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Abstract. Social insects were an early inspiration for work on multi-
agent systems, and continue to provide parsimonious design patterns for
models of decentralized coordination. But the original stigmergic pattern
has limitations in accommodating intelligent environments and learning
agents, including such socially relevant problems as opinion dynamics.
This paper describes an insect example, long-range migration, that goes
beyond these limitations. We present a simple formalization of the orig-
inal stigmergic schema, and inspired by migratory insects, show how it
can be extended to accommodate systems that the original stigmergic
schema could not handle.
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1 Introduction

In 1959, the French biologist Pierre-Paul Grassé coined the term "stigmergy"
to describe how social insects (originally, termites) coordinate their actions by
leaving and responding to signs in a shared environment [15].1 Figure 1 [23]
illustrates the basic schema, which is adequate to explain the emergence of the
complex architecture of termite hills, as well as path planning and nest sorting
by ants: agents coordinate their behavior by making and sensing changes in
a shared environment. The canonical example of these changes is the deposit
of pheromones (marker-based stigmergy) [29], though changes in the physical
structure of the task itself (sematectonic stigmergy [36, 25], as in construction of
a honeycomb) is also documented. In this schema, while the agent’s actions can
change the state of the environment, the agent’s state (for example, whether it
is carrying something) changes only by actions of the agent, and is not affected
by the dynamics of the environment.
1 We should clarify the relation between the environment in a stigmergic system and
other uses of the term in multiagent systems engineering [35]. In the agents commu-
nity in the early 2000’s, the awareness of the importance of something other than
the agents in implementing an MAS was partly inspired by awareness of stigmergic
environments. However, an agent environment as developed in [35] is middleware
that mediates the access of agents to resources, such as communications. In terms
of the classic OSI reference model [39], such an environment is at a lower layer than
the agents. In a stigmergic architecture, both agents and environment are generally
at the top, or application, layer.
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Fig. 1. The classic stigmergic schema

Early AI researchers observed that coordinated insect behavior had many
parallels with human behavior. Herb Simon was not controversial when he wrote
[31],

An ant, viewed as a behaving system, is quite simple. The apparent com-
plexity of its behavior over time is largely a reflection of the complexity
of the environment in which it finds itself.

But many would pause over his comment a few pages later,

Human beings, viewed as behaving systems, are quite simple. The ap-
parent complexity of our behavior over time is largely a reflection of the
complexity of the environment in which we find ourselves.

Stigmergy has been identified in human coordination [19, 3, 38] and imitated
in agent-based software, not only to model insect behavior [6, 29] and control
robots [30, 4, 28], but also (drawing more directly on Simon’s insight) to generate
psychologically realistic human behaviors in a social model, represented as a
causal graph that agents stigmergically explore [22]. It also finds application in
telecommunications [34] and logistics [12], among other areas.

Previous applications of stigmergy are distinctly asymmetric. Agents change
the state of their local environment, but the local environment does not change
the state of the agents. The asymmetry of classic stigmergy makes it inappro-
priate for modeling important phenomena. For example, in classic stigmergy,

– The environment learns from the agents (that is, agents can change the
environment’s state), but agents do not learn from the environment.

– Information can propagate in the environment (e.g., pheromone propaga-
tion), but information propagation among agents (as in social influence mod-
els [13]) is not supported.

Closer attention to some interesting insect behaviors (such as long-distance
migration) suggests that even insect systems may require modeling the effect of
the environment on agent state. Our agenda in this paper is to use these systems
to define a symmetric version of stigmergy that can further inspire computational



Insects and Agents 3

multi-agent architectures, as classic stigmergy did an earlier generation of agent
researchers.

Section 2 presents an insect behavior that requires symmetric stigmergy.
Then Section 3 sketches formal models of both classic (asymmetric) and sym-
metric stigmergy, pointing out how the extended model is a useful abstraction
not only of migrating insects, but of behaviors of higher-level agents as well.
Section 4 outlines directions for further research that build on and extend the
concept.

2 The Inspiration: Insect Migration

In the study of social insects, the concept of stigmergy has been a powerful tool
in explaining how complex behavior can arise among agents with limited compu-
tational resources. Grassé’s original application was to cooperative nest building
by termites, but simulations have shown that the process can also explain path
formation in foraging [14] and inter-nest travel [2], nest sorting [10, 5], and task
allocation [32, 33, 7]. Classic stigmergy also offers one of the best known heuris-
tics for the traveling salesperson problem [12]. In spite of these successes, the
classic stigmergic schema cannot model some impressive insect behaviors.

Some insect species conduct annual migrations that span thousands of km.
Two of the best-known and most studied are the desert locust (Schistocerca gre-
garia), in which as many as 1011 insects [27] traverse distances on the order of
5000 km [1] between Africa and the Middle East, and the Monarch butterfly
(Danaus plexippus), with swarms of 108 insects [27] traveling 3600 km [1] be-
tween summer grounds in Canada and wintering quarters in Mexico. While path
formation is a common stigmergic task, no one imagines that these insects, fly-
ing tens or hundreds of meters above the ground, deposit and sense pheromones
on the terrain they cross, or that such deposits could reliably persist from one
year’s migration to the next.

Reviewing this behavior suggests that an extended, symmetric version of the
stigmergic schema can in fact explain it. We organize our review around three
questions that such migrations present:

1. How can such small creatures find their way and resource their travel over
such vast distances?

2. In both of these species (and some other migratory animals as well), no single
individual completes the entire journey. Members of the swarm reproduce as
they move. How is the navigational knowledge required to make the journey
communicated between generations?

3. How does a species develop the navigational knowledge that leads to suc-
cessful migrations?

The navigational mechanisms used (question 1) have been extensively stud-
ied, and though many questions remain [18], several mechanisms have been iden-
tified.
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The overall trajectory of the migration tends to maintain a consistent com-
pass bearing, suggesting that the insects orient themselves, either magnetically
or by sensing the azimuth of the sun (with temporal correction depending on the
time of day). Evidence exists for both mechanisms, including neuronal circuits
for combining circadian rhythms with vision to provide time-of-day corrected
solar information [26], and evidence that the animals (at least Monarchs) carry
biologically-synthesized magnetic particles [17].

Two additional factors come into play, at least with some species [8]. First,
preference for avoiding mountain ranges (e.g., in the case of Monarch butterflies,
the Appalachians) can direct different populations of the same species to different
destinations. Second, insect flight differs dramatically below and above the Flight
Boundary Layer (FBL). Below this altitude, wind speeds are generally lower than
flying speed, so that insects can actively choose their own direction. Above this
layer, the insects are carried by the prevailing winds, which can vary by altitude
and season. Thus, if an insect knows what direction it wants to go, it can change
altitude until it finds winds in the right direction. Studies of swarms with radar
show that they do indeed preferentially choose wind streams conducive to their
itinerary.

In species such as locusts that require food sources as they travel, we can
imagine that terrain features other than mountains (e.g., availability of green
plants) may also shape the direction of travel.

In homing in on the final destination, it has been speculated [18] that visual
terrain cues, or even olfactory signals left in favorite trees by the previous year’s
occupants, may play a role.

Except in the last proposal for homing in on favorite trees, classic stigmergy
cannot explain these behaviors. We know of no mechanism by which insects can
mark the terrain over which they fly or the altitude that they prefer in a way
that would be accessible to other individuals. The fact that a single journey may
span multiple generations (question 2) suggests that the agents carry a simple
genetic recipe for combining local environmental features to guide their behavior.
The fully sequenced genome of the Monarch shows DNA sequences that can be
clearly associated with migratory mechanisms [37].

With our attention focused on the agents’ genomes, the answer to question
3 seems obvious: a given species evolves a successful genome for completing the
journey. Numerous studies explore the evolutionary drivers for migratory behav-
ior [1, 16]. That is, the agents learn from the environment, through evolution,
which combinations of clues lead to a completed journey, and which do not.

In the case of locusts or butterflies, the learning mechanism is binary. If
the local environment supports the needs of the organism at that phase of the
journey (for forage, reproduction, and shelter, both along the journey and at the
final destination), the agent and its genome survive. If the local environment is
not supportive, the insect dies. Thus the local environment, through evolutionary
dynamics, changes the state of the insect (in this case, of the genome that guides
the insect’s behavior). Put crudely, the local environment either kills the insect
(depleting its genome in the population) or supports its continued movement
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toward the goal (and thus contributing to the propagation of the successful
genome).

More complex organisms support more sophisticated and nuanced mecha-
nisms for learning from experience, and these would also be supported by sym-
metric stigmergy. For instance, task specialization in leaf-cutter ants can be ex-
plained by stigmergy extended with evolutionary learning from the environment
[11]. Our point is that it is natural for agents to learn from their interactions with
the environment, and that this learning constitutes modification of the agent’s
state by the environment, an extension beyond the classic asymmetric stigmer-
gic schema. The example of insect migration shows that even without access to
sophisticated learning mechanisms, any organism whose behavior is governed by
its DNA can learn from its interactions with the local environment, and analy-
ses of behavior that ignore this impact of the environment on the agent are less
powerful than they could be.

Figure 2 illustrates the resulting schema, which differs from that in Figure 1
in having an additional arrow from environmental dynamics to agent state.
In the classic model, environmental dynamics are restricted to things such as
pheromone evaporation and dispersion, but the example of migrating butterflies
suggests that it is meaningful to think of the environment as acting directly on
agents (by killing them, and thus removing their genomes from the population,
or by supporting them, allowing them to survive and pass on their genomes). Of
course, more sophisticated learning mechanisms may also alter the agent state
in response to environmental dynamics. Whatever the mechanism, it is both
reasonable and useful to view learning as a change in agent state stimulated by
what happens in the environment.

Fig. 2. The symmetric stigmergic schema

3 Architectural Models

A simple formalism may make these ideas more precise.
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3.1 Conventional Stigmergy

Classic stigmergy (e.g., ant path planning using pheromones) can be summarized
with the following model:

– A set A : a0, a1, . . . , an of agents, each with state asi
– A set E : e0, e1, . . . , em of environmental locations, each with state esi
– An environmental adjacency relation ea ⊆ E × E
– An environment state update function ESU : asi → esj , where j indexes

the environmental cell where ai currently resides
– An environment state dynamics function ESD : es(t)→ es(t+ 1), typically

evaporation
– An environment state propagation function ESP : esi → N(esj), where

N(esj) is the neighborhood of esj (e.g., diffusion of pheromone to adjacent
cells)

In geospatial stigmergy (e.g., ant or robotic path planning), the elements
of E tile a manifold, and ea is symmetric, each tile being adjacent to the tiles
in its Moore or von Neumann neighborhood. But other adjacency relations are
possible

– Ref. [24] applies stigmergy to reasoning over a hierarchical task network, in
which ea is asymmetric.

– Ref. [23] applies it to a novel causal graph formalism whose nodes are event
types rather than variables. A edge from ei to ej indicates temporal succes-
sion, and so is asymmetric.2

As anticipated, this model exhibits several asymmetries.

– While agents can change the state of environmental locations that they visit,
these locations cannot change the state of the agents. The examples of migra-
tory insects show that in fact the environment can change the state of even
very simple agents, imposing evolutionary pressure on their genomes, and
classic learning techniques with more complex agents are central to modern
ABS.

– There is no agent adjacency relation or agent state propagation. But so-
cial influence models recognize the critical importance of the influence of
agents on one another (agent state propagation), drawing on an underlying
social network. Even insect level societies exhibit role specialization in which
different classes of agents interact differentially with one another [9, 32].

– There are no agent state dynamics. But if agents can learn, they can also
forget.

In addition to its asymmetry, the conventional model is static. No provision
is made for the addition or removal of agents or environmental locations.
2 Actually, it is antisymmetric. Since the nodes are event types that may be instanti-
ated at different points in time, this formalism, unlike a hierarchy, does admit cyclical
paths, and an agent can repeat an event type several times in a row, following an
edge (ei, ei). But (i 6= j) ∧ ((ei, ej) ∈ ea) =⇒ (ej , ei) /∈ ea.
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3.2 Symmetric Stigmergy

It is straightforward to extend the classic model model to make it symmetric
(and dynamic).

We retain the elements already defined, and extend A, E, and ea to func-
tions of time, A(t), E(t), and ea(t). (Some applications may require the update,
dynamics, and propagation functions to be functions of time as well, but we do
not dwell on this natural extension.)

Then we add

– An agent adjacency relation aa(t) ⊆ A×A
– An agent state update function ASU : esi → asj , where i indexes the

environmental cell where aj currently resides
– An agent state dynamics function ASD : as(t) → as(t + 1), which might

model forgetting, or more complex integrative reasoning over learned infor-
mation

– An agent state propagation function ASP : asi → N(asj), where N(asj) is
the neighborhood of asj (e.g., spread of opinion over a social network)

This model supports the evolution of migrating insects in the following way:

– The agent’s state is its genome.
– ASU includes mutation, a random change in the genome over time, and

health, driven by the environment and possibly resulting in death.
– A changes as agents become isolated from the swarm and die, and as new

agents are born.
– aa includes the relation of agents to their offspring.
– ASP passes on the genomes of successful agents from parents to children.

The distinction between agents and environment is justified in many appli-
cations by two contrasts. (1) Agents are mobile and the environmental locations
are stationary. (2) Many agent behaviors of interest require coordination among
agents, but we do not usually think of locations as coordinating with one an-
other. But a large class of interesting social systems are appropriately defined
by allowing the same sets of entities to serve both for E and A. How would this
work? An agent qua agent is located at itself qua environment. ASU is null,
but ASP allows propagation of information among agents. This approach sup-
ports not only models of opinion dynamics [20], but also the task specialization
mechanisms mentioned earlier [9, 32].

4 Directions for Future Research

Insect behaviors provided the initial inspiration for stigmergic mechanisms, in
which agents coordinate by causing and sensing changes in the state of their local
environment. Close examination of insect migration, a behavior that cannot be
explained by this asymmetric mechanism, suggests that it is useful to recognize
an analogous process, in which the agent learns from locations with which it
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interacts (or in other words, the local environment modulates the state of the
agent). Recognition that stigmergy can be symmetric expands the domain of
applicability of this simple but powerful mechanism. Here are some examples.

Symmetric diffusion: One environmental dynamic sometimes modeled in clas-
sic stigmergy is the diffusion of pheromone from the point of deposit to nearby
locations, generating a gradient that agents can use to find or avoid locations of
interest. In social models, agents who encounter one another tend to align their
preferences with one another in a process called "social influence" [13]. When
agent preferences are modulated by their local environment, the effect is a dif-
fusion of preferences throughout the agent network that strongly resembles the
diffusion of presence pheromones through the environment.

The insect analog to es is a chemical pheromone deposited by agents on the
locations they visit. Many insects use multiple pheromones, yielding a vector-
based deposit on each location, and thus establishing a field over the entire
environment. Artificial stigmergic architectures mimic this behavior with vari-
ables on each location that are augmented when agents visit them. Ref. [21]
shows that this pheromone field allows a stigmergic system to be viewed as in-
termediary between a classic agent-based model and an equation-based "mean
field" model, and the position of a stigmergic model on this continuum can be
adjusted by pheromone parameters .

Our symmetric model establishes a similar field over the set of agents. One
implementation that has proven useful is a vector of preferences over the same
vector space that defines the field over the environment, so that an agent’s
choice among alternative environmental options is a simple comparison between
its preference vector and the pheromone (or feature) vector of each accessible
location. The parallel between the environmental feature field and the preference
field over the agents extends our conceptual resources for exploring the relative
benefits of equation-based and agent-based models and developing new designs
that combine the strengths of each.

Modeling environmental action: Recent advances in social modeling [23] demon-
strate how stigmergy can function in an environment made up of dynamic events
rather than only geospatial locations. Events are intrinsically active, and it seems
natural, even necessary, to consider their impact on agents. A conceptual frame-
work that recognizes the symmetry of agents and locations can enable us to
model and explore such active environments, which are likely to be increasingly
important in capturing important social dynamics for analysis and planning.

Between ants and actors: We noted above that the presence of a field allows us
to explore the design space between agents and equations. Symmetric stigmergy
extends the design space in another direction. At one extreme, classic stigmergy
offers an elegant account of very simple agents interacting through a shared
environment. In some cases, the most important environment that an agent needs
to consider consists of other, peer agents, and in this case BDI architectures have
historically been preferred.

Recognizing the potential activity of local regions of the environment (such
as event types in an event graph [23]) gives us an intermediate point between
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these extremes. Consider the two asymmetries we identified at the end of the
previous section: unlike agents, environmental locations do not move, and do not
coordinate with each other. But as our notion of what constitutes an environ-
mental location shifts from a geospatial tile to an event type, these asymmetries
tend to disappear.

1. In an environment made up of event types, an event emerges when one or
more agents are concurrently participating in the event type. Each of these
agents has a geospatial location. As the system operates, instances of events
thus can pop up at different locations. Movement of event types through
space emerges from the execution of the system.

2. We do not usually think of environmental locations as coordinating with
one another. But as a set of event types modulates the preferences of their
participating agents, we would expect to see some correlation across the
time and places at which specific events emerge. Discovering this kind of
unexpected correlation across events is of great interest to social scientists,
and symmetric stigmergy facilitates its study.

The emerging landscape of modeling options is thus changing. Currently,
modelers tend to form disparate and incompatible tribes (using, for example,
equations, digital ants, or BDI agents). Symmetric stigmergy provides a common
abstract model that can support a continuum of modeling techniques (Figure 3),
offering the modeler a far richer and better nuanced set of choices. Thinking of
agent interactions in terms of fields generated by stigmergy (whether symmetric
or asymmetric) helps bridge the gap between equations and agents [21], while
symmetric stigmergy helps bridge the gap between ant-like agents and BDI
agents. The concept of symmetric stigmergy thus points the way to a Grand
Unified Theory of modeling, which can help us derive hybrid techniques that
combine the strengths of alternative formalisms.

Fig. 3. Stigmergy spans different modeling modalities
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