely gradient-based method that cannot handle local optima, whereas PFL is only
adapted as a tool for preference adjustment in evolutionary optimization, which can produce glob-
ally optimal solutions in MOO (Zhou et al., 2019). Furthermore, the model size in PSL can be large
when the there is a huge amount of decision variables (n), whereas the size of PFL remains as PFL
addresses the constant objective space. It is suggested by Hamada et al. (2020) and Roy et al. (2023),
even in cases where the objectives fi’s and Pareto front are simple and convex, the Pareto set can
exhibit a complex structure, posing challenges for PSL.

1∆m−1 denotes the (m-1)-dimensional simplex, defined as ∆m−1 = {y|
∑m

i=1 yi = 1, yi ≥ 0.}
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3.3 GRADIENT-BASED MOO

In the growing trend of MOO, gradient-based methods are mainly adopted to optimize MOO prob-
lems. MOO-SVGD (Liu et al., 2021) employs Stein Variational Gradient Descent to achieve a
diverse Pareto solution set. Another approach by Chen & Kwok (2022) utilizes a PSL model to
optimize diversity or hypervolume of a Pareto solution set. EPO (Mahapatra & Rajan, 2020) and
OPT-in-Pareto (Ye & Liu, 2022) focus on finding a single Pareto solution that satisfies specific user
requirements. Despite the wide usage, gradient-based MOO methods, as just mentioned in the last
subsection, often struggle to produce globally optimal solutions (see a concrete example in Ap-
pendix B.6), whereas the proposed method aims to achieve global optimal MOO solutions.

4 THE PROPOSED MOEA/D-UAWA METHOD

In this section, we present a novel method for generating uniformly distributed Pareto objectives on
the PF. We highlight the theoretical benefit of uniform objectives as Property 1 in Section 4.2 and use
Theorem 2 to bound the predicting error of the whole PF by uniform objectives in Section 4.5. Before
introducing our method, we provide a theoretical analysis (Section 4.1) on why MOEA/D fails to
achieve uniform objectives, and then we develop practical algorithms and discuss the theoretical
guarantees of our proposed method in the remaining sections.

4.1 DISTRIBUTION OF PARETO OBJECTIVES BY MOEA/D

Previous methods (Deb et al., 2019; Blank et al., 2020) focusing on generating well-spaced (uni-
form) preferences. We argue that, uniform preferences may lead to non-uniform Pareto objectives.
An illustrated example is given in Figure 1. To describe that, we use Theorem 1 to describe the
distribution of Pareto objectives by MOEA/D.

We use the preference-to-objective function, denoted as h(·) : ∆m−1 7→ Rm, to represent the
mapping from a preference λ : λ ∈ Ω 2 to Pareto objectives,

y = h(λ) = arg min
y∈Y

gmtche(y, λ), (4)

where Y is the objective space, Y = f ◦ X . We use ΛN : ΛN = {λ(1), . . . , λ(N)}
to denote a uniform preference set, where ΛN solves the optimization problem,
maxΛN⊂Ω mini,j∈[N ],i̸=j ρ(λ

(i), λ(j)) (Blank et al., 2020). Here, ρ(·, ·) denotes the Euclidean
distance between two vectors. We first give the condition of such function h is well defined, i.e., the
objective y solves Problem (4) is unique as Lemma 1. This Lemma will also be used to build the
PFL model in Section 4.3.

Lemma 1 (The condition of function h(·) is well defined). If the objective function f(·) does not
have weakly Pareto solutions, the optimal objective y∗ that solves Equation 4 is a unique Pareto
objective. This implies that the function h(·) is well-defined.

As function h is well-defined, we provide the following theorem to give the distribution of Pareto
objectives YN : YN = h ◦ ΛN .

Theorem 1 (Distribution of Pareto objectives). ỸN
d−→ h ◦Unif(Ω), where ỸN is the uniform distri-

bution over YN , YN = {y(1), . . . , y(N)}. The notation “ d−→” indicates convergence in distribution,
and Unif(Ω) denotes the uniform distribution over set Ω.

Remark 1. Theorem 1 indicates that, only in special cases (e.g., the function h is an affine mapping),
uniformity in preference space induces uniformity in the Pareto objective space. We can give a
concrete example, by setting Ω = ∆2 and the objective function f as the DTLZ1 (Deb et al., 2002b)
function. The detailed discussions and proofs for this example are in Appendix C.4. However, even
when h is a simple quadratic function, h ◦ Unif(Ω) is not a uniform distribution. The proof of
Lemma 1 and Theorem 1 is provided in Appendix C.5 and C.6.

2Ω is assumed to be a compact and connected set.
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PFL model

Pref. angle 𝜣𝑵 Estimated obj. {ෝ𝒚(𝟏), … , ෝ𝒚 𝑵 }

MOEA/D obj. 𝒚(𝟏), … , 𝒚(𝑵)

Uniformity indicator 𝜹𝓣

𝜣𝑵 ← 𝜣𝑵 + 𝜵𝜣𝑵𝜹𝓣. 

𝝋 ← 𝝋 − 𝜵𝝋𝒍𝒑𝒇𝒍
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PFL loss 𝒍𝒑𝒇𝒍

PFL

Uniformity
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Figure 3: The proposed framework consists of three parts: training the PFL model, updating new
preferences (Equation (7)), and MOEA/D. The black solid arrows represent value transfer, and the
red dash arrows represent gradient updates.

4.2 THE PROPOSED MOEA/D-UAWA FRAMEWORK

Maximal-Manifold-Separation problem. To generate uniformly distributed Pareto objectives, we
propose to construct the objective configuration Y∗

N by solving the Maximal-Manifold-Separation
(MMS) problem on the Pareto front T ,

MMS(T ) = max
YN

δT = max
YN

(
min

y(i) ̸=y(j)∈YN ,YN⊂T
ρ(y(i), y(j))

)
, (5)

where ρ(·, ·) denotes the Euclidean distance between two vectors. Intuitively, Problem (5) maxi-
mizes the minimum pair-wise distances on T , resulting in a diverse configuration Y∗

N . The optimal
separation solving Problem (5) is denoted as δ∗T .

We formally summarize attractive properties of the optimal configuration Y∗
N solving Problem equa-

tion (5), and invite readers to refer to Appendix C.3 for the proof and additional details. Specifically,
Proposition 1 depicts the non-asymptotic property for a fixed sample size N , while Proposition 2
yields the asymptotic result.

Proposition 1 (Covering and δ-Dominance). Under certain assumptions (Appendix C.3), The opti-
mal configuration Y∗

N serves as a δ∗T -packing and a δ∗T covering, ensuring that all Pareto objectives
in Y∗

N δ∗T -dominate any Pareto objectives on the Pareto front T . (The definitions of packing, cover-
ing, and δ-dominance can be found in Appendix A.1.) In other words, for every y′ ∈ (f ◦ Ω), there
exists y ∈ Y∗

N such that y δ∗T -dominates y′.

Proposition 2 (Asymptotic Uniformity. (Borodachov et al., 2007)). Y∗
N is asymptotically uniform

on T , i.e., Ỹ∗
N

d−→ Unif(T ), where Ỹ∗
N is the empirical distribution over Y∗

N .

Remark 2. Proposition 1 suggests that the objectivesY∗
N obtained from solving Problem (5) possess

a strong representation ability of the entire Pareto front. This means that for any objective in T , there
exists at least one objective in Y∗

N that can approximate it within an error tolerance δ∗T . Additionally,
Proposition 2 indicates that as the sample size n increases, Y∗

N becomes increasingly similar to a
uniform distribution.

Overview of the framework: solving MMS on the unknown Pareto front T . Since the true PF T
is unknown, as shown in Figure 3, we iteratively estimate T by Pareto front learning (PFL) and re-
pick the preferences for PFL by solving MMS. There are multiple components in the framework. 0
The proposed framework is built upon the decomposition-based multiobjective evolutionary algo-
rithm (MOEA/D), where we utilize a set of preference angles ΘN =

{
θ(1), . . . , θ(N)

}
⊂ [0, π

2 ]
m−1

as the inputs for MOEA/D3. 1 The Pareto Front Learning (PFL) module is then trained using the

3The angle representation is chosen for its simplicity in optimization with box constraints, and a preference
angle along with its corresponding preference is presented in Appendix A.3.
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true objectives obtained from the output of MOEA/D. 2 Subsequently, the preference angles are
updated by optimizing the uniformity indicator.

More detailed descriptions of 1 the PFL model and 2 the preference update components are pro-
vided separately in the subsequent sections. The practical algorithm is implemented as Algorithm 1
and 2 in Appendix A.4, where we also present time complexity analysis. Practically, training time
of the PFL and preference adjustment is less than 1s, which is neglectable compared with MOEAs.

4.3 PARETO FRONT LEARNING (PFL)

Table 1: Comparison of PSL and the proposed PFL.

Method Mapping function (n≫ m)

Pareto Set Learning (PSL) (Navon et al., 2020; Chen & Kwok, 2022) ∆m−1 7→ Rn

(Proposed) Pareto front Learning (PFL) [0, π
2 ]

m−1 7→ Rm−1
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Figure 4: The original MOEA/D solu-
tions (blue dots) is non-uniform, while
solutions solving Problem (5) are uni-
form (red stars). Uniform Pareto objec-
tives correspond to non-uniform prefer-
ences.

The PFL model, denoted as hϕ(·) : [0, π
2 ]

m 7→ Rm−1,
serves as an approximation of the “preference to objec-
tive” function h(·) introduced in Section 4.1. The hϕ(·)
is trained by minimizing the Mean Square Error (MSE)
loss between the true Pareto objectives y obtained from
MOEA/D and the estimated objectives hϕ(θ). For a well-
defined training process, two different objectives y and
y′ cannot both be the optimal value of gmtche(·, λ) for a
given preference at the same time. The condition for this
property is provided in Lemma 1.

We emphasize the necessity of introducing PFL rather
than simply applying previous Pareto set learning meth-
ods (Equation (3)) (Navon et al., 2020; Lin et al., 2022;
Chen & Kwok, 2022). The reasons are twofold. 1 PSL
simply uses gradient-based methods to optimize the PSL
objective function defined in Equation (3). The induced
locally optimal solutions make PSL fail on most of ZDT,
DTLZ problems. 2 The number of decision variables n
of an MOO problem can be arbitrarily large, and there-
fore so can be the size of PSL model. In contrast, the PFL
model is constrained in the function space [0, π

2 ]
m−1 7→ Rm−1, which implies its complexity is

independent of n.

We focus on two quantities for a PFL model: (1) the training loss, denoted as lpfl, and (2) the gen-
eralization error for a new angle θ′ after applying the uniform configuration specified in Equation
(5). By Allen-Zhu et al. (2019), we can prove the training loss lpfl converges to a globally optimal
solution in polynomial time w.r.t to number of solutions N and width of the neural model. The
discussion on the generalization error is deferred to Section 4.5.

4.4 PREFERENCE ADJUSTMENT WITH A PFL MODEL

Exactly solving Problem (5) for the optimal configuration is generally an intractable problem (Boro-
dachov et al., 2019). We consider the following surrogate problem in which the preference-to-
objective map h(·) is approximated by a neural network hϕ(·),

MMS(T̂ ) = max
ΘN

δT̂ = max
ΘN

(
min

i ̸=j,i,j∈[N ]
ρ(hϕ(θ

(i)), hϕ(θ
(j)))

)
(6)

We find that, given a fixed neural network hϕ(·) (the PFL model), the preference angles θi’s in
Problem (6) (as well as the estimated solutions ŷ(i)’s) can be optimized efficiently via projected
gradient ascent method, θ(i) ← Proj(θ(i) + η∇θ(i) δ̂T ), i ∈ [N ]. The Proj operator projects a pref-
erence angle back to its domain [0, π

2 ]. The updated rule can be written compactly as the following
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equation,
ΘN ← Proj(ΘN + η∇ΘN

δ̂T ). (7)

Figure 4 demonstrates that, using a PFL model, with only a few Pareto objectives we can effectively
estimate the whole Pareto front. The blue dots represent the original Pareto objectives optimized
by MOEA/D, which are not uniformly distributed due to Theorem 1; the adjusted preferences are
indicated by red stars in the 1-D simplex. After updating preferences using gradient ascent, Pareto
objectives are distributed uniformly in the estimated Pareto front, as described in Proposition 2.

4.5 PFL GENERALIZATION BOUND

We focus our attention on bounding the generalization error of our proposed methods, namely ϵ̃ =

|R(h̃)− R̂(h̃)| for an arbitrary h̃(·). As we have highlighted in Appendix C.1, the population risk of
ĥ can be controlled via bounding such generalization error. Specifically, we show that the regret error
ϵ̃ = |R(h)−R̂(h)| heavily depends on the margin δv . The δv represents for the maximal diameter of
the Voronoi cells (Okabe et al., 2009) formed by the Pareto objective YN = {y(1), . . . , y(N)}, where
YN solves Equation (5). For the formal definition of Voronoi cells and diameter of a set, please refer
to Definitions 8 and 9 in the Appendix A.1.

The complete results are stated as follows (the proof of Theorem 2 is provided in Appendix C.2):
Theorem 2 (Generalization bound of a PFL model). We first make some regularity assumptions:

1. (Function smoothness). Both (h̃− h∗)(·) and h−1
∗ (·) are L- and L′-Lipschitz, respectively, i.e.,

∥(h̃− h∗)(x1)− (h̃− h∗)(x2)∥ ≤ L∥x1 − x2∥, ∀x1, x2 ∈
[
0,

π

2

]m−1

,

∥h−1
∗ (y1)− h−1

∗ (y2)∥ ≤ L′∥y1 − y2∥, ∀y1, y2 ∈ Rm,
(8)

where h∗ denotes the true mapping function from preferences to objectives.

2. (Function upper bound).
∥∥∥h̃− h∗

∥∥∥
∞
≤ A,

∥∥h−1
∗

∥∥
∞ ≤ A′.

3. (Manifold property). We assume T is a differentiable, compact (m-1)-D manifold, a common
assumption found, for example, in (Hillermeier, 2001). Furthermore, we consider T to be con-
nected, a widely applicable assumption in scenarios such as ZDT 1, 2, 4.

For the risk ϵ̃ = |R(h̃)− R̂(h̃)|, we then have

ϵ̃ ≤ 2Hm−1(T )AA′LL′δv + 2CA2

√
W1(U , ỸN ) + δv, (9)

where U is the uniform distribution over T , ỸN is the empirical distribution of YN ,W1(·, ·) is the
Wasserstein distance with the l1 norm,Hm−1(·) is the Hausdorff dimension function, and C is some
universal constant representing the smoothness of T (Chae & Walker, 2020, Thereom 1).

Remark 3. In Theorem 2 the error bound for ϵ̃ involves two quantities, the diameter of the Voronoi
cell δv and W1(U , ỸN ). The margin δv is controlled through maximizing the minimal separation
distance δT . The decaying rate of W1(U , ỸN ) is impacted by not only the margin δv , but also the
manifold properties of the Pareto front. I.e., the overall generalization error rate is not completely de-
cided by the margin δv . However, by Proposition 2, we still haveW1(U , ỸN )→ 0 since ỸN weakly
converges to U , and minimizing the margin δv is thus critical to the control of the generalization
error ϵ̃.

5 EXPERIMENTS

5.1 EXPERIMENT SETTINGS

We validate the effectiveness of the proposed method on various problems, including ZDT1, 2,
4 (Deb et al., 2006), DTLZ 1-2 (Deb et al., 2002b), and real-world testing problems (Tanabe &
Ishibuchi, 2020). For the ease of presentation, we normalize the PF of RE37 to [0, 1]

3. To test the
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Figure 5: Results on RE21 and DTLZ2.

ability of dealing objectives of different scales, we normalize the PFs of RE21 and RE22 to [0, 0.5]×
[0, 1]. Problem ZDT4 and DTLZ 1-2 possess numerous locally optima that cannot be identified by
gradient-based MOO methods (see Appendix B.6). REX problems are real-world problems with
unknown Pareto fronts, demonstrating the capability to handle complex Pareto front shapes. Lastly,
there are multiple preference vectors that do not intersect with the RE37 Pareto front, leading to
duplicate Pareto objectives by the original MOEA/D. Results on RE37 validate the proposed method
can automatically avoid selecting such preferences leading to duplicate solutions, thereby enhancing
solution diversity.
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Figure 6: Results on RE37.

Table 2: The running time (every 1k
generations) of SMS-EMOA and the
proposed method.

Running Time (m) DTLZ2 RE37

SMS-EMOA 1.21 3.23
Proposed 0.56 0.71

The implementation in this study relies on the pymoo
(Blank & Deb, 2020) and PyTorch (Paszke et al., 2019)
libraries. We utilize the simulated binary crossover (SBX)
operator and polynomial mutation technique (Deb &
Beyer, 2001) for MOEA/D-based methods. Following the
setting in pymoo, we do not maintain an external popu-
lation (EP), since it can be computationally and storage
intensive, particularly when dealing with many objectives
(Li & Landa-Silva, 2011).

We compare our method with 1 the vanilla MOEA/D (Zhang & Li, 2007), 2 NSGA2 (Deb et al.,
2002a), 3 MOEA/D with adaptive weight adjustment ( MOEA/D-AWA ) (Qi et al., 2014), 4
PaLam (Siwei et al., 2011), and 5 SMS-EMOA (Beume et al., 2007). Detailed descriptions of
these methods and implementations are deferred to Appendix B.1. To assess the performances, we
utilize the hypervolume ( HV ) (↑) (Guerreiro et al., 2020), the sparsity (↓) (Xu et al., 2020),
the spacing (↓) (Schott, 1995) , the minimal distance on the Pareto front (δT ) (↑), and its soft
version (δ̃T ) (↑) indicators. Please refer to Appendix B.2 for detailed descriptions of these indicators.

5.2 RESULTS

The average results on five random seeds for the problems are displayed in Table 5 in Appendix B.4,
along with the visualization results in Figure 10-17. Detailed discussions on these results are pro-
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Table 3: Results on all problems averaged on five random seeds, with the optimal indicators among
all problems highlighted in bold. For results on all problems, please refer to Appendix B.4

Problem Method HV (↑) Spacing (↓) Sparsity (↓) δT (↑) δ̃T (↑)
RE21 NSGA2 1.226 0.066 0.022 0.024 -0.063

SMS-EMOA 1.252 0.028 0.017 0.095 -0.028
MOEA/D 1.246 0.086 0.024 0.072 -0.058
MOEA/D-AWA 1.250 0.028 0.017 0.088 -0.031
PaLam 1.252 0.025 0.017 0.101 -0.027
Proposed 1.252 0.002 0.016 0.123 -0.020

RE37 NSGA2 1.051 0.069 0.005 0.013 -0.140
SMS-EMOA 1.114 0.041 0.005 0.029 -0.128
MOEA/D 1.052 0.072 0.013 0 -0.204
MOEA/D-AWA 1.091 0.078 0.009 0.001 -0.177
PaLam 1.112 0.076 0.006 0 -0.174
Proposed 1.110 0.045 0.005 0.040 -0.086

vided. Due to the presence of numerous local optima, gradient-based multi-objective optimization
(MOO) methods fail in certain problems. We provide a concrete example of the failure of gradient
MOO in Appendix B.6. Key findings from the experiments are summarized in the following section.

1 The proposed method achieves the optimal spacing indicator, as shown in Figure 5 and Ta-
ble 3, for two-objective problems. The spacing indicator is very close to zero, indicating that the
distances between adjacent solutions are nearly equal. In comparison to the MOEA/D (Figure 5-(a)),
the proposed method generates more uniform objectives. The MOEA/D solutions are denser in the
bottom-right area and sparser in the upper-left region, which cannot effectively cover the entire PF
when compared to the proposed method.

2 We observed that the HV-based method, SMS-EMOA, generated more diverse solutions com-
pared to MOEA/D in RE21 and RE22 (see Table 5 in Appendix B.4). On the RE37 problem, nu-
merous preferences did not intersect with the Pareto front, leading to the production of numerous
duplicate Pareto objectives (δT = 0) by MOEA/D.

The proposed method mitigates the problem of duplicate Pareto objectives generated by MOEA/D
through adaptive weight adjustment. Figure 6 and Table 3 demonstrate that the solutions generated
by the proposed method possess the most uniform distribution on the Pareto front. Notably, the HV-
based method in RE37 tends to produce solutions on the boundary of the Pareto front, which may
not be desirable compared to the proposed method in certain applications.

3 Despite the general belief that hypervolume-based methods can generate diverse solutions in
multi-objective optimization (MOO) (Auger et al., 2012; Guerreiro et al., 2020), our findings (see
Table 5 in Appendix B.4 and Figure 9 in Appendix B.3) reveal that hypervolume indicators can be
very similar, while the distribution of solutions can vary significantly. This highlights the need to
utilize a novel indicator, as proposed, for measuring and optimizing the Pareto objectives for MOO.
Furthermore, the proposed method is 4.5x faster than SMS-EMOA on RE37 (Table 2), since the
proposed method only estimate and optimize the uniformity of a solution set only with minimal
iterations. In most cases, the proposed method is optimized by MOEA/D under fixed preferences
obtained from the neural PFL model.

6 CONCLUSIONS

This paper addresses a long-standing open problem in multiobjective evolutionary algorithms
(MOEAs): the generation of a finite set of diverse/uniform Pareto objectives. It is the first paper
to rigorously analyze the distribution of Pareto objectives, which sheds light on the understanding of
solution generation in MOEAs. Building upon these analytical findings, the paper introduces a novel
algorithm that achieves a uniform Pareto objective set through adaptive weight adjustment. In future
research, we focus our attention on the acceleration of the optimization process and the application
of the algorithm to large-scale MOO problems.
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A METHODOLOGY

A.1 DEFINITIONS AND MOO THEORY

As a preliminary, we introduce several topological concepts to describe basic geometric properties
of a set Y , from different perspectives. In Definition 4, we extend the concept of dominance to δ-
dominance. In Definitions 6 and 7, we introduce the δ-packing and δ-covering numbers of a set Y ,
which are the maximal number of δ/2-balls and minimal number of δ-balls one needs, to pack in
and cover Y , respectively. They measure the metric entropies of Y; See e.g., Vershynin (2018).

Definition 8 defines the diameter of Y , which measures the supremum of the distances between pairs
of points in Y . Definition 9 gives a partition of Y , given some point set YN in Y . Briefly, any point
in Y will be partitioned to the Voronoi cell that has the minimal distance to it. Intuitively, if points
in YN are approximately evenly distributed, then they will induce Voronoi cells that have similar
volumes to each other.

Finally, Hausdorff measure in Definition 10 introduces an adaptive and accurate way to measure the
volumes of different sets in a multidimensional Euclidean space. For example, a curve has a trivial
zero Borel measure in R2, yet the 1-dimensional Hausdorff measure is non-trivial and could measure
its length. Likewise, for a spherical shell in R3 which has zero Borel measure, the corresponding
2-dimensional Hausdorff measures its surface area.
Definition 4 (δ-domination). δ-domination is an approximate Pareto solution defined with an error
tolerance δ. Specifically, a solution x(a) δ-dominates (Zuluaga et al., 2016) x(b), if

(
f(x(a))− δ

)
dominates f(x(b)).

The definition of an aggregation function is adopted and modified from (Miettinen, 1999, Chapter
2.6), where it was originally referred to as the value function.
Definition 5 (Aggregation function). An aggregation function g(·) : Rm 7→ R. g(·) is a decreasing
function, i.e., g(x) < g(x′), if xi < x′

i, ∀i ∈ [m].

We have the following Lemmas (adopted and modified from (Miettinen, 1999, Thereom 2.6.2)) for
an aggregation function,
Lemma 2. Let y∗ be one of the optimal solution of g(·, λ), then y∗ is (weakly) Pareto optimal.
Lemma 3. Let y∗ be the only optimal solution of g(·, λ), then y∗ is Pareto optimal.
Definition 6 (δ-packing, δ-packing number). A δ-packing of a set Y is a collection of element
{y1, . . . , yn} such that, ρ(yj , yk) > δ for all j ̸= k. The δ-packing number Npack(δ,Y) is the
largest cardinality among all δ-packing. Here δ is called the packing distance.
Definition 7 (δ-covering, δ-covering number). A δ-covering of a set Y with respect to a metric ρ
is a set {θ1, . . . , θN} ⊂ Y such that for each θ ∈ Y , there exists some i ∈ {1, . . . , N} such that
ρ(θ, θi) ≤ δ. The δ-covering number Ncover(δ,Y) is the minimal cardinality among all δ-coverings.
Definition 8 (Set diameter). The diameter of any subset Y ⊆ Rm is defined by

diam(Y) = max{ρ(y1, y2) | y1, y2 ∈ Y}. (10)

Definition 9 (Voronoi cells (Okabe et al., 2009)). The Voronoi cells {B1, . . . ,BN} of a finite set
YN ⊆ Y , where YN =

{
y(1), . . . , y(N)

}
, is defined by,

Bi =
{
y | min

y∈Y
ρ(y, y(i))

}
, ∀i ∈ [N ]. (11)

Definition 10 (Hausdorff measure). Consider the metric space (Rm, ρ) where ρ(·, ⋆) is the Eu-
clidean distance. The d-dimensional Hausdorff measure of any Borel set Y ⊆ Rm is

Hd(Y) = lim
δ→0

inf
Y⊆∪∞

i=1
Ui

diam(Ui)<δ

[ ∞∑
i=1

{diam(Ui)}d
]
, d ∈ (0,m).

We use Hausdorff measure to further define the Hausdorff dimension of a set. We first introduce
the following Theorem 3 (Folland, 1999), which guarantees that, for any Y , there exists at most one
d† ∈ R which makes the d†-dimensional Hausdorff measure of Y both non-zero and finite. We call
this d† the Hausdorff dimension of Y.
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Theorem 3. For any Borel set Y ⊆ Rm, suppose that for some d†, 0 < Hd†(Y) < ∞. Then we
haveHd′(Y) = 0 for any d′ < d† andHd′(Y) =∞ for any d′ > d†.

Definition 11 (Hausdorff dimension). We say the Hausdorff dimension of Y is d† if and only if,
0 < Hd†(Y) <∞.

A.2 NOTATION TABLE

For clarity, we present a comprehensive list of symbols and notation in Table 4.

Table 4: The notation table.

Notation Meaning Dimension

N Number of solutions. -
n Dimension of a solution. -
m Number of objectives. -
x An MOO solution. n
X The decision space. Rn

y, f(x) The objective vector of x. m
Y The objective space. Rm

YN A set of objectives, YN = {y(1), . . . , y(N)} . m
T The Pareto front. Rm

δT The minimal separation distance of a set belong to T (Eq. 5).
δv The maximal diameter of all Voronoi cells. (Eq. 18).
λ The preference vector. m
θ(λ), θ The angular parameterization of vector λ (Defined in Section A.3). m− 1
galg(·|λ) The multiobjective aggregation function. Rm 7→ R
h(·) The function maps a preference to a Pareto solution. h(·) : Ω 7→ Rm.
hϕ(·) The PFL model. hϕ(·) :

[
0, π

2

]m−1 7→ Rm

Hd(·) Hausdorff dimension function .

A.3 THE RELATION BETWEEN PREFERENCE ANGLE θ(λ) AND PREFERENCE λ

Given θ(λ) ∈ [0, π
2 ]

m−1 as a parameter representation of λ ∈ ∆m−1, the preference angle and the
corresponding preference vector can be converted using the following equations:

λ1 =
√
cos(θ1)

λ2 =
√
sin(θ1) cos(θ2)

...

λm =
√
sin(θ1) sin(θ2) . . . sin(θm−1).

(12)

For a given preference vector λ, computing the preference angle can be achieved by solving Equa-
tions (12).

A.4 ALGORITHM

The total algorithms run as Algorithm 1 and 2. The proposed algorithm mainly adopt the MOEA/D
framework. For simplicity, we use the Simulated Binary Crossover (SBX) (Deb et al., 1995) and
poly-nominal mutation mutation operators (Deb & Deb, 2014). It is possible to use more advanced
MOEA/D framework, e.g., MOEA/D with differential evolution (Tan et al., 2012), which is left as
future works.

As summarized by Algorithm 1, the proposed approach dynamically adjusts the preference angles
on the estimated Pareto front learned by the current objectives. The updated preferences are then set
as the new preferences for the MOEA/D algorithm.
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Algorithm 1 Training of PFL and preference adjustment.
Input: Preference angle set ΘN and objective set YN from MOEA/D.
# Training the PFL model.
for i=1:Npfl do

ϕ← ϕ− η̃∇ϕlpfl.
end
# Solving the maximal separation problem at the estimated Pareto front (Problem (6)) by gradient
ascent.
for i=1:Nopt do

ΘN ← Proj(ΘN + η∇ΘN
δ̂T̂ ).

end
Output: The updated preference angles {θ(1), . . . , θ(N)}.

Algorithm 2 MOEA/D with uniform adaptive preference adjustment (MOEA/D-UAWA).

Input: Initial N preference ΛN : ΛN =
{
λ(1), . . . , λ(N)

}
by (Das & Dennis, 1998), the initial

solution set XN : XN =
{
x(1), . . . , x(N)

}
, the MOO objective function f(·).

for k=1:K do
for i=1:Ninner do

# Step 1. Evolutionary algorithm.
for j=1:N do

# Generate a crossover solution from neighbourhoods of x(j) using SBX operator.
x(j) ← SBX(x(j1), x(j2)), where x(j1), x(j2) are selected randomly from the neighbor-
hood set of x(j).
# Mutation the solution by the polynomial mutation operator.
x(j) ← Mutate(x(j)).

end
# Update the solution each sub-problems by elites.
for j=1:N do

x(j) ← argmini∈B(j)∪{x(j)} g
mtche(f(xi), λ(j)). B(j) is the neighborhood index set

(Zhang & Li, 2007) of solution x(j).

end
end
# Step 2. Preference adjustment.
Calculate the preference angle set ΘN from preferences by Equation (12).
YN = f ◦ XN .
ΘN ← Algorithm1(ΘN , YN ).
Update the preference vector λ(1), . . . , λ(N) by Equation (12).

end

We briefly analyze the running complexity of the proposed method. The main complexity is inherited
from MOEA/D (Zhang & Li, 2007). The addition of the PFL model training and the uniformity
optimization introduces two additional parts.

Training the PFL model is a standard supervised learning problem, hence the complexity is pro-
portional to the number of objectives m and sample numbers N . The overall complexity is
O(mN ·Npfl).

The uniformity optimization involves calculating the lower (or upper) triangular matrix of an adja-
cency matrix, which has a complexity of O(m · N(N−1)

2 ) = O(mN2). Therefore, the total com-
plexity of the optimization process is O(mNopt · mN(N−1)

2 ) = O(mN2 ·Nopt).

Practically, training time of the PFL and preference adjustment is less than 1s, which is neglectable
compared with MOEAs. The calculation of the adjacency matrix and the MOEA/D algorithm can
be executed in parallel, which can further improve the efficiency of the overall running time.
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B EXPERIMENTS DETAILS

B.1 COMPARISON METHODS

We give a detailed elaboration of the comparison methods used in the experiments as follows. The
code for the proposed method will be made publicly available upon acceptance.

1. The vanilla MOEA/D method (Zhang & Li, 2007) employs diverse distributed preference
vectors to explore a diverse Pareto solution set. However, the uniformity observed in the
preference space may not lead to uniformity in the objective space, resulting in a coarse
level of solution diversity sought by MOEA/D.

2. The non-dominated sorting genetic algorithm ( NSGA2 ) (Deb et al., 2002a), which ap-
plies the concepts of non-dominated sorting and crowding distance to select the most elite
solutions that cover the diverse space of the Pareto front. To maintain solution diversity
in the population, the selection process uses tournament selection and crowding distance
calculation. The code directly follows the pymoo library.

3. The MOEA/D with adaptive weight adjustment ( MOEA/D-AWA ) (Qi et al., 2014).
MOEA/D-AWA is an improvement over the vanilla MOEA/D, which aims to improve the
replaces the most crowded solution with the most sparse solution. A detailed comparison
of MOEA/D-AWA and the proposed method can be found in Appendix B.5.
Since the source code for their implementation was not publicly available, we implemented
it by ourselves. In the original implementation of MOEA/D-AWA, they maintain an exter-
nal population (EP). However, as the modern MOEA frameworks (e.g., pymoo, platemo)
are no longer dependent on EP, we employ a neural network surrogate model to predict the
most sparse solution (Qi et al., 2014).

4. The Pareto adaptive weight (PaLam) method (Siwei et al., 2011) approximates the Pareto
front using a simple math mode yp1 + yp2 = 1 and generates uniform Pareto objectives by
utilizing the hypervolume indicator (Guerreiro et al., 2020).
Since real-world problems often exhibit complex Pareto fronts, to ensure fairness, we
employ a neural model for training to predict the true Pareto front instead of rely-
ing on a simple mathematical model. We use the code in https://github.com/timodeist/
multi objective learning to develop a new gradient-based algorithm for paλ to achieve fast
optimization for the HV indicator predicted by neural networks. Our improved version of
the vanilla paλ significantly outperforms its original implementation.

5. The SMS-EMOA (Beume et al., 2007) method, which uses the hypervolume indicator as
the guidance for the multiobjective evolutionary optimizations. The code for SMS-EMOA
directly follows the pymoo library.

B.2 METRICS

In order to measure the performance of our proposed method, we employ the following metrics
to measure uniformity and the solution quality. The up-arrow (↑)/down-arrow(↓) signifies that a
higher/lower value of this indicator is preferable.

1. The hypervolume (↑) (HV) indicator (Guerreiro et al., 2020), which serves as a measure
of the convergence (the distance to the Pareto front) and only a coarse measure of the
sparsity/uniformity level of a solution set.

2. The sparsity (↓) indicator (Xu et al., 2020), which measures the sum of distance of a
set of solutions in the non-dominated sorting order (Deb et al., 2002a).

3. The spacing (↓) indicator (Schott, 1995), which measures the uniformity of a set of
solutions. It is quantified as the standard deviation of the distance set {d1, . . . , dN}.

spacing(YN ) = std(d1, . . . , dN ), (13)

where di = minj∈[m],j ̸=i ρ(y
(i), y(j)), serving as the minimal distance from solution yi to

the rest of objectives.
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4. The δT (↑) and δ̃T (↑) indicators represent the (soft) minimal distances among different
solutions within a solution set.

δ̃T = − 1

K
log

∑
i̸=j

exp (−K · ρ(y(i), y(j))). (14)

A large δT /δ̃T indicator means that, any different solution pairs are far away from each
other. Noted that, it is possible that δ̃T < 0. K is a positive constant.

B.3 LEARNING PROCESS OF THE PROPOSED METHOD

In the subsection, we show the process of the proposed method find the uniform Pareto objectives.
We take two problems as an example, the two-objective ZDT1 problem and the three-objective
DTLZ2.

(ZDT1 problem.) We first investigate the optimization process of δT (MMD) on a simple ZDT1
problem. Before the first preference adjustment, the MMD indicator is around -0.15, and after the
first round of adjustment, this indicator is optimized to -0.21 in the estimated Pareto front. In the
third adjustment, the MMD indicator is always around -0.2, which indicates that the solutions are
distributed uniformally.
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Figure 7: The δT (MMD) optimization curve in ZDT1.

Figure 8 shows the MSE loss of the PFL model during optimization. It is evident that the training
loss is optimized to zero after only a few epochs. Additionally, we observe that the model adapts
well to new solutions. When the solutions are updated to a new position, the initial loss remains very
low.
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(c) Third iteration.

Figure 8: The PFL loss curve in ZDT1.

(The DTLZ2 problem.) We plot the MMD and hypervolume on the DTLZ2 problem in Fig-
ure 9. Figure 9 clearly demonstrates that the MMD indicator steadily increases with each iteration,
indicating a progressive improvement in the uniformity of the solutions. Notably, our findings chal-
lenge the conventional belief that the hypervolume indicator measures the uniformity of a Pareto set.
We discovered that the hypervolume indicators can be very similar while the distribution of Pareto
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objectives are very different. This suggests that the hypervolume indicator alone is an imprecise
measure of solution uniformity.
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(b) The hypervolume learning curve.

Figure 9: Learning curves on the DTLZ2 problem.

B.4 RESULTS ON ALL PROBLEMS

In this subsection, we visualize the results on all problems through Figure 10 to 17. Those figures
depict the outcomes of MOEA/D, SMS-EMOA, and MOEA/D-AWA. To conserve space, the results
on NSGA2 and PaLam are excluded since NSGA2 is less relevant compared to our method, and
PaLam has been significantly modified, yielding similar results to our proposed method with only a
different uniformity indicator. The numerical results are shown in Table 5.

Regarding two-objective problems, depicted in Figures 10-14. We summarize the key findings from
the experiments in the rest of this subsection.

(Neighbour distances are equal in two-objective problems). For the standard ZDT1 and ZDT2
problems, which have a Pareto front ranging from zero to one, the Pareto objectives optimized by
MOEA/D are not uniformly distributed. However, our method ensures that the distance between
adjacent solutions is equal, indicating a more uniform distribution. For MOEA/D, when considering
a convex-shaped Pareto front like ZDT1, solutions tend to be denser in the middle. Conversely, for
a concave-shaped Pareto front like ZDT2, solutions are denser towards the margins. However, the
proposed method’s Pareto objective distribution remains unaffected by the shape of the true Pareto
front.

(The proposed method is robust to objectives with different scales). When function ranges dif-
fer in scale (see Figure 13-14), the uniformity of pure MOEA/D worsens. In this scenario, achieving
preference uniformity does not guarantee objective uniformity. Solutions become even sparser in
the upper-left region of the objective space. In contrast, the proposed method consistently generates
uniform Pareto objectives. Hypervolume-based methods remain unaffected when function objec-
tives have different scales. However, objectives produced by hypervolume-based methods are not
strictly uniform, and hypervolume-based methods are typically slower.

(HV is not a accurate uniformity indicator). The hypervolume indicator only provides an ap-
proximate measure of solution diversity. Table 5 illustrates that similar hypervolume indicators can
correspond to significantly different solution distributions. In the case of hypervolume-based meth-
ods (PaLam or SMS-EMOA), the largest hypervolume indicator does not necessarily lead to the
most uniform objectives for most problems.

(Preference uniformity induces solution uniformity in DTLZ1). As mentioned in Remark 1,
the Pareto front of DTLZ1 can be represented as an affine transformation of the 2-D simplex ∆2

(h(x) = 1
2x). In this paper, this is the only scenario where uniform preferences result in uniformly

distributed Pareto objectives. Hence, MOEA/D with uniform preferences performs exceptionally
well on the DTLZ1 task. The maximal manifold separation indicator, δT , outperforms all other
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methods, and the proposed method achieves a value of δT = 0.099, which is very close to that of
MOEA/D and significantly outperforms other methods.

(Results on the difficult RE37). Finally, we present the results for the challenging three-objective
real-world problem RE37. One of the difficulties of this problem is the presence of many preferences
within the preference simplex ∆2 that do not intersect with the Pareto front (PF). The pure MOEA/D
algorithm produces numerous duplicate solutions when preferences do not intersect with the Pareto
front (PF), resulting in wasted resources and poor solution diversity. The hypervolume-based method
SMS-EMOA exhibits an interesting phenomenon: it mainly focuses on the marginal region of the
PF, which may not always meet user demands. In contrast, the proposed method is the only method
that generates uniform objectives that cover the entire PF.
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Figure 10: Results on ZDT1.
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Figure 11: Results on ZDT2.
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Figure 12: Results on ZDT4.

B.5 DIFFERENCE OF THE PROPOSED MOEA/D-UAWA AND MOEA/D-AWA

The preference adjustment process of MOEA/D-AWA (Qi et al., 2014) is demonstrated in Figure 18.
During each update, the algorithm eliminates the most crowded objective (depicted as a red dot in
Figure 7) and adds the most sparse objective (represented by a green dot). The resulting preference
is indicated by a green star. The sparsity measure is determined using Equation (4) as outlined in the
original publication (Qi et al., 2014). From Figure 18, it is evident that the initial objectives obtained
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Table 5: Results on all problems averaged on five random seeds, with the optimal indicators among
all problems highlighted in bold.

Problem Method HV (↑) Spacing (↓) Sparsity (↓) δT (↑) δ̃T (↑)

ZDT1 NSGA2 1.036 0.072 0.033 0.032 -0.039
SMS-EMOA 1.053 0.021 0.027 0.141 0.013
MOEA/D 1.050 0.050 0.028 0.117 -0.005
MOEA/D-AWA 1.051 0.031 0.027 0.120 0
PaLam 1.054 0.018 0.027 0.148 0.015
Proposed 1.053 0.002 0.027 0.161 0.018

ZDT2 NSGA2 0.708 0.066 0.035 0.018 -0.048
SMS-EMOA 0.726 0.041 0.029 0.130 0.006
MOEA/D 0.722 0.025 0.028 0.123 0.011
MOEA/D-AWA 0.722 0.023 0.027 0.131 0.012
PaLam 0.722 0.025 0.028 0.146 0.014
Proposed 0.724 0.001 0.027 0.161 0.018

ZDT4 NSGA2 1.041 0.053 0.032 0.055 -0.023
SMS-EMOA 1.052 0.024 0.028 0.133 0.012
MOEA/D 1.046 0.051 0.028 0.118 -0.004
MOEA/D-AWA 1.040 0.030 0.028 0.116 0.001
PaLam 1.049 0.015 0.027 0.146 0.016
Proposed 1.050 0.012 0.027 0.139 0.015

RE21 NSGA2 1.226 0.066 0.022 0.024 -0.063
SMS-EMOA 1.252 0.028 0.017 0.095 -0.028
MOEA/D 1.246 0.086 0.024 0.072 -0.058
MOEA/D-AWA 1.250 0.028 0.017 0.088 -0.031
PaLam 1.252 0.025 0.017 0.101 -0.027
Proposed 1.252 0.002 0.016 0.123 -0.020

RE22 NSGA2 1.155 0.04 0.022 0.033 -0.055
SMS-EMOA 1.191 0.021 0.018 0.092 -0.025
MOEA/D 1.186 0.046 0.02 0.06 -0.048
MOEA/D-AWA 1.189 0.025 0.017 0.092 -0.028
PaLam 1.188 0.014 0.018 0.106 -0.018
Proposed 1.19 0.002 0.017 0.125 -0.019

DTLZ1 NSGA2 1.692 0.022 0.001 0.008 -0.194
SMS-EMOA 1.697 0.011 0.001 0.058 -0.172
MOEA/D 1.696 0.000 0.003 0.100 -0.107
MOEA/D-AWA 1.696 0.010 0.003 0.058 -0.169
PaLam 1.697 0.019 0.001 0.030 -0.172
Proposed 1.697 0.001 0.003 0.099 -0.169

DTLZ2 NSGA2 1.033 0.070 0.004 0.010 -0.126
SMS-EMOA 1.117 0.053 0.010 0.087 -0.073
MOEA/D 1.100 0.045 0.008 0.164 -0.019
MOEA/D-AWA 1.101 0.051 0.008 0.080 -0.035
PaLam 1.106 0.059 0.006 0.013 -0.081
Proposed 1.104 0.023 0.011 0.205 -0.007

RE37 NSGA2 1.051 0.069 0.005 0.013 -0.140
SMS-EMOA 1.114 0.041 0.005 0.029 -0.128
MOEA/D 1.052 0.072 0.013 0 -0.204
MOEA/D-AWA 1.091 0.078 0.009 0.001 -0.177
PaLam 1.112 0.076 0.006 0 -0.174
Proposed 1.110 0.045 0.005 0.040 -0.086
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Figure 13: Results on RE21.
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Figure 14: Results on RE22.
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Figure 15: Results on DTLZ1.
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Figure 16: Results on DTLZ2.

by MOEA/D-mtche (MOEA/D with modified Tchebycheff aggregation function) are unevenly dis-
tributed on the (surrogate) Pareto front. By contrast, MOEA/D-AWA successfully eliminates the
most crowded objective in the upper-right region of the DTLZ2 problem, adding a new objective at
the center of the Pareto front.

21



f 1

0.0

0.2

0.4

0.6

0.8

1.0

f2

0.0
0.2

0.4

0.6

0.8

1.0

f3

0.0

0.2

0.4

0.6

0.8

1.0

(a) MOEA/D

f 1

0.0

0.2

0.4

0.6

0.8

1.0

f2

0.0

0.2

0.4

0.6

0.8

1.0

f3

0.0

0.2

0.4

0.6

0.8

1.0

(b) SMS-EMOA

f 1

0.0

0.2

0.4

0.6

0.8

1.0

f2

0.0
0.2

0.4

0.6

0.8

1.0

f3

0.0

0.2

0.4

0.6

0.8

1.0

Solutions

(c) MOEA/D-AWA

f 1

0.0

0.2

0.4

0.6

0.8

1.0

f2

0.0
0.2

0.4

0.6

0.8

1.0

f3

0.0

0.2

0.4

0.6

0.8

1.0

Solutions

(d) Proposed

Figure 17: Results on RE37.

However, the aforementioned strategy is heuristic in nature, lacking a guarantee of achieving optimal
solutions during the final adjustment phase. Another difference is MOEA/D-AWA compared with
the proposed method is that it only remove and add one solution for each preference adjustment,
which make it less efficient compared with the proposed method.
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Figure 18: Preference adjustment in MOEA/D-AWA.

B.6 COMPARISON WITH GRADIENT-BASED MOO

We take the ZDT4 problem as an example, which has the form of,

f1(x) = x

g(x) = 1 + 10(n− 1) +

n∑
i=2

(x2
i − 10 cos(4πxi))

h(f1, g) = 1−
√
f1/g

f2(x) = g(x)h(f1(x), g(x)) 0 ≤ x1 ≤ 1,

− 10 ≤ xi ≤ 10, i = 2, . . . , n.

(15)

It is clear that due to the term
∑n

i=2(x
2
i −10 cos(4πxi)), the objective function has plenty of locally

optimas. Simply using gradient methods fails on this problem as shown in Figure 19.

C THEORETICAL RESULTS

In this section, we provide some theoretical results of the benefits of the uniform Pareto objectives.
Section C.1 provides the preliminary tools of risk analysis which is served for Section C.2. Section
C.2 proves the main Theorem 2 in the main paper. The other sections provide the missing proofs in
Section 4.1 and 4.2.
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Figure 19: Gradient-based MOO on ZDT4.

C.1 RISK DECOMPOSITION

The excess risk of the prediction model, i.e., R(ĥ), can be decomposed in four parts according to
Telgarsky (2021),

R(ĥ) ≤
∣∣∣R(ĥ)− R̂(ĥ)

∣∣∣︸ ︷︷ ︸
ϵ1

+ R̂(ĥ)− R̂(h)︸ ︷︷ ︸
ϵ2

+
∣∣∣R̂(h)−R(h)

∣∣∣︸ ︷︷ ︸
ϵ3

+R(h)︸ ︷︷ ︸
ϵ4

; (16)

Here R(·) denotes the true risk and R̂(·) denotes the empirical risk with n samples, ĥ denotes the
function achieved by SGD and h̄ is some low-complexity approximation of h∗(·) in a function class
F of all possible neural-networks predictors.

The second term ϵ2 is the optimization loss, which can be optimized to global optimal in a time poly-
nomially in the network depth and input size according to Allen-Zhu et al. (2019, Th. 1). The forth
term ϵ4 is the approximation error, both of which can be small due to the universal approximation
theorem with an appropriately specified F ; See e.g., Telgarsky (2021, Preface).

In the next section, we give the bound of the first and third term ϵ1 and ϵ3 through controlling the
more general generalization error. In particular, let h̃ = h or ĥ, then ϵ1 or ϵ3 can be expressed by
the corresponding generalization error ϵ̃ = |R(h̃)− R̂(ĥ)|.

C.2 PROOF OF THEOREM 2

Proof. We firstly decompose the error ϵ̃ into two parts, ε1 and ε2, which can be formulated as,

ϵ̃ =

∫
T

(∥∥∥(h̃− h∗) ◦ h−1
∗ (y)

∥∥∥)2

dy︸ ︷︷ ︸
R(h̃)

− 1

N

N∑
i=1

(∥∥∥(h̃− h∗) ◦ h−1
∗ (yi)

∥∥∥)2

︸ ︷︷ ︸
R̂(h̃)

,

≤
N∑
i=1

(∫
Bi

((∥∥∥(h̃− h∗) ◦ h−1
∗ (y)

∥∥∥)2

−
(∥∥∥(h̃− h∗) ◦ h−1

∗ (yi)
∥∥∥)2

)
dy

)
︸ ︷︷ ︸

ε1

+

N∑
i=1

(
Hm−1(Bi)
Hm−1(T )

− 1

N

)
ci︸ ︷︷ ︸

ε2

,

(17)

where h∗(·) is the true mapping function from a preference angle to Pareto solution, h−1
∗ (·) is the

inverse function of h∗(·) and ci =
(∥∥∥(h̃− h∗) ◦ h−1

∗ (yi)
∥∥∥)2

≤ A2. We use the notation c to denote

the maximal value of ci, where 0 < c = maxi∈[N ]{ci} ≤ A2. In the second line in Equation (17),
we use the notation Bi to denote the Voronoi cell of point yi, where Bi = {y | miny∈T ρ(y, yi)}.
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The distance function ρ(·, ·) remain as the l2 norm. We use δi to denote the diameter of set Bi, where
the formal definition of a diameter is provided in Equation (10). Similarly, the maximal diameter δv
of all cells is defined as,

δv = max
i∈[N ]
{δi}. (18)

The proof primarily consists of two steps, where we separately bound ε1 and ε2.

(The bound of ε1) We first show that ε1 can be bounded by the maximal diameter δ up to a
constant.

N∑
i=1

∫
Bi

(∥∥∥(h̃− h∗) ◦ h−1
∗ (y)

∥∥∥)2

−
(∥∥∥(h̃− h∗) ◦ h−1

∗ (yi)
∥∥∥)2

dy

=

N∑
i=1

∫
Bi

(∥∥∥(h̃− h∗) ◦ h−1
∗ (y)

∥∥∥− ∥∥∥(h̃− h∗) ◦ h−1
∗ (yi)

∥∥∥)(∥∥∥(h̃− h∗) ◦ h−1
∗ (y)

∥∥∥+
∥∥∥(h̃− h∗) ◦ h−1

∗ (yi)
∥∥∥)dy

≤
N∑
i=1

∫
Bi

(∥∥∥(h̃− h∗) ◦ h−1
∗ (y)− (h̃− h∗) ◦ h−1

∗ (yi)
∥∥∥)(∥∥∥(h̃− h∗) ◦ h−1

∗ (y)
∥∥∥+

∥∥∥(h̃− h∗) ◦ h−1
∗ (yi)

∥∥∥)dy
(By function smoothness and upper bound)

≤
N∑
i=1

∫
Bi

2AA′LL′ ∥y − yi∥ dy

≤
N∑
i=1

2Hm−1(Bi)AA′LL′δv

≤2Hm−1(T )AA′LL′δv.
(19)

(The bound of ε2) To bound ε2, we introduce several distribution functions as summarized below.

• U = Unif(T ) denotes the uniform distribution over the Pareto front T .

• ỸN represents the category distribution over the set
{
y(1), . . . , y(N)

}
, where each discrete

point has a probability of 1
N :

• SN is any distribution, that satifies the following properties. (1)
∫
Bi

pSN
(y)dy = 1

N (2)
|∂pSN

(y)/∂y| is zero at boundary and is bounded at other place, and (3) almost surely, the
pointwise density of SN is large or smaller than the corresponding pointwise density of U ,
at each Bi.

With the above distributions, we can bound ε2 by the following derivation,

N∑
i=1

(
Hm−1(Bi)
Hm−1(T )

− 1

N

)
ci ≤

N∑
i=1

∣∣∣∣Hm−1(Bi)
Hm−1(T )

− 1

N

∣∣∣∣A2

= CA2TV(U , SN )

≤ CA2
√
W1(U , SN )

≤ CA2

√
W1(U , ỸN ) +W1(ỸN , SN )

≤ CA2

√
W1(U , ỸN ) + δv.

(20)

Here, W1 is the Wasserstein distance function. The second line is from the definition of the total
variance (TV) distance. The third line is an adaptation of (Chae & Walker, 2020, Theorem 2.1) with
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α = 1 therein. As shown by (Chae & Walker, 2020, Theorem 2.1), C > 0 is determined by the
Sobolev norms of U and SN , which can be regarded as a universal constant, since SN has a smooth
density function and T is compact. The quantity W1(ỸN , SN ) can be bounded by the following
expressions,

W1(ỸN , SN ) = inf
γ∈Γ

∫
T ×T

|y − y′| γ(y, y′)dydy′

≤ inf
γ∈Γ

N∑
i=1

∫
T
|y − yi| γ(y, yi)dy

≤ δv inf
γ∈Γ

N∑
i=1

∫
T
γ(y, yi)dy︸ ︷︷ ︸
=1/N

= δv.

(21)

Here Γ is the set of all joint density function γ over T × T such that,

N∑
i=1

γ(y, yi) = pSN
(y),

∫
T
γ(y, y′)dy =

1

N
I(y′ = yi for some i ∈ [n]),

which also implies that γ(y, y′) = 0 as long as y′ is not in {y(1), . . . , y(N)}.

C.3 PROOF OF PROPOSITION 1

Assumption 1. We assume that when the solution number N1 > N2, the packing distance solving
Equation (5) is strictly decreasing, i.e., δ∗T (N1) < δ∗T (N2).

Proof. Under this assumption, Let N1 is the maximal packing number of δ∗T (N1). In such a case, the
solution set Y∗

N1
is also a δ∗T (N1)-covering. Since when it is not a δ∗T (N1)-covering, then there exist

a solution y′ ∈ T , y ̸= yi, i ∈ [N1] such that ρ(y(i), y(j)) > δ∗T (N1), i ̸= j, then Y ′
N = {y′} ∪ YN1

is a (N1 + 1) packing of YN+1, which is a contradiction.

C.4 UNIFORMITY INDUCED: PREFERENCES TO OBJECTIVES

The key is to show when the function h is a constant mapping. We provide two special cases,

1. The entire preference space Ω is S+1 or S+2 . The objective function f is ZDT2 or DTLZ2.

2. The entire preference space Ω is ∆2. and the objective function f is DTLZ1.

We prove the first case as an example, and the second one can be proved similarly.

Proof. For each preference λ = (λ1, . . . , λm), λ ∈ Sm−1
+ , the corresponding solution y = h(·)

can be expressed in the form of (k′(λ) · λ1, . . . , k
′(λ) · λm), since the function h(·) is an “exact”

mapping function. Since (k′(λ) · λ1, . . . , k
′(λ) · λm) lies on the Pareto front k · Sm−1

+ , we have,
m∑
i=1

λ2
i = 1,

(k′(λ))
2
∑

λ2
i = k2.

(22)

Equation (22) directly leads that h(·) = k × (·),∀λ ∈ Sm−1
+ . Thus, h(·) maps an asymptotically

uniform distribution up to a constant, which also is an asymptotically uniform distribution.
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C.5 PROOF OF LEMMA 1

Proof. We demonstrate the uniqueness of the solution y∗ by utilizing Lemma 2. According to
Lemma 2, the optimal solution of an aggregation function is either Pareto optimal or weakly Pareto
optimal. As we have assumed the absence of weakly Pareto optimal solutions, it follows that y∗ is
the unique solution of Equation (4).

We can furthermore, y∗ is a Pareto optimal solution by Lemma 3.

C.6 PROOF OF THEOREM 1

Blank et al. (2020) generate uniformly distributed preferences ΛN , by solving the following opti-
mization problem,

max
(ΛN⊂Ω)

min
(i,j∈[N ],i̸=j)

ρ(λ(i), λ(j)) (23)

where Ω is a compact connected set of Rm. The distance function ρ(·, ·) is adopted as the l2 norm
in this paper.

To prove Theorem 1, we first need to introduce Lemma 4. According to Borodachov et al. (2007),
when Ω is a rectifiable set 4, we have the following asymptotic uniformity of ΛN when ΛN solve
Problem (23),
Lemma 4. For any fixed Borel subset B ⊆ Ω, one has, when N →∞,

P
(
Λ̃N ∈ B

)
=

Card(ΛN ∩ B)
Card(ΛN )

→ Hm−1(B)
Hm−1(Ω)

= P
(
Λ̃ ∈ B

)
. (24)

We use Card(·) to represent the cardinality of a set. Lemma 4 directly follows from the proof of
(Borodachov et al., 2007, Theorem 2.2). Let Λ̃N be a random variable sampled from the category
distribution of the set ΛN , where each category has a probability of 1

N . Λ̃ is a random variable
sampled from the uniform distribution on Ω, denoted as Unif(Ω). See Appendix A.1 for more dis-
cussions about Hausdorff measureHm−1(·).

Lemma 4 is equivalent to say that Λ̃N
d−→ Unif(Ω). To prove Theorem 1, according to the continuous

mapping theorem (Durrett, 2019, Theorem 3.2.10), ỸN = h ◦ Λ̃N
d−→ h ◦ Unif(Ω).

4Any compact and connected set with a finite Hausdorff dimension is a rectifiable set. As we have assumed
Ω is compact and connected, then Ω is rectifiable
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