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ABSTRACT

Integer linear programming, a fundamental NP-hard problem with broad appli-
cations in science and engineering, has gained growing attention in the machine
learning community. Yet, progress on effective end-to-end solvers remains limited,
largely due to difficulties in enforcing constraints and integrality. Most existing
work focuses on binary integer linear programming problems, while generalizing to
bounded, non-binary cases often requires transformations that significantly increase
problem size and computational costs. Even for purely binary problems, inference
time is often prohibitively long, restricting applicability to real-world scenarios. To
tackle the aforementioned problems, we propose three one-step diffusion-based
approaches, i.e., CMILP, SCMILP and MFILP, inspired by the popular consistency,
shortcut and meanflow training techniques. Our methods can further handle non-
binary integer problems using a newly proposed iterative integer projection (IIP)
layer, eliminating the need for the costly problem transformation. To further im-
prove the solution quality, an objective-guided sampling with momentum scheme
is proposed. Experiments demonstrate that our approach outperforms existing
learning-based methods on both binary and non-binary instances and shows strong
scalability compared to traditional solvers. Source code and detailed protocols will
be made publicly available.

1 INTRODUCTION

Integer Programming (IP) (Schrijver, 1998) is a class of optimization problems in the field of
operations research, where some or all of the decision variables are constrained to be integers. These
problems play a crucial role in various domains, such as production planning (Pochet & Wolsey, 2006),
resource allocation (Zoltners & Sinha, 1980), and scheduling (Ryan & Foster, 1981). However, as an
NP-hard problem, IP is generally very difficult to solve. In recent decades, researchers have primarily
relied on heuristic methods such as branch-and-bound (Wolsey, 2020), cutting-plane methods (Ceria
et al., 1998), and large neighborhood search algorithms (Ahuja et al., 2002) to address this challenge.
These methods are typically computationally expensive, especially for large-scale problems, where
the search space grows exponentially, significantly increasing the difficulty of solving the problem.

With the success of machine learning, recent studies have begun focusing on solving IP problems
using data-driven approaches (Gasse et al., 2019), where neural networks are used to predict solutions
that both minimize the objective function and ensure feasibility of the solutions. To address this
issue, Wang et al. (2022) proposed a differentiable IP solver that uses Gumbel-Softmax to ensure that
integer constraints do not interfere with the learning of the optimal objective. Meanwhile, Zeng et al.
(2024) leveraged deep diffusion models to nearly perfectly satisfy 0-1 integer constraints. However,
there are still several notable issues: 1) Although Zeng et al. (2024) excels at generating feasible
solutions, the inference speed of diffusion models is very slow, leading to a loss of the efficiency
advantages deep learning should offer compared to traditional solvers like Gurobi and COPT; 2)
Most existing IP neural solvers are limited to 0-1 integer programming and fail to extend neural
IP solvers to more general integer constraints. Though bounded IP problems can be transformed
to binary integer programming problems, the problem scale grows exponentially with the variable
bounds and will bring about large computational burdens.

To tackle these problems, in this paper, we propose three one-step diffusion-based integer linear
programming solvers. The structure of the solvers is visualized in Fig. 1. One-step solvers can
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Figure 1: Illustration of the proposed one-step diffusion solvers for non-binary ILP.

finish solving far faster compared to traditional solvers and vanilla-diffusion-based solvers with
comparable performance. To enhance the solution’s feasibility, we adopt the objective-guided
sampling methods. The momentum mechanism is further introduced to boost the effectiveness
of the objective-guided sampling. We evaluate our methods on not only classic binary integer
linear programming problems, but also two types of non-binary integer linear programming problems.
Experimental results demonstrate the superiority of our method over original diffusion-based methods.
In short, this work contributes in the following aspects:

1) Departure from previous works that employ a two-stage method to handle infeasible solutions (Nair
et al., 2021) or use extensive diffusion iterations (Zeng et al., 2024) to obtain feasible solutions.
In this paper, we propose three one-step diffusion-based solvers under an end-to-end paradigm for
ILP problems, namely CMILP, SCMILP and MFILP. The proposed solvers achieve higher solution
feasibility compared to previous neural solvers, reaching nearly 100% on binary ILP problems
without resorting to traditional algorithms for post-processing.

2) For the first time, to our best knowledge, we extend the binary 0-1 ILP neural solver to the non-
binary case for feasible solution prediction, in which we introduce a new Iterative Integer Projection
(IIP) layer defined across the entire real domain, capable of approximating the real integer within a
few iterations. We find that using a small number of projection iterations during training, and more
iterations during testing, leads to better performance.

3) We propose and rethink the guidance in the diffusion model for ILP, as presented in Zeng et al.
(2024), from the perspective of non-convex optimization. We show that previous guidance methods
can be viewed as a special case of gradient descent (with only a single optimization step). Based
on this insight, we introduce a sampling method based on gradient descent and a momentum-based
gradient descent approach to improve the sampling process.

2 RELATED WORKS

Diffusion-based Models The diffusion model (Ho et al., 2020) is a popular generative model that
has been actively applied to solve various optimization problems (Sun & Yang, 2023; Li et al., 2023).
It uses a noising and denoising procedure to accurately capture the target distribution. To accelerate
the inference speed of the diffusion model, the consistency model (Song et al., 2023) is devised by
posing the consistency function onto the variable trajectory. Flow matching (Lipman et al., 2023)
generalizes the diffusion model and generates in a continuous normalizing flow-based paradigm. The
shortcut model (Frans et al., 2024) is a newly devised one-step diffusion model that takes the step size
as the conditional input to permit large step sampling. Instead of focusing on instantaneous velocity
as in flow matching models, meanflow (Geng et al., 2025a) tries to learn the average velocity.

(Mixed) Integer Linear Programming and its Traditional Solvers Mixed Integer Linear Pro-
gramming (MILP) (Bénichou et al., 1971) is a fundamental optimization technique widely used across
various fields, including operations research and supply chain management. Traditional MILP solvers
include branch-and-bound (Wolsey, 2020), branch-and-cut (Mitchell, 2002), and cutting-plane (Ceria
et al., 1998) methods. The branch-and-bound method systematically divides the solution space into
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subproblems and eliminates infeasible solutions based on bounds, while branch-and-cut enhances this
approach by incorporating cutting planes to improve computational efficiency. Cutting-plane methods
iteratively refine the feasible region by adding linear inequalities, thus reducing the search space.
Additionally, simplex-based methods have been adapted for MILP through algorithms such as the
dual simplex method (Banciu, 2011). While these traditional solvers are effective, they often struggle
with large-scale problems, where computational time grows exponentially. This challenge has spurred
the development of hybrid approaches that combine traditional solvers with metaheuristics, constraint
programming, and machine learning techniques to improve efficiency in solving complex, large-scale
MILP problems. In contrast, Neural Solvers offer faster and more scalable solutions by learning from
data, enabling quicker problem-solving without the need for manual adjustments.

Neural Solver for IP (Mixed) Integer Linear Programming (ILP), as a widely used mathematical
programming problem, has attracted a great deal of attention from the machine learning commu-
nity (Zhang et al., 2023). One line of research tries to substitute ML models with key parts of
traditional algorithms to improve solving efficiency. A significant portion of this work focuses on
learning heuristic policies for tasks such as selecting variables to branch on (Scavuzzo et al., 2024),
choosing cutting planes (Puigdemont et al., 2024), and more (Labassi et al., 2022). Another line of
research leverages ML models to predict solutions and adopts traditional methods as post-processing
techniques to retrieve feasible solutions. For example, Neural Diving (Nair et al., 2020) predicts a
partial solution based on coverage rates and utilizes neural networks to determine which predicted
variables to fix, while Han et al. (2023a); Ye et al. (2023) builds upon this work by adopting search
methods to improve solution quality. Tang et al. (2025) deals with non-binary ILP by introducing an
integer correction layer at the cost of extra parameters. Most of these works focus more on integer
prediction and do not directly address the satisfaction of linear constraints. As a result, they are not
end-to-end models and rely on heuristic search to satisfy the inequality constraints. In this paper,
we attempt to propose an end-to-end model to get feasible solutions using merely machine learning
techniques. Acceleration is expected due to the speed advantage neural networks usually bring about.

3 METHODOLOGY

3.1 REPRESENTATIONS OF ILP WITH PROJECTED GRAPH NEURAL NETWORKS

ILP representation. Integer Linear Programming (ILP) Problem is a type of optimization problem
that seeks an integer-valued solution that minimizes a linear objective under linear constraints. All
integer linear programming problems can be transformed to the following form:

min
x

c⊤x, s.t. Ax ≤ b,x ∈ Zn,b ∈ Rm,A ∈ Rm×n (1)

where there are n variables and m constraints. Given that SCIP (Bolusani et al., 2024) already
provides a mature algorithm for this transformation, we only tackle such problems during model
training. Following Gasse et al. (2019), we represent ILP as a weighted bipartite graph, where variable
and constraint nodes form two disjoint sets and the bipartite graph weights encode the constraint
matrix A. This representation allows us to leverage a graph neural network for feature extraction.
More specifically, in this paper, we adopt the network architecture implemented by Nair et al. (2021).

Model architecture. Considering the discrete nature of the solutions of ILP instances, a projection
should be applied to map the variables to a continuous feature space, which is implemented via a
transformer in our model. As proven in Nair et al. (2021), when extracting features from the problem
instances and problem solutions, we should also ensure the alignment between them to enhance
model performance. Motivated by CLIP (Radford et al., 2021), we adopt a contrastive learning
approach to better match the continuous ILP problem features (node features of weighted bipartite
graphs) and the solution features. The CLIP-style encoder is pretrained to extract robust instance
features independently of solver training.

Secondly, a neural solver is applied to solve the instance in the feature space. We utilize generative-
model-based solvers here to learn the solution distribution given problem instances. This type of
solvers are proven effective on various combinatorial datasets (Li et al., 2024). The continuous nature
of the feature space permits a smooth adoption from the well-developed image generative models.
The specific diffusion solvers will be introduced in the following sections. The backbone of this
solver is a transformer encoder that learns the solution distribution. The solution features generated
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previously are treated as the targets, while the ILP instance features serve as the conditional inputs.
The time t of the diffusion trajectory is encoded using the sinusoidal embedding. Since our goal is to
capture the underlying solution distribution, we construct the training set by collecting 500 optimal
and sub-optimal solutions, allowing for a richer representation of the data distribution.

Finally, a solution decoder is applied to project the solution features back to the original solution
space. The final solution is reconstructed by a combination of the predicted solution features and the
ILP problem features. The solution decoder is trained jointly with the diffusion model.

The model is trained to minimize the reconstruction error, the diffusion loss and a feasibility penalty.
The reconstruction error Lrecon measures the model’s ability to capture the mapping between the
problem space and the feature space. For binary variables, the cross entropy loss is adopted for the
reconstruction error. For non-binary cases, we choose the MSE loss to evaluate the reconstruction gap.
The diffusion loss LXXILP aims to enhance the learning of the solution distribution conditioned on the
problem distribution. To further enforce constraint satisfaction, we introduce a feasibility penalty
Lpenalty = 1

m

∑m
i=1 max(aTi x̂− bi, 0), which specifically addresses linear constraint violations. Inte-

grality is handled separately through the Iterative Integer Projection described below. Experimental
results confirm that incorporating the feasibility penalty significantly improves constraint satisfaction
in our solver. The final training loss is shown as follows:

L = Lrecon + LXXILP + λpenaltyLpenalty, (2)

where λpenalty is the penalty coefficient.

Figure 2: Visualization of
the Iterative Integer Projection
f
(k)
proj . As the iteration K in-

creases, the projected results
gradually converge to integers.

Iterative Integer Projection (IIP) for General ILP. Most existing
studies (Zeng et al., 2024; Li et al., 2023) focus on binary integer
linear programming (BILP) problems (i.e. x ∈ {0, 1}n) due to their
relative simplicity. While it is theoretically possible to transform
any bounded integer linear programming instance into a binary form
through binary encoding techniques (Nair et al., 2021), such transfor-
mations often lead to an exponential increase in problem size. This
scaling significantly impacts computational efficiency, increasing
both solving time and memory costs.

In this work, we turn our focus to non-binary ILP problems—a direc-
tion that has received comparatively little attention. Tackling such
problems requires a differentiable mechanism for approximating
non-binary integer variables. While the Sigmoid function is widely
used for relaxing binary variables, extending this idea to the non-
binary case calls for a new projection function that meets several
criteria: it must be differentiable, defined over the real domain, and
capable of rapidly converging to integer values within only a few it-
erations. Guided by these considerations, we introduce the following
integer projection function:

f
(0)
proj(x) = x, and f

(k)
proj(x) = fproj(f

(k−1)
proj (x)) ∀k < K where fproj(x) = x− sin(2πx)

2π
(3)

Here, K ≥ 0 represents the number of projection iterations for this layer. Through this recursive
iteration, we can approximate the integer solution of the output x in a differentiable manner. Fig. 2
demonstrates how the above function approximates the rounding function in finite iterations. We
use this function to replace the Sigmoid function to approximate integer values throughout the real
domain. The projection is applied once during training for training efficiency and applied multiple
times during testing for approximation accuracy.

3.2 ONE STEP DIFFUSION MODELS FOR FOR INTEGER LINEAR PROGRAMMING

In this section, we start to devise diffusion-based solvers to address integer linear programming
problems. Unlike purely supervised-learning-based solvers that aim to predict a single optimal
solution, diffusion-based methods learn the distribution of feasible solutions x given instances P , i.e.,
q(x | P). This distribution is modeled by transforming Gaussian noise through a learned generative
process.
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However, solvers based on the vanilla diffusion model suffer from a long inference time, even
compared to traditional solvers (Zeng et al., 2024). This limits this model’s practical value. Hence,
we propose using the consistency model (Song et al., 2023), shortcut model (Frans et al., 2024) and
mean flow model Geng et al. (2025a), the speed-up version of the diffusion model, to address ILP
problems. The detailed introduction of shortcut and mean flow models are put in the appendix.

CMILP. Vanilla diffusion-based solver is comprised of a noising and denoising process. The noising
process takes the initial solution x0 and progressively introduces noise to generate trajectory x1:T =

x1,x2, ...,xT . Specifically, the noising process is modeled as q(x1:T |x0) =
∏T

t=1 q(xt|xt−1), where
each transition is formulated as a Gaussian distribution, i.e.

q(xt|xt−1) = N (xt;
√

1− βtxt−1, βtI) (4)

where βt ∈ [0, 1]. We further define αt = 1 − βt, ᾱt = Πt
i=1αi. Using reparametrization trick,

we can sample xt through xt =
√
αtxt−1 +

√
1− αtϵt, where ϵt ∼ N (0, I). During testing, we

recreate a true sample x0 from a Gaussian noise input xT by reversing the above noising process. Ho
et al. (2020) proves that the denoising process is modeled as:

xt−1 =
1

√
αt

(xt −
1− αt√
1− ᾱt

ϵt) +

√
1− ᾱt−1

1− ᾱt
βtz, z ∼ N (0, I) (5)

We then train a neural network to approximate this distribution. Consistency model further intro-
duces the consistency function fθ to formulate the trajectory. fθ is characterized by: 1) bound-
ary condition: fθ(xϵ, ϵ) = xϵ, where ϵ is the initial timestep; 2) self-consistency properties:
fθ(xt, t) = fθ(xt′ , t

′), ∀t, t′ ∈ [ϵ, T ]. The consistency model requires all variables along the
noising and denoising route to yield the same value for the consistency function. The introduction of
the consistency function shortens the inference schedule to one or a few timesteps, greatly reducing
the inference time. This makes the consistency model more practical in real-world settings.

Considering the characteristics of integer programming, we choose the mapping to the solution
distribution as the consistency function. This consistency function follows both boundary conditions
and self-consistency properties because the solution distribution is determined by the problem features.
Since the solution x∗ is explicit given the problem instance, we can integrate x∗ into the loss for
better training instead of focusing on the gap between fθ of two diverse timesteps:

LNt

CMILP(θ) =E
[
d(fθ(x

′
tn , tn,P), δ(x− x∗)) + d(fθ(xtn+1

, tn+1,P), δ(x− x∗))
]

(6)

where d(·, ·) is a distance function, Nt represents the time scheduler, δ(·) is Dirac delta and P is the
problem instance. xt and x′

t are sampled from two independent and identically distributed trajectories,
as in the original consistency loss. Its minimization is achieved only if consistency holds across all
possible trajectories, yielding the optimal solution distribution.

3.3 OBJECTIVE GUIDED SAMPLING FOR DIFFUSION MODEL

Constraint satisfaction and objective minimization are two core problems in constrained optimization.
We attempt to incorporate them into diffusion’s sampling to further boost models’ performance. We
follow Graikos et al. (2023) to utilize the learned model p(x|P) as a sampling prior to achieve this.
The conditional information y∗ is incorporated using a constraint function c(x,y∗) to regulate the
posterior distribution. The target posterior pθ(x|y∗) is hence modeled as Zpθ(x|P)c(x,y∗|P). We
introduce an approximate variational posterior q(x|P) to estimate the target posterior. Following the
derivation in Li et al. (2024), if we approximate q(x|P) as a point estimate δ(x− η), where η point
estimate’s parameter, we can minimize the following property to learn the target posterior.

F = Eq(h|η,P)

[
log

q(h|η,P)

pθ(η,h|P)
− l(η;P)− logZ − y∗

]
(7)

where Z is a constant normalization factor, h = x1, . . . ,xT are the latent variables and l(·;P) is
defined as follows:

y∗ = min
x

l(x;P) where l(x;P) ≜ c⊤z+
∑

max(a⊤k z− bk, 0), and z = Decoder(x) (8)

where a⊤k is the kth row in the constraint matrix A and bk is the kth value in the constraint vector b.
From the diffusion process, we have q(h|x,P) =

∏T
t=1 q(xt|xt−1). Hence, log q(h|η,P)

pθ(η,h|P) is actually
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Figure 3: Visualization of objective-guided sampling with/without momentum.

the objective of diffusion models. It is noteworthy that, compared to other diffusion models, we need
to further employ a solution decoder to transform the latent variables into the solution space. The
objective guidance is provided from the original solution space instead of the feature space where
the diffusion model is located. η is initialized as the output of the diffusion model. We optimize F
concerning η to learn a better intermediate variable. All the proposed solvers fit this framework.

Gradient Descent with Momentum (MGD) Search The aforementioned guidance method can
be considered a special case of gradient descent, performing just a single optimization step on the
diffusion latent variables. To enhance the effects of the guidance, we introduce momentum (Liu et al.,
2020), a technique originally developed for neural network optimization, into the sampling. The
intuition for momentum is to reduce the oscillation of the gradient updates and hence accelerate the
optimization procedure. Since the objective-guided sampling process shares the same framework as
model optimization, introducing momentum here can also enhance guidance. The update rule for this
momentum is given by:

m = γm− φg, x = x+m (9)
where g represents the objective-guided gradients introduced previously. If we set γ = 0, then
this update rule reduces to the original objective-guided formulation. The momentum mechanism
in objective-guided sampling is visualized in Fig. 3. We can expect that with the introduction of
momentum, the latent variables sampled reach feasibility faster compared to the original methods. If
the gradient descent is performed only once for both sampling methods, the one with momentum
bears less cumulative error and finds better solutions compared to the original sampling methods.
The effectiveness of the momentum mechanism is proven through experiments.

4 EXPERIMENTS

4.1 BASELINES AND EVALUATION METRICS

We evaluate the following baselines on our datasets for better comparison and evaluation of the
proposed methods: 1) Traditional solvers: Gurobi (Gurobi Optimization, LLC, 2024), and SCIP (Bo-
lusani et al., 2024) and COPT (Ge et al., 2023). 2) Heuristic-based solvers: Relaxation Induced
Neighbourhood Search (rins) (Danna et al., 2005) and feasibility pump (Fischetti et al., 2005). 3)
Diffusion-based methods originally designed for binary ILP problems: IP Guided DDPM and DDIM
(Zeng et al., 2024). For binary integer linear programming problems, we further compare with two
other state-of-the-art methods: the Neural Diving (Nair et al., 2021), the Predict-and-Search algorithm
(PS) (Nair et al., 2021) and DiffILO (Geng et al., 2025b).

We adopt four metrics: 1) Gap: the relative gap between the ground truth value and the predicted
value, i.e. |c⊤xgt−c⊤xpred|

|c⊤xgt| . The gap is only calculated among problems to which the solvers can get a
feasible solution; 2) Time: the average computational time spent on evaluation. For generative models,
the total time spent on all samples is recorded; 3) Sample feasibility: the average feasibility per
instance. We choose to sample 30 times for all of the diffusion-based models to retrieve a high-quality
solution. This metric can reflect how many of the samples can retrieve a feasible solution. Feasibility
here means the satisfaction of the linear constraints, as the integerality constraints are enforced before
evaluation through the hard rounding function. 4) Dataset feasibility: the average feasibility ratio of
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Table 1: Results on classic binary integer linear programming. Fea: sample feasibility for generative
models and dataset feasibility for non-generative models.

Method SC CF CA
Gap Time Fea. Gap Time Fea. Gap Time Fea.

Gurobi (Gurobi Optimization, LLC, 2024) 0.00% 100s 100% 0.00% 100s 100% 0.00% 100s 100%
SCIP (Bolusani et al., 2024) 91.4% 16.7m 100% 77.4% 16.7m 100% 16.8% 16.7m 100%

rins (Danna et al., 2005) 252.9% 164.3s 100% NaN 300.7s 0.0% 69.3% 336.1s 100%
feaspump (Fischetti et al., 2005) 252.9% 236.6s 100% 12.7% 396.8s 46.0% 69.3% 348.6s 100%

PS (Han et al., 2023b) 71.7% 129.8s 100% 64.5% 138.2s 100% 13.7% 116.3s 100%
Neural Diving (Nair et al., 2021) NaN 0.9s 0.0% NaN 0.9s 0.0% 100% 3.7s 100%

Neural Diving+CompleteSol (Zeng et al., 2024) 80.2% 117.6s 100% 48.0% 127.9s 31.0% 16.5% 107.8s 87.0%
IP Guided DDPM (Zeng et al., 2024) 70.8% 11h 95.7% 80.5% 30h 44.0% 98.6% 9h 100%
IP Guided DDIM (Zeng et al., 2024) 68.5% 65m 99.8% 54.6% 1.5h 89.7% 25.4% 77m 97.1%

DiffILO (Geng et al., 2025b) 93.9% 22.2s 100% 512.3% 15.2s 100% 99.2% 33.2s 100%
CMILP (Ours) 90.2% 21.7s 100% 79.2% 2.3m 92.1% 80.2% 51.1s 100%

SCMILP (Ours) 91.6% 27.2s 100% 82.9% 2.9m 88.3% 85.3% 36.1s 100%
MFILP (Ours) 88.4% 21.3s 100% 76.1% 2.3m 89.7% 79.2% 32.8s 100%

the dataset. This metric reflects the percentage of problems in which the solvers can find a feasible
solution. Dataset feasibility is a more commonly evaluated metric compared to sample feasibility.
Sample feasibility and dataset feasibility can reflect the performance of generative-model-based
solvers from different perspectives.

4.2 BINARY INTEGER LINEAR PROGRAMMING PROBLEMS

In this section, we assess our methods’ capacity on three classic binary integer linear programming
(BILP) problems, i.e., set cover, capacitated facility location, and combinatorial auction. All variables
in the problems are binary variables. The instances are all generated by the Ecole library (Prouvost
et al., 2020). Given the high complexity of these problems, we adopt solutions obtained by Gurobi
with a 100-second time limit as training targets. The training dataset consists of 800 instances,
while the test set contains 100 instances. For evaluation, SCIP is run with a 1000-second limit to
obtain suboptimal solutions. PS leverages Gurobi as the post-processor and follows parameters
settings used by Han et al. (2023b). For neural diving (Nair et al., 2021), we use a low-coverage
(coverage=0.2) model that emphasizes solution feasibility to complete partial solutions. We also
report results on neural diving with the CompleteSol heuristics from SCIP (Bolusani et al., 2024) as
the post-processing techniques.

The experimental results are summarized in Table 1. Since all diffusion-based models achieve
100% dataset feasibility across all datasets, we report only the remaining three metrics in the table.
As shown, our method attains higher sample feasibility than both IP Guided DDPM and DDIM.
Additionally, on the CF and CA datasets, our approach achieves a smaller optimality gap than IP
Guided DDPM while requiring less inference time. Although IP Guided DDIM consistently produces
the lowest gap across all datasets, its inference time is considerably longer compared to both our
method and traditional solvers.

4.3 NON-BINARY INTEGER LINEAR PROGRAMMING PROBLEMS

4.3.1 INVENTORY MANAGEMENT DATASETS

In this section, we perform experiments on non-binary linear programming problems. We mainly
focus on two artificial datasets. The first dataset tries to model the inventory management problems.
We could form the problems as:

min

m∑
i=1

n∑
j=1

sjxij s.t.
n∑

j=1

xij ≥ qi,

m∑
i=1

aixij ≤ Cj , xij ≥ 0, xij ∈ Z (10)

The inventory problems aim to minimize the inventory costs while ensuring that the storage satisfies
the demands and that the total storage in need doesn’t exceed the storage space. For simplicity,
we also add an upper limit on the number of each single type of goods that each warehouse could
purchase. All coefficients were generated by sampling integer values uniformly from an interval.
We can hence define an inventory management problem as IM-(n, m, b), where n is the number of
warehouses, m is the number of types of goods, and b is the variable upper bound. IM-(n, m, b) has
n×m variables and m+ n constraints. We generate 800 instances for the training dataset and 100
for the testing dataset. The instances are labeled by Gurobi.
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Table 2: Experimental results on small-scale inventory management datasets where the number
of warehouses is larger than the number of types of goods. S. Fea is the abbreviation of sample
feasibility, and D. Fea is the abbreviation of dataset feasibility.

Method IM-(50, 5, 2) IM-(50, 5, 5) IM-(50, 5, 10)
Gap Time S. Fea. D. Fea. Gap Time S. Fea. D. Fea. Gap Time S. Fea. D. Fea.

Gurobi (Gurobi Optimization, LLC, 2024) 0.00% 6.6s - 100% 0.00% 4.6s - 100% 0.00% 5.8m - 100%
SCIP (Bolusani et al., 2024) 0.00% 13.2s - 100% 0.00% 6.7s - 100% 0.00% 28h - 100%
COPT (Ge et al., 2023) 0.00% 32.2s - 100% 0.00% 31.8s - 100% 0.00% 17.9m - 100%
rins (Danna et al., 2005) 0.61% 4.2s - 61% 0.00% 3.6% - 54.0% 0.00% 4.7s - 6.0%
feaspump (Fischetti et al., 2005) 0.62% 3.4s - 60.0% 0.00% 2.7s - 53.0% 0.00% 3.7s - 6.0%

Neural Diving (Nair et al., 2021) NaN 0.7s - 0.0% NaN 0.7s - 0.0% NaN 0.8s - 0.0%
Neural Diving+CompleteSol (Zeng et al., 2024) 21.2% 3.1s - 28.0% 21.3% 3.3s - 61.0% 57.3% 5.0s - 72.0%
IP Guided DDPM (Zeng et al., 2024) 92.9% 34m 0.1% 1.0% 15.6% 48m 0.1% 13.0% 87.2% 28m 0.1% 1.0%
IP Guided DDIM (Zeng et al., 2024) 15.0% 6m 46.0% 80.0% 6.0% 5m 32.3% 88.0% 133.3% 7.3m 18.6% 68.0%
CMILP (Ours) 16.5% 2.6s 69.2% 88.0% 8.4% 2.8s 71.3% 90.0% 119.3% 3.0s 35.7% 76.0%
SCMILP (Ours) 12.2% 2.0s 42.4% 78.0% 10.1% 2.3s 35.8% 86.0% 112.9% 2.9s 20.3% 62.0%
MFILP (Ours) 12.1% 2.1s 70.5% 90.0% 11.4% 2.0s 60.6% 80.0% 107.1% 2.1s 36.8% 68.0%

Table 3: Experimental results on inventory management datasets
Method IM-(5, 50, 2) IM-(200, 5, 2) IM-(100, 10, 2)

Gap Time S. Fea. D. Fea. Gap Time S. Fea. D. Fea. Gap Time S. Fea. D. Fea.

Gurobi (Gurobi Optimization, LLC, 2024) 0.00% 48.3s - 100% 0.00% 46.6s - 100% 0.00% 53.3s - 100%
SCIP (Bolusani et al., 2024) 0.00% 29.1s - 100% 0.00% 80.87s - 100% 0.00% 8h - 100%
COPT (Ge et al., 2023) 0.00% 4.9m - 100% 0.00% 38.5s - 100% 0.00% 4.2m - 100%
rins (Danna et al., 2005) 0.00% 1.8s - 71.0% 0.00% 15.6s - 42.0% 0.0% 22.1s - 3.0%
feaspump (Fischetti et al., 2005) 0.00% 1.5s - 88.0% 0.00% 13.9s - 43.0% NaN 20.8s - 0.0%

Neural Diving (Nair et al., 2021) NaN 0.8s - 0.0% NaN 0.8s - 0.0% NaN 0.7s - 0.0%
Neural Diving+CompleteSol (Zeng et al., 2024) NaN 2.9s - 0.0% 21.7% 5.9s - 7.0% 20.4% 5.8s - 7.0%
IP Guided DDPM (Zeng et al., 2024) 61.2% 39m 0.1% 1.0% 109.1% 1.7h 3.3% 1.0% 21.2% 2h 0.9% 16.0%
IP Guided DDIM (Zeng et al., 2024) 6.6% 14m 73.3% 92.0% 10.2% 36m 60.5% 89.0% 13.2% 42m 35.0% 76.0%
CMILP (Ours) 4.9% 1.9s 52.8% 89.0% 10.8% 17.0s 79.4% 90.0% 18.0% 18.6s 36.3% 67.0%
SCMILP (Ours) 5.3% 2.2s 67.3% 88.0% 15.8% 23.6s 42.8% 86.0% 17.5% 26.4s 15.6% 62.0%
MFILP (Ours) 5.7% 1.9s 54.3% 80.0% 9.2% 19.2s 71.3% 90.0% 16.1% 19.2s 37.7% 69.0%

Table 4: Experimental results on inventory management datasets and their binarized variants
Method IM-(50, 5, 2) Binarized IM-(50, 5, 2) IM-(50, 5, 5) Binarized IM-(50, 5, 5)

Gap Time S. Fea. D. Fea. Gap Time S. Fea. D. Fea. Gap Time S. Fea. D. Fea. Gap Time S. Fea. D. Fea.

IP Guided DDPM 92.9% 34m 0.1% 1.0% NaN 101m 0.0% 0.0% 15.6% 48m 0.1% 13.0% 79.6% 1.7h 1.7% 15.0%
IP Guided DDIM 15.0% 6m 46.0% 80.0% NaN 19m 0.0% 0.0% 6.0% 5m 32.3% 88.0% 32.6% 18.5m 25.6% 53.0%
CMILP (Ours) 16.5% 2.6s 69.2% 88.0% 0.0% 12.2s 0.6% 3.0% 8.4% 2.8s 71.3% 90.0% 0.0% 9.8s 2.1% 8.0%
SCMILP (Ours) 12.2% 2.0s 42.4% 78.0% 0.0% 17.2s 0.3% 3.0% 10.1% 2.3s 35.8% 86.0% 4.4% 10.1s 0.3% 5.0%
MFILP (Ours) 12.1% 2.1s 70.5% 90.0% 0.0% 13.4s 0.3% 3.0% 11.4% 2.0s 60.6% 80.0% 2.8% 9.8s 1.2% 9.0%

Experiment results are shown in Table 2 and Table 3. In Table 2, we present experiment results
on relatively small-scale instances where the number of warehouses is larger than the number of
types of goods. It could be observed that the proposed one-step diffusion solvers find solutions
faster compared to traditional solvers. Our models achieve comparative performance on gap, sample
feasibility, and dataset feasibility in far less time than IP Guided DDPM and DDIM.

In Table 3, we examine models’ performance on inventory management problems where the number
of types of goods exceeds the number of warehouses and larger-scale datasets. Overall performance
trends remain consistent with Table 2. While IP Guided DDIM achieves higher dataset feasibility on
IM-(5, 50, 2), it suffers from significantly longer solving times and larger optimality gaps.

In Table 4, we compare the models’ performance on the vanilla form that we used and the binarized
variant commonly adopted in literature. Binarization significantly increases problem size and solving
time. For example, IM-(50, 5, 5) is a dataset with variables taking 6 distinct integer values. If we use
a binary variable transformation to turn the dataset into a binary ILP instance, the problem will be
turned into an optimization problem with more than 1000 variables. Table 4 confirms that binarization
imposes additional computational burdens on neural solvers. Our introduction of the IIP layer helps
address this issue by maintaining problem compactness and improving model performance without
the need for costly variable transformations. Table 5: Experimental results on IM-(50, 5, 10)

with different gradient search schemes. Ti stands
for the number of model inference steps.

Method IM-(50, 5, 10)
Gap Time S. Fea. D. Fea.

SCMILP (Ti = 10, Opt=GD) 104.5% 22.9s 29.5% 78.0%
SCMILP (Ti = 10, Opt=MGD) 101.8% 24.9s 30.3% 82.0%
SCMILP (Ti = 20, Opt=GD) 99.8% 32.5s 35.1% 87.0%
SCMILP (Ti = 20, Opt=MGD) 95.8% 36.6s 35.5% 88.0%

Finally, we evaluate the newly devised gradient
descent with momentum (MGD) search meth-
ods on the most complicated dataset, IM-(50, 5,
10). The wide bound of variables makes it hard
for the solvers to achieve satisfactory results.
The results are shown in Table 5. It could be
concluded that the introduction of momentum
improves the search quality significantly while generally maintaining the solving time unchanged.
The momentum mechanism raises the dataset feasibility by as much as 4% and reduces the gap by
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Table 6: Experimental results on synthetic non-binary ILP datasets.
Method Random-(500, 20, 2) Random-(1000, 20, 2) Random-(2000, 20, 2)

Gap Time S. Fea. D. Fea. Gap Time S. Fea. D. Fea. Gap Time S. Fea. D. Fea.

Gurobi (Gurobi Optimization, LLC, 2024) 0.00% 5.4s - 100% 0.00% 18.1s - 100% 0.00% 4.2s - 100%
SCIP (Bolusani et al., 2024) 0.00% 9.2s - 100% 0.00% 27.6s - 100% 0.00% 48.4s - 100%
COPT (Ge et al., 2023) 0.00% 36.3s - 100% 0.00% 40.7s - 100% 0.00% 46.7s - 100%
rins (Danna et al., 2005) 0.00% 7.1s - 41.0% 0.00% 10.8s - 31.0% 0.00% 22.4s - 14.0%
feaspump (Fischetti et al., 2005) 0.61% 5.5s - 70.0% 0.30% 9.3s - 82.0% 2.05% 21.2s - 72.0%

Neural Diving (Nair et al., 2021) NaN 0.8s - 0.0% NaN 2.8s - 0.0% NaN 3.1s - 0.0%
Neural Diving+CompleteSol (Zeng et al., 2024) 21.9% 5.1s - 100% 22.6% 6.9s - 100% 99.4% 11.8s - 97.0%
IP Guided DDPM (Zeng et al., 2024) 10.3% 1.2h 43.4% 100% 1.2% 1.9h 3.0% 22.0% 0.5% 4h 7.3% 71.0%
IP Guided DDIM (Zeng et al., 2024) 0.7% 14m 85.1% 100% 0.3% 20m 77.1% 96.0% 0.3% 46m 9.26% 70.0%
CMILP (Ours) 0.0% 3.1s 46.8% 85.0% 0.5% 9.7s 16.3% 87.0% 1.1% 21.2s 14.5% 75.0%
SCMILP (Ours) 0.2% 4.4s 42.0% 88.0% 0.0% 10.3s 37.7% 89.0% 0.3% 22.2s 14.8% 74.0%
MFILP (Ours) 0.0% 3.6s 45.4% 82.0% 0.0% 7.1s 26.7% 85.0% 0.0% 19.4s 11.7% 85.0%

roughly 2%. Further, with the increasing number of inference steps, we can see that the performance
of the shortcut model rises steadily. We can change the number of steps according to the requirements
of the application scenarios, making our methods more applicable in real-life settings.

4.3.2 SYNTHETIC NON-BINARY INTEGER LINEAR PROGRAMMING DATASETS

The inventory management problem is a special type of integer linear programming problem. To
further examine our models’ performance, we generate a set of synthetic non-binary ILP datasets in
the form of Eq. 1. We adopt the instance generation procedure introduced by Lee & Kim (2025),
where the generated problems are guaranteed to be bounded and feasible. Each coefficient is drawn
from a discrete uniform distribution over the integer range. For simplicity, we also add a variable
upper bound. We term a dataset with n variables, m constraints, and a variable bound of b as
Random-(n, m, b). As in inventory management datasets, we generate 800 instances for the training
dataset and 100 for the testing dataset. The instances are labeled by Gurobi.

Table 6 reports results on larger-scale synthetic datasets. Interestingly, despite the increased problem
size, traditional solvers exhibit shorter solving times, as seen in Random-(500, 20, 2). This occurs
because problem difficulty is not fully captured by the number of variables and constraints alone.
In contrast, neural solvers show increased inference time proportional to the problem dimensions,
as their computational overhead is primarily governed by the variable and constraint counts, which
puts IP Guided DDPM and DDIM at a relative disadvantage. Our models, however, can accurately
solve most instances in significantly less time than Gurobi and SCIP. Moreover, in terms of solution
quality, a few additional steps allow our models to achieve comparable performance—for example,
on Random-(1000, 20, 2), it requires 5 steps and 57 seconds.

5 CONCLUSION AND LIMITATIONS

This paper presents three one-step, end-to-end diffusion solvers—CMILP, SCMILP, and MFILP—that
generate feasible solutions for general integer linear programming problems, a domain that has been
largely unexplored due to its inherent complexity. To extend ILP neural solvers to general instances,
we introduce a novel iterative integer projection (IIP) layer. Additionally, we integrate a momentum
mechanism into the objective-guided sampling of diffusion models to enhance solution guidance.
Experimental results demonstrate the superiority of our methods in both runtime and solution
quality. Limitations include a relatively big optimality gap compared to traditional solvers, and the
computational cost of gradient-based search increases substantially with dataset size—a challenge
common to all loss-guided diffusion approaches.

ETHICS STATEMENT

This paper aims to advance the state of the art in learning integer linear programming. While
the research may entail various societal implications, we do not identify any that warrant specific
emphasis in this paper.

REPRODUCIBILITY STATEMENT

All experimental results in the paper are reproducible, and the implementation code for reproducing
experimental results will be fully open sourced on Github after the paper is accepted.
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The contribution of LLM in the work proposed in this article is limited to: 1. polishing given written
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Table 7: Experimental results on smaller-scale synthetic non-binary ILP Datasets

Method Random-(300, 30, 2) Random-(300, 20, 5)
Gap Time S. Fea. D. Fea. Gap Time S. Fea. D. Fea.

Gurobi Gurobi Optimization, LLC (2024) 0.00% 14.0s - 100% 0.00% 12.3s - 100%
SCIP Bolusani et al. (2024) 0.00% 11.1s - 100% 0.00% 18.2s - 100%
rins Danna et al. (2005) 4.6% 10.7s - 16.0% 0.0% 4.9s - 19.0%
feaspump Fischetti et al. (2005) 5.1% 11.9s - 31.0% 0.8% 5.5s - 37.0%

IP Guided DDPM Zeng et al. (2024) 11.3% 26m 0.9% 16.0% 15.9% 23m 2.3% 40.0%
IP Guided DDIM Zeng et al. (2024) 17.5% 8m 50.8% 88.0% 2.2% 5m 82.7% 97.0%
CMILP (Ours) 0.0% 1.8s 45.5% 62.0% 0.3% 1.9s 16.9% 78.0%
SCMILP (Ours) 0.2% 2.3s 8.5% 52.0% 0.1% 2.8s 27.5% 70.0%
MFILP (Ours) 0.0% 1.7s 43.4% 59.0% 0.1% 1.7s 26.7% 77.0%

Table 8: Experimental results on small-scale inventory management datasets with different penalty
coefficient.

Method IM-(50, 5, 2) IM-(50, 5, 5) IM-(50, 5, 10)
Gap Time S. Fea. D. Fea. Gap Time S. Fea. D. Fea. Gap Time S. Fea. D. Fea.

IP Guided DDPM (Zeng et al., 2024) 92.9% 34m 0.1% 1.0% 15.6% 48m 0.1% 13.0% 87.2% 28m 0.1% 1.0%
IP Guided DDPM(penalty coef=0) (Zeng et al., 2024) NaN 34m 0.0% 0.0% NaN 48m 0.0% 0.0% NaN 28m 0.0% 0.0%
IP Guided DDIM (Zeng et al., 2024) 15.0% 6m 46.0% 80.0% 6.0% 5m 32.3% 88.0% 133.3% 7.3m 18.6% 68.0%
IP Guided DDIM (penalty coef=0) (Zeng et al., 2024) NaN 6m 0.0% 0.0% NaN 5m 0.0% 0.0% NaN 7.3m 0.0% 0.0%
CMILP (Ours) 16.5% 2.6s 69.2% 88.0% 8.4% 2.8s 71.3% 90.0% 119.3% 3.0s 35.7% 76.0%
CMILP (penalty coef=0) (Ours) NaN 2.6s 0.0% 0.0% NaN 2.8s 0.0% 0.0% NaN 3.0s 0.0% 0.0%
SCMILP (Ours) 12.2% 2.0s 42.4% 78.0% 10.1% 2.3s 35.8% 86.0% 112.9% 2.9s 20.3% 62.0%
SCMILP (penalty coef=0) (Ours) NaN 2.0s 0.0% 0.0% NaN 2.3s 0.0% 0.0% NaN 2.9s 0.0% 0.0%
MFILP (Ours) 12.1% 2.1s 70.5% 90.0% 11.4% 2.0s 60.6% 80.0% 107.1% 2.1s 36.8% 68.0%
MFILP (penalty coef=0) (Ours) NaN 2.1s 0.0% 0.0% NaN 2.0s 0.0% 0.0% NaN 2.1s 0.0% 0.0%

A ADDITIONAL RESULTS

We test our model on small-scale, randomly generated datasets. The results are shown in Table 7.
CMILP performs the best on Random-(300, 30, 2). It takes only 1.82 seconds to finish solving, while
for IP Guided DDPM and DDIM, the solving procedure generally takes minutes. Hence, on general
integer linear programming problems, our models are still more practical compared to IP Guided
DDPM and DDIM. On Random-(300, 20, 5), although IP Guided DDIM achieves the highest dataset
feasibility, its gap and solving time are way too high compared to our models. To achieve comparable
dataset feasibility, it takes CMILP 20 steps and 30 seconds and takes Shortcut 2 steps and 4 seconds.
Generally, Shortcut beats IP Guided DDIM on this dataset, further showcasing our models’ capacity
on general integer linear programming problems. Furthermore, if we turn Random-(300, 20, 5) into
binary ILP problems, it generally takes 10 times longer time to finish solving, as can be inferred from
datasets of similar sizes as in Table 6. This will waste the speed advantage of neural-network-based
solvers. We should always try to tackle integer linear programming problems directly instead of
converting those problems to the binary versions.

B ANALYSIS ON THE FEASIBILITY PENALTY

In this section, we attempt to analyze effectiveness of the feasibility penalty. Constraint satisfaction
is one key factor when evaluating the ILP solvers. The feasibility penalty is introduced to enforce
constraint satisfaction more effectively. The results are shown in Table 8. We can infer from the table
that neural solvers trained without the feasibility penalty can’t generate feasible solutions at all. Our
introduction of the feasibility penalty successfully enhance the models’ performance.

C SCMILP: SHORTCUT DIFFUSION MODEL FOR INTEGER LINEAR
PROGRAMMING

Recently there has been a new variant of the diffusion model that can also generate high-quality
solutions in one or a few steps, the shortcut model (Frans et al., 2024). The shortcut model is built
upon a flow matching model (Lipman et al., 2023). The flow matching model attempts to learn a
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vector field that transports a random Gaussian distribution to the target distribution. The original flow
matching models suffer from the large number of inference steps required to generate a high-quality
solution, as with the diffusion model. The shortcut model tackles this issue by conditioning not only
on the problem instance but also on the size of the inference steps. The shortcut sθ(xt, t, d), which is
defined as the normalized direction to the next variable, is hence introduced:

x′
t+d = xt + sθ(xt, t, d)d (11)

where d is the step length, sθ(xt, t, d) represents the velocity we take at state xt given a time step of
size d. The shortcut model is trained using a combination of the self-consistency loss and the flow
matching loss. The self-consistency refers to the model quality that one shortcut step equals two
consecutive shortcut steps of half the size. The flow matching loss tries to supervise with the ground
truth vector field. This loss enables the model to function under large sampling steps.

LNt,d

SCMILP(θ) = E
[
∥sθ(xt, t, 0)− (x1 − x0)∥+ ∥sθ(xt, t, 2d)−

sθ(xt, t, d) + sθ(x
′
t+d, t, d)

2
∥
]

(12)
where (t, d) is sampled according to the time scheduler Nt,d. For the shortcut model, the step size d
is embedded using the sinusoidal embedding and together with the time t as the conditional inputs.

D MFILP: MEANFLOW MODEL FOR INTEGER LINEAR PROGRAMMING

The mean flow model (Geng et al., 2025a) is another generative model that instead uses the average
velocity u(xt, r, t), where [r, t] is the time window of the average velocity, to capture distributional
changes, in contrast to the instantaneous velocity v(xt, t) modeled in flow matching. An identity
relationship forms between those two velocities:

u(xt, r, t) = v(xt, t)− (t− r)
d

dt
u(xt, r, t), where

d

dt
u(xt, r, t) = v(xt, t)∂xu+ ∂tu (13)

As in flow matching, the instantaneous velocity v(xt, t) is modeled as v(xt, t) = ϵ− xt. Eq. 13 can
hence provide the target average velocity in arbitrary time ranges [r, t]. The neural network is trained
to approximate this average velocity by minimizing the following loss with the time scheduler Nr,t.

LNr,t

MFILP = E∥uθ(xt, r, t)− utarget∥22 (14)
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