

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 ONE-STEP DIFFUSION SOLVER FOR NON-BINARY INTE- GER LINEAR PROGRAMMING

Anonymous authors

Paper under double-blind review

ABSTRACT

Integer linear programming, a fundamental NP-hard problem with broad applications in science and engineering, has gained growing attention in the machine learning community. Yet, progress on effective end-to-end solvers remains limited, largely due to difficulties in enforcing constraints and integrality. Most existing work focuses on binary integer linear programming problems, while generalizing to bounded, non-binary cases often requires transformations that significantly increase problem size and computational costs. Even for purely binary problems, inference time is often prohibitively long, restricting applicability to real-world scenarios. To tackle the aforementioned problems, we propose three one-step diffusion-based approaches, i.e., CMILP, SCMILP and MFILP, inspired by the popular consistency, shortcut and meanflow training techniques. Our methods can further handle non-binary integer problems using a newly proposed iterative integer projection (IIP) layer, eliminating the need for the costly problem transformation. To further improve the solution quality, an objective-guided sampling with momentum scheme is proposed. Experiments demonstrate that our approach outperforms existing learning-based methods on both binary and non-binary instances and shows strong scalability compared to traditional solvers. Source code and detailed protocols will be made publicly available.

1 INTRODUCTION

Integer Programming (IP) (Schrijver, 1998) is a class of optimization problems in the field of operations research, where some or all of the decision variables are constrained to be integers. These problems play a crucial role in various domains, such as production planning (Pochet & Wolsey, 2006), resource allocation (Zoltners & Sinha, 1980), and scheduling (Ryan & Foster, 1981). However, as an NP-hard problem, IP is generally very difficult to solve. In recent decades, researchers have primarily relied on heuristic methods such as branch-and-bound (Wolsey, 2020), cutting-plane methods (Ceria et al., 1998), and large neighborhood search algorithms (Ahuja et al., 2002) to address this challenge. These methods are typically computationally expensive, especially for large-scale problems, where the search space grows exponentially, significantly increasing the difficulty of solving the problem.

With the success of machine learning, recent studies have begun focusing on solving IP problems using data-driven approaches (Gasse et al., 2019), where neural networks are used to predict solutions that both minimize the objective function and ensure feasibility of the solutions. To address this issue, Wang et al. (2022) proposed a differentiable IP solver that uses Gumbel-Softmax to ensure that integer constraints do not interfere with the learning of the optimal objective. Meanwhile, Zeng et al. (2024) leveraged deep diffusion models to nearly perfectly satisfy 0-1 integer constraints. However, there are still several notable issues: 1) Although Zeng et al. (2024) excels at generating feasible solutions, the inference speed of diffusion models is very slow, leading to a loss of the efficiency advantages deep learning should offer compared to traditional solvers like Gurobi and COPT; 2) Most existing IP neural solvers are limited to 0-1 integer programming and fail to extend neural IP solvers to more general integer constraints. Though bounded IP problems can be transformed to binary integer programming problems, the problem scale grows exponentially with the variable bounds and will bring about large computational burdens.

To tackle these problems, in this paper, we propose three one-step diffusion-based integer linear programming solvers. The structure of the solvers is visualized in Fig. 1. One-step solvers can

Figure 1: Illustration of the proposed one-step diffusion solvers for non-binary ILP.

finish solving far faster compared to traditional solvers and vanilla-diffusion-based solvers with comparable performance. To enhance the solution’s feasibility, we adopt the objective-guided sampling methods. The momentum mechanism is further introduced to boost the effectiveness of the objective-guided sampling. We evaluate our methods on not only classic binary integer linear programming problems, but also two types of non-binary integer linear programming problems. Experimental results demonstrate the superiority of our method over original diffusion-based methods. **In short, this work contributes in the following aspects:**

- 1) Departure from previous works that employ a two-stage method to handle infeasible solutions (Nair et al., 2021) or use extensive diffusion iterations (Zeng et al., 2024) to obtain feasible solutions. In this paper, we propose three one-step diffusion-based solvers under an end-to-end paradigm for ILP problems, namely CMILP, SCMILP and MFILP. The proposed solvers achieve higher solution feasibility compared to previous neural solvers, reaching nearly 100% on binary ILP problems without resorting to traditional algorithms for post-processing.
- 2) For the first time, to our best knowledge, we extend the binary 0-1 ILP neural solver to the non-binary case for feasible solution prediction, in which we introduce a new Iterative Integer Projection (IIP) layer defined across the entire real domain, capable of approximating the real integer within a few iterations. We find that using a small number of projection iterations during training, and more iterations during testing, leads to better performance.
- 3) We propose and rethink the guidance in the diffusion model for ILP, as presented in Zeng et al. (2024), from the perspective of non-convex optimization. We show that previous guidance methods can be viewed as a special case of gradient descent (with only a single optimization step). Based on this insight, we introduce a sampling method based on gradient descent and a momentum-based gradient descent approach to improve the sampling process.

2 RELATED WORKS

Diffusion-based Models The diffusion model (Ho et al., 2020) is a popular generative model that has been actively applied to solve various optimization problems (Sun & Yang, 2023; Li et al., 2023). It uses a noising and denoising procedure to accurately capture the target distribution. To accelerate the inference speed of the diffusion model, the consistency model (Song et al., 2023) is devised by posing the consistency function onto the variable trajectory. Flow matching (Lipman et al., 2023) generalizes the diffusion model and generates in a continuous normalizing flow-based paradigm. The shortcut model (Frans et al., 2024) is a newly devised one-step diffusion model that takes the step size as the conditional input to permit large step sampling. Instead of focusing on instantaneous velocity as in flow matching models, meanflow (Geng et al., 2025a) tries to learn the average velocity.

(Mixed) Integer Linear Programming and its Traditional Solvers Mixed Integer Linear Programming (MILP) (Bénichou et al., 1971) is a fundamental optimization technique widely used across various fields, including operations research and supply chain management. Traditional MILP solvers include branch-and-bound (Wolsey, 2020), branch-and-cut (Mitchell, 2002), and cutting-plane (Ceria et al., 1998) methods. The branch-and-bound method systematically divides the solution space into

108 subproblems and eliminates infeasible solutions based on bounds, while branch-and-cut enhances this
 109 approach by incorporating cutting planes to improve computational efficiency. Cutting-plane methods
 110 iteratively refine the feasible region by adding linear inequalities, thus reducing the search space.
 111 Additionally, simplex-based methods have been adapted for MILP through algorithms such as the
 112 dual simplex method (Banciu, 2011). While these traditional solvers are effective, they often struggle
 113 with large-scale problems, where computational time grows exponentially. This challenge has spurred
 114 the development of hybrid approaches that combine traditional solvers with metaheuristics, constraint
 115 programming, and machine learning techniques to improve efficiency in solving complex, large-scale
 116 MILP problems. In contrast, Neural Solvers offer faster and more scalable solutions by learning from
 117 data, enabling quicker problem-solving without the need for manual adjustments.

118 **Neural Solver for IP** (Mixed) Integer Linear Programming (ILP), as a widely used mathematical
 119 programming problem, has attracted a great deal of attention from the machine learning commu-
 120 nity (Zhang et al., 2023). One line of research tries to substitute ML models with key parts of
 121 traditional algorithms to improve solving efficiency. A significant portion of this work focuses on
 122 learning heuristic policies for tasks such as selecting variables to branch on (Scavuzzo et al., 2024),
 123 choosing cutting planes (Puigdemont et al., 2024), and more (Labassi et al., 2022). Another line of
 124 research leverages ML models to predict solutions and adopts traditional methods as post-processing
 125 techniques to retrieve feasible solutions. For example, Neural Diving (Nair et al., 2020) predicts a
 126 partial solution based on coverage rates and utilizes neural networks to determine which predicted
 127 variables to fix, while Han et al. (2023a); Ye et al. (2023) builds upon this work by adopting search
 128 methods to improve solution quality. Tang et al. (2025) deals with non-binary ILP by introducing an
 129 integer correction layer at the cost of extra parameters. Most of these works focus more on integer
 130 prediction and do not directly address the satisfaction of linear constraints. As a result, they are not
 131 end-to-end models and rely on heuristic search to satisfy the inequality constraints. In this paper,
 132 we attempt to propose an end-to-end model to get feasible solutions using merely machine learning
 133 techniques. Acceleration is expected due to the speed advantage neural networks usually bring about.

134 3 METHODOLOGY

135 3.1 REPRESENTATIONS OF ILP WITH PROJECTED GRAPH NEURAL NETWORKS

136 **ILP representation.** Integer Linear Programming (ILP) Problem is a type of optimization problem
 137 that seeks an integer-valued solution that minimizes a linear objective under linear constraints. All
 138 integer linear programming problems can be transformed to the following form:

$$139 \min_{\mathbf{x}} \mathbf{c}^T \mathbf{x}, \quad \text{s.t. } \mathbf{A}\mathbf{x} \leq \mathbf{b}, \mathbf{x} \in \mathbb{Z}^n, \mathbf{b} \in \mathbb{R}^m, \mathbf{A} \in \mathbb{R}^{m \times n} \quad (1)$$

140 where there are n variables and m constraints. Given that SCIP (Bolusani et al., 2024) already
 141 provides a mature algorithm for this transformation, we only tackle such problems during model
 142 training. Following Gasse et al. (2019), we represent ILP as a weighted bipartite graph, where variable
 143 and constraint nodes form two disjoint sets and the bipartite graph weights encode the constraint
 144 matrix \mathbf{A} . This representation allows us to leverage a graph neural network for feature extraction.
 145 More specifically, in this paper, we adopt the network architecture implemented by Nair et al. (2021).

146 **Model architecture.** Considering the discrete nature of the solutions of ILP instances, a projection
 147 should be applied to map the variables to a continuous feature space, which is implemented via a
 148 transformer in our model. As proven in Nair et al. (2021), when extracting features from the problem
 149 instances and problem solutions, we should also ensure the alignment between them to enhance
 150 model performance. Motivated by CLIP (Radford et al., 2021), we adopt a contrastive learning
 151 approach to better match the continuous ILP problem features (node features of weighted bipartite
 152 graphs) and the solution features. The CLIP-style encoder is pretrained to extract robust instance
 153 features independently of solver training.

154 Secondly, a neural solver is applied to solve the instance in the feature space. **We utilize generative-
 155 model-based solvers here to learn the solution distribution given problem instances. This type of
 156 solvers are proven effective on various combinatorial datasets (Li et al., 2024).** The continuous nature
 157 of the feature space permits a smooth adoption from the well-developed image generative models.
 158 The specific diffusion solvers will be introduced in the following sections. The backbone of this
 159 solver is a transformer encoder that learns the solution distribution. The solution features generated

162 previously are treated as the targets, while the ILP instance features serve as the conditional inputs.
 163 The time t of the diffusion trajectory is encoded using the sinusoidal embedding. Since our goal is to
 164 capture the underlying solution distribution, we construct the training set by collecting 500 optimal
 165 and sub-optimal solutions, allowing for a richer representation of the data distribution.

166 Finally, a solution decoder is applied to project the solution features back to the original solution
 167 space. The final solution is reconstructed by a combination of the predicted solution features and the
 168 ILP problem features. The solution decoder is trained jointly with the diffusion model.
 169

170 The model is trained to minimize the reconstruction error, the diffusion loss and a feasibility penalty.
 171 The reconstruction error $\mathcal{L}_{\text{recon}}$ measures the model’s ability to capture the mapping between the
 172 problem space and the feature space. For binary variables, the cross entropy loss is adopted for the
 173 reconstruction error. For non-binary cases, we choose the **MSE** loss to evaluate the reconstruction gap.
 174 The diffusion loss $\mathcal{L}_{\text{XXILP}}$ aims to enhance the learning of the solution distribution conditioned on the
 175 problem distribution. To further enforce constraint satisfaction, we introduce a feasibility penalty
 176 $\mathcal{L}_{\text{penalty}} = \frac{1}{m} \sum_{i=1}^m \max(a_i^T \hat{x} - b_i, 0)$, which specifically addresses linear constraint violations. Inte-
 177 grality is handled separately through the Iterative Integer Projection described below. Experimental
 178 results confirm that incorporating the feasibility penalty significantly improves constraint satisfaction
 179 in our solver. The final training loss is shown as follows:
 180

$$\mathcal{L} = \mathcal{L}_{\text{recon}} + \mathcal{L}_{\text{XXILP}} + \lambda_{\text{penalty}} \mathcal{L}_{\text{penalty}}, \quad (2)$$

181 where λ_{penalty} is the penalty coefficient.

182 **Iterative Integer Projection (IIP) for General ILP.** Most existing
 183 studies (Zeng et al., 2024; Li et al., 2023) focus on binary integer
 184 linear programming (BILP) problems (i.e. $\mathbf{x} \in \{0, 1\}^n$) due to their
 185 relative simplicity. While it is theoretically possible to transform
 186 any bounded integer linear programming instance into a binary form
 187 through binary encoding techniques (Nair et al., 2021), such transfor-
 188 mations often lead to an exponential increase in problem size. This
 189 scaling significantly impacts computational efficiency, increasing
 190 both solving time and memory costs.

191 In this work, we turn our focus to non-binary ILP problems—a direc-
 192 tion that has received comparatively little attention. Tackling such
 193 problems requires a differentiable mechanism for approximating
 194 non-binary integer variables. While the Sigmoid function is widely
 195 used for relaxing binary variables, extending this idea to the non-
 196 binary case calls for a new projection function that meets several
 197 criteria: it must be differentiable, defined over the real domain, and
 198 capable of rapidly converging to integer values within only a few it-
 199 erations. Guided by these considerations, we introduce the following
 200 integer projection function:

$$f_{\text{proj}}^{(0)}(\mathbf{x}) = \mathbf{x}, \text{ and } f_{\text{proj}}^{(k)}(\mathbf{x}) = f_{\text{proj}}(f_{\text{proj}}^{(k-1)}(\mathbf{x})) \quad \forall k < K \quad \text{where } f_{\text{proj}}(\mathbf{x}) = \mathbf{x} - \frac{\sin(2\pi\mathbf{x})}{2\pi} \quad (3)$$

201 Here, $K \geq 0$ represents the number of projection iterations for this layer. Through this recursive
 202 iteration, we can approximate the integer solution of the output \mathbf{x} in a differentiable manner. Fig. 2
 203 demonstrates how the above function approximates the rounding function in finite iterations. We
 204 use this function to replace the Sigmoid function to approximate integer values throughout the real
 205 domain. The projection is applied once during training for training efficiency and applied multiple
 206 times during testing for approximation accuracy.
 207

210 3.2 ONE STEP DIFFUSION MODELS FOR FOR INTEGER LINEAR PROGRAMMING 211

212 In this section, we start to devise diffusion-based solvers to address integer linear programming
 213 problems. Unlike purely supervised-learning-based solvers that aim to predict a single optimal
 214 solution, diffusion-based methods learn the distribution of feasible solutions \mathbf{x} given instances \mathcal{P} , i.e.,
 215 $q(\mathbf{x} \mid \mathcal{P})$. This distribution is modeled by transforming Gaussian noise through a learned generative
 216 process.

217 Figure 2: Visualization of
 218 the Iterative Integer Projection
 219 $f_{\text{proj}}^{(k)}$. As the iteration K in-
 220 creases, the projected results
 221 gradually converge to integers.

216 However, solvers based on the vanilla diffusion model suffer from a long inference time, even
 217 compared to traditional solvers (Zeng et al., 2024). This limits this model’s practical value. Hence,
 218 we propose using the consistency model (Song et al., 2023), shortcut model (Frans et al., 2024) and
 219 mean flow model Geng et al. (2025a), the speed-up version of the diffusion model, to address ILP
 220 problems. The detailed introduction of shortcut and mean flow models are put in the appendix.

221 **CMILP.** Vanilla diffusion-based solver is comprised of a noising and denoising process. The noising
 222 process takes the initial solution \mathbf{x}_0 and progressively introduces noise to generate trajectory $\mathbf{x}_{1:T} =$
 223 $\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_T$. Specifically, the noising process is modeled as $q(\mathbf{x}_{1:T}|\mathbf{x}_0) = \prod_{t=1}^T q(\mathbf{x}_t|\mathbf{x}_{t-1})$, where
 224 each transition is formulated as a Gaussian distribution, i.e.

$$226 \quad q(\mathbf{x}_t|\mathbf{x}_{t-1}) = \mathcal{N}(\mathbf{x}_t; \sqrt{1 - \beta_t} \mathbf{x}_{t-1}, \beta_t \mathbf{I}) \quad (4)$$

227 where $\beta_t \in [0, 1]$. We further define $\alpha_t = 1 - \beta_t$, $\bar{\alpha}_t = \prod_{i=1}^t \alpha_i$. Using reparametrization trick,
 228 we can sample \mathbf{x}_t through $\mathbf{x}_t = \sqrt{\alpha_t} \mathbf{x}_{t-1} + \sqrt{1 - \alpha_t} \epsilon_t$, where $\epsilon_t \sim \mathcal{N}(0, \mathbf{I})$. During testing, we
 229 recreate a true sample \mathbf{x}_0 from a Gaussian noise input \mathbf{x}_T by reversing the above noising process. Ho
 230 et al. (2020) proves that the denoising process is modeled as:

$$231 \quad \mathbf{x}_{t-1} = \frac{1}{\sqrt{\alpha_t}} (\mathbf{x}_t - \frac{1 - \alpha_t}{\sqrt{1 - \bar{\alpha}_t}} \epsilon_t) + \sqrt{\frac{1 - \bar{\alpha}_{t-1}}{1 - \bar{\alpha}_t}} \beta_t \mathbf{z}, \mathbf{z} \sim \mathcal{N}(0, \mathbf{I}) \quad (5)$$

234 We then train a neural network to approximate this distribution. **Consistency model** further intro-
 235 duces the consistency function f_θ to formulate the trajectory. f_θ is characterized by: 1) bound-
 236 ary condition: $f_\theta(\mathbf{x}_\epsilon, \epsilon) = \mathbf{x}_\epsilon$, where ϵ is the initial timestep; 2) self-consistency properties:
 237 $f_\theta(\mathbf{x}_t, t) = f_\theta(\mathbf{x}_{t'}, t'), \forall t, t' \in [\epsilon, T]$. The consistency model requires all variables along the
 238 noising and denoising route to yield the same value for the consistency function. The introduction of
 239 the consistency function shortens the inference schedule to one or a few timesteps, greatly reducing
 240 the inference time. This makes the consistency model more practical in real-world settings.

241 Considering the characteristics of integer programming, we choose the mapping to the solution
 242 distribution as the consistency function. This consistency function follows both boundary conditions
 243 and self-consistency properties because the solution distribution is determined by the problem features.
 244 Since the solution \mathbf{x}^* is explicit given the problem instance, we can integrate \mathbf{x}^* into the loss for
 245 better training instead of focusing on the gap between f_θ of two diverse timesteps:

$$246 \quad \mathcal{L}_{\text{CMILP}}^{N_t}(\theta) = \mathbb{E} [d(f_\theta(\mathbf{x}'_{t_n}, t_n, \mathcal{P}), \delta(\mathbf{x} - \mathbf{x}^*)) + d(f_\theta(\mathbf{x}_{t_{n+1}}, t_{n+1}, \mathcal{P}), \delta(\mathbf{x} - \mathbf{x}^*))] \quad (6)$$

247 where $d(\cdot, \cdot)$ is a distance function, N_t represents the time scheduler, $\delta(\cdot)$ is Dirac delta and \mathcal{P} is the
 248 problem instance. x_t and x'_t are sampled from two independent and identically distributed trajectories,
 249 as in the original consistency loss. Its minimization is achieved only if consistency holds across all
 250 possible trajectories, yielding the optimal solution distribution.

252 3.3 OBJECTIVE GUIDED SAMPLING FOR DIFFUSION MODEL

254 Constraint satisfaction and objective minimization are two core problems in constrained optimization.
 255 We attempt to incorporate them into diffusion’s sampling to further boost models’ performance. We
 256 follow Graikos et al. (2023) to utilize the learned model $p(\mathbf{x}|\mathcal{P})$ as a sampling prior to achieve this.
 257 The conditional information \mathbf{y}^* is incorporated using a constraint function $c(\mathbf{x}, \mathbf{y}^*)$ to regulate the
 258 posterior distribution. The target posterior $p_\theta(\mathbf{x}|\mathcal{P})$ is hence modeled as $Z p_\theta(\mathbf{x}|\mathcal{P}) c(\mathbf{x}, \mathbf{y}^*|\mathcal{P})$. We
 259 introduce an approximate variational posterior $q(\mathbf{x}|\mathcal{P})$ to estimate the target posterior. Following the
 260 derivation in Li et al. (2024), if we approximate $q(\mathbf{x}|\mathcal{P})$ as a point estimate $\delta(\mathbf{x} - \boldsymbol{\eta})$, where $\boldsymbol{\eta}$ point
 261 estimate’s parameter, we can minimize the following property to learn the target posterior.

$$262 \quad F = \mathbb{E}_{q(\mathbf{h}|\boldsymbol{\eta}, \mathcal{P})} \left[\log \frac{q(\mathbf{h}|\boldsymbol{\eta}, \mathcal{P})}{p_\theta(\boldsymbol{\eta}, \mathbf{h}|\mathcal{P})} - l(\boldsymbol{\eta}; \mathcal{P}) - \log Z - \mathbf{y}^* \right] \quad (7)$$

264 where Z is a constant normalization factor, $\mathbf{h} = \mathbf{x}_1, \dots, \mathbf{x}_T$ are the latent variables and $l(\cdot; \mathcal{P})$ is
 265 defined as follows:

$$266 \quad \mathbf{y}^* = \min_{\mathbf{x}} l(\mathbf{x}; \mathcal{P}) \text{ where } l(\mathbf{x}; \mathcal{P}) \triangleq \mathbf{c}^\top \mathbf{z} + \sum \max(a_k^\top \mathbf{z} - b_k, 0), \text{ and } \mathbf{z} = \text{Decoder}(\mathbf{x}) \quad (8)$$

268 where a_k^\top is the k th row in the constraint matrix \mathbf{A} and b_k is the k th value in the constraint vector \mathbf{b} .

269 From the diffusion process, we have $q(\mathbf{h}|\mathbf{x}, \mathcal{P}) = \prod_{t=1}^T q(\mathbf{x}_t|\mathbf{x}_{t-1})$. Hence, $\log \frac{q(\mathbf{h}|\boldsymbol{\eta}, \mathcal{P})}{p_\theta(\boldsymbol{\eta}, \mathbf{h}|\mathcal{P})}$ is actually

Figure 3: Visualization of objective-guided sampling with/without momentum.

the objective of diffusion models. It is noteworthy that, compared to other diffusion models, we need to further employ a solution decoder to transform the latent variables into the solution space. The objective guidance is provided from the original solution space instead of the feature space where the diffusion model is located. η is initialized as the output of the diffusion model. We optimize F concerning η to learn a better intermediate variable. All the proposed solvers fit this framework.

Gradient Descent with Momentum (MGD) Search The aforementioned guidance method can be considered a special case of gradient descent, performing just a single optimization step on the diffusion latent variables. To enhance the effects of the guidance, we introduce momentum (Liu et al., 2020), a technique originally developed for neural network optimization, into the sampling. The intuition for momentum is to reduce the oscillation of the gradient updates and hence accelerate the optimization procedure. Since the objective-guided sampling process shares the same framework as model optimization, introducing momentum here can also enhance guidance. The update rule for this momentum is given by:

$$\mathbf{m} = \gamma \mathbf{m} - \varphi \mathbf{g}, \quad \mathbf{x} = \mathbf{x} + \mathbf{m} \quad (9)$$

where \mathbf{g} represents the objective-guided gradients introduced previously. If we set $\gamma = 0$, then this update rule reduces to the original objective-guided formulation. The momentum mechanism in objective-guided sampling is visualized in Fig. 3. We can expect that with the introduction of momentum, the latent variables sampled reach feasibility faster compared to the original methods. If the gradient descent is performed only once for both sampling methods, the one with momentum bears less cumulative error and finds better solutions compared to the original sampling methods. The effectiveness of the momentum mechanism is proven through experiments.

4 EXPERIMENTS

4.1 BASELINES AND EVALUATION METRICS

We evaluate the following baselines on our datasets for better comparison and evaluation of the proposed methods: 1) Traditional solvers: Gurobi (Gurobi Optimization, LLC, 2024), and SCIP (Bolusani et al., 2024) and COPT (Ge et al., 2023). 2) Heuristic-based solvers: Relaxation Induced Neighbourhood Search (rins) (Danna et al., 2005) and feasibility pump (Fischetti et al., 2005). 3) Diffusion-based methods originally designed for binary ILP problems: IP Guided DDPM and DDIM (Zeng et al., 2024). For binary integer linear programming problems, we further compare with two other state-of-the-art methods: the Neural Diving (Nair et al., 2021), the Predict-and-Search algorithm (PS) (Nair et al., 2021) and DiffILO (Geng et al., 2025b).

We adopt four metrics: 1) Gap: the relative gap between the ground truth value and the predicted value, i.e. $\frac{|\mathbf{c}^\top \mathbf{x}_{gt} - \mathbf{c}^\top \mathbf{x}_{pred}|}{|\mathbf{c}^\top \mathbf{x}_{gt}|}$. The gap is only calculated among problems to which the solvers can get a feasible solution; 2) Time: the average computational time spent on evaluation. For generative models, the total time spent on all samples is recorded; 3) Sample feasibility: the average feasibility per instance. We choose to sample 30 times for all of the diffusion-based models to retrieve a high-quality solution. This metric can reflect how many of the samples can retrieve a feasible solution. Feasibility here means the satisfaction of the linear constraints, as the integrality constraints are enforced before evaluation through the hard rounding function. 4) Dataset feasibility: the average feasibility ratio of

324
 325 Table 1: Results on classic binary integer linear programming. Fea: sample feasibility for generative
 326 models and dataset feasibility for non-generative models.

327 328 329 330 331 332 333 334 335 336 337	Method	SC			CF			CA		
		Gap	Time	Fea.	Gap	Time	Fea.	Gap	Time	Fea.
Gurobi (Gurobi Optimization, LLC, 2024)	0.00%	100s	100%	0.00%	100s	100%	0.00%	100s	100%	100%
SCIP (Bolusani et al., 2024)	91.4%	16.7m	100%	77.4%	16.7m	100%	16.8%	16.7m	100%	100%
rins (Danna et al., 2005)	252.9%	164.3s	100%	NaN	300.7s	0.0%	69.3%	336.1s	100%	100%
feaspump (Fischetti et al., 2005)	252.9%	236.6s	100%	12.7%	396.8s	46.0%	69.3%	348.6s	100%	100%
PS (Han et al., 2023b)	71.7%	129.8s	100%	64.5%	138.2s	100%	13.7%	116.3s	100%	100%
Neural Diving (Nair et al., 2021)	NaN	0.9s	0.0%	NaN	0.9s	0.0%	100%	3.7s	100%	100%
Neural Diving+CompleteSol (Zeng et al., 2024)	80.2%	117.6s	100%	48.0%	127.9s	31.0%	16.5%	107.8s	87.0%	87.0%
IP Guided DDPM (Zeng et al., 2024)	70.8%	11h	95.7%	80.5%	30h	44.0%	98.6%	9h	100%	100%
IP Guided DDIM (Zeng et al., 2024)	68.5%	65m	99.8%	54.6%	1.5h	89.7%	25.4%	77m	97.1%	97.1%
DiffILO (Geng et al., 2025b)	93.9%	22.2s	100%	512.3%	15.2s	100%	99.2%	33.2s	100%	100%
CMILP (Ours)	90.2%	21.7s	100%	79.2%	2.3m	92.1%	80.2%	51.1s	100%	100%
SCMILP (Ours)	91.6%	27.2s	100%	82.9%	2.9m	88.3%	85.3%	36.1s	100%	100%
MFILP (Ours)	88.4%	21.3s	100%	76.1%	2.3m	89.7%	79.2%	32.8s	100%	100%

338 the dataset. This metric reflects the percentage of problems in which the solvers can find a feasible
 339 solution. Dataset feasibility is a more commonly evaluated metric compared to sample feasibility.
 340 Sample feasibility and dataset feasibility can reflect the performance of generative-model-based
 341 solvers from different perspectives.

342 4.2 BINARY INTEGER LINEAR PROGRAMMING PROBLEMS

344 In this section, we assess our methods’ capacity on three classic binary integer linear programming
 345 (BILP) problems, i.e., set cover, capacitated facility location, and combinatorial auction. All variables
 346 in the problems are binary variables. The instances are all generated by the Ecole library (Prouvost
 347 et al., 2020). Given the high complexity of these problems, we adopt solutions obtained by Gurobi
 348 with a 100-second time limit as training targets. The training dataset consists of 800 instances,
 349 while the test set contains 100 instances. For evaluation, SCIP is run with a 1000-second limit to
 350 obtain suboptimal solutions. PS leverages Gurobi as the post-processor and follows parameters
 351 settings used by Han et al. (2023b). For neural diving (Nair et al., 2021), we use a low-coverage
 352 (coverage=0.2) model that emphasizes solution feasibility to complete partial solutions. We also
 353 report results on neural diving with the CompleteSol heuristics from SCIP (Bolusani et al., 2024) as
 354 the post-processing techniques.

355 The experimental results are summarized in Table 1. Since all diffusion-based models achieve
 356 100% dataset feasibility across all datasets, we report only the remaining three metrics in the table.
 357 As shown, our method attains higher sample feasibility than both IP Guided DDPM and DDIM.
 358 Additionally, on the CF and CA datasets, our approach achieves a smaller optimality gap than IP
 359 Guided DDPM while requiring less inference time. Although IP Guided DDIM consistently produces
 360 the lowest gap across all datasets, its inference time is considerably longer compared to both our
 361 method and traditional solvers.

362 4.3 NON-BINARY INTEGER LINEAR PROGRAMMING PROBLEMS

363 4.3.1 INVENTORY MANAGEMENT DATASETS

364 In this section, we perform experiments on non-binary linear programming problems. We mainly
 365 focus on two artificial datasets. The first dataset tries to model the inventory management problems.
 366 We could form the problems as:

$$368 \min \sum_{i=1}^m \sum_{j=1}^n s_j x_{ij} \quad \text{s.t.} \quad \sum_{j=1}^n x_{ij} \geq q_i, \sum_{i=1}^m a_i x_{ij} \leq C_j, x_{ij} \geq 0, x_{ij} \in \mathbb{Z} \quad (10)$$

371 The inventory problems aim to minimize the inventory costs while ensuring that the storage satisfies
 372 the demands and that the total storage in need doesn’t exceed the storage space. For simplicity,
 373 we also add an upper limit on the number of each single type of goods that each warehouse could
 374 purchase. All coefficients were generated by sampling integer values uniformly from an interval.
 375 We can hence define an inventory management problem as IM-(n, m, b), where n is the number of
 376 warehouses, m is the number of types of goods, and b is the variable upper bound. IM-(n, m, b) has
 377 $n \times m$ variables and $m + n$ constraints. We generate 800 instances for the training dataset and 100
 378 for the testing dataset. The instances are labeled by Gurobi.

378

379
380
381
Table 2: Experimental results on small-scale inventory management datasets where the number
of warehouses is larger than the number of types of goods. S. Fea is the abbreviation of sample
feasibility, and D. Fea is the abbreviation of dataset feasibility.

Method	IM-(50, 5, 2)			IM-(50, 5, 5)			IM-(50, 5, 10)		
	Gap	Time	S. Fea.	Gap	Time	S. Fea.	Gap	Time	S. Fea.
Gurobi (Gurobi Optimization, LLC, 2024)	0.00%	6.6s	-	100%	0.00%	4.6s	-	100%	0.00%
SCIP (Bolusani et al., 2024)	0.00%	13.2s	-	100%	0.00%	6.7s	-	100%	0.00%
COPT (Ge et al., 2023)	0.00%	32.2s	-	100%	0.00%	31.8s	-	100%	0.00%
rins (Danna et al., 2005)	0.61%	4.2s	-	61%	0.00%	3.6%	-	54.0%	0.00%
feaspump (Fischetti et al., 2005)	0.62%	3.4s	-	60.0%	0.00%	2.7s	-	53.0%	0.00%
Neural Diving (Nair et al., 2021)	NaN	0.7s	-	0.0%	NaN	0.7s	-	0.0%	NaN
Neural Diving+CompleteSol (Zeng et al., 2024)	21.2%	3.1s	-	28.0%	21.3%	3.3s	-	61.0%	57.3%
IP Guided DDPM (Zeng et al., 2024)	92.9%	34m	0.1%	1.0%	15.6%	48m	0.1%	13.0%	87.2%
IP Guided DDIM (Zeng et al., 2024)	15.0%	6m	46.0%	80.0%	6.0%	5m	32.3%	88.0%	133.3%
CMILP (Ours)	16.5%	2.6s	69.2%	88.0%	8.4%	2.8s	71.3%	90.0%	119.3%
SCMILP (Ours)	12.2%	2.0s	42.4%	78.0%	10.1%	2.3s	35.8%	86.0%	112.9%
MFILP (Ours)	12.1%	2.1s	70.5%	90.0%	11.4%	2.0s	60.6%	80.0%	107.1%

390

391
Table 3: Experimental results on inventory management datasets

Method	IM-(5, 50, 2)			IM-(200, 5, 2)			IM-(100, 10, 2)		
	Gap	Time	S. Fea.	Gap	Time	S. Fea.	Gap	Time	S. Fea.
Gurobi (Gurobi Optimization, LLC, 2024)	0.00%	48.3s	-	100%	0.00%	46.6s	-	100%	0.00%
SCIP (Bolusani et al., 2024)	0.00%	29.1s	-	100%	0.00%	80.8s	-	100%	0.00%
COPT (Ge et al., 2023)	0.00%	4.9m	-	100%	0.00%	38.5s	-	100%	0.00%
rins (Danna et al., 2005)	0.00%	1.8s	-	71.0%	0.00%	15.6s	-	42.0%	0.0%
feaspump (Fischetti et al., 2005)	0.00%	1.5s	-	88.0%	0.00%	13.9s	-	43.0%	NaN
Neural Diving (Nair et al., 2021)	NaN	0.8s	-	0.0%	NaN	0.8s	-	0.0%	NaN
Neural Diving+CompleteSol (Zeng et al., 2024)	NaN	2.9s	-	0.0%	21.7%	5.9s	-	7.0%	20.4%
IP Guided DDPM (Zeng et al., 2024)	61.2%	39m	0.1%	1.0%	109.1%	1.7h	3.3%	1.0%	21.2%
IP Guided DDIM (Zeng et al., 2024)	6.6%	14m	73.3%	92.0%	10.2%	36m	60.5%	89.0%	13.2%
CMILP (Ours)	4.9%	1.9s	52.8%	89.0%	10.8%	17.0s	79.4%	90.0%	18.0%
SCMILP (Ours)	5.3%	2.2s	67.3%	88.0%	15.8%	23.6s	42.8%	86.0%	17.5%
MFILP (Ours)	5.7%	1.9s	54.3%	80.0%	9.2%	19.2s	71.3%	90.0%	16.1%

400

401
Table 4: Experimental results on inventory management datasets and their binarized variants

Method	IM-(50, 5, 2)			Binarized IM-(50, 5, 2)			IM-(50, 5, 5)			Binarized IM-(50, 5, 5)		
	Gap	Time	S. Fea.	D. Fea.	Gap	Time	S. Fea.	D. Fea.	Gap	Time	S. Fea.	D. Fea.
IP Guided DDPM	92.9%	34m	0.1%	1.0%	NaN	101m	0.0%	0.0%	15.6%	48m	0.1%	13.0%
IP Guided DDIM	15.0%	6m	46.0%	80.0%	NaN	19m	0.0%	0.0%	6.0%	5m	32.3%	88.0%
CMILP (Ours)	16.5%	2.6s	69.2%	88.0%	0.0%	12.2s	0.6%	3.0%	8.4%	2.8s	71.3%	90.0%
SCMILP (Ours)	12.2%	2.0s	42.4%	78.0%	0.0%	17.2s	0.3%	3.0%	10.1%	2.3s	35.8%	86.0%
MFILP (Ours)	12.1%	2.1s	70.5%	90.0%	0.0%	13.4s	0.3%	3.0%	11.4%	2.0s	60.6%	80.0%

407

Experiment results are shown in Table 2 and Table 3. In Table 2, we present experiment results on relatively small-scale instances where the number of warehouses is larger than the number of types of goods. It could be observed that the proposed one-step diffusion solvers find solutions faster compared to traditional solvers. Our models achieve comparative performance on gap, sample feasibility, and dataset feasibility in far less time than IP Guided DDPM and DDIM.

412

In Table 3, we examine models’ performance on inventory management problems where the number of types of goods exceeds the number of warehouses and larger-scale datasets. Overall performance trends remain consistent with Table 2. While IP Guided DDIM achieves higher dataset feasibility on IM-(5, 50, 2), it suffers from significantly longer solving times and larger optimality gaps.

416

In Table 4, we compare the models’ performance on the vanilla form that we used and the binarized variant commonly adopted in literature. Binarization significantly increases problem size and solving time. For example, IM-(50, 5, 5) is a dataset with variables taking 6 distinct integer values. If we use a binary variable transformation to turn the dataset into a binary ILP instance, the problem will be turned into an optimization problem with more than 1000 variables. Table 4 confirms that binarization imposes additional computational burdens on neural solvers. Our introduction of the IIP layer helps address this issue by maintaining problem compactness and improving model performance without the need for costly variable transformations.

424

Finally, we evaluate the newly devised gradient descent with momentum (MGD) search methods on the most complicated dataset, IM-(50, 5, 10). The wide bound of variables makes it hard for the solvers to achieve satisfactory results. The results are shown in Table 5. It could be concluded that the introduction of momentum improves the search quality significantly while generally maintaining the solving time unchanged. The momentum mechanism raises the dataset feasibility by as much as 4% and reduces the gap by

425
426
427
428
429
430
431
Table 5: Experimental results on IM-(50, 5, 10) with different gradient search schemes. T_i stands
for the number of model inference steps.

Method	IM-(50, 5, 10)			
	Gap	Time	S. Fea.	D. Fea.
SCMILP ($T_i = 10$, Opt=CD)	104.5%	22.9s	29.5%	78.0%
SCMILP ($T_i = 10$, Opt=MGD)	101.8%	24.9s	30.3%	82.0%
SCMILP ($T_i = 20$, Opt=CD)	99.8%	32.5s	35.1%	87.0%
SCMILP ($T_i = 20$, Opt=MGD)	95.8%	36.6s	35.5%	88.0%

432

433

Table 6: Experimental results on synthetic non-binary ILP datasets.

Method	Random-(500, 20, 2)			Random-(1000, 20, 2)			Random-(2000, 20, 2)					
	Gap	Time	S. Fea.	D. Fea.	Gap	Time	S. Fea.	D. Fea.	Gap	Time	S. Fea.	D. Fea.
Gurobi (Gurobi Optimization, LLC, 2024)	0.00%	5.4s	-	100%	0.00%	18.1s	-	100%	0.00%	4.2s	-	100%
SCIP (Bolusani et al., 2024)	0.00%	9.2s	-	100%	0.00%	27.6s	-	100%	0.00%	48.4s	-	100%
COPT (Ge et al., 2023)	0.00%	36.3s	-	100%	0.00%	40.7s	-	100%	0.00%	46.7s	-	100%
rins (Danna et al., 2005)	0.00%	7.1s	-	41.0%	0.00%	10.8s	-	31.0%	0.00%	22.4s	-	14.0%
feaspump (Fischetti et al., 2005)	0.61%	5.5s	-	70.0%	0.30%	9.3s	-	82.0%	2.05%	21.2s	-	72.0%
Neural Diving (Nair et al., 2021)	NaN	0.8s	-	0.0%	NaN	2.8s	-	0.0%	NaN	3.1s	-	0.0%
Neural Diving+CompleteSol (Zeng et al., 2024)	21.9%	5.1s	-	100%	22.6%	6.9s	-	100%	99.4%	11.8s	-	97.0%
IP Guided DDPM (Zeng et al., 2024)	10.3%	1.2h	43.4%	100%	1.2%	1.9h	3.0%	22.0%	0.5%	4h	7.3%	71.0%
IP Guided DDIM (Zeng et al., 2024)	0.7%	14m	85.1%	100%	0.3%	20m	77.1%	96.0%	0.3%	46m	9.26%	70.0%
CMILP (Ours)	0.0%	3.1s	46.8%	85.0%	0.5%	9.7s	16.3%	87.0%	1.1%	21.2s	14.5%	75.0%
SCMILP (Ours)	0.2%	4.4s	42.0%	88.0%	0.0%	10.3s	37.7%	89.0%	0.3%	22.2s	14.8%	74.0%
MFILP (Ours)	0.0%	3.6s	45.4%	82.0%	0.0%	7.1s	26.7%	85.0%	0.0%	19.4s	11.7%	85.0%

roughly 2%. Further, with the increasing number of inference steps, we can see that the performance of the shortcut model rises steadily. We can change the number of steps according to the requirements of the application scenarios, making our methods more applicable in real-life settings.

4.3.2 SYNTHETIC NON-BINARY INTEGER LINEAR PROGRAMMING DATASETS

The inventory management problem is a special type of integer linear programming problem. To further examine our models’ performance, we generate a set of synthetic non-binary ILP datasets in the form of Eq. 1. We adopt the instance generation procedure introduced by Lee & Kim (2025), where the generated problems are guaranteed to be bounded and feasible. Each coefficient is drawn from a discrete uniform distribution over the integer range. For simplicity, we also add a variable upper bound. We term a dataset with n variables, m constraints, and a variable bound of b as Random-(n, m, b). As in inventory management datasets, we generate 800 instances for the training dataset and 100 for the testing dataset. The instances are labeled by Gurobi.

Table 6 reports results on larger-scale synthetic datasets. Interestingly, despite the increased problem size, traditional solvers exhibit shorter solving times, as seen in Random-(500, 20, 2). This occurs because problem difficulty is not fully captured by the number of variables and constraints alone. In contrast, neural solvers show increased inference time proportional to the problem dimensions, as their computational overhead is primarily governed by the variable and constraint counts, which puts IP Guided DDPM and DDIM at a relative disadvantage. Our models, however, can accurately solve most instances in significantly less time than Gurobi and SCIP. Moreover, in terms of solution quality, a few additional steps allow our models to achieve comparable performance—for example, on Random-(1000, 20, 2), it requires 5 steps and 57 seconds.

5 CONCLUSION AND LIMITATIONS

This paper presents three one-step, end-to-end diffusion solvers—CMILP, SCMILP, and MFILP—that generate feasible solutions for general integer linear programming problems, a domain that has been largely unexplored due to its inherent complexity. To extend ILP neural solvers to general instances, we introduce a novel iterative integer projection (IIP) layer. Additionally, we integrate a momentum mechanism into the objective-guided sampling of diffusion models to enhance solution guidance. Experimental results demonstrate the superiority of our methods in both runtime and solution quality. Limitations include a relatively big optimality gap compared to traditional solvers, and the computational cost of gradient-based search increases substantially with dataset size—a challenge common to all loss-guided diffusion approaches.

ETHICS STATEMENT

This paper aims to advance the state of the art in learning integer linear programming. While the research may entail various societal implications, we do not identify any that warrant specific emphasis in this paper.

REPRODUCIBILITY STATEMENT

All experimental results in the paper are reproducible, and the implementation code for reproducing experimental results will be fully open sourced on Github after the paper is accepted.

486 LLM USAGE STATEMENT
487488 The contribution of LLM in the work proposed in this article is limited to: 1. polishing given written
489 statements; 2. Given written sentence syntax review. We declare that no experimental data was
490 generated/modified by LLM.
491492 REFERENCES
493494 Ravindra K Ahuja, Özlem Ergun, James B Orlin, and Abraham P Punnen. A survey of very large-scale
495 neighborhood search techniques. *Discrete Applied Mathematics*, 123(1-3):75–102, 2002.
496497 Mihai Banciu. Dual simplex. In *Wiley Encyclopedia of Operations Research and Management
498 Science*. Wiley, 2011.
499500 Michel Bénichou, Jean-Michel Gauthier, Paul Girodet, Gerard Hentges, Gerard Ribi  re, and Olivier
501 Vincent. Experiments in mixed-integer linear programming. *Mathematical programming*, 1:76–94,
502 1971.
503504 Suresh Bolusani, Mathieu Besan  on, Ksenia Bestuzheva, Antonia Chmiela, Jo  o Dion  sio, Tim
505 Donkiewicz, Jasper van Doornmalen, Leon Eifler, Mohammed Ghannam, Ambros Gleixner,
506 Christoph Graczyk, Katrin Halbig, Ivo Hettke, Alexander Hoen, Christopher Hojny, Rolf van der
507 Hulst, Dominik Kamp, Thorsten Koch, Kevin Kofler, J  rgen Lentz, Julian Manns, Gioni Mexi,
508 Erik M  hmer, Marc E. Pfetsch, Franziska Schl  sser, Felipe Serrano, Yuji Shinano, Mark Turner,
509 Stefan Vigerske, Dieter Weninger, and Lixing Xu. The SCIP Optimization Suite 9.0. Technical
510 report, Optimization Online, February 2024. URL <https://optimization-online.org/2024/02/the-scip-optimization-suite-9-0/>.
511512 Sebastian Ceria, C  cile Cordier, Hugues Marchand, and Laurence A Wolsey. Cutting planes for
513 integer programs with general integer variables. *Mathematical programming*, 81:201–214, 1998.
514515 Emilie Danna, Edward Rothberg, and Claude Le Pape. Exploring relaxation induced neighborhoods
516 to improve mip solutions. *Mathematical Programming*, 102(1):71–90, 2005.
517518 Matteo Fischetti, Fred Glover, and Andrea Lodi. The feasibility pump. *Mathematical Programming*,
519 104(1):91–104, 2005.
520521 Kevin Frans, Danijar Hafner, Sergey Levine, and Pieter Abbeel. One step diffusion via shortcut
522 models, 2024. URL <https://arxiv.org/abs/2410.12557>.
523524 Maxime Gasse, Didier Ch  telat, Nicola Ferroni, Laurent Charlin, and Andrea Lodi. Exact
525 combinatorial optimization with graph convolutional neural networks, 2019. URL <https://arxiv.org/abs/1906.01629>.
526527 Dongdong Ge, Qi Huangfu, Zizhuo Wang, Jian Wu, and Yinyu Ye. Cardinal Optimizer (COPT) user
528 guide. <https://guide.coap.online/copt/en-doc>, 2023.
529530 Zhengyang Geng, Mingyang Deng, Xingjian Bai, J Zico Kolter, and Kaiming He. Mean flows for
531 one-step generative modeling. *arXiv preprint arXiv:2505.13447*, 2025a.
532533 Zijie Geng, Jie Wang, Xijun Li, Fangzhou Zhu, Jianye HAO, Bin Li, and Feng Wu. Differentiable integer
534 linear programming. In *The Thirteenth International Conference on Learning Representations*,
535 2025b. URL <https://openreview.net/forum?id=FPfCUJTsCn>.
536537 Alexandros Graikos, Nikolay Malkin, Nebojsa Jojic, and Dimitris Samaras. Diffusion models as
538 plug-and-play priors, 2023. URL <https://arxiv.org/abs/2206.09012>.
539540 Gurobi Optimization, LLC. Gurobi Optimizer Reference Manual, 2024. URL <https://www.gurobi.com>.
541542 Qingyu Han, Linxin Yang, Qian Chen, Xiang Zhou, Dong Zhang, Akang Wang, Ruoyu Sun, and
543 Xiaodong Luo. A gnn-guided predict-and-search framework for mixed-integer linear programming.
544 *arXiv preprint arXiv:2302.05636*, 2023a.
545

540 Qingyu Han, Linxin Yang, Qian Chen, Xiang Zhou, Dong Zhang, Akang Wang, Ruoyu Sun, and
 541 Xiaodong Luo. A gnn-guided predict-and-search framework for mixed-integer linear programming,
 542 2023b. URL <https://arxiv.org/abs/2302.05636>.

543

544 Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models, 2020. URL
 545 <https://arxiv.org/abs/2006.11239>.

546 Abdel Ghani Labassi, Didier Chételat, and Andrea Lodi. Learning to compare nodes in branch
 547 and bound with graph neural networks. *Advances in neural information processing systems*, 35:
 548 32000–32010, 2022.

549

550 Tae-Hoon Lee and Min-Soo Kim. Rl-milp solver: A reinforcement learning approach for solving
 551 mixed-integer linear programs with graph neural networks, 2025. URL <https://arxiv.org/abs/2411.19517>.

552

553 Yang Li, Jinpei Guo, Runzhong Wang, and Junchi Yan. From distribution learning in training
 554 to gradient search in testing for combinatorial optimization. In *Thirty-seventh Conference on*
 555 *Neural Information Processing Systems*, 2023. URL <https://openreview.net/forum?id=JtF0ugNMv2>.

556

557 Yang Li, Jinpei Guo, Runzhong Wang, Hongyuan Zha, and Junchi Yan. Fast t2t: Optimization
 558 consistency speeds up diffusion-based training-to-testing solving for combinatorial optimization.
 559 In *The Thirty-eighth Annual Conference on Neural Information Processing Systems*, 2024.

560

561 Yaron Lipman, Ricky T. Q. Chen, Heli Ben-Hamu, Maximilian Nickel, and Matt Le. Flow matching
 562 for generative modeling, 2023. URL <https://arxiv.org/abs/2210.02747>.

563

564 Yanli Liu, Yuan Gao, and Wotao Yin. An improved analysis of stochastic gradient descent with
 565 momentum, 2020. URL <https://arxiv.org/abs/2007.07989>.

566

567 John E Mitchell. Branch-and-cut algorithms for combinatorial optimization problems. *Handbook of*
 568 *applied optimization*, 1(1):65–77, 2002.

569

570 Vinod Nair, Sergey Bartunov, Felix Gimeno, Ingrid Von Glehn, Paweł Lichocki, Ivan Lobov, Brendan
 571 O’Donoghue, Nicolas Sonnerat, Christian Tjandraatmadja, Pengming Wang, et al. Solving mixed
 572 integer programs using neural networks. *arXiv preprint arXiv:2012.13349*, 2020.

573

574 Vinod Nair, Sergey Bartunov, Felix Gimeno, Ingrid von Glehn, Paweł Lichocki, Ivan Lobov, Brendan
 575 O’Donoghue, Nicolas Sonnerat, Christian Tjandraatmadja, Pengming Wang, Ravichandra Addanki,
 576 Tharindi Hapuarachchi, Thomas Keck, James Keeling, Pushmeet Kohli, Ira Ktena, Yujia Li, Oriol
 577 Vinyals, and Yori Zwols. Solving mixed integer programs using neural networks, 2021. URL
<https://arxiv.org/abs/2012.13349>.

578

579 Yves Pochet and Laurence A Wolsey. *Production planning by mixed integer programming*, volume
 580 149. Springer, 2006.

581

582 Antoine Prouvost, Justin Dumouchelle, Lara Scavuzzo, Maxime Gasse, Didier Chételat, and
 583 Andrea Lodi. Ecole: A gym-like library for machine learning in combinatorial optimiza-
 584 tion solvers. In *Learning Meets Combinatorial Algorithms at NeurIPS2020*, 2020. URL
<https://openreview.net/forum?id=IVC9hggibyB>.

585

586 Pol Puigdemont, Stratis Skoulakis, Grigorios Chrysos, and Volkan Cevher. Learning to remove cuts
 587 in integer linear programming. *arXiv preprint arXiv:2406.18781*, 2024.

588

589 Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
 590 Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen Krueger, and Ilya Sutskever.
 591 Learning transferable visual models from natural language supervision, 2021. URL <https://arxiv.org/abs/2103.00020>.

592

593 David M Ryan and Brian A Foster. An integer programming approach to scheduling. *Computer*
scheduling of public transport urban passenger vehicle and crew scheduling, pp. 269–280, 1981.

594 Lara Scavuzzo, Karen Aardal, Andrea Lodi, and Neil Yorke-Smith. Machine learning augmented
 595 branch and bound for mixed integer linear programming. *Mathematical Programming*, pp. 1–44,
 596 2024.

597

598 Alexander Schrijver. *Theory of linear and integer programming*. John Wiley & Sons, 1998.

599

600 Yang Song, Prafulla Dhariwal, Mark Chen, and Ilya Sutskever. Consistency models, 2023. URL
<https://arxiv.org/abs/2303.01469>.

601

602 Zhiqing Sun and Yiming Yang. Difusco: Graph-based diffusion solvers for combinatorial optimiza-
 603 tion, 2023. URL <https://arxiv.org/abs/2302.08224>.

604

605 Bo Tang, Elias B. Khalil, and Ján Drgoňa. Learning to optimize for mixed-integer non-linear
 606 programming with feasibility guarantees, 2025. URL <https://arxiv.org/abs/2410.11061>.

607

608 Haoyu Wang, Nan Wu, Hang Yang, Cong Hao, and Pan Li. Unsupervised learning for combinatorial
 609 optimization with principled objective relaxation, 2022. URL <https://arxiv.org/abs/2207.05984>.

610

611 Laurence A Wolsey. *Integer programming*. John Wiley & Sons, 2020.

612

613 Huigen Ye, Hua Xu, Hongyan Wang, Chengming Wang, and Yu Jiang. Gnn&gbdt-guided fast
 614 optimizing framework for large-scale integer programming. In *International Conference on
 615 Machine Learning*, pp. 39864–39878. PMLR, 2023.

616

617 Hao Zeng, Jiaqi Wang, Avirup Das, Junying He, Kunpeng Han, Haoyuan Hu, and Mingfei Sun.
 618 Effective generation of feasible solutions for integer programming via guided diffusion, 2024.
 619 URL <https://arxiv.org/abs/2406.12349>.

620

621 Jiayi Zhang, Chang Liu, Xijun Li, Hui-Ling Zhen, Mingxuan Yuan, Yawen Li, and Junchi Yan.
 622 A survey for solving mixed integer programming via machine learning. *Neurocomputing*, 519:
 205–217, 2023.

623

624 Andris A Zoltners and Prabhakant Sinha. Integer programming models for sales resource allocation.
Management Science, 26(3):242–260, 1980.

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648

649

Table 7: Experimental results on smaller-scale synthetic non-binary ILP Datasets

Method	Random-(300, 30, 2)				Random-(300, 20, 5)			
	Gap	Time	S. Fea.	D. Fea.	Gap	Time	S. Fea.	D. Fea.
Gurobi Gurobi Optimization, LLC (2024)	0.00%	14.0s	-	100%	0.00%	12.3s	-	100%
SCIP Bolusani et al. (2024)	0.00%	11.1s	-	100%	0.00%	18.2s	-	100%
rins Danna et al. (2005)	4.6%	10.7s	-	16.0%	0.0%	4.9s	-	19.0%
feaspump Fischetti et al. (2005)	5.1%	11.9s	-	31.0%	0.8%	5.5s	-	37.0%
IP Guided DDPM Zeng et al. (2024)	11.3%	26m	0.9%	16.0%	15.9%	23m	2.3%	40.0%
IP Guided DDIM Zeng et al. (2024)	17.5%	8m	50.8%	88.0%	2.2%	5m	82.7%	97.0%
CMILP (Ours)	0.0%	1.8s	45.5%	62.0%	0.3%	1.9s	16.9%	78.0%
SCMILP (Ours)	0.2%	2.3s	8.5%	52.0%	0.1%	2.8s	27.5%	70.0%
MFILP (Ours)	0.0%	1.7s	43.4%	59.0%	0.1%	1.7s	26.7%	77.0%

650

651

Table 8: Experimental results on small-scale inventory management datasets with different penalty coefficient.

Method	IM-(50, 5, 2)				IM-(50, 5, 5)				IM-(50, 5, 10)			
	Gap	Time	S. Fea.	D. Fea.	Gap	Time	S. Fea.	D. Fea.	Gap	Time	S. Fea.	D. Fea.
IP Guided DDPM (Zeng et al., 2024)	92.9%	34m	0.1%	1.0%	15.6%	48m	0.1%	13.0%	87.2%	28m	0.1%	1.0%
IP Guided DDPM(penalty coef=0) (Zeng et al., 2024)	NaN	34m	0.0%	0.0%	NaN	48m	0.0%	0.0%	NaN	28m	0.0%	0.0%
IP Guided DDIM (Zeng et al., 2024)	15.0%	6m	46.0%	80.0%	6.0%	5m	32.3%	88.0%	133.3%	7.3m	18.6%	68.0%
IP Guided DDIM (penalty coef=0) (Zeng et al., 2024)	NaN	6m	0.0%	0.0%	NaN	5m	0.0%	0.0%	NaN	7.3m	0.0%	0.0%
CMILP (Ours)	16.5%	2.6s	69.2%	88.0%	8.4%	2.8s	71.3%	90.0%	119.3%	3.0s	35.7%	76.0%
CMILP (penalty coef=0) (Ours)	NaN	2.6s	0.0%	0.0%	NaN	2.8s	0.0%	0.0%	NaN	3.0s	0.0%	0.0%
SCMILP (Ours)	12.2%	2.0s	42.4%	78.0%	10.1%	2.3s	35.8%	86.0%	112.9%	2.9s	20.3%	62.0%
SCMILP (penalty coef=0) (Ours)	NaN	2.0s	0.0%	0.0%	NaN	2.3s	0.0%	0.0%	NaN	2.9s	0.0%	0.0%
MFILP (Ours)	12.1%	2.1s	70.5%	90.0%	11.4%	2.0s	60.6%	80.0%	107.1%	2.1s	36.8%	68.0%
MFILP (penalty coef=0) (Ours)	NaN	2.1s	0.0%	0.0%	NaN	2.0s	0.0%	0.0%	NaN	2.1s	0.0%	0.0%

652

653

A ADDITIONAL RESULTS

654

655

We test our model on small-scale, randomly generated datasets. The results are shown in Table 7. CMILP performs the best on Random-(300, 30, 2). It takes only 1.82 seconds to finish solving, while for IP Guided DDPM and DDIM, the solving procedure generally takes minutes. Hence, on general integer linear programming problems, our models are still more practical compared to IP Guided DDPM and DDIM. On Random-(300, 20, 5), although IP Guided DDIM achieves the highest dataset feasibility, its gap and solving time are way too high compared to our models. To achieve comparable dataset feasibility, it takes CMILP 20 steps and 30 seconds and takes Shortcut 2 steps and 4 seconds. Generally, Shortcut beats IP Guided DDIM on this dataset, further showcasing our models' capacity on general integer linear programming problems. Furthermore, if we turn Random-(300, 20, 5) into binary ILP problems, it generally takes 10 times longer time to finish solving, as can be inferred from datasets of similar sizes as in Table 6. This will waste the speed advantage of neural-network-based solvers. We should always try to tackle integer linear programming problems directly instead of converting those problems to the binary versions.

656

657

B ANALYSIS ON THE FEASIBILITY PENALTY

658

659

In this section, we attempt to analyze effectiveness of the feasibility penalty. Constraint satisfaction is one key factor when evaluating the ILP solvers. The feasibility penalty is introduced to enforce constraint satisfaction more effectively. The results are shown in Table 8. We can infer from the table that neural solvers trained without the feasibility penalty can't generate feasible solutions at all. Our introduction of the feasibility penalty successfully enhance the models' performance.

660

661

C SCMILP: SHORTCUT DIFFUSION MODEL FOR INTEGER LINEAR PROGRAMMING

662

663

Recently there has been a new variant of the diffusion model that can also generate high-quality solutions in one or a few steps, the shortcut model (Frans et al., 2024). The shortcut model is built upon a flow matching model (Lipman et al., 2023). The flow matching model attempts to learn a

vector field that transports a random Gaussian distribution to the target distribution. The original flow matching models suffer from the large number of inference steps required to generate a high-quality solution, as with the diffusion model. The shortcut model tackles this issue by conditioning not only on the problem instance but also on the size of the inference steps. The shortcut $s_\theta(\mathbf{x}_t, t, d)$, which is defined as the normalized direction to the next variable, is hence introduced:

$$\mathbf{x}'_{t+d} = \mathbf{x}_t + s_\theta(\mathbf{x}_t, t, d)d \quad (11)$$

where d is the step length, $s_\theta(\mathbf{x}_t, t, d)$ represents the velocity we take at state \mathbf{x}_t given a time step of size d . The shortcut model is trained using a combination of the self-consistency loss and the flow matching loss. The self-consistency refers to the model quality that one shortcut step equals two consecutive shortcut steps of half the size. The flow matching loss tries to supervise with the ground truth vector field. This loss enables the model to function under large sampling steps.

$$\mathcal{L}_{\text{SCMILP}}^{N_{t,d}}(\theta) = \mathbb{E} \left[\|s_\theta(\mathbf{x}_t, t, 0) - (\mathbf{x}_1 - \mathbf{x}_0)\| + \|s_\theta(\mathbf{x}_t, t, 2d) - \frac{s_\theta(\mathbf{x}_t, t, d) + s_\theta(\mathbf{x}'_{t+d}, t, d)}{2}\| \right] \quad (12)$$

where (t, d) is sampled according to the time scheduler $N_{t,d}$. For the shortcut model, the step size d is embedded using the sinusoidal embedding and together with the time t as the conditional inputs.

D MFILP: MEANFLOW MODEL FOR INTEGER LINEAR PROGRAMMING

The mean flow model (Geng et al., 2025a) is another generative model that instead uses the average velocity $u(\mathbf{x}_t, r, t)$, where $[r, t]$ is the time window of the average velocity, to capture distributional changes, in contrast to the instantaneous velocity $v(\mathbf{x}_t, t)$ modeled in flow matching. An identity relationship forms between those two velocities:

$$u(\mathbf{x}_t, r, t) = v(\mathbf{x}_t, t) - (t - r) \frac{d}{dt} u(\mathbf{x}_t, r, t), \text{ where } \frac{d}{dt} u(\mathbf{x}_t, r, t) = v(\mathbf{x}_t, t) \partial_x u + \partial_t u \quad (13)$$

As in flow matching, the instantaneous velocity $v(\mathbf{x}_t, t)$ is modeled as $v(\mathbf{x}_t, t) = \epsilon - \mathbf{x}_t$. Eq. 13 can hence provide the target average velocity in arbitrary time ranges $[r, t]$. The neural network is trained to approximate this average velocity by minimizing the following loss with the time scheduler $N_{r,t}$.

$$\mathcal{L}_{\text{MFILP}}^{N_{r,t}} = \mathbb{E} \|u_\theta(\mathbf{x}_t, r, t) - u_{\text{target}}\|_2^2 \quad (14)$$