
Mitigating Forgetting in Low Rank Adaptation

Joanna Sliwa 1 Frank Schneider 1 Philipp Hennig 1 José Miguel Hernández-Lobato 2

Abstract
Parameter-efficient finetuning (PEFT) enables
quick adaptation of large pre-trained language
models to different downstream applications.
However, this process often leads to catastrophic
forgetting of the model’s original domain knowl-
edge. We address this issue with LALoRA,
a weight-space regularization method that ap-
plies a Laplace Approximation to Low-Rank
Adaptation. We estimate how confident the model
is in each parameter and constrain updates in
high-confidence directions. This preserves orig-
inal knowledge while still allowing efficient tar-
get domain learning. We showcase the improved
learning-forgetting trade-off compared to existing
baseline methods and discuss different approxi-
mations of the loss landscape curvature, through
which we estimate the parameters’ uncertainty.

1. Introduction
The ability to finetune large pre-trained foundation models is
essential for many downstream applications. However, full
finetuning i.e. updating all parameters of a large model is
often prohibitively expensive. For example, Hu et al. (2021)
observed that finetuning GPT-3 175B requires about 1.2 TB
of VRAM, and is therefore often impractical. To address
this, they proposed Low-Rank Adaptation (LoRA), which
reduces the number of trainable parameters by restricting
training to low-rank adapter layers. For a transformer layer
with input dimension Din and output dimension Dout, and an
adapter rank r !minpDout, Dinq, LoRA cuts the trainable
parameters per layer from Din¨Dout down to r¨pDin `Doutq.
In practice, one often trains only about 0.01% of the original
parameters.

As Biderman et al. (2024) observed, compared to full fine-
tuning, LoRA better preserves pre-training knowledge (i.e.,
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suffers less forgetting), although some drop in source do-
main accuracy still occurs. This raises a key question: how
can we maintain as much of the original knowledge as pos-
sible, while still achieving good downstream performance?
To improve this learning-forgetting trade-off, different ap-
proaches have been proposed, assuming no direct access to
pre-training data: MIGU (Du et al., 2024) constrains updates
to parameters determined by activation patterns, while other
methods update only the minor or principal directions of
the weight matrices (Wang et al., 2025; Meng et al., 2025).
However, additional methods are needed to further reduce
the forgetting rate.

Building on this line of work, we aim to tackle the problem
of source domain forgetting while maintaining strong learn-
ing capabilities in the target domain. To achieve that, we
utilize the uncertainty estimates to identify which weights
are important for good source domain performance. Moti-
vated by previous work for continual learning (Kirkpatrick
et al., 2017; Ritter et al., 2018), we assume that parameters
with low uncertainty are essential for solving the source
domain problem and therefore shouldn’t be changed. In
contrast, parameters with high uncertainty have little impact
on the source domain task and can be more freely adjusted to
learn the target data. During finetuning, we will use the un-
certainty information measure as a regularizer to discourage
updates to critical parameters, thereby mitigating forgetting.

Contributions: We leverage Laplace approximation on the
LoRA weights (LALoRA) to mitigate forgetting during fine-
tuning. We introduce a regularizer that allows for a trade-off
between learning and forgetting, controlled by the strength
of regularization λ. We compare the performance to other
methods and discuss variants of loss curvature approxima-
tions.

2. Background
Notation: We consider supervised learning with a target
dataset DT “tbi “ pxi,yiq | i“1, . . . , Nu containing train-
ing inputs xi and outputs yi. The source domain consists of
batches, coming from different sub-datasets which form the
source dataset DS “ tDS1, . . . ,DSnDS

u.The goal is to find
parameters W P RD of a model fW that minimize a given
regularized loss Lreg.
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Figure 1: Laplace regularizer maintains learning while preventing forgetting of the source domain. The figure is
organized as follows: the left panel illustrates the LoRA setup; the center panel visualizes the Laplace approximation,
highlighting alternative curvature approximations used for estimating which weights are important for good source domain
performance; and the right panel presents the LALoRA algorithm.

LoRA: Low Rank Adaptation of large (language) models
(LoRA) (Hu et al., 2021) derives from the notion that weight
updates during finetuning have a low intrinsic rank. There-
fore, for the pre-trained weight W0 PRDinˆDout the additive
updates ∆W have a low-rank decomposition ∆W “ BA
where B P RDinˆr and A P RrˆDout . The training concen-
trates around the matrices A and B while W0 is kept frozen.
The forward pass is given as

h “ W0x ` ∆Wx. (1)

The matrix A is initialized with a random Gaussian noise
and B with zeros. There have been many studies on how
LoRA performs when compared to full finetuning (Bider-
man et al., 2024; Dettmers et al., 2023; Ghosh et al., 2024;
Zhao et al., 2024a; Ivison et al., 2023; Zhuo et al., 2024).

Laplace approximations (LA): The Bayesian posterior
over the model’s parameters, ppW | DSq, describes the
belief over the values of each parameter and thus re-
flects (un)certainty about each parameter’s value. It,
therefore, identifies which parameters still offer flexibil-
ity to learn a new application. The Laplace approxima-
tion (e.g. MacKay, 1992; Daxberger et al., 2022) pro-
vides a local Gaussian approximation to this typically in-
tractable posterior. It stems from a second-order Taylor
expansion of the loss around the maximum a posteriori
(MAP) estimate of the parameters, i.e. the trained µ, as
LpW ,DSq«Lpµ,DSq ` 1

2 pW ´ µq
J
Σ̄´1pµq pW ´ µq,

where Σ̄´1 “ ∇2
W log ppDS,W q P RD̂ D is the Hessian

of the loss with respect to the parameters. This results
in a Gaussian distribution ppW | DSq « N pW ;µ, Σ̄pµqq

called the Laplace approximation. Treating this approx-
imation as a prior or a weight-space regularizer r trans-
forms the loss for the target domain to LregpW ,DTq “

´ log ppDT | W q ` λrpW ,µ, Σ̄q “ log ppy | x,W q `
λ
2 pW ´ µq

J
Σ̄´1pµq pW ´ µq, with log ppDT | W q as

the log-likelihood and λ as the regularization strength. We
favor parameters near the source domain solution µ, al-
lowing variation in low-curvature directions but preserving
those whose change would sharply raise pre-training loss.

3. Methodology
The methodology consists of two stages described below.

STAGE 1 (Figure 1, right panel, blue box): To create a
regularizer that captures which weights are crucial for the
source domain performance, firstly, we need to compute the
Laplace approximation on the source datasets. For that we
need access to at least one mini-batch of source data or a
representation of it, DS. Since, the pre-trained weights W0

remain frozen and fitting the Gaussian to all the weights of
the model W would be infeasible, we do so only for the
LoRA weights of chosen modules i.e. for ∆W “ BA.
This results in much lower computation cost than fitting LA
on the full network. The Laplace approximation is defined
by

pp∆W |DSq « N p∆W ;µ, Σ̄q “ N
ˆ

A,B;

„

µA

µB

ȷ

, Σ̄

˙

.

(2)

The mean µ is equal to the mode of the pre-trained weights—
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for LoRA weights it is the initialization setting i.e. µA

is Gaussian noise and µB “ 0. The precision matrix
Σ̄´1 is a sum of precisions of all source sub-datasets
Σ̄´1 “ Σ

nDS
s Σ´1

s and the choice of how to compute Σ´1
s is

discussed below. Both µ and Σ̄´1 are stored, now we have
all necessary to construct a regularizer during the finetuning.

STAGE 2 (Figure 1, right panel, red box): After creating the
regularizer, we can now finetune on the target data DT with
a regularized loss LregpW , btq, defined as,

Lreg “ ´ log ppbt|W q ` λ rpW ,µ, Σ̄´1q “ (3)
“ ´ log ppbt|W q` (4)

` vecp∆W ´ µqJΣ̄´1vecp∆W ´ µq.

where ´ log ppbt|W q is the negative log-likelihood and r
is the regularizer scaled by λ. Minimizing the regularized
loss (i) learns the target domain by maximizing the log-
likelihood and (ii) mitigates forgetting of the source domain
via minimizing the regularizer.

Curvature approximations. The challenge now is to effi-
ciently compute the precision matrices Σ´1

s . Firstly, we can
simplify the precision Σ´1

s to a diagonal

D “

ˆ

B log ppy |x,W q

BW

˙2

P RrpDin`Doutqˆ1. (5)

This DIAG approach results in the following regularizer
r “ vecpA ´ µqJDvecpA ´ µq. The method is compu-
tationally efficient because it needs calculating only the
gradient, which is then squared. However, it discards some
information—specifically, the interactions among weights
within a layer and across layers. In the Appendix C, we
describe different methods based on Kronecker Factored
approximation (KFAC), B-KFAC and B-TRI-KFAC, to
address this issue. We showcase theoretically, how we could
expand the regularizer to capture uncertainty information
between weights in the same layer, i.e., within layer A and
within layer B, as well as, additionally between layers A
and B for each adapter module ∆W .

4. Related Work
Forgetting the source domain in LoRA: Biderman et al.
(2024) compare LoRA with full finetuning and measure
performance on both the source (to quantify forgetting)
and the target (to assess new learning). Their results show
that LoRA retains noticeably more of the source-domain
knowledge but gains less on the target domain. We adapt
their source/target domain setup for our own experiments.
In contrast, Shuttleworth et al. (2024) match LoRA and full
finetuning on their final accuracy and show via SVD that
LoRA introduces large singular directions orthogonal to the
pre-trained weights, increasing forgetting. We further study
this line of research inspecting updating only the uncertain

directions of the pre-trained model. Du et al. (2024) try
to mitigate forgetting in LoRA by using the differences in
magnitude distribution of the L1-normalized output in linear
layers. They only update the parameters with large values
in L1-normalized magnitude based on a threshold 1 ´ t. In
comparison, our method computes a metric based on the
backward pass and not forward.

Laplace approximation with LoRA: Yang et al. (2024) ap-
ply a post-hoc Laplace approximation to the LoRA weights
and report improved calibration of the finetuned model. The
benefits, however, appear only with a Kronecker-factored
approximation of the loss curvature, a diagonal approxima-
tion offers no gains. By contrast, our method incorporates
the Laplace approximation during training as a regularizer,
not after and pursues a different goal of source domain for-
getting. We also extend the curvature approximation from
block-diagonal to a block tri-diagonal form.

Initialization of LoRA weights: The default initialization
sets A to Gaussian noise and B “ 0 (Hu et al., 2021).
PiSSA (Meng et al., 2025) initializes A and B with the
top–r singular values and vectors of the pre-trained matrix
W0 (via SVD) and freezes the remainder, claiming faster
convergence and higher accuracy. However, we anticipate
that PiSSA will struggle with forgetting, because it updates
the very top singular vectors that encode most of the source-
domain information. In contrast, MiLoRA (Wang et al.,
2025) updates just the minor–r singular values and vectors,
initializing A and B in the orthogonal subspace to preserve
pre-trained knowledge while adapting to downstream tasks.

5. Experiments
Our aim is to finetune the model on mathematical data so
that it matches vanilla LoRA’s performance on the target
task while surpassing LoRA on the source domain, i.e.,
exhibiting less forgetting, as measured on commonsense
reasoning datasets. We empirically test whether a simple
diagonal LALoRA regularizer can achieve that. Specifically,
we analyse the optimal choice of the regularization strength.
Finally, we compare our method to other methods.

Datatsets and model: For the source pre-trained knowl-
edge DS we evaluate the model’s commonsense reasoning
performance (Biderman et al., 2024; Du et al., 2024) on
HellaSwag (DS1, Zellers et al., 2019), WinoGrande (DS2,
Sakaguchi et al., 2019) and ARC Challenge (DS3, Clark
et al., 2018). We perform instruction finetuning for math
knowledge on GSM-8k (DT, Cobbe et al., 2021). We employ
LlaMA-3.2-3B with LoRA of rank r“32.

Forgetting vs learning: We examine if the Laplace regular-
izer mitigates forgetting of the source domain. We compare
a model trained with an unregularized loss i.e. LALoRA
with λ “ 0 (Baseline) and one with the addition of the diag-

3



0 5 10 15 20 25 30

0.55

0.60

0.65

Forgetting

0 5 10 15 20 25 30

0.175

0.200

0.225

0.250

0.275

Learning

LALoRA, λ = 102

Baseline

A
cc

ur
ac

y

Epochs

Figure 2: Diagonal LALoRA regularization reduces for-
getting while maintaining good learning ability. The
figure shows accuracy over the course of finetuning: (top)
average source domain accuracy (forgetting) and (bottom)
target dataset accuracy (learning) and corresponding stan-
dard deviation. Each setting corresponds to three random
seeds.

onal prior. Figure 2 shows LALoRA minimizes the source
domain forgetting by 5.6% meanwhile it keeps finetuning
performance at a similar level.

Strength of regularization Next, we inspect the trade-off
between forgetting and learning. We sweep a set of reg-
ularization strengths, λ P t102, 103, 104, 105, 106u, where
higher regularization value stronger penalize deviating from
the source domain optimal parameters. We plot each run’s
source- versus target-accuracy pair as a Pareto curve in Fig-
ure 3. We observe that the regularization strength enables
us to adjust this trade-off, and the hyperparameter λ should
be selected based on how much weight we assign to source
versus target performance.

Comparison to other methods Next, we compare LALoRA
to other methods i.e. MIGU, MiLoRA and PiSSA. We re-
implement every method from its open-source code. For
MIGU, Table 1 reports final forgetting and learning average
accuracies with their standard deviations; the same trade-
off is visualised in Figure 3. We can notice that LALoRA
compared to MIGU provides better trade-off. Additionally,
PiSSA and MiLoRA results are presented in Appendix E,
however their suboptimal performance, potentially due to
shortcomings in our implementation or configuration, war-
rants further investigation.
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Figure 3: Laplace regularization leads to improved
learning-forgetting trade-off. The figure shows on x-axis
average source domain accuracy (forgetting) and on y-axis
target dataset accuracy (learning). The final epoch accuracy
for one random seed is plotted for different values of λ and
methods.

Table 1: Comparing our regularization to other methods.
We report the final average accuracy (˘ one standard devia-
tion across 3 seeds) on source and target domain for math
dataset.

Source domain Target domain

LA-LoRA DIAG 0.612 ˘ 0.006 0.252 ˘ 0.005
MIGU, t “ 0.7 0.597 ˘ 0.010 0.215 ˘ 0.010
Baseline
(no regularizer)

0.556 ˘ 0.008 0.251 ˘ 0.007

We show further results on how the trade-off evolves across
epochs and how forgetting varies by dataset in Appendix E.

6. Conclusion
Summary: We propose a method that mitigates forget-
ting of the source domain, commonsense reasoning, for
efficient finetuning on math data using Low-Rank Adap-
tation. We notice that a simple diagonal regularizer can
reliably reduce forgetting and observe improved trade-off
compared other baselines. Additionally, we discuss differ-
ent curvature approximation variants needed to construct
the weight-regularizer using Laplace approximation.

Limitations: The method requires at least one batch repre-
senting source data for LA computation, as well as, storing
the additional µ and Σ̄ throughout the whole finetuning.
The choice of λ requires tuning.

Future directions: We will empirically inspect the pro-
posed curvature approximation variants, as well as, using
more than a single random mini-batch for LA.
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Appendix

A. Background
Full-finetuning: The problem of finetuning has been thor-
oughly studied where a model is adapted to a specific task.
Full finetuning is inefficient because every parameter in
the model must be updated. For instance, Xu et al. (2023)
estimate that fully finetuning Falcon-180B would require
about 5.1 TB of GPU memory. A practical alternative is
to train only a subset of layers. Parameter-Efficient Fine-
Tuning (PEFT, Houlsby et al., 2019) offers several such
techniques—additive, partial, re-parameterized, hybrid, and
unified finetuning, that greatly reduce the number of train-
able parameters.

Transformers: (Vaswani et al., 2023) proposed a compila-
tion of encoder-decoder modules with attention mechanism.
For an input X P Rnˆd where n is the length of the se-
quence and d is the hidden dimension. We transform the
input via query, key and value vectors given as K,Q,V :

K “ XWk ` bk,Q “ XWq ` bq,V “ XWv ` bv
(6)

Kronecker-factored Approximate Curvature (K-FAC):
Martens and Grosse (2020) propose an approximation to
the loss curvature. They represent the Hessian as a Fisher
Information Matrix,

F “ E

«

ˆ

Blog ppy|x,W q

BW

˙ ˆ

Blog ppy|x,W q

BW

˙J
ff

,

(7)

where they factorize each layer’s block into the Kronecker
product of two much smaller matrices Al´1,m´1 b Gl,m.
We define the input as a0 “ x which is passed through
1, . . . , L layers, this leads to an output hL. The pre-
activations are defined as sl “ Wlal´1 P RDl and the
activations as al “ flpslq P RDl´1 . The Hessian blocks
of the layers l,m can be written as

Σ´1
l,m “ E

«

ˆ

Blog ppy|x,Wlq

BWl

˙ ˆ

Blog ppy|x,Wmq

BWm

˙J
ff

,

(8)

with Wl P RpDinˆDoutq. Utilizing the K-FAC approxima-
tion, this simplifies to Σ´1

l,m “ Al´1,m´1 b Gl,m with
Al´1,m´1 “ Eral´1a

J
m´1s P RDl´1ˆDm´1 and

Gl,m “ Erglg
J
ms “

B log ppy | x,W qB log ppy | x,W q

BslBsl
(9)

P RDlˆDm .
(10)

B. Related Work
Continual finetuning: The desirable feature of LLMs is
to equip the models with new knowledge or skills i.e. con-
tinual learning. The review (Wu et al., 2024) introduces
categorization: continual pre-training, instruction tuning
and alignment. The first expands the models understanding
of language, the second improves responses to the specific
commands, and last, ensures the model is abiding by ethical
norms. There has been a lot of work done on continual learn-
ing via rehearsal, architecture based methods (Scialom et al.,
2022; Wang et al., 2024a; Gururangan et al., 2021; Qin et al.,
2022) and more importantly for this work, parameter-based
(Zheng et al., 2024; Zhu et al., 2024) or gradient-based
(Wang et al., 2023a). Wang et al. (2023b) propose O-LoRA
for mitigating catastrophic forgetting via learning tasks in
orthogonal vector subspaces. They use instruction tuning.
Their main reasoning is that gradient subspaces of previ-
ous tasks are represented by LoRA parameters. Li et al.
(2024) proposes a low-rank adaptation in flat regions of the
full paramater space, for which they use random weight
perturbation.

Model low-rank decomposition: Biderman et al. (2024)
show via an SVD that full finetuning doesn’t change the
spectrum significantly. The following papers deal with the
full model low-rank decomposition to capture as much in-
formation and the least performance degradation. Fisher-
Weighted SVD (FWSVD) (Hsu et al., 2022) assigns impor-
tance scores via Fischer Information Matrix, they observe
that singular values’ magnitude doesn’t directly correspond
to performance drop therefore the smallest values may still
be needed. (Yuan et al., 2024) propose Activation-aware
Singular Value Decomposition (ASVD) that is a training-
free method which manages activation outliers via scaling
the weights accordingly. Wang et al. (2024b) propose direct
mapping between singular values and model compression
loss by ensuring that each channel is independent of each
other.

Other approaches: DoRA (Liu et al., 2024) decomposes
W0 into magnitude and direction components. The method
uses only the directional updates during finetuning and
scales the magnitude.

Forgetting the source domain in LoRA: Wistuba et al.
(2023) use LoRA to train a dedicated expert model for each
new incoming dataset. They use a k cluster based method
to infer which LoRA module to use for which task. By
contrast, LoRAMoE Dou et al. (2024) introduces a mixture
of experts architecture in which multiple low-rank adapters
work together, dynamically weighted by a router network.

In contrast to LoRA, GaLore (Zhao et al., 2024b) lever-
ages low-rank structure of gradients. The authors project
the gradient matrix into a low rank updates, this results in
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substantial memory cost reduction with regard to full fine-
tuning, mainly of optimizer states. They notice a slight
improvement on GLUE tasks compared to LoRA.

C. Extended methodology
Curvature approximations. Since, DIAG discards some
information—specifically, the interactions among weights
within a layer and across layers, we propose B-K-FAC
which looks at intra-layer interactions and B-TRI-K-FAC at
inter-layer between A and B for a given ∆Wl. B-K-FAC
uses a block-diagonal K-FAC approximation for individual
weight matrices i.e. Σ´1

l,l given by:

Σ´1
∆Wl

“

„

A0,0 b G1,1 0
0 A1,1 b G2,2

ȷ

. (11)

The regularizer resulting from such an approximation is
defined as:

r “ vecpA ´ µAqJvecpG1,1pA ´ µAqAJ
0,0q`

` vecpB ´ µBqJvecpG2,2pB ´ µBqAJ
1,1q.

Additionally, unlike the block-diagonal K-FAC used pre-
viously (Ritter et al., 2018; Yang et al., 2024), we
treat the A and B layers jointly as one block, cap-
turing inter-layer as well as intra-layer interactions i.e.
Σ´1

A,A,Σ´1
A,B,Σ´1

B,A,Σ´1
B,B . This leads to a block tri-

diagonal K-FAC approximation B-TRI-K-FAC for con-
secutive layers:

Σ´1
∆Wl

“

„

A0,0 b G1,1 A0,1 b G1,2

A1,0 b G2,1 A1,1 b G2,2

ȷ

. (12)

The regularizer for this approximation is efficiently com-
puted with matrix vector products as follows:

r “ vecpA ´ µAqJvecpG1,1pA ´ µAqAJ
0,0q

` 2vecpA ´ µAqJvecpG1,2pB ´ µBqAJ
0,1q

` vecpB ´ µBqJvecpG2,2pB ´ µBqAJ
1,1q.

Below, we delve into more details. We present a LoRA
module for one layer.

a0 “ x a1 a2s1 s2
A B

A “ N p0, σ2q B “ 0

∆W

The precision for one layer can be approximated as:

Σ´1
∆Wl

“

„

A0,0 b G1,1 A0,1 b G1,2

A1,0 b G2,1 A1,1 b G2,2

ȷ

. (13)

with shapes

A0,0 b G1,1 P RpDinˆDinqˆprˆrq“pDinrˆDinrq (14)

A0,1 b G1,2 P RpDinˆrqˆprˆDoutq“pDinrˆrDoutq (15)

A1,0 b G2,1 P RprˆDinqˆpDoutˆrq“pDoutrˆrDinq (16)

A1,1 b G2,2 P RprˆrqˆpDoutˆDoutq“prDoutˆrDoutq (17)

The Lalplace approximation for these low-rank weights can
be represented as:

pp∆Wl|DSq „ N pA,B;µ,Σ∆Wl
q (18)

pp∆Wl|DSq „ exp

ˆ

´
1

2

“

vecpA ´ µAqJ vecpB ´ µBqJ
‰

(19)

Σ´1
∆Wl

„

vecpA ´ µAq

vecpB ´ µBq

ȷ˙

pp∆Wl|DSq „ exp

ˆ

´
1

2

“

vecpA ´ µAqJ vecpB ´ µBqJ
‰

(20)
„

A0,0 b G1,1 A0,1 b G1,2

A1,0 b G2,1 A1,1 b G2,2

ȷ „

vecpA ´ µAq

vecpB ´ µBq

ȷ˙

We take into account pQ b UqvecV “ vecpUV QJq,
which leads to pAl´1,m´1 b Gl,mqvecpWlÑm ´ W˚q “

vecpGl,mpWlÑm ´ W˚qAl´1,m´1qJ. We utilize it for the
regularizer below

“

vecpA ´ µAqJvecpB ´ µBqJ
‰

(21)
„

A0,0 b G1,1 A0,1 b G1,2

A1,0 b G2,1 A1,1 b G2,2

ȷ „

vecpA ´ µAq

vecpB ´ µBq

ȷ

,

where vecpA ´ µAq P RpDinrˆ1q and vecpB ´ µBq P

RprDoutˆ1. This leads to the following result:
“

vecpA ´ µAqJ vecpB ´ µBqJ
‰

(22)
»

—

—

—

—

–

pA0,0 b G1,1qvecpA ´ µAq`

`pA0,1 b G1,2qvecpB ´ µBq

pA1,0 b G2,1qvecpA ´ µAq`

`pA1,1 b G2,2qvecpB ´ µBq

fi

ffi

ffi

ffi

ffi

fl

“ vecpA ´ µAqJ vec
`

G1,1pA ´ µAqAJ
0,0

˘

(1 ˆ Dinr) ¨ ((r ˆ r) (r ˆ Din) (Din ˆ Din))

` vecpB ´ µBqJ vec
`

G2,1pA ´ µAqAJ
1,0

˘

(1 ˆ Doutr) ¨ ((Dout ˆ r) (r ˆ Din) (Din ˆ r)q

` vecpA ´ µAqJ vec
`

G1,2pB ´ µBqAJ
0,1

˘

(1 ˆ Dinr) ¨ ((r ˆ Dout) (Dout ˆ r) (r ˆ Din))

` vecpB ´ µBqJ vec
`

G2,2pB ´ µBqAJ
1,1

˘

(1 ˆ Doutr) ¨ ((Dout ˆ Dout) (Dout ˆ r) (r ˆ r))

The cost of this operation is:
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• compute: OpD2
inr ` D2

outr ` r2pDin ` Doutqq

• memory: OpD2
in ` D2

out ` r2q

We can simplify the cross layer terms since Aji “ pAijqJ.

vecpA ´ µAqJpA0,1 b G1,2qvecpB ´ µBq “ (23)

“ vecpA ´ µAqJpAJ
1,0 b GJ

2,1qvecpB ´ µBq “

“ vecpA ´ µAqJpA1,0 b G2,1qJvecpB ´ µBq “

“
`

vecpA ´ µAqpA1,0 b G2,1qvecpB ´ µBqJ
˘J

“

“
`

vecpB ´ µBqJpA1,0 b G2,1qvecpA ´ µAq
˘J

“

“ vecpB ´ µBqJpA1,0 b G2,1qvecpA ´ µAq

Importantly, since W is a linear layer and there is no ac-
tivation between layers A and B, the pre-activationas and
activations are the same, i.e., s1 “ a1 and s2 “ a2.

This results in Al,m “ Ersls
J
ms P Rdlˆdm , with

Gl,m “ Erglg
J
ms “

δ2 log ppy|x, θq

δslδsl
P Rdlˆdm

The number of stored blocks is 3L.

D. Experimental setup
The strength of regularization λ was chosen via runs with
validation dataset split. The probed values of λ were
t102, 103, 104, 105, 106u. The results for each value were
as follows tλ “ 106 : 0.4142, λ “ 105 : 0.4140, λ “ 104 :
0.4036, λ “ 103 : 0.3964, λ “ 102 : 0.4182u. We chose
the best average accuracy for forgetting and learning trade-
off which resulted to λ “ 102 for diagonal approximation.
We then, ran three seeds for optimal λ and baseline. For
MIGU, we chose t “ 0.7 as the value for Table 1, since
that value was recommended by the authors of the method.
Other arguments are shown in the Table 2.

E. More experimental results
We report the results for MiLoRA and PiSSA in Table 3.
We note though that these results require further inspection.

Table 2: Experimental setup. The table presents the values
for the arguments used in the training across experiments.

Argument

dataset name gsm8k
per device train batch size 1
per device evaluate batch size 4
learning rate 5e-4
number of epochs 30
sequence length 512
causal generation length 100
seeds 42
evaluation frequency 5000
LoRA rank 32
LoRA α 32
LoRA dropout 0.1

Table 3: Other methods performance. We report the final
average accuracy (˘ one standard deviation across 3 seeds)
on source and target domain for math dataset.

Source domain Target domain

PiSSA 0.513 ˘ 0.002 0.118 ˘ 0.014
MiLoRA 0.536 ˘ 0.007 0.246 ˘ 0.006

0.54 0.55 0.56 0.57 0.58 0.59 0.60 0.61

Source domain accuracy

0.18
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Ta
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et
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m
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n
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cy

Final epoch
Baseline

LALoRA, λ = 102

Figure 4: Laplace regularization DIAG leads to improved
learning-forgetting trade-off across finetuning. The fig-
ure shows accuracy over the course of finetuning: on x-axis
average source domain accuracy (forgetting) and on y-axis
target dataset accuracy (learning). The final accuracy for
one random seed is plotted with a ˆ. Each dot corresponds
to a result 5 epochs later. We notice that the regularized
approach leads to better learning-forgetting trade-off across
the training.
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Figure 5: Diagonal regularization reduces forgetting
across all datasets. The figure shows accuracy over the
course of finetuning: average source domain accuracy (for-
getting) and target dataset accuracy and corresponding stan-
dard deviation. Each setting corresponds to three random
seeds. Results are displayed top-to-bottom for the three
source domain datasets: WinoGrande, ARC, and HellaSwag,
and, on the far bottom, for the target math dataset GSM8K.
We notice less forgetting for the regularized approach com-
pared to the baseline, and similar learning capabilities.
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Figure 6: A stronger diagonal regularizer mitigates
source domain forgetting more. The figure shows ac-
curacy over the course of finetuning: (top) average source
domain accuracy (forgetting), (bottom) target dataset accu-
racy. Each setting corresponds to a single random seed. As
the regularization strength λ increases, forgetting declines,
but the model’s ability to learn the new task is reduced.
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