
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

ONE-STEP DIFFUSION SOLVER FOR NON-BINARY INTE-
GER LINEAR PROGRAMMING

Anonymous authors
Paper under double-blind review

ABSTRACT

Integer linear programming, a fundamental NP-hard problem with broad appli-
cations in science and engineering, has gained growing attention in the machine
learning community. Yet, progress on effective end-to-end solvers remains limited,
largely due to difficulties in enforcing constraints and integrality. Most existing
work focuses on binary integer linear programming problems, while generalizing to
bounded, non-binary cases often requires transformations that significantly increase
problem size and computational costs. Even for purely binary problems, inference
time is often prohibitively long, restricting applicability to real-world scenarios. To
tackle the aforementioned problems, we propose three one-step diffusion-based
approaches, i.e., CMILP, SCMILP and MFILP, inspired by the popular consistency,
shortcut and meanflow training techniques. Our methods can further handle non-
binary integer problems using a newly proposed iterative integer projection (IIP)
layer, eliminating the need for the costly problem transformation. To further im-
prove the solution quality, an objective-guided sampling with momentum scheme
is proposed. Experiments demonstrate that our approach outperforms existing
learning-based methods on both binary and non-binary instances and shows strong
scalability compared to traditional solvers. Source code and detailed protocols will
be made publicly available.

1 INTRODUCTION

Integer Programming (IP) (Schrijver, 1998) is a class of optimization problems in the field of
operations research, where some or all of the decision variables are constrained to be integers. These
problems play a crucial role in various domains, such as production planning (Pochet & Wolsey, 2006),
resource allocation (Zoltners & Sinha, 1980), and scheduling (Ryan & Foster, 1981). However, as an
NP-hard problem, IP is generally very difficult to solve. In recent decades, researchers have primarily
relied on heuristic methods such as branch-and-bound (Wolsey, 2020), cutting-plane methods (Ceria
et al., 1998), and large neighborhood search algorithms (Ahuja et al., 2002) to address this challenge.
These methods are typically computationally expensive, especially for large-scale problems, where
the search space grows exponentially, significantly increasing the difficulty of solving the problem.

With the success of machine learning, recent studies have begun focusing on solving IP problems
using data-driven approaches (Gasse et al., 2019), where neural networks are used to predict solutions
that both minimize the objective function and ensure feasibility of the solutions. To address this
issue, Wang et al. (2022) proposed a differentiable IP solver that uses Gumbel-Softmax to ensure that
integer constraints do not interfere with the learning of the optimal objective. Meanwhile, Zeng et al.
(2024) leveraged deep diffusion models to nearly perfectly satisfy 0-1 integer constraints. However,
there are still several notable issues: 1) Although Zeng et al. (2024) excels at generating feasible
solutions, the inference speed of diffusion models is very slow, leading to a loss of the efficiency
advantages deep learning should offer compared to traditional solvers like Gurobi and COPT; 2)
Most existing IP neural solvers are limited to 0-1 integer programming and fail to extend neural
IP solvers to more general integer constraints. Though bounded IP problems can be transformed
to binary integer programming problems, the problem scale grows exponentially with the variable
bounds and will bring about large computational burdens.

To tackle these problems, in this paper, we propose three one-step diffusion-based integer linear
programming solvers. The structure of the solvers is visualized in Fig. 1. One-step solvers can

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Figure 1: Illustration of the proposed one-step diffusion solvers for non-binary ILP.

finish solving far faster compared to traditional solvers and vanilla-diffusion-based solvers with
comparable performance. To enhance the solution’s feasibility, we adopt the objective-guided
sampling methods. The momentum mechanism is further introduced to boost the effectiveness
of the objective-guided sampling. We evaluate our methods on not only classic binary integer
linear programming problems, but also two types of non-binary integer linear programming problems.
Experimental results demonstrate the superiority of our method over original diffusion-based methods.
In short, this work contributes in the following aspects:

1) Departure from previous works that employ a two-stage method to handle infeasible solutions (Nair
et al., 2021) or use extensive diffusion iterations (Zeng et al., 2024) to obtain feasible solutions.
In this paper, we propose three one-step diffusion-based solvers under an end-to-end paradigm for
ILP problems, namely CMILP, SCMILP and MFILP. The proposed solvers achieve higher solution
feasibility compared to previous neural solvers, reaching nearly 100% on binary ILP problems
without resorting to traditional algorithms for post-processing.

2) For the first time, to our best knowledge, we extend the binary 0-1 ILP neural solver to the non-
binary case for feasible solution prediction, in which we introduce a new Iterative Integer Projection
(IIP) layer defined across the entire real domain, capable of approximating the real integer within a
few iterations. We find that using a small number of projection iterations during training, and more
iterations during testing, leads to better performance.

3) We propose and rethink the guidance in the diffusion model for ILP, as presented in Zeng et al.
(2024), from the perspective of non-convex optimization. We show that previous guidance methods
can be viewed as a special case of gradient descent (with only a single optimization step). Based
on this insight, we introduce a sampling method based on gradient descent and a momentum-based
gradient descent approach to improve the sampling process.

2 RELATED WORKS

Diffusion-based Models The diffusion model (Ho et al., 2020) is a popular generative model that
has been actively applied to solve various optimization problems (Sun & Yang, 2023; Li et al., 2023).
It uses a noising and denoising procedure to accurately capture the target distribution. To accelerate
the inference speed of the diffusion model, the consistency model (Song et al., 2023) is devised by
posing the consistency function onto the variable trajectory. Flow matching (Lipman et al., 2023)
generalizes the diffusion model and generates in a continuous normalizing flow-based paradigm. The
shortcut model (Frans et al., 2024) is a newly devised one-step diffusion model that takes the step size
as the conditional input to permit large step sampling. Instead of focusing on instantaneous velocity
as in flow matching models, meanflow (Geng et al., 2025a) tries to learn the average velocity.

(Mixed) Integer Linear Programming and its Traditional Solvers Mixed Integer Linear Pro-
gramming (MILP) (Bénichou et al., 1971) is a fundamental optimization technique widely used across
various fields, including operations research and supply chain management. Traditional MILP solvers
include branch-and-bound (Wolsey, 2020), branch-and-cut (Mitchell, 2002), and cutting-plane (Ceria
et al., 1998) methods. The branch-and-bound method systematically divides the solution space into

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

subproblems and eliminates infeasible solutions based on bounds, while branch-and-cut enhances this
approach by incorporating cutting planes to improve computational efficiency. Cutting-plane methods
iteratively refine the feasible region by adding linear inequalities, thus reducing the search space.
Additionally, simplex-based methods have been adapted for MILP through algorithms such as the
dual simplex method (Banciu, 2011). While these traditional solvers are effective, they often struggle
with large-scale problems, where computational time grows exponentially. This challenge has spurred
the development of hybrid approaches that combine traditional solvers with metaheuristics, constraint
programming, and machine learning techniques to improve efficiency in solving complex, large-scale
MILP problems. In contrast, Neural Solvers offer faster and more scalable solutions by learning from
data, enabling quicker problem-solving without the need for manual adjustments.

Neural Solver for IP (Mixed) Integer Linear Programming (ILP), as a widely used mathematical
programming problem, has attracted a great deal of attention from the machine learning commu-
nity (Zhang et al., 2023). One line of research tries to substitute ML models with key parts of
traditional algorithms to improve solving efficiency. A significant portion of this work focuses on
learning heuristic policies for tasks such as selecting variables to branch on (Scavuzzo et al., 2024),
choosing cutting planes (Puigdemont et al., 2024), and more (Labassi et al., 2022). Another line of
research leverages ML models to predict solutions and adopts traditional methods as post-processing
techniques to retrieve feasible solutions. For example, Neural Diving (Nair et al., 2020) predicts a
partial solution based on coverage rates and utilizes neural networks to determine which predicted
variables to fix, while Han et al. (2023a); Ye et al. (2023) builds upon this work by adopting search
methods to improve solution quality. Tang et al. (2025) deals with non-binary ILP by introducing an
integer correction layer at the cost of extra parameters. Most of these works focus more on integer
prediction and do not directly address the satisfaction of linear constraints. As a result, they are not
end-to-end models and rely on heuristic search to satisfy the inequality constraints. In this paper,
we attempt to propose an end-to-end model to get feasible solutions using merely machine learning
techniques. Acceleration is expected due to the speed advantage neural networks usually bring about.

3 METHODOLOGY

3.1 REPRESENTATIONS OF ILP WITH PROJECTED GRAPH NEURAL NETWORKS

ILP representation. Integer Linear Programming (ILP) Problem is a type of optimization problem
that seeks an integer-valued solution that minimizes a linear objective under linear constraints. All
integer linear programming problems can be transformed to the following form:

min
x

c⊤x, s.t. Ax ≤ b,x ∈ Zn (1)

where there are n variables and m constraints. Given that SCIP (Bolusani et al., 2024) already provides
a mature algorithm for this transformation, we only tackle such problems during model training.
Following Gasse et al. (2019), we represent ILP as a weighted bipartite graph, where variable and
constraint nodes form two disjoint sets and the bipartite graph weights encode the constraint matrix
A. This representation allows us to leverage a graph neural network for feature extraction. More
specifically, in this paper, we adopt the network architecture implemented bt Nair et al. (2021).

Model architecture. Considering the discrete nature of the solutions of ILP instances, a projection
should be applied to map the variables to a continuous feature space, which is implemented via a
transformer in our model. As proven in Nair et al. (2021), when extracting features from the problem
instances and problem solutions, we should also ensure the alignment between them to enhance
model performance. Motivated by CLIP (Radford et al., 2021), we adopt a contrastive learning
approach to better match the continuous ILP problem features (node features of weighted bipartite
graphs) and the solution features. The CLIP-style encoder is pretrained to extract robust instance
features independently of solver training.

Secondly, a neural solver is applied to solve the instance in the feature space. The continuous nature
of the feature space permits a smooth adoption from the well-developed image generative models.
The specific diffusion solvers will be introduced in the following sections. The backbone of this
solver is a transformer encoder that learns the solution distribution. The solution features generated
previously are treated as the targets, while the ILP instance features serve as the conditional inputs.
The time t of the diffusion trajectory is encoded using the sinusoidal embedding. Since our goal is to

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

capture the underlying solution distribution, we construct the training set by collecting 500 optimal
and sub-optimal solutions, allowing for a richer representation of the data distribution.

Finally, a solution decoder is applied to project the solution features back to the original solution
space. The final solution is reconstructed by a combination of the predicted solution features and the
ILP problem features. The solution decoder is trained jointly with the diffusion model.

The model is trained to minimize the reconstruction error, the diffusion loss and a feasibility penalty.
The reconstruction error Lrecon measures the model’s ability to capture the mapping between the
problem space and the feature space. For binary variables, the cross entropy loss is adopted for the
reconstruction error. For non-binary cases, we choose the MES loss to evaluate the reconstruction gap.
The diffusion loss LXXILP aims to enhance the learning of the solution distribution conditioned on the
problem distribution. To further enforce constraint satisfaction, we introduce a feasibility penalty
Lpenalty = 1

m

∑m
i=1 max(aTi x̂− bi, 0), which specifically addresses linear constraint violations. Inte-

grality is handled separately through the Iterative Integer Projection described below. Experimental
results confirm that incorporating the feasibility penalty significantly improves constraint satisfaction
in our solver. The final training loss is shown as follows:

L = Lrecon + LXXILP + λpenaltyLpenalty, (2)

where λpenalty is the penalty coefficient.

Figure 2: Visualization of
the Iterative Integer Projection
f
(k)
proj . As the iteration K in-

creases, the projected results
gradually converge to integers.

Iterative Integer Projection (IIP) for General ILP. Most existing
studies (Zeng et al., 2024; Li et al., 2023) focus on binary integer
linear programming (BILP) problems (i.e. x ∈ {0, 1}n) due to their
relative simplicity. While it is theoretically possible to transform
any bounded integer linear programming instance into a binary form
through binary encoding techniques (Nair et al., 2021), such transfor-
mations often lead to an exponential increase in problem size. This
scaling significantly impacts computational efficiency, increasing
both solving time and memory costs.

In this work, we turn our focus to non-binary ILP problems—a direc-
tion that has received comparatively little attention. Tackling such
problems requires a differentiable mechanism for approximating
non-binary integer variables. While the Sigmoid function is widely
used for relaxing binary variables, extending this idea to the non-
binary case calls for a new projection function that meets several
criteria: it must be differentiable, defined over the real domain, and
capable of rapidly converging to integer values within only a few it-
erations. Guided by these considerations, we introduce the following
integer projection function:

f
(0)
proj(x) = x, and f

(k)
proj(x) = fproj(f

(k−1)
proj (x)) ∀k < K where fproj(x) = x− sin(2πx)

2π
(3)

Here, K ≥ 0 represents the number of projection iterations for this layer. Through this recursive
iteration, we can approximate the integer solution of the output x in a differentiable manner. Fig. 2
demonstrates how the above function approximates the rounding function in finite iterations. We
use this function to replace the Sigmoid function to approximate integer values throughout the real
domain. The projection is applied once during training for training efficiency and applied multiple
times during testing for approximation accuracy.

3.2 CMILP: CONSISTENCY DIFFUSION MODEL FOR INTEGER LINEAR PROGRAMMING

In this section, we start to devise diffusion-based solvers to address integer linear programming
problems. Compared to pure supervised-learning-based solvers, diffusion-based solvers capture the
solution distribution of the instances instead of merely memorizing the single optimal value. However,
solvers based on the vanilla diffusion model suffer from a long inference time, even compared to
traditional solvers (Zeng et al., 2024). This limits this model’s practical value. Hence, we propose
using the consistency model (Song et al., 2023), the speed-up version of the diffusion model, to
address ILP problems.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Consistency model is a type of generative model whose core is the consistency function fθ that
satisfies: 1) boundary condition: fθ(xϵ, ϵ) = xϵ; 2) self-consistency properties: fθ(xt, t) =
fθ(xt′ , t

′), ∀t, t′ ∈ [ϵ, T]. The consistency model requires all variables along the noising and
denoising route to yield the same value for the consistency function. The introduction of the con-
sistency function shortens the inference schedule to one or a few timesteps, greatly reducing the
inference time. This makes the consistency model more practical in real-world settings.

Considering the characteristics of integer programming, we choose the mapping to the solution
distribution as the consistency function. This consistency function follows both boundary conditions
and self-consistency properties because the solution distribution is determined by the problem features.
Since the solution x∗ is explicit given the problem instance, we can integrate x∗ into the loss for
better training instead of focusing on the gap between fθ of two diverse timesteps:

LNt

CMILP(θ) =E
[
d(fθ(x

i
tn , tn,P), δ(x− x∗)) + d(fθ(xtn+1 , tn+1,P), δ(x− x∗)

]
(4)

where d(·, ·) is a distance function and Nt represents the time scheduler. Its minimization is achieved
only if consistency holds across all possible trajectories, yielding the optimal solution distribution.

3.3 SCMILP: SHORTCUT DIFFUSION MODEL FOR INTEGER LINEAR PROGRAMMING

Recently there has been a new variant of the diffusion model that can also generate high-quality
solutions in one or a few steps, the shortcut model (Frans et al., 2024). The shortcut model is built
upon a flow matching model (Lipman et al., 2023). The original flow matching models suffer from
the large number of inference steps required to generate a high-quality solution, as with the diffusion
model. The shortcut model tackles this issue by conditioning not only on the problem instance but
also on the size of the inference steps. The shortcut sθ(xt, t, d), which is defined as the normalized
direction to the next variable, is hence introduced:

x′
t+d = xt + sθ(xt, t, d)d (5)

The shortcut model is trained using a combination of the self-consistency loss and the flow matching
loss. The self-consistency refers to the model quality that one shortcut step equals two consecutive
shortcut steps of half the size. This loss enables the model to function under large sampling steps.

LNt,d

SCMILP(θ) = E
[
∥sθ(xt, t, 0)− (x1 − x0)∥+ ∥sθ(xt, t, 2d)−

sθ(xt, t, d) + sθ(x
′
t+d, t, d)

2
∥
]
(6)

where (t, d) is sampled according to the time scheduler Nt,d. For the shortcut model, the step size d
is embedded using the sinusoidal embedding and together with the time t as the conditional inputs.

3.4 MFILP: MEANFLOW MODEL FOR INTEGER LINEAR PROGRAMMING

The mean flow model (Geng et al., 2025a) is another generative model that instead uses the average
velocity u(xt, r, t) to capture distributional changes, in contrast to the instantaneous velocity v(xt, t)
modeled in flow matching. An identity relationship forms between those two velocities:

u(xt, r, t) = v(xt, t)− (t− r)
d

dt
u(xt, r, t), where

d

dt
u(xt, r, t) = v(xt, t)∂xu+ ∂tu (7)

As in flow matching, the instantaneous velocity v(xt, t) is modeled as v(xt, t) = ϵ− xt. Eq. 7 can
hence provide the target average velocity in arbitrary time ranges [r, t]. The neural network is trained
to approximate this average velocity by minimizing the following loss with the time scheduler Nr,t.

LNr,t

MFILP = E∥uθ(xt, r, t)− utarget∥22 (8)

3.5 OBJECTIVE GUIDED SAMPLING FOR DIFFUSION MODEL

Constraint satisfaction and objective minimization are two core problems in constrained optimization.
We attempt to incorporate them into diffusion’s sampling to further boost models’ performance. We
follow Graikos et al. (2023) to utilize the learned model p(x|P) as a sampling prior to achieve this.
The conditional information y∗ is incorporated using a constraint function c(x,y∗) to regulate the
posterior distribution. The target posterior pθ(x|y∗) is hence modeled as Zpθ(x|P)c(x,y∗|P). We

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Figure 3: Visualization of objective-guided sampling with/without momentum.

introduce an approximate variational posterior q(x|P) to estimate the target posterior. Following
the derivation in Li et al. (2024), if we approximate q(x|P) as a point estimate δ(x − η), we can
minimize the following property to learn the target posterior.

F = Eq(h|η,P)

[
log

q(h|η,P)

pθ(η,h|P)
− l(η;P)− logZ − y∗

]
(9)

where Z is a constant normalization factor, h = x1, . . . ,xT are the latent variables and l(·;P) is
defined as follows:

y∗ = min
x

l(x;P) where l(x;P) ≜ c⊤z+
∑

max(a⊤k z− bk, 0), and z = Decoder(x) (10)

where a⊤k is the kth row in the constraint matrix A and bk is the kth value in the constraint vector b.
From the diffusion process, we have q(h|x,P) =

∏T
t=1 q(xt|xt−1). Hence, log q(h|η,P)

pθ(η,h|P) is actually
the objective of diffusion models. It is noteworthy that, compared to other diffusion models, we need
to further employ a solution decoder to transform the latent variables into the solution space. The
objective guidance is provided from the original solution space instead of the feature space where
the diffusion model is located. η is initialized as the output of the diffusion model. We optimize F
concerning η to learn a better intermediate variable. All the proposed solvers fit this framework.

Gradient Descent with Momentum (MGD) Search The aforementioned guidance method can
be considered a special case of gradient descent, performing just a single optimization step on the
diffusion latent variables. To enhance the effects of the guidance, we introduce momentum (Liu et al.,
2020), a technique originally developed for neural network optimization, into the sampling. The
intuition for momentum is to reduce the oscillation of the gradient updates and hence accelerate the
optimization procedure. Since the objective-guided sampling process shares the same framework as
model optimization, introducing momentum here can also enhance guidance. The update rule for this
momentum is given by:

m = βm− ηg, x = x+m (11)
where g represents the objective-guided gradients introduced previously. If we set β = 0, then
this update rule reduces to the original objective-guided formulation. The momentum mechanism
in objective-guided sampling is visualized in Fig. 3. We can expect that with the introduction of
momentum, the latent variables sampled reach feasibility faster compared to the original methods. If
the gradient descent is performed only once for both sampling methods, the one with momentum
bears less cumulative error and finds better solutions compared to the original sampling methods.
The effectiveness of the momentum mechanism is proven through experiments.

4 EXPERIMENTS

4.1 BASELINES AND EVALUATION METRICS

We evaluate the following baselines on our datasets for better comparison and evaluation of the
proposed methods: 1) Traditional solvers: Gurobi (Gurobi Optimization, LLC, 2024), and SCIP (Bo-
lusani et al., 2024) and COPT (Ge et al., 2023). 2) Heuristic-based solvers: Relaxation Induced

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Table 1: Results on classic binary integer linear programming. Fea: sample feasibility for generative
models and dataset feasibility for non-generative models.

Method SC CF CA
Gap Time Fea. Gap Time Fea. Gap Time Fea.

Gurobi (Gurobi Optimization, LLC, 2024) 0.00% 100s 100% 0.00% 100s 100% 0.00% 100s 100%
SCIP (Bolusani et al., 2024) 91.4% 16.7m 100% 77.4% 16.7m 100% 16.8% 16.7m 100%

rins (Danna et al., 2005) 252.9% 164.3s 100% NaN 300.7s 0.0% 69.3% 336.1s 100%
feaspump (Fischetti et al., 2005) 252.9% 236.6s 100% 12.7% 396.8s 46.0% 69.3% 348.6s 100%

PS (Han et al., 2023b) 71.7% 129.8s 100% 64.5% 138.2s 100% 13.7% 116.3s 100%
Neural Diving (Nair et al., 2021) NaN 0.9s 0.0% NaN 0.9s 0.0% 100% 3.7s 100%

Neural Diving+CompleteSol (Zeng et al., 2024) 80.2% 117.6s 100% 48.0% 127.9s 31.0% 16.5% 107.8s 87.0%
IP Guided DDPM (Zeng et al., 2024) 70.8% 11h 95.7% 80.5% 30h 44.0% 98.6% 9h 100%
IP Guided DDIM (Zeng et al., 2024) 68.5% 65m 99.8% 54.6% 1.5h 89.7% 25.4% 77m 97.1%

DiffILO (Geng et al., 2025b) 93.9% 22.2s 100% 512.3% 15.2s 100% 99.2% 33.2s 100%
CMILP (Ours) 90.2% 21.7s 100% 79.2% 2.3m 92.1% 80.2% 51.1s 100%

SCMILP (Ours) 91.6% 27.2s 100% 82.9% 2.9m 88.3% 85.3% 36.1s 100%
MFILP (Ours) 88.4% 21.3s 100% 76.1% 2.3m 89.7% 79.2% 32.8s 100%

Neighbourhood Search (rins) (Danna et al., 2005) and feasibility pump (Fischetti et al., 2005). 3)
Diffusion-based methods originally designed for binary ILP problems: IP Guided DDPM and DDIM
(Zeng et al., 2024). For binary integer linear programming problems, we further compare with two
other state-of-the-art methods: the Neural Diving (Nair et al., 2021), the Predict-and-Search algorithm
(PS) (Nair et al., 2021) and DiffILO (Geng et al., 2025b).

We adopt four metrics: 1) Gap: the relative gap between the ground truth value and the predicted
value, i.e. |c⊤xgt−c⊤xpred|

|c⊤xgt| . The gap is only calculated among problems to which the solvers can get a
feasible solution; 2) Time: the average computational time spent on evaluation. For generative models,
the total time spent on all samples is recorded; 3) Sample feasibility: the average feasibility per
instance. We choose to sample 30 times for all of the diffusion-based models to retrieve a high-quality
solution. This metric can reflect how many of the samples can retrieve a feasible solution. Feasibility
here means the satisfaction of the linear constraints, as the integerality constraints are enforced before
evaluation through the hard rounding function. 4) Dataset feasibility: the average feasibility ratio of
the dataset. This metric reflects the percentage of problems in which the solvers can find a feasible
solution. Dataset feasibility is a more commonly evaluated metric compared to sample feasibility.
Sample feasibility and dataset feasibility can reflect the performance of generative-model-based
solvers from different perspectives.

4.2 BINARY INTEGER LINEAR PROGRAMMING PROBLEMS

In this section, we assess our methods’ capacity on three classic binary integer linear programming
(BILP) problems, i.e., set cover, capacitated facility location, and combinatorial auction. All variables
in the problems are binary variables. The instances are all generated by the Ecole library (Prouvost
et al., 2020). Given the high complexity of these problems, we adopt solutions obtained by Gurobi
with a 100-second time limit as training targets. The training dataset consists of 800 instances,
while the test set contains 100 instances. For evaluation, SCIP is run with a 1000-second limit
to obtain suboptimal solutions. PS leverages Gurobi as the post-processor and follow parameters
settings used by Han et al. (2023b). For neural diving (Nair et al., 2021), we use a low-coverage
(coverage=0.2) model that emphasizes solution feasibility to complete partial solutions. We also
report results on neural diving with the CompleteSol heuristics from SCIP (Bolusani et al., 2024) as
the post-processing techniques.

The experimental results are summarized in Table 1. Since all diffusion-based models achieve
100% dataset feasibility across all datasets, we report only the remaining three metrics in the table.
As shown, our method attains higher sample feasibility than both IP Guided DDPM and DDIM.
Additionally, on the CF and CA datasets, our approach achieves a smaller optimality gap than IP
Guided DDPM while requiring less inference time. Although IP Guided DDIM consistently produces
the lowest gap across all datasets, its inference time is considerably longer compared to both our
method and traditional solvers.

4.3 NON-BINARY INTEGER LINEAR PROGRAMMING PROBLEMS

4.3.1 INVENTORY MANAGEMENT DATASETS

In this section, we perform experiments on non-binary linear programming problems. We mainly
focus on two artificial datasets. The first dataset tries to model the inventory management problems.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 2: Experimental results on small-scale inventory management datasets where the number
of warehouses is larger than the number of types of goods. S. Fea is the abbreviation of sample
feasibility, and D. Fea is the abbreviation of dataset feasibility.

Method IM-(50, 5, 2) IM-(50, 5, 5) IM-(50, 5, 10)
Gap Time S. Fea. D. Fea. Gap Time S. Fea. D. Fea. Gap Time S. Fea. D. Fea.

Gurobi (Gurobi Optimization, LLC, 2024) 0.00% 6.6s - 100% 0.00% 4.6s - 100% 0.00% 5.8m - 100%
SCIP (Bolusani et al., 2024) 0.00% 13.2s - 100% 0.00% 6.7s - 100% 0.00% 28h - 100%
COPT (Ge et al., 2023) 0.00% 32.2s - 100% 0.00% 31.8s - 100% 0.00% 17.9m - 100%
rins (Danna et al., 2005) 0.61% 4.2s - 61% 0.00% 3.6% - 54.0% 0.00% 4.7s - 6.0%
feaspump (Fischetti et al., 2005) 0.62% 3.4s - 60.0% 0.00% 2.7s - 53.0% 0.00% 3.7s - 6.0%

Neural Diving (Nair et al., 2021) NaN 0.7s - 0.0% NaN 0.7s - 0.0% NaN 0.8s - 0.0%
Neural Diving+CompleteSol (Zeng et al., 2024) 21.2% 3.1s - 28.0% 21.3% 3.3s - 61.0% 57.3% 5.0s - 72.0%
IP Guided DDPM (Zeng et al., 2024) 92.9% 34m 0.1% 1.0% 15.6% 48m 0.1% 13.0% 87.2% 28m 0.1% 1.0%
IP Guided DDIM (Zeng et al., 2024) 15.0% 6m 46.0% 80.0% 6.0% 5m 32.3% 88.0% 133.3% 7.3m 18.6% 68.0%
CMILP (Ours) 16.5% 2.6s 69.2% 88.0% 8.4% 2.8s 71.3% 90.0% 119.3% 3.0s 35.7% 76.0%
SCMILP (Ours) 12.2% 2.0s 42.4% 78.0% 10.1% 2.3s 35.8% 86.0% 112.9% 2.9s 20.3% 62.0%
MFILP (Ours) 12.1% 2.1s 70.5% 90.0% 11.4% 2.0s 60.6% 80.0% 107.1% 2.1s 36.8% 68.0%

Table 3: Experimental results on inventory management datasets
Method IM-(5, 50, 2) IM-(200, 5, 2) IM-(100, 10, 2)

Gap Time S. Fea. D. Fea. Gap Time S. Fea. D. Fea. Gap Time S. Fea. D. Fea.

Gurobi (Gurobi Optimization, LLC, 2024) 0.00% 48.3s - 100% 0.00% 46.6s - 100% 0.00% 53.3s - 100%
SCIP (Bolusani et al., 2024) 0.00% 29.1s - 100% 0.00% 80.87s - 100% 0.00% 8h - 100%
COPT (Ge et al., 2023) 0.00% 4.9m - 100% 0.00% 38.5s - 100% 0.00% 4.2m - 100%
rins (Danna et al., 2005) 0.00% 1.8s - 71.0% 0.00% 15.6s - 42.0% 0.0% 22.1s - 3.0%
feaspump (Fischetti et al., 2005) 0.00% 1.5s - 88.0% 0.00% 13.9s - 43.0% NaN 20.8s - 0.0%

Neural Diving (Nair et al., 2021) NaN 0.8s - 0.0% NaN 0.8s - 0.0% NaN 0.7s - 0.0%
Neural Diving+CompleteSol (Zeng et al., 2024) NaN 2.9s - 0.0% 21.7% 5.9s - 7.0% 20.4% 5.8s - 7.0%
IP Guided DDPM (Zeng et al., 2024) 61.2% 39m 0.1% 1.0% 109.1% 1.7h 3.3% 1.0% 21.2% 2h 0.9% 16.0%
IP Guided DDIM (Zeng et al., 2024) 6.6% 14m 73.3% 92.0% 10.2% 36m 60.5% 89.0% 13.2% 42m 35.0% 76.0%
CMILP (Ours) 4.9% 1.9s 52.8% 89.0% 10.8% 17.0s 79.4% 90.0% 18.0% 18.6s 36.3% 67.0%
SCMILP (Ours) 5.3% 2.2s 67.3% 88.0% 15.8% 23.6s 42.8% 86.0% 17.5% 26.4s 15.6% 62.0%
MFILP (Ours) 5.7% 1.9s 54.3% 80.0% 9.2% 19.2s 71.3% 90.0% 16.1% 19.2s 37.7% 69.0%

Table 4: Experimental results on inventory management datasets and their binarized variants
Method IM-(50, 5, 2) Binarized IM-(50, 5, 2) IM-(50, 5, 5) Binarized IM-(50, 5, 5)

Gap Time S. Fea. D. Fea. Gap Time S. Fea. D. Fea. Gap Time S. Fea. D. Fea. Gap Time S. Fea. D. Fea.

IP Guided DDPM 92.9% 34m 0.1% 1.0% NaN 101m 0.0% 0.0% 15.6% 48m 0.1% 13.0% 79.6% 1.7h 1.7% 15.0%
IP Guided DDIM 15.0% 6m 46.0% 80.0% NaN 19m 0.0% 0.0% 6.0% 5m 32.3% 88.0% 32.6% 18.5m 25.6% 53.0%
CMILP (Ours) 16.5% 2.6s 69.2% 88.0% 0.0% 12.2s 0.6% 3.0% 8.4% 2.8s 71.3% 90.0% 0.0% 9.8s 2.1% 8.0%
SCMILP (Ours) 12.2% 2.0s 42.4% 78.0% 0.0% 17.2s 0.3% 3.0% 10.1% 2.3s 35.8% 86.0% 4.4% 10.1s 0.3% 5.0%
MFILP (Ours) 12.1% 2.1s 70.5% 90.0% 0.0% 13.4s 0.3% 3.0% 11.4% 2.0s 60.6% 80.0% 2.8% 9.8s 1.2% 9.0%

We could form the problems as:

min

m∑
i=1

n∑
j=1

sjxij s.t.
n∑

j=1

xij ≥ qi,

m∑
i=1

aixij ≤ Cj , xij ≥ 0, xij ∈ Z (12)

The inventory problems aim to minimize the inventory costs while ensuring that the storage satisfies
the demands and that the total storage in need doesn’t exceed the storage space. For simplicity,
we also add an upper limit on the number of each single type of goods that each warehouse could
purchase. All coefficients were generated by sampling integer values uniformly from an interval.
We can hence define an inventory management problem as IM-(n, m, b), where n is the number of
warehouses, m is the number of types of goods, and b is the variable upper bound. IM-(n, m, b) has
n×m variables and m+ n constraints. We generate 800 instances for the training dataset and 100
for the testing dataset. The instances are labeled by Gurobi.

Experiment results are shown in Table 2 and Table 3. In Table 2, we present experiment results
on relatively small-scale instances where the number of warehouses is larger than the number of
types of goods. It could be observed that the proposed one-step diffusion solvers find solutions
faster compared to traditional solvers. Our models achieve comparative performance on gap, sample
feasibility, and dataset feasibility in far less time than IP Guided DDPM and DDIM.

In Table 3, we examine models’ performance on inventory management problems where the number
of types of goods exceeds the number of warehouses and larger-scale datasets. Overall performance
trends remain consistent with Table 2. While IP Guided DDIM achieves higher dataset feasibility on
IM-(5, 50, 2), it suffers from significantly longer solving times and larger optimality gaps.

In Table 4, we compare the models’ performance on the vanilla form that we used and the binarized
variant commonly adopted in literature. Binarization significantly increases problem size and solving
time. For example, IM-(50, 5, 5) is a dataset with variables taking 6 distinct integer values. If we use
a binary variable transformation to turn the dataset into a binary ILP instance, the problem will be
turned into an optimization problem with more than 1000 variables. Table 4 confirms that binarization

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Table 6: Experimental results on synthetic non-binary ILP datasets.
Method Random-(500, 20, 2) Random-(1000, 20, 2) Random-(2000, 20, 2)

Gap Time S. Fea. D. Fea. Gap Time S. Fea. D. Fea. Gap Time S. Fea. D. Fea.

Gurobi (Gurobi Optimization, LLC, 2024) 0.00% 5.4s - 100% 0.00% 18.1s - 100% 0.00% 4.2s - 100%
SCIP (Bolusani et al., 2024) 0.00% 9.2s - 100% 0.00% 27.6s - 100% 0.00% 48.4s - 100%
COPT (Ge et al., 2023) 0.00% 36.3s - 100% 0.00% 40.7s - 100% 0.00% 46.7s - 100%
rins (Danna et al., 2005) 0.00% 7.1s - 41.0% 0.00% 10.8s - 31.0% 0.00% 22.4s - 14.0%
feaspump (Fischetti et al., 2005) 0.61% 5.5s - 70.0% 0.30% 9.3s - 82.0% 2.05% 21.2s - 72.0%

Neural Diving (Nair et al., 2021) NaN 0.8s - 0.0% NaN 2.8s - 0.0% NaN 3.1s - 0.0%
Neural Diving+CompleteSol (Zeng et al., 2024) 21.9% 5.1s - 100% 22.6% 6.9s - 100% 99.4% 11.8s - 97.0%
IP Guided DDPM (Zeng et al., 2024) 10.3% 1.2h 43.4% 100% 1.2% 1.9h 3.0% 22.0% 0.5% 4h 7.3% 71.0%
IP Guided DDIM (Zeng et al., 2024) 0.7% 14m 85.1% 100% 0.3% 20m 77.1% 96.0% 0.3% 46m 9.26% 70.0%
CMILP (Ours) 0.0% 3.1s 46.8% 85.0% 0.5% 9.7s 16.3% 87.0% 1.1% 21.2s 14.5% 75.0%
SCMILP (Ours) 0.2% 4.4s 42.0% 88.0% 0.0% 10.3s 37.7% 89.0% 0.3% 22.2s 14.8% 74.0%
MFILP (Ours) 0.0% 3.6s 45.4% 82.0% 0.0% 7.1s 26.7% 85.0% 0.0% 19.4s 11.7% 85.0%

imposes additional computational burdens on neural solvers. Our introduction of the IIP layer helps
address this issue by maintaining problem compactness and improving model performance without
the need for costly variable transformations. Table 5: Experimental results on IM-(50, 5, 10)

with different gradient search schemes. Ti stands
for the number of model inference steps.

Method IM-(50, 5, 10)
Gap Time S. Fea. D. Fea.

SCMILP (Ti = 10, Opt=GD) 104.5% 22.9s 29.5% 78.0%
SCMILP (Ti = 10, Opt=MGD) 101.8% 24.9s 30.3% 82.0%
SCMILP (Ti = 20, Opt=GD) 99.8% 32.5s 35.1% 87.0%
SCMILP (Ti = 20, Opt=MGD) 95.8% 36.6s 35.5% 88.0%

Finally, we evaluate the newly devised gradient
descent with momentum (MGD) search meth-
ods on the most complicated dataset, IM-(50, 5,
10). The wide bound of variables makes it hard
for the solvers to achieve satisfactory results.
The results are shown in Table 5. It could be
concluded that the introduction of momentum
improves the search quality significantly while generally maintaining the solving time unchanged.
The momentum mechanism raises the dataset feasibility by as much as 4% and reduces the gap by
roughly 2%. Further, with the increasing number of inference steps, we can see that the performance
of the shortcut model rises steadily. We can change the number of steps according to the requirements
of the application scenarios, making our methods more applicable in real-life settings.

4.3.2 SYNTHETIC NON-BINARY INTEGER LINEAR PROGRAMMING DATASETS

The inventory management problem is a special type of integer linear programming problem. To
further examine our models’ performance, we generate a set of synthetic non-binary ILP datasets in
the form of Eq. 1. We adopt the instance generation procedure introduced by Lee & Kim (2025),
where the generated problems are guaranteed to be bounded and feasible. Each coefficient is drawn
from a discrete uniform distribution over the integer range. For simplicity, we also add a variable
upper bound. We term a dataset with n variables, m constraints, and a variable bound of b as
Random-(n, m, b). As in inventory management datasets, we generate 800 instances for the training
dataset and 100 for the testing dataset. The instances are labeled by Gurobi.

Table 6 reports results on larger-scale synthetic datasets. Interestingly, despite the increased problem
size, traditional solvers exhibit shorter solving times, as seen in Random-(500, 20, 2). This occurs
because problem difficulty is not fully captured by the number of variables and constraints alone.
In contrast, neural solvers show increased inference time proportional to the problem dimensions,
as their computational overhead is primarily governed by the variable and constraint counts, which
puts IP Guided DDPM and DDIM at a relative disadvantage. Our models, however, can accurately
solve most instances in significantly less time than Gurobi and SCIP. Moreover, in terms of solution
quality, a few additional steps allow our models to achieve comparable performance—for example,
on Random-(1000, 20, 2), it requires 5 steps and 57 seconds.

5 CONCLUSION AND LIMITATIONS

This paper presents three one-step, end-to-end diffusion solvers—CMILP, SCMILP, and MFILP—that
generate feasible solutions for general integer linear programming problems, a domain that has been
largely unexplored due to its inherent complexity. To extend ILP neural solvers to general instances,
we introduce a novel iterative integer projection (IIP) layer. Additionally, we integrate a momentum
mechanism into the objective-guided sampling of diffusion models to enhance solution guidance.
Experimental results demonstrate the superiority of our methods in both runtime and solution
quality. Limitations include a relatively big optimality gap compared to traditional solvers, and the
computational cost of gradient-based search increases substantially with dataset size—a challenge
common to all loss-guided diffusion approaches.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

ETHICS STATEMENT

This paper aims to advance the state of the art in learning integer linear programming. While
the research may entail various societal implications, we do not identify any that warrant specific
emphasis in this paper.

REPRODUCIBILITY STATEMENT

All experimental results in the paper are reproducible, and the implementation code for reproducing
experimental results will be fully open sourced on Github after the paper is accepted.

LLM USAGE STATEMENT

The contribution of LLM in the work proposed in this article is limited to: 1. polishing given written
statements; 2. Given written sentence syntax review. We declare that no experimental data was
generated/modified by LLM.

REFERENCES

Ravindra K Ahuja, Özlem Ergun, James B Orlin, and Abraham P Punnen. A survey of very large-scale
neighborhood search techniques. Discrete Applied Mathematics, 123(1-3):75–102, 2002.

Mihai Banciu. Dual simplex. In Wiley Encyclopedia of Operations Research and Management
Science. Wiley, 2011.

Michel Bénichou, Jean-Michel Gauthier, Paul Girodet, Gerard Hentges, Gerard Ribière, and Olivier
Vincent. Experiments in mixed-integer linear programming. Mathematical programming, 1:76–94,
1971.

Suresh Bolusani, Mathieu Besançon, Ksenia Bestuzheva, Antonia Chmiela, João Dionísio, Tim
Donkiewicz, Jasper van Doornmalen, Leon Eifler, Mohammed Ghannam, Ambros Gleixner,
Christoph Graczyk, Katrin Halbig, Ivo Hedtke, Alexander Hoen, Christopher Hojny, Rolf van der
Hulst, Dominik Kamp, Thorsten Koch, Kevin Kofler, Jurgen Lentz, Julian Manns, Gioni Mexi,
Erik Mühmer, Marc E. Pfetsch, Franziska Schlösser, Felipe Serrano, Yuji Shinano, Mark Turner,
Stefan Vigerske, Dieter Weninger, and Lixing Xu. The SCIP Optimization Suite 9.0. Technical
report, Optimization Online, February 2024. URL https://optimization-online.org/
2024/02/the-scip-optimization-suite-9-0/.

Sebastian Ceria, Cécile Cordier, Hugues Marchand, and Laurence A Wolsey. Cutting planes for
integer programs with general integer variables. Mathematical programming, 81:201–214, 1998.

Emilie Danna, Edward Rothberg, and Claude Le Pape. Exploring relaxation induced neighborhoods
to improve mip solutions. Mathematical Programming, 102(1):71–90, 2005.

Matteo Fischetti, Fred Glover, and Andrea Lodi. The feasibility pump. Mathematical Programming,
104(1):91–104, 2005.

Kevin Frans, Danijar Hafner, Sergey Levine, and Pieter Abbeel. One step diffusion via shortcut
models, 2024. URL https://arxiv.org/abs/2410.12557.

Maxime Gasse, Didier Chételat, Nicola Ferroni, Laurent Charlin, and Andrea Lodi. Exact
combinatorial optimization with graph convolutional neural networks, 2019. URL https:
//arxiv.org/abs/1906.01629.

Dongdong Ge, Qi Huangfu, Zizhuo Wang, Jian Wu, and Yinyu Ye. Cardinal Optimizer (COPT) user
guide. https://guide.coap.online/copt/en-doc, 2023.

Zhengyang Geng, Mingyang Deng, Xingjian Bai, J Zico Kolter, and Kaiming He. Mean flows for
one-step generative modeling. arXiv preprint arXiv:2505.13447, 2025a.

10

https://optimization-online.org/2024/02/the-scip-optimization-suite-9-0/
https://optimization-online.org/2024/02/the-scip-optimization-suite-9-0/
https://arxiv.org/abs/2410.12557
https://arxiv.org/abs/1906.01629
https://arxiv.org/abs/1906.01629

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Zijie Geng, Jie Wang, Xijun Li, Fangzhou Zhu, Jianye HAO, Bin Li, and Feng Wu. Differentiable inte-
ger linear programming. In The Thirteenth International Conference on Learning Representations,
2025b. URL https://openreview.net/forum?id=FPfCUJTsCn.

Alexandros Graikos, Nikolay Malkin, Nebojsa Jojic, and Dimitris Samaras. Diffusion models as
plug-and-play priors, 2023. URL https://arxiv.org/abs/2206.09012.

Gurobi Optimization, LLC. Gurobi Optimizer Reference Manual, 2024. URL https://www.
gurobi.com.

Qingyu Han, Linxin Yang, Qian Chen, Xiang Zhou, Dong Zhang, Akang Wang, Ruoyu Sun, and
Xiaodong Luo. A gnn-guided predict-and-search framework for mixed-integer linear programming.
arXiv preprint arXiv:2302.05636, 2023a.

Qingyu Han, Linxin Yang, Qian Chen, Xiang Zhou, Dong Zhang, Akang Wang, Ruoyu Sun, and
Xiaodong Luo. A gnn-guided predict-and-search framework for mixed-integer linear programming,
2023b. URL https://arxiv.org/abs/2302.05636.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models, 2020. URL
https://arxiv.org/abs/2006.11239.

Abdel Ghani Labassi, Didier Chételat, and Andrea Lodi. Learning to compare nodes in branch
and bound with graph neural networks. Advances in neural information processing systems, 35:
32000–32010, 2022.

Tae-Hoon Lee and Min-Soo Kim. Rl-milp solver: A reinforcement learning approach for solving
mixed-integer linear programs with graph neural networks, 2025. URL https://arxiv.org/
abs/2411.19517.

Yang Li, Jinpei Guo, Runzhong Wang, and Junchi Yan. From distribution learning in training
to gradient search in testing for combinatorial optimization. In Thirty-seventh Conference on
Neural Information Processing Systems, 2023. URL https://openreview.net/forum?
id=JtF0ugNMv2.

Yang Li, Jinpei Guo, Runzhong Wang, Hongyuan Zha, and Junchi Yan. Fast t2t: Optimization
consistency speeds up diffusion-based training-to-testing solving for combinatorial optimization.
In The Thirty-eighth Annual Conference on Neural Information Processing Systems, 2024.

Yaron Lipman, Ricky T. Q. Chen, Heli Ben-Hamu, Maximilian Nickel, and Matt Le. Flow matching
for generative modeling, 2023. URL https://arxiv.org/abs/2210.02747.

Yanli Liu, Yuan Gao, and Wotao Yin. An improved analysis of stochastic gradient descent with
momentum, 2020. URL https://arxiv.org/abs/2007.07989.

John E Mitchell. Branch-and-cut algorithms for combinatorial optimization problems. Handbook of
applied optimization, 1(1):65–77, 2002.

Vinod Nair, Sergey Bartunov, Felix Gimeno, Ingrid Von Glehn, Pawel Lichocki, Ivan Lobov, Brendan
O’Donoghue, Nicolas Sonnerat, Christian Tjandraatmadja, Pengming Wang, et al. Solving mixed
integer programs using neural networks. arXiv preprint arXiv:2012.13349, 2020.

Vinod Nair, Sergey Bartunov, Felix Gimeno, Ingrid von Glehn, Pawel Lichocki, Ivan Lobov, Brendan
O’Donoghue, Nicolas Sonnerat, Christian Tjandraatmadja, Pengming Wang, Ravichandra Addanki,
Tharindi Hapuarachchi, Thomas Keck, James Keeling, Pushmeet Kohli, Ira Ktena, Yujia Li, Oriol
Vinyals, and Yori Zwols. Solving mixed integer programs using neural networks, 2021. URL
https://arxiv.org/abs/2012.13349.

Yves Pochet and Laurence A Wolsey. Production planning by mixed integer programming, volume
149. Springer, 2006.

Antoine Prouvost, Justin Dumouchelle, Lara Scavuzzo, Maxime Gasse, Didier Chételat, and
Andrea Lodi. Ecole: A gym-like library for machine learning in combinatorial optimiza-
tion solvers. In Learning Meets Combinatorial Algorithms at NeurIPS2020, 2020. URL
https://openreview.net/forum?id=IVc9hqgibyB.

11

https://openreview.net/forum?id=FPfCUJTsCn
https://arxiv.org/abs/2206.09012
https://www.gurobi.com
https://www.gurobi.com
https://arxiv.org/abs/2302.05636
https://arxiv.org/abs/2006.11239
https://arxiv.org/abs/2411.19517
https://arxiv.org/abs/2411.19517
https://openreview.net/forum?id=JtF0ugNMv2
https://openreview.net/forum?id=JtF0ugNMv2
https://arxiv.org/abs/2210.02747
https://arxiv.org/abs/2007.07989
https://arxiv.org/abs/2012.13349
https://openreview.net/forum?id=IVc9hqgibyB

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Pol Puigdemont, Stratis Skoulakis, Grigorios Chrysos, and Volkan Cevher. Learning to remove cuts
in integer linear programming. arXiv preprint arXiv:2406.18781, 2024.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen Krueger, and Ilya Sutskever.
Learning transferable visual models from natural language supervision, 2021. URL https:
//arxiv.org/abs/2103.00020.

David M Ryan and Brian A Foster. An integer programming approach to scheduling. Computer
scheduling of public transport urban passenger vehicle and crew scheduling, pp. 269–280, 1981.

Lara Scavuzzo, Karen Aardal, Andrea Lodi, and Neil Yorke-Smith. Machine learning augmented
branch and bound for mixed integer linear programming. Mathematical Programming, pp. 1–44,
2024.

Alexander Schrijver. Theory of linear and integer programming. John Wiley & Sons, 1998.

Yang Song, Prafulla Dhariwal, Mark Chen, and Ilya Sutskever. Consistency models, 2023. URL
https://arxiv.org/abs/2303.01469.

Zhiqing Sun and Yiming Yang. Difusco: Graph-based diffusion solvers for combinatorial optimiza-
tion, 2023. URL https://arxiv.org/abs/2302.08224.

Bo Tang, Elias B. Khalil, and Ján Drgoňa. Learning to optimize for mixed-integer non-linear
programming with feasibility guarantees, 2025. URL https://arxiv.org/abs/2410.
11061.

Haoyu Wang, Nan Wu, Hang Yang, Cong Hao, and Pan Li. Unsupervised learning for combinatorial
optimization with principled objective relaxation, 2022. URL https://arxiv.org/abs/
2207.05984.

Laurence A Wolsey. Integer programming. John Wiley & Sons, 2020.

Huigen Ye, Hua Xu, Hongyan Wang, Chengming Wang, and Yu Jiang. Gnn&gbdt-guided fast
optimizing framework for large-scale integer programming. In International Conference on
Machine Learning, pp. 39864–39878. PMLR, 2023.

Hao Zeng, Jiaqi Wang, Avirup Das, Junying He, Kunpeng Han, Haoyuan Hu, and Mingfei Sun.
Effective generation of feasible solutions for integer programming via guided diffusion, 2024.
URL https://arxiv.org/abs/2406.12349.

Jiayi Zhang, Chang Liu, Xijun Li, Hui-Ling Zhen, Mingxuan Yuan, Yawen Li, and Junchi Yan.
A survey for solving mixed integer programming via machine learning. Neurocomputing, 519:
205–217, 2023.

Andris A Zoltners and Prabhakant Sinha. Integer programming models for sales resource allocation.
Management Science, 26(3):242–260, 1980.

12

https://arxiv.org/abs/2103.00020
https://arxiv.org/abs/2103.00020
https://arxiv.org/abs/2303.01469
https://arxiv.org/abs/2302.08224
https://arxiv.org/abs/2410.11061
https://arxiv.org/abs/2410.11061
https://arxiv.org/abs/2207.05984
https://arxiv.org/abs/2207.05984
https://arxiv.org/abs/2406.12349

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Table 7: Experimental results on smaller-scale synthetic non-binary ILP Datasets

Method Random-(300, 30, 2) Random-(300, 20, 5)
Gap Time S. Fea. D. Fea. Gap Time S. Fea. D. Fea.

Gurobi Gurobi Optimization, LLC (2024) 0.00% 14.0s - 100% 0.00% 12.3s - 100%
SCIP Bolusani et al. (2024) 0.00% 11.1s - 100% 0.00% 18.2s - 100%
rins Danna et al. (2005) 4.6% 10.7s - 16.0% 0.0% 4.9s - 19.0%
feaspump Fischetti et al. (2005) 5.1% 11.9s - 31.0% 0.8% 5.5s - 37.0%

IP Guided DDPM Zeng et al. (2024) 11.3% 26m 0.9% 16.0% 15.9% 23m 2.3% 40.0%
IP Guided DDIM Zeng et al. (2024) 17.5% 8m 50.8% 88.0% 2.2% 5m 82.7% 97.0%
CMILP (Ours) 0.0% 1.8s 45.5% 62.0% 0.3% 1.9s 16.9% 78.0%
SCMILP (Ours) 0.2% 2.3s 8.5% 52.0% 0.1% 2.8s 27.5% 70.0%
MFILP (Ours) 0.0% 1.7s 43.4% 59.0% 0.1% 1.7s 26.7% 77.0%

Table 8: Experimental results on small-scale inventory management datasets with different penalty
coefficient.

Method IM-(50, 5, 2) IM-(50, 5, 5) IM-(50, 5, 10)
Gap Time S. Fea. D. Fea. Gap Time S. Fea. D. Fea. Gap Time S. Fea. D. Fea.

IP Guided DDPM (Zeng et al., 2024) 92.9% 34m 0.1% 1.0% 15.6% 48m 0.1% 13.0% 87.2% 28m 0.1% 1.0%
IP Guided DDPM(penalty coef=0) (Zeng et al., 2024) NaN 34m 0.0% 0.0% NaN 48m 0.0% 0.0% NaN 28m 0.0% 0.0%
IP Guided DDIM (Zeng et al., 2024) 15.0% 6m 46.0% 80.0% 6.0% 5m 32.3% 88.0% 133.3% 7.3m 18.6% 68.0%
IP Guided DDIM (penalty coef=0) (Zeng et al., 2024) NaN 6m 0.0% 0.0% NaN 5m 0.0% 0.0% NaN 7.3m 0.0% 0.0%
CMILP (Ours) 16.5% 2.6s 69.2% 88.0% 8.4% 2.8s 71.3% 90.0% 119.3% 3.0s 35.7% 76.0%
CMILP (penalty coef=0) (Ours) NaN 2.6s 0.0% 0.0% NaN 2.8s 0.0% 0.0% NaN 3.0s 0.0% 0.0%
SCMILP (Ours) 12.2% 2.0s 42.4% 78.0% 10.1% 2.3s 35.8% 86.0% 112.9% 2.9s 20.3% 62.0%
SCMILP (penalty coef=0) (Ours) NaN 2.0s 0.0% 0.0% NaN 2.3s 0.0% 0.0% NaN 2.9s 0.0% 0.0%
MFILP (Ours) 12.1% 2.1s 70.5% 90.0% 11.4% 2.0s 60.6% 80.0% 107.1% 2.1s 36.8% 68.0%
MFILP (penalty coef=0) (Ours) NaN 2.1s 0.0% 0.0% NaN 2.0s 0.0% 0.0% NaN 2.1s 0.0% 0.0%

A ADDITIONAL RESULTS

We test our model on small-scale, randomly generated datasets. The results are shown in Table 7.
CMILP performs the best on Random-(300, 30, 2). It takes only 1.82 seconds to finish solving, while
for IP Guided DDPM and DDIM, the solving procedure generally takes minutes. Hence, on general
integer linear programming problems, our models are still more practical compared to IP Guided
DDPM and DDIM. On Random-(300, 20, 5), although IP Guided DDIM achieves the highest dataset
feasibility, its gap and solving time are way too high compared to our models. To achieve comparable
dataset feasibility, it takes CMILP 20 steps and 30 seconds and takes Shortcut 2 steps and 4 seconds.
Generally, Shortcut beats IP Guided DDIM on this dataset, further showcasing our models’ capacity
on general integer linear programming problems. Furthermore, if we turn Random-(300, 20, 5) into
binary ILP problems, it generally takes 10 times longer time to finish solving, as can be inferred from
datasets of similar sizes as in Table 6. This will waste the speed advantage of neural-network-based
solvers. We should always try to tackle integer linear programming problems directly instead of
converting those problems to the binary versions.

B ANALYSIS ON THE FEASIBILITY PENALTY

In this section, we attempt to analyze effectiveness of the feasibility penalty. Constraint satisfaction
is one key factor when evaluating the ILP solvers. The feasibility penalty is introduced to enforce
constraint satisfaction more effectively. The results are shown in Table 8. We can infer from the table
that neural solvers trained without the feasibility penalty can’t generate feasible solutions at all. Our
introduction of the feasibility penalty successfully enhance the models’ performance.

13

	Introduction
	Related Works
	Methodology
	Representations of ILP with Projected Graph Neural Networks
	CMILP: Consistency Diffusion Model for Integer Linear Programming
	SCMILP: Shortcut Diffusion Model for Integer Linear Programming
	MFILP: Meanflow Model for Integer Linear Programming
	Objective Guided Sampling for Diffusion Model

	Experiments
	Baselines and Evaluation Metrics
	Binary Integer Linear Programming Problems
	Non-binary Integer Linear Programming Problems
	Inventory Management Datasets
	Synthetic Non-binary Integer Linear Programming Datasets

	Conclusion and Limitations
	Additional Results
	Analysis on the feasibility penalty

