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ABSTRACT

Machine-learning models, which are known to accurately predict patterns from
large datasets, are crucial in decision-making. Consequently, counterfactual
explanations—methods explaining predictions by introducing input perturba-
tions—have become prominent. These perturbations often suggest ways to alter
predictions, leading to actionable recommendations. However, the current tech-
niques require resolving the optimization problems for each input change, ren-
dering them computationally expensive. In addition, traditional encoding meth-
ods inadequately address the perturbations of categorical variables in tabular data.
Thus, this study propose ”FastDCFlow,” an efficient counterfactual explanation
method using normalizing flows. The proposed method captures complex data dis-
tributions, learns meaningful latent spaces that retain proximity, and improves the
predictions. For categorical variables, we employed ”TargetEncoding,” which re-
spects ordinal relationships and includes perturbation costs. The proposed method
outperformed existing methods in multiple metrics, striking a balance between
trade offs for counterfactual explanations.

1 INTRODUCTION

Machine learning (ML) technologies strive to replicate the learning capabilities of computers. With
recent advancements, ML can now address decision-making tasks that were traditionally determined
by humans. Such decisions often require counterfactual explanations (CE). Counterfactuals envision
unobserved hypothetical scenarios. For instance, if a bank’s algorithm denies a loan, a counterfac-
tual might reveal that an extra $3,000 in annual income would have secured approval, guiding the
applicant towards future success.

When implementing CE in ML, methods often introduce input perturbations to optimize the target
variable predictions. These altered inputs produce counterfactual samples (CF), representing unob-
served scenarios. As outlined by Wachter et al. (2017), CFs should satisfy two constraints that are
often in a trade-off relationship: validity and proximity. Validity ensures that perturbations modify
inputs such that ML models yield the desired output, such as changing loan denial to approval in
two-class classifications. Whereas, proximity requires the perturbations to remain as close as possi-
ble to the original input. However, relying solely on these two metrics can be misleading, as models
may appear to perform well while generating nearly identical CFs. Given that they are not necessar-
ily unique, assessing the diversity among CFs is also crucial. Interestingly, as reported by Pawelczyk
et al. (2022), CF generation echoes the principles of adversarial attacks (Szegedy et al., 2013; Ballet
et al., 2019), wherein inputs are perturbed until the predicted class shifts, typically when the binary
prediction probability reaches ≥ 0.5. However, in contrast to adversarial attacks, which focus on
threshold shifts, we advocated CFs that span various prediction probabilities.

The primary goal of the CE is to generate a broad range of diverse CFs that adhere to both validity
and proximity. However, there are two challenges with the current methods. The first is the presence
of both categorical and continuous variables in the tabular data. For instance, in the context of a
loan application, suggesting a counterfactual transition from a ”high school graduate” to a ”PhD
holder” may be impractical. If a counterfactual suggests upgrading to ”college graduate,” this could
be a more realistic change for approval. Current preprocessing methods, such as OneHotEncoding
(OHE) and LabelEncoding (LE), as in Mothilal et al. (2020); Duong et al. (2023), tend to produce
unrealistic outcomes. OHE often misinterprets categorical shifts, equating a jump from high school
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to PhD with a change to college. With LE, perturbations become non differentiable, which is unsuit-
able for deep-learning models. The second challenge is related to the overhead of crafting individual
CFs for each input. As described in Rodriguez et al. (2021), generating CFs often involves the op-
timization of variables tailored to each input, which results in inefficiencies as the volume of inputs
expands and impacts storage and execution time.

To address these challenges, we introduced fast and diverse CEs using normalizing flows (FastD-
CFlow). Within FastDCFlow, we managed the perturbations of categorical variables using TargetEn-
coding (TE). This method aggregated the average value of the target variable for each categorical
level using training data and substituted the categorical values with their corresponding averages.
Thus, categorical variables were effectively transitioned into continuous variables, maintaining a
meaningful order of magnitude relative to the predicted values. Furthermore, to generate optimal
CFs, we leveraged normalizing flows (Dinh et al., 2014; 2016; Kingma & Dhariwal, 2018) to capture
complex data distributions through a reversible latent space. In summary, Our main contributions in-
clude: (1) Using TE, we lower the model’s learning cost and diversify the generated CFs’ predicted
values. (2) We introduce FastDCFlow, a method that learns a latent space for ideal CF generation
using normalizing flows. We evaluate the CFs against multiple metrics and compare with other
methods to confirm our approach’s effectiveness.

2 RELATED WORK

In this study, we broadly classified the generation algorithms of existing research into two categories:
input- and model-based methods.

Input-based methods. These methods determine the optimal set of CFs for each unique input, re-
quiring relearning of variables with every input alteration. Wachter et al. (2017) optimized variables
for a single CF, employing a gradient descent-based algorithm. Mothilal et al. (2020) introduced
DiCE, which was designed to produce multiple CFs. DiCE optimizes sets of multiple CFs by adding
an explicit diversity term based on a determinant from the distance matrix between variables. How-
ever, the computational complexity increases with variable dimensionality and the number of CFs
produced. A genetic algorithm (GA) was used for efficient generation with increasing CF count.
Schleich et al. (2021) proposed GeCo, wherein CFs as were conceptualized as genes and crossover
and mutation were executed across generations. Dandl et al. (2020) proposed MOC. They framed
objective functions through multi-objective optimization capturing trade-offs. Critically, these meth-
ods independently optimize the observed variable dimensions, overlooking the impact of unobserved
common factors in the data generation process.

When considering the influence of unobserved common factors, one approach perturbs the latent
variables presumed to underpin the observed ones. Rodriguez et al. (2021) introduced DIVE, which
employed the variational auto-encoder (VAE) (Kingma & Welling, 2013; Rezende et al., 2014; Mnih
& Gregor, 2014; Gregor et al., 2014) to determine the optimal perturbations for latent variables.
Although DIVE delivers insightful CEs in the image domain, its efficacy on tabular data with cat-
egorical variables remains unverified. Many studies have transformed categorical variables into
continuous variables using OHE or LE. However, these transformations lack a magnitude relation-
ship between the values. Considering the dimension expansion and sparsity issues, these methods
are unsuitable for CE, wherein variable perturbations are paramount. Duong et al. (2023) presented
CeFlow, which incorporated normalizing flows into tabular data to learn added perturbations. Al-
though CeFlow adopts variational dequantization (Hoogeboom et al., 2021) to continuously mirror
a categorical distribution, it grapples with the absence of explicit ordering for categorical variable
values. Consequently, the continuous variables lack proximity to their inherent values.

Model-based methods. These approach entail direct learning of the CF generation model using
training data. They requires only one learning session. After stabilizing the model with trained
parameters, CFs can be readily produced for unobserved inputs (test inputs). Looveren & Klaise
(2021) employed a spatial partitioning data structure, the k-d tree (Bentley, 1975), to create a set of
training data points as CFs proximate to the test input within the targeted prediction class. However,
this search was confined to the scope of observed data points, which rendered the generating of
CFs for data not previously observed challenging. Mahajan et al. (2019) introduced a technique
that directly learned the latent space for CF generation using VAE. In contrast to VAE as an input-
based method that optimized perturbations, this method offered the benefit of eliminating the need
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Figure 1: Overview of CFs training and generation using FastDCFlow.

for model retraining for each input. However, because VAE assumes a latent distribution based on
continuous variables, certain issues remain in processing data that include categorical variables.

Input-based methods require optimization problems to be solved for each input. This process be-
comes increasingly inefficient as the number of verification inputs increases. Hence, the proposed
FastDCFlow aimed to produce CFs swiftly, adhering to the necessary constraints for tabular data.
To achieve this, a model-based approach was employed.

3 PROPOSED METHOD

Consider an input space X with input x ∈ X and its corresponding target y ∈ {0, 1}. The ML
model f(x) predicts the probability of a positive outcome, where f(x) = ŷ and ŷ ∈ [0, 1]. It is
assumed that all categorical variables are transformed into continuous variables using TE. The aim
of CE is to generate perturbed inputs xcf that shoud be f(xcf ) > f(x) for the observed input x.
To support this, the latent representation z ∈ Z of the input x was trained. Ideally, z captures the
representation of the unobserved common factors, thereby ensuring both proximity and diversity in
the input space.

3.1 FASTDCFLOW

We employed normalizing flows to prioritize efficient generation and precise likelihood computa-
tion. These flows are generative models that use a function gθ, parameterized by θ, which transforms
the distribution of a dataset into another distribution in the latent space. In the forward transforma-
tion, the latent variables z ∼ pZ are derived by mapping gθ : X → Z , transitioning from the
input space X to the latent space Z . The dataset’s distribution is transformed back using the in-
verse g−1

θ : Z → X , resulting in a random variable x ∼ pX . The probability density function
transformation for x = g−1

θ (z) is expressed as:

log (pX (x)) = log (pZ(gθ(x))) + log

(∣∣∣∣det
(
∂gθ(x)

∂x

)∣∣∣∣). (1)

For effective CF generation, it is essential to produce samples quickly and diversely to enhance the
input predictions while preserving proximity. In our proposed FastDCFlow method, beyond precise
likelihood computation, we incorporated additional losses, accounting for the constraints that CFs
must satisfy. Moreover, to hasten the sample generation, we implemented a model-based method
that learned the latent space to enable CF generation in a single training session.

3.2 TRAINING AND GENERATION

Figure 1 illustrates the comprehensive framework of the proposed method. Initially, we investigated
the training process of FastDCFlow. Subsequently, we explained the approach to foster diversity
during test input considerations.

Minimization of the negative log-likelihood. The number of training inputs is resresented as N tra:
Each input pair is denoted by D = {xtra

i }N
tra

i=1 . Owing to the property of normalization flows,
which enables the direct evaluation of parameter likelihoods, the negative log-likelihood (NLL) was
integrated into the loss function:

Lnll(θ,D) = −
Ntra∑
i=1

(
log

(
pZ(gθ(x

tra
i ))

)
+ log

(∣∣∣∣det
(
∂gθ(x

tra
i )

∂xtra
i

)∣∣∣∣)) . (2)
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Validity and proximity. In the process of generating CFs, the initial step involves mapping the
input xtra onto the latent space through z = gθ(x

tra). To prioritize sampling in the neighborhood
of the input, a perturbed latent variable z∗ is derived by introducing reparametrization trick (Kingma
& Welling, 2013) which adds Gaussian noise ϵ from distribution N (0, I), resulting in z∗ = z+ ϵ.
Then, xcf is generated from this perturbed variable as xcf = g−1

θ (z∗):

CFs are fundamentally designed to satisfy two primary criteria: validity and proximity to the input.
The validity of our model was measured using the cross-entropy loss function, defined as

Ly(θ,D) = −
Ntra∑
i=1

(
ycfi log (f(xcf

i )) + (1− ycfi ) log(1− f(xcf
i ))

)

= −
Ntra∑
i=1

log (f(xcf
i )),

(3)

where ycfi is the anticipated prediction value for CF. For binary classification tasks, the positive class
probability is maximized by setting ycfi = 1.

Considering the transformation of continuous spectrum, we use the weighted square error to quantify
proximity, which includes a hyperparameter w to adjust the perturbability of the features.

Lwprox(θ,D) =
Ntra∑
i=1

∥w ∗ (xtra
i − xcf

i )∥22, (4)

where ∗ is the element product of the vectors.

Optimization. The overall optimization problem can be represented as
θ∗ = argmin

θ
λLnll(θ,D) + Ly(θ,D) + Lprox(θ,D). (5)

In this equation, the hyperparameter λ balances the importance of NLL, validity, and proximity.

Once FastDCFlow’s parameters θ are trained, the model can be fixed using these parameters. This
approach accelerates the generation of a CF set for any test input xtes, thereby rendering it more
efficient than input-based methods. To adjust diversity during generation without adding any explicit
diversity loss term, we introduced a temperature parameter t and added noise to the latent space
with ϵt ∼ N (0, tI). Note that too high a temperature may reduce proximity and effectiveness
performance.

Given N tes as the number of test inputs, with T = {xtes
i }N

tes

i=1 representing each input pair, and M
as the number of CFs generated for each input, this can be conducted in parallel. a comprehensive
procedure, including training, is presented in Algorithm1.

In TE transformation, two functions are utilized: fit transformTE(•), which substitutes categorical
variables in the training data with target means via out-of-fold calculations, and transformTE(•),
which is the same for all training data. The CF sets derived from the test inputs were reverted to
their initial categorical variables using the inverse transformTE(•) function. During this step, a
binary search tree assisted in mapping the variables to the closest categorical variable level.

4 EVALUATION

Validation of TE effectiveness. We employed two distinct training datasets, one using OHE and
the other using TE, to train both the ML model for probability estimation and FastDCFlow. By eval-
uating the classification performance difference on the test data using a t-test, we ensured consistent
performance across both encoding techniques (OHE and TE).

We examined the CE trends produced by FastDCFlow. For the i-th test input, let the predicted
value be denoted as ŷtesi = f(xtes

i ) and the average predicted value across all test inputs as ŷtes =
1

Ntes

∑
i ŷ

tes
i .

For each test input, a set of M CFs was generated and represented as Si = {xcf
ij }Mj=1. The j-th

predicted value within this set was ŷcfij = f(xcf
ij ). The average predicted value across these M
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Table 1: Evaluation metrics. I(•) is the indicator function.

Metrics Symbol Definition

Proximity P P = 1
Ntes

∑
i

1
M

∑
j ∥x

tes
i − xcf

ij ∥2
Validity V V = 1

Ntes

∑
i

1
M

∑
j I

(
f(xcf

ij )− f(xtes
i ) > 0

)
Inner diversity ID ID = 1

Ntes

∑
i

1
M(M−1)

∑
j ̸=k ∥x

cf
ij − xcf

ik ∥2
Outer diversity OD OD = 1

Ntes(Ntes−1)

∑
i̸=k

1
M2

∑
j

∑
l ∥x

cf
ij − xcf

kl ∥2
Run time RT RT = 1

Ntes

(
T1(gθ) + T2(N

tes,M)
)

Algorithm 1: Generating CFs

Data: Training inputs D = {xtra
i }N

tra

i=1 , test inputs T = {xtes
i }N

tes

i=1 , pretrained binary
probability prediction model f(•).

1 Apply TE to training and test inputs to convert categorical variables into continuous variables:

D ← fit transformTE(D),
T ← transformTE(T ).

2 Learn the parameters θ∗ of the FastDCFlow function gθ from NLL, validity, and proximity
losses:

θ∗ = argmin
θ

λLnll(θ,D) + Ly(θ,D) + Lwprox(θ,D).

3 for i = 1, · · · , N tes do
4 Obtain latent variable zi using forward transformation, zi = gθ(x

tes
i ), zi ∼ pZ .

5 for j = 1, · · · ,M do
6 Obtain perturbed latent variable z∗ij = zi + ϵtj with ϵtj ∼ N (0, tI).
7 Generate counterfactual sample xcf

ij = g−1
θ (z∗ij), x

cf
ij ∼ pX .

end
8 Reverse-transform categorical variables to their original levels:

xcf
ij ← inverse transformTE(xcf

ij ).

end
Result: Set of CFs {Si}N

tes

i=1 , where Si = {xcf
ij }Mj=1.

CFs was ŷcfi = 1
M

∑
j ŷ

cf
ij , and the overall average predicted value for all CFs is expressed as

ŷcf = 1
Ntes

∑
i ŷ

cf
i .

These metrics aid in ascertaining the changes in the CF prediction values. To address instances
wherein the CF prediction values were consistently the same irrespective of the test input, we also
validated them based on the standard deviation of ŷcfi . Considering that OHE and TE yield varying
feature dimensions post-transformation, both the variability of ŷcfi for individual test inputs and the
standard deviation values were compared.

Performance metrics for CE. We introduced five specialized metrics to evaluate the CE and two
main metrics to capture their combined effects. Both FastDCFlow and its competitors employed
TE-transformed datasets, treating all features as continuous variables. Table 1 lists the metrics.

• Proximity (P): Utilizing the l2 norm, we measured how close each generated CF was to its
corresponding test input. Lower values are preferable.

• Validity (V): We computed the mean improvement in the CFs’ predicted outcomes (ycfij )
over the test inputs (ytesi ). Higher values signify better performance.

• Inner diversity (ID): This is measured as the l2 distance between each CF pair within a
set of M CFs for a single test input. Greater values indicate more internal diversity and are
deemed better.
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• Outer diversity (OD): This is the l2 distance between CF pairs generated for different test
inputs. A larger value signifies better performance through more diverse CFs.

• Run time (RT): This metric considers two time components:

– T1(gθ): This is the time for pretraining the CF generation model.
– T2(N

tes,M): This is the time to generate M CFs for each N tes test input.

5 EXPERIMENT

5.1 DATASETS AND PREPROCESSING

To assess the proposed approach, we leveraged three open datasets: Adult (Becker & Kohavi, 1996),
Bank (Moro et al., 2012), and Churn (Macko, 2019), which integrate both categorical and contin-
uous variables. The Adult dataset, sourced from the US Census, focuses on factors influencing an
individual’s annual income, classifying whether it exceeds $50k. The Bank dataset, which is from
a Portuguese bank’s marketing efforts, centers on whether customers opt for a term deposit. The
Churn dataset from IBM presents fictional telecom customer churn indicators. Although the Adult
dataset is distinct in its six categorical variables with a vast range of values, both the Bank and Churn
datasets stand out for their high dimensionality, with the latter heavily leaning towards categorical
data. Across all datasets, the task of the ML model was to predict the probability of a target variable.
Dataset specifics can be found in the Appendix E, Table 6.

In our analysis, we prepared two versions of the datasets, transforming categorical variables using
OHE and TE, and standardizing them to have a mean of 0 and variance of 1. The data is partitioned
into a 90% training set and a 10% test set. The test inputs for CF generation are those with a
predicted probability of less than 0.5 from the pretrained ML model. We implemented a 10-fold on
the training data for TE.

5.2 BASELINES

To assess the effectiveness of TE, we employed datasets preprocessed with OHE and TE, which were
evaluated using standard deviations. Compared with other competing models, six additional models
were considered: DiCE (Mothilal et al., 2020), GeCo (Schleich et al., 2021), MOC (Dandl et al.,
2020), CF VAE (Mahajan et al., 2019), CF CVAE, and CF DUVAE. DiCE, GeCo, and MOC are
input-based methods for generating counterfactuals, whereas the other methods employ model-based
methods. CF VAE uses VAE to generate counterfactuals. By contrast, CF CVAE extends CF VAE
by incorporating a conditional variational autoencoder (CVAE) (Sohn et al., 2015) to handle cat-
egory labels explicitly. Furthermore, CF DUVAE extends CF VAE by incorporating the DUVAE
(Shen et al., 2021), which improves the diversity of the latent space by applying batch normalization
(BN) (Ioffe & Szegedy, 2015) and dropout (Srivastava et al., 2014) to the encoder output of VAE.
Similarly to FastDCFlow, a temperature parameter is introduced to VAEs for test inputs. Details of
the objective functions and model architectures are provided in the Appendix C.

Parameter setting. To ensure a fair assessment, all models applied a consistent ML model based
on their encoding methods and the weight of proximity loss is w = 1. DiCE, which does not re-
quire pretraining, was set for 100 iterations. Model-based methods were subjected to 10 pretraining
epochs with a batch size of 64 and assumed a mixed Gaussian distribution (Izmailov et al., 2020;
Duong et al., 2023), utilizing RealNVP (Dinh et al., 2016) for invertible transformations. The model
details are provided in the Appendix C. For the GA-based GeCo and MOC, 100 generations with
1,000 individuals each were set. GeCo randomly generated initial entities, with the next generation
comprising the top 100 and 900 offspring produced from a uniform crossover (40% from Parent 1,
40% from Parent 2, and a 20% mutation rate). MOC employed the NSGA2 algorithm (Deb et al.,
2002), initiating entities evenly across dimensions using Latin hypercube sampling (LHS) (McKay
et al., 2000) and populating subsequent generations through uniform crossover with a 50% crossover
rate and a polynomial mutation of the distribution index 20. To determine the effectiveness of TE
using FastDCFlow, N tes = 500 with M = 1000 were set. In the comparative experiments, we
considered the computational cost of the input-based method, N tes = 100 with M = 100 CFs. The
temperature parameter t was fixed at 1.0 in FastDCFlow and VAEs, and the hyperparameter λ was
determined using a grid search set to 0.01.
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Figure 2: The boxplot showcases ŷtesi and ŷcfi values from FastDCFlow trained using TE and OHE
across the Adult, Bank, and Churn datasets. In each graph, four boxplots, from left to right, repre-
sent: ŷtesi with TE (blue), ŷcfi with TE (orange), ŷtesi with OHE (blue), and ŷcfi with OHE (orange).

6 RESULTS AND ANALYSIS

6.1 EFFECTIVENESS OF TE

Figure 2 shows the difference in the predicted values between each test input and its counterfactuals,
and the evaluation results are presented in Table 2. The p-val represents the significance of the differ-
ence in the predicted test input values obtained from the models trained on both TE and OHE. This
shows that there is no significant distinction in ŷtesi . Therefore, we focus on the CFs predicted values.

Table 2: Evaluation between OHE and TE.

Dataset p-val ŷtes ŷcf

Adult OHE
> 0.1

0.13 0.95± 0.02
TE 0.14 0.51± 0.14

Bank OHE
> 0.1

0.11 0.95± 0.05
TE 0.13 0.75± 0.11

Churn OHE
> 0.05

0.14 0.72± 0.05
TE 0.16 0.45± 0.16

For every dataset, the OHE model consistently
improved the predicted target values. For the
Adult and Bank datasets, ŷcfi had an the up-
per limit of 1.0, whereas Churn exibited bet-
ter results with OHE. However, the standard
deviation values for OHE were smaller across
datasets compared to those for TE. This sug-
gests that OHE consistently generated counter-
factuals irrespective of test input features be-
cause categorical variables have a uniform perturbation cost in OHE. In contrast, TE, which trans-
forms categorical variables into continuous ones, considered varying costs and better reflected the
traits of each test input, generating more diverse predicted values.

6.2 OVERALL PERFORMANCE

Table 3 presents the evaluation metrics with the trade-offs. Consequently, our goal is not to de-
velop a model that achieves the highest performance across all metrics. Rather, we demonstrate
that FastDCFlow, a model-based method, offers comparable performance to existing Input-based
methods with significantly reduced computational time. Focusing on the RT, model-based methods
such as CF VAE, CF CVAE, CF DUVAE, and FastDCFlow were faster than input-based methods
such as DiCE, GeCo, and MOC. Thus, even with pretraining data time, latent variable optimization
was more efficient in generating CFs. Although the V metrics were above 70% for all datasets and
models, differences in performance emerged when evaluating metrics such as P, ID, and OD.

Despite the fact that a trade-off between diversity and proximity does not always hold, the P metric
of DiCE underperformed, whereas its ID and OD metrics excelled. This is because of its integrated
diversity loss term, which drives the creation of distinct CFs but may sacrifice proximity and predic-
tive quality.

In contrast, GeCo exhibited superior P metric performance. However, its lower ID metric
suggested that CFs from the same test input resembled each other, potentially because GeCo
does not prioritize individual diversity in its generational mechanics. However, its strong
OD metric indicated its adaptability to changing inputs. MOC improved GeCo’s ID per-
formance by using Pareto front estimation; however, it blended CFs focusing on predictive
enhancement and those emphasizing proximity, resulting in a slightly diminished P metric.
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Table 3: Evaluation results compared with competing models. For P and RT, lower values indicate
better performance, while for other metrics, higher values signify superior performance. The best is
in bold, the second-best is underlined, and the worst is marked with an asterisk.

Dataset and model P V ID OD RT

Adult

Input-based
DiCE 4.7±0.70

∗ 0.82±0.21
∗ 2.2±0.51 2.3±0.31 15s

GeCo 0.74±0.39 1.0±0.00 0.063±0.01
∗ 1.6±0.01 25s

MOC 2.9±0.39 1.0±0.01 0.97±0.13 1.5±0.53 30∗s

Model-based

CF VAE 3.1±0.86 1.0±0.00 0.15±0.00 0.15±0.01 < 1.0s
CF CVAE 3.0±0.87 1.0±0.00 0.16±0.01 0.16±0.00 < 1.0s
CF DUVAE 3.1±0.87 1.0±0.00 0.13±0.00 0.13±0.00

∗ < 1.0s
FastDCFlow 2.4±0.50 0.99±0.04 0.98±0.04 1.8±0.94 < 1.0s

Bank

Input-based
DiCE 25±0.92

∗ 0.97±0.03
∗ 9.5±0.20 9.5±0.28 1.4× 102

∗s
GeCo 2.0±0.16 0.98±0.05 1.0±0.06 2.4±1.92 39s
MOC 11±1.17 1.0±0.00 5.2±0.67 5.9±1.58 29s

Model-based

CF VAE 4.6±1.56 1.0±0.00 0.22±0.00
∗ 0.21±0.01

∗ < 1.0s
CF CVAE 4.6±1.57 1.0±0.00 0.22±0.01

∗ 0.22±0.01 < 1.0s
CF DUVAE 4.6±1.55 1.0±0.00 0.22±0.01

∗ 0.22±0.01 < 1.0s
FastDCFlow 2.8±0.20 0.97±0.04

∗ 1.6±0.03 3.0±1.74 < 1.0s

Churn

Input-based
DiCE 5.7±0.35

∗ 0.78±0.29
∗ 2.3±0.03 2.3±0.05 1.4× 102

∗s
GeCo 1.5±0.12 0.90±0.14 0.75±0.04 2.6±1.2 43s
MOC 4.1±0.49 1.0±0.00 1.4±0.14 2.4±0.78 30s

Model-based

CF VAE 5.3±1.33 0.86±0.30 0.26±0.00 0.26±0.01 < 1.0s
CF CVAE 5.3±1.30 0.88±0.30 0.25±0.00

∗ 0.25±0.01
∗ < 1.0s

CF DUVAE 5.3±1.38 0.90±0.28 0.25±0.01
∗ 0.25±0.01

∗ < 1.0s
FastDCFlow 3.6±0.73 0.94±0.05 1.8±0.11 3.2±0.93 < 1.0s

Figure 3: Relationship between M and RT for
each model.

Models rooted in the VAE, including CF VAE,
CF CVAE, and CF DUVAE, consistently gen-
erated similar CFs irrespective of the test in-
put variation. This be attributed to their in-
herent leanings towards minimizing the KL di-
vergence over optimizing the predictive accu-
racy, which is particularly evident in CF VAE.
Whereas, although CF DUVAE sought latent
space diversity, it fell short of with data rich in
categorical variables, suggesting that the VAEs
Gaussian distribution assumption in the latent space might not be suitable for intricate tabular data.
The details of the VAEs training process can be found in Appendix D.2.

FastDCFlow, while not leading in any individual metric, exibited a balanced high-performance when
stacked against its peers. Specifically, it maintained a modest P value while bolstering the ID and OD
metrics, as exemplified in its Adult and Churn dataset performance. This indicates FastDCFlow’s
ability to negotiate the intricacies of counterfactual generation, thereby side-stepping the challenges
that VAEs face in tabular data diversity. Thus, it ensures that latent space alterations resulted in
diverse original feature modifications. In Bank dataset, FastDCFlow showed a slightly lower per-
formance than other input-based methods. especially for ID and OD, it is inferior to DiCE and
MOC, which is because DiCE sacrifices predictive accuracy and proximity in order to emphasize
diversity. On the other hand, MOC mixes CFs that emphasize predictive accuracy and CFs that
emphasize proximity because it uses pareto front estimation, which results in a slight decrease in P.
Overall, FastDCFlow, while being a model-based method, demonstrated the ability to generate more
diverse Counterfactuals (CFs) than VAE, showing performance comparable to input-based methods.
Additionally, it was shown to produce well-balanced CFs in a shorter computation time.

6.3 THE EFFECT OF CF PARAMETERS

Sample size effect: Figure 3 presents a comparison of the relationship between M and RT (N tes =
10 and M = 20, 40, · · · , 100). Model-based methods can significantly reduce the RT. These models,
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Figure 4: Changes in evaluation metrics with ad-
justments to the temperature parameter in model-
based methods. Each line represents an evaluation
metric (including DiCE diversity loss), and each
column corresponds to a dataset.

excluding pretraining time, generate CFs
through latent space mapping and become more
practical with increase in M . The RT of
DiCE increases exponentially with the num-
ber of generations, owing to the computational
complexity ofO(KM2+M3) required for the
diversity loss term in datasets with dimension
number K.

Temperature effect: Figure 4 shows the trends
of P, V, ID, and OD when varying the tem-
perature parameter of model-based methods
(N tes = 100 and M = 100). For Fast-
DCFlow, increases in temperature correlated
with increases in P, ID, and OD, indicating
that counterfactuals learned the necessary con-
straints and considered proximity and diversity
within the latent space. V is defined as the
proportion of improved predictions for test in-
puts; therefore, it is possible to enhance diver-
sity without deteriorating its value. In contrast,
methods based on VAE showed no variation in
the evaluation metrics regardless of tempera-
ture changes, suggesting that these models do
not adapt to the characteristics of the test inputs.
Furthermore, to investigate the relationship be-
tween DiCE’s explicit diversity loss and FastD-
CFlow temperature, the changes in the logdet
value of the diversity loss (DiCE logdet, see
Appendix C.1) are also shown in line 5. The
results confirm that the logdet value increases
with temperature changes and reaches a steady
state when the temperature is sufficiently high.

7 CONCLUSION

This study applied a TE transformation that considered the perturbation of categorical variables in
CE, thus tackling the problem of CF’s predicted values tending to the upper limit. In addition, we
introduced a method to learn the latent space in alignment with the CF constraints by utilizing a nor-
malization flow termed FastDCFlow. This latent space, which was derived from the training data,
offered efficient generation for any test input. Our experimental findings confirmed the proficient
balance that approach maintained among the evaluation metrics, rendering it the best in terms of
overall assessments. The superior performance of FastDCFlow was largely owing to its advance-
ments in diversity and speed over input-based methods. Moreover, in contrast to VAE-based meth-
ods, FastDCFlow captured a precise depiction of the training data, enabling CF generation through
the inverse transformation of proximate points.

A limitation of this work is fourfold. Firstly, when applying TE with certain categories that feature
seldom seen levels or are data-deprived, there is a looming threat of overfitting, owing to stark fluc-
tuations in the target variable. Secondly, given that decision-makers are human, it is impossible to
ignore user feedback and biases originating from the domain. While FastDCFlow offers new possi-
bilities for utilizing model-based methods, qualitative evaluation of the generated CEs and detection
of biases remain as future work. Thirdly, as both input-based and model-based methods require ML
training, sparse high-dimensional data can hinder the utility of CEs. Fourthly, the applicability of
ML is limited to differentiable models. Although decision tree-based models are commonly used
with tabular data, they are not applicable in FastDCFlow.

In subsequent phases of this study, a deeper exploration is imperative to understand the underlying
mechanisms of how the model portrays intricate tabular data distributions.
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Table 4: Example of a test input.

Feature Value
Age 58
Workclass Self-Employed
Education HS-grad
Marital Status Married
Occupation White-Collar
Race White
Gender Male
Hours per Week 60
Income (predicted value) 0.24

A INTERPRETATION OF CFS

The categorical variables in the set of CFs generated by FastDCFlow can be interpreted to determine
which ones should be perturbed, based on their predicted values. Since tabular data is composed
of continuous and categorical variables, we employed the latent class regression model (LCRM)
(Dayton & Macready, 1988; Hagenaars & McCutcheon, 2002). When applying the LCRM, it is
assumed that there are latent classes underlying the generated categorical variables, and each CF is
considered to be probabilistically classified into one of a classes. The probability of each class is
regressed by continuous variables; thus, transitions in class probabilities can be estimated based on
changes in the ML predicted values. For this estimation, multinomial logistic regression (Agresti,
2012) is used.

We used a record from the Adult dataset as the test input, detailed in Table 4. Post TE, the ML
model predicted a value of 0.24. In our experiments, we generated M = 1000 CFs. By increasing
the number of generated counterfactuals, we have the advantage of interpreting counterfactuals as a
distribution. We apply the LCRM to the generated set of CFs, utilizing the poLCA R library (Linzer
& Lewis, 2011). In the visualization, we fix the ’age’ at 63 (input + 5 years) and ”hours per week”
at 60 (the same as the input), and vary the predicted value of ”income” from 0.0 to 1.0. Figure 5a
illustrates the transition of class membership probabilities. From observing the transitions in class
probabilities, we can infer that class 3 has a high probability when the predicted value is improved
up to approximately 0.4; class 1 is likely around a predicted value of 0.7; and beyond that point,
class 2 becomes highly probable.

Figure 5b illustrates the categorical distribution for each class. From this, we infer that in class 1,
adjusting the ”workclass” to ”private” and the ”occupation” to ”sales” is suitable. Similarly, in class
2, modifying ”workclass”, ’education’, and ”occupation” seems optimal, and in class 3, alterations
to ”workclass” and ”occupation” are deemed appropriate. On the other hand, some features in real-
world data, like race or gender, can be difficult to modify or perturb. For these types of features,
applying stricter penalty coefficients to uphold proximity constraints could be a viable approach.

B APPLAYING DOMAIN CONSTRAINTS

Depending on the type of dataset and specific domain constraints aligned with the objectives, it
is possible to apply counterfactual explanations appropriately. In reality, characteristics such as
gender or race cannot be perturbed. Furthermore, age must always satisfy a monotonic increase,
making explanations that fail to adhere to these constraints infeasible. This section discusses the
configuration of mutable features and the monotonic constraints using FastDCFlow.

Initially, the perturbation constraints on features can be achieved by adjusting the weights w of the
proximity loss.

Lwprox(θ,D) =
Ntra∑
i=1

∥w ∗ (xtra
i − xcf

i )∥22. (6)

Specifically, increasing the weights for features that should not be perturbed effectively imposes
stronger penalties during perturbation. For the monotonic constraints, the following hinge loss func-
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(a) The application results of LCRM on the set of CFs.
The number of classes is determined where the bayesian
information criterion (BIC) (Schwarz, 1978) is mini-
mized, resulting in three classes. The horizontal axis
represents the ML predicted values, and the vertical axis
represents the class probabilities. The black dotted line
represents the predicted value of the test input.

(b) Categorical distribution by the LCRM. Each graph represents a different categorical
variable, with probability on the horizontal axis and categorical values on the vertical.
Values in red denote input values, suggesting that categories with lower probabilities are
more likely to be perturbed.

Figure 5: The application result of LCRM.

tion is added:

Lmon =
1

|Dmon|N tra

Ntra∑
i=1

∑
d∈Dmon

max(xtra
id − xcf

id , 0), (7)

where Dmon is the set of features that should be monotonically increased.

Experiment. In the context of the Adult dataset, we compare the performance before and after the
addition of domain constraints. For the evaluation, we apply the following two metrics specifically
to the features with imposed constraints, and also use P, V, ID, and OD used in the Table 3 for the
overall evaluation.
Fix accuracy (FA):

FA =
1

N tes

Ntes∑
i=1

1

|Dfix|M

M∑
j=1

∑
d∈Dfix

I
(
xcf
ijd = xtes

id

)
, (8)
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Table 5: The results of domain addaptation.

Method P V FA MA
No constraints 3.6±0.73 0.94±0.05 0.97±0.13 0.88±0.11

Domain constraints 2.3±0.50 0.97±0.10 0.99±0.11 0.91±0.09

Monotonicity accuracy (MA):

MA =
1

N tes

Ntes∑
i=1

1

|Dmon|M

M∑
j=1

∑
d∈Dmon

I
(
xcf
ijd > xtes

id

)
, (9)

where Dfix is the sets of features with fixed constraints. FA and MA are metrics that evaluate the
proportion of CFs that satisfy the fixed and monotonic constraints, respectively. These metrics are
evaluated by returning the input data and CFs to their original scale and category before evaluation.

For the features that should remain fixed, ”gender” and ”race” are selected, with their respective
weight coefficients set to 3.0, while setting the coefficients for all other features to 1.0. Additionally,
”age” is designated as a feature that must satisfy the monotonic increase constraint. The results
are shown in Table 5 for N tes = 500 and M = 1000. The results show that the addition of
domain constraints outperforms the model without constraints in all metrics. This suggests that
the addition of domain constraints can be effective in generating CFs that are more appropriate for
the domain. However, it is important to note that the addition of domain constraints can lead to
a decrease in diversity. Therefore, it is necessary to consider the trade-off between diversity and
domain constraints when applying domain constraints.

C DETAILED SETTINGS OF THE COMPARED MODELS

C.1 OBJECTIVE FUNCTIONS

To ensure a fair comparison, we maintain consistency in the objective functions related to effective-
ness and proximity across all models. The results, as depicted in Table 3, are derived from models
trained with all categorical variables converted using TE. In contrast to comparison models, which
calculate proximity separately for continuous and categorical variables, our experiment considers all
variables as continuous, eliminating the need for such differentiation.

DiCE. This method directly defines CFs as parameters and simultaneously generates M CFs for a
single input xtes. When the set of generated CFs is denoted as S, the overall optimization is given
by the following equation:

S = argmin
xcf
1 ,··· ,xcf

M

−
M∑
i=1

log (f(xcf
i )) + α1

M∑
i=1

∥w ∗ (xtes − xcf
i )∥22 − α2det (A) , (10)

where Aij = 1

1+∥xcf
i −xcf

j ∥2
2

and det (A) represents the loss term indicating diversity within the

CFs. α1, α2 are hyperparameters adjusting the importance of each term. In line 5 of Figure 4, the
logarithm of the determinant, log det (A), is shown for each temperature.

Methods using GAs. For the comparative models GeCo and MOC, CFs are generated in a similar
manner to minimize the objective function related to validity and proximity. Given each individual
xcf as an instance of a CF, the overall objective function fall is defined by the following equation:

fall = − log (f(xcf )) + α3∥w ∗ (xtes − xcf )∥22. (11)

α3 is a hyperparameter to adjust the importance of each term. If we maximize the objective function,
the signs on the right side of fall should be reversed. Unlike DiCE, no explicit diversity term is added
to the objective function; instead, CFs are generated depending on the optimization algorithm.

Methods using VAEs. CF VAE, CF CVAE, and CF DUVAE fall under model-based methods,
and the maximization of the likelihood is approximated by maximizing the variational lower bound
(Kingma & Welling, 2013). Due to this approximation, the proximity in the loss function corre-
sponds to the data reconstruction loss, and a normalization term via KL divergence is added.
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Suppose we have a training dataset, denoted as D = {xtra
i }N

tra

i=1 . VAEs comprise an encoder and
a decoder. The encoder, characterized by the parameter ϕ, can be represented as qϕ(z|xtra), and
it is responsible for mapping the training data to the latent variable z. Conversely, the decoder,
characterized by the parameter θ, can be represented as pθ(xcf |z), and it maps the latent variable z
back to the data space, producing counterfactual examples xcf . The model is trained by optimizing
an overall loss function, represented by the following equation:

L(ϕ,θ,D) = Eqϕ(z|xtra)||pθ(z)[log pθ(x
cf |z)]

− α4DKL(qϕ(z|xtra)||pθ(z)) + α5Ly(ϕ,θ,D).
(12)

Here, α4, α5 are hyperparameters to adjust the importance of each term and DKL(•) represents
the KL divergence. Assuming the prior distribution of the decoder pθ(z) to be N (0, I) and the
conditional distribution of the encoder qϕ(z|xtra) to be N (µ,σ2), it can be determined as follows
using monte carlo approximation:

L(ϕ,θ,D) =
Ntra∑
i=1

∥xtra
i − xcf

i ∥
2
2

+
α4

2

Ntra∑
i=1

(1 + log(σ2
j )− µ2

j − σ2
j )− α5

Ntra∑
i=1

log (f(xcf
i )).

(13)

The hyperparameters α1 to α5 are fixed at 1.0 in the experiments.

C.2 MODEL ARCHITECTURES

The ML model for predicting the target variable is constructed using a three-layer binary classifi-
cation neural network. ReLU activation functions and dropout (with 0.5) are applied between each
layer. The final output is obtained as a probability in the range [0, 1] from a fully connected layer
with 64 units, passed through a sigmoid function. The gradient descent optimization algorithm
used is adam (Kingma & Ba, 2014), with a fixed learning rate of 10−3. The encoders for CF VAE,
CF CVAE, and CF DUVAE are multi-layer neural networks that incorporate BN, dropout (with 0.1),
and the ReLU. VAE and DUVAE have three layers, while CVAE, due to the added dimensionality
from labeling categorical variables, is constructed with four layers. For CF DUVAE, when mapping
to the latent space, BN is applied to the mean, and dropout (with 0.5) is applied to the variance.
Regarding the RealNVP used in FastDCFlow, there are 3 coupling layers, and each coupling layer
consists of 6 intermediate layers containing ReLU and dropout.

All codes are executed in Python 3.9, equipped with the PyTorch library and the pymoo library
(for MOC) (Blank & Deb, 2020). The machine specifications used for the experiments are Debian
GNU/Linux 11 (bullseye), Intel Core i9 3.30GHz CPU, and 128GB of memory.

D TRANSITION OF OBJECTIVE FUNCTIONS

D.1 INPUT-BASED METHODS

Figure 6 illustrates the progression of the objective function for specific test inputs in DiCE, GeCo,
and MOC. Since input-based methods do not require training data, the objective function is opti-
mized for each input. Observing DiCE in Figure 6a, all terms of the objective function seem to
decrease linearly, suggesting that the learning is progressing smoothly. However, the rate of change
in the objective function varies significantly depending on the dataset, and it is believed to be related
to the dimensionality of the input and the number of CFs generated.

For GoCo and MOC, utilizing GA, shown in Figure 6b, 6c, the objective function demonstrates sim-
ilar convergence across datasets. In both cases, improvement in proximity tends to be prioritized,
and there is variation in the values of validity; for datasets other than Adult, it deteriorates as the
number of generations increases. However, since the total loss is on a declining trend, and consid-
ering the model performance comparison in Table 3, it outperforms DiCE and VAE-based methods,
it can be said that learning is progressing with consideration of the balance in trade-offs. Figure 7
represents the Pareto front of the top 100 CFs obtained in the final generation in MOC. It is evident
that, in every dataset, MOC generates CF considering diversity.
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(a) Epoch-wise transition of the objective function in DiCE. From left to right, they correspond to the functions
of validity, proximity, diversity, and total.

(b) Epoch-wise transition of the objective function in GeCo. From left to right, they correspond to the functions
of validity, proximity, and total.

(c) Epoch-wise transition of the objective function in MOC. From left to right, they correspond to the functions
of validity, proximity, and total.

Figure 6: Transition of objective function in input-based methods. The colors in the graph represent
different types of datasets.

Figure 7: The Pareto front of the top 100 individuals in the final generation in MOC.

D.2 MODEL-BASED METHODS

Figure 8 displays how the loss function evolves with each epoch for the model-based methods. In
FastDCFlow, there is a steady decline in NLL. When considering the trade-off between validity
and proximity, it is seen that as validity improves with each epoch, proximity seems to worsen,
especially noticeable in the Adult and Churn datasets. However, due to the overall decreasing trend
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(a) Epoch-wise transition of the loss function in FastDCFlow. From left to right, they correspond to the losses of
NLL, validity, proximity, and total.

(b) Epoch-wise transition of the loss function in CF VAE. From left to right, they correspond to the losses of KL
divergence, validity, proximity, and total.

(c) Epoch-wise transition of the loss function in CF CVAE. From left to right, they correspond to the losses of
KL divergence, validity, proximity, and total.

(d) Epoch-wise transition of the loss function in CF DUVAE. From left to right, they correspond to the losses of
KL divergence, validity, proximity, and total.

Figure 8: Transition of loss function in model-based methods. The colors in the graph represent
different types of datasets.

in total loss, it is inferred that the model is giving precedence to learning validity over maintaining
proximity.

For CF VAE and CF CVAE, Figure 8b, 8c show that the loss of KL is prioritized for improvement,
with proximity showing slight variability in values. On the other hand, almost no improvement is
observed in validity throughout the epochs, revealing that it is not contributing to the total loss. This
issue is known as the phenomenon of posterior collapse (Zhao et al., 2019), where the posterior
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Table 6: Dataset composition and predictive accuracy of ML models.

Dataset # Rec # Cat # Con # Dim ACC p-val AUC p-val

Adult OHE 32,561 6 2 30 0.83± 0.0029
> 0.05

0.89± 0.0050
> 0.1TE 8 0.83± 0.0022 0.88± 0.0049

Bank OHE 11,162 9 7 52 0.85± 0.0038
> 0.01

0.92± 0.0051
> 0.01TE 16 0.84± 0.0051 0.91± 0.0048

Churn OHE 7,043 16 3 47 0.80± 0.012
> 0.1

0.85± 0.074
> 0.1TE 19 0.80± 0.012 0.84± 0.012

distribution of the latent variables matches the prior distribution, leading to an inability to capture
the characteristics of the data. As the match with the prior distribution is prioritized, it is evident
that the loss of KL converges near zero in all datasets. The evaluation experiments illustrated in the
Table 3 and Figure 4 indicate that the methods using VAE lacked diversity, and it can be said that a
latent representation which properly considers the information for each input could not be obtained.

CF DUVAE is a method that reduces the issue of posterior collapse in VAEs without requiring
additional training or modifications to the model. In this model, by applying BN and dropout to the
parameters of the posterior distribution, the preferential improvement of KL is restrained, enhancing
the diversity of the latent variables. Observing the transition of the loss function in the Figure 8d, it
is confirmable that the value of KL loss is restrained compared to other VAE-based methods. Also,
the proximity is seen to decrease gently in the Bank and Churn datasets. However, like others,
no improvement is observed in validity. As the Table 3 and Figure 4 illustrate, although the total
loss is decreasing, the counterfactual diversity for the test inputs did not improve. Therefore, the
effectiveness of DUVAE for counterfactual explanations using tabular data could not be confirmed.

E DETAILS OF DATASETS

Table 6 displays the details of the datasets used in the experiments and the classification performance
of ML models for each encoding method. # Rec, # Cat, # Con, and # Dim represent the number
of records, count of categorical variables, count of continuous variables, and the dimension after
encoding. While Adult has the highest number of records, its # Dim is the smallest. Bank has
many levels for its categorical variables, making its # Dim the largest with OHE. Churn has the most
categorical variables, but tends to have fewer values compared to the others.

Based on a 5-fold cross-validation on each dataset, models using OHE tend to have slightly better
predictive accuracy. However, according to the t-test results, there’s no significant performance
difference except in the case of Bank, where there is a performance gap of about 0.01. However,
given that the dimension of OHE is more than twice that of TE, considering the computational cost
for CF generation, it can be argued that there is ample justification to apply TE.
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