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ABSTRACT

Inspired by the success of transfer learning in computer vision, roboticists have
investigated visual pre-training as a means to improve the learning efficiency and
generalization ability of policies learned from pixels. To that end, past work has
favored large object interaction datasets, such as first-person videos of humans
completing diverse tasks, in pursuit of manipulation-relevant features. Although
this approach improves the efficiency of policy learning, it remains unclear how
reliable these representations are in the presence of distribution shifts that arise
commonly in robotic applications. Surprisingly, we find that visual representa-
tions designed for manipulation and control tasks do not necessarily generalize
under subtle changes in lighting and scene texture or the introduction of distractor
objects. To understand what properties do lead to robust representations, we com-
pare the performance of 15 pre-trained vision models under different visual ap-
pearances. We find that emergent segmentation ability is a strong predictor of out-
of-distribution generalization among ViT models. The rank order induced by this
metric is more predictive than metrics that have previously guided generalization
research within computer vision and machine learning, such as downstream Im-
ageNet accuracy, in-domain accuracy, or shape-bias as evaluated by cue-conflict
performance. We test this finding extensively on a suite of distribution shifts in
ten tasks across two simulated manipulation environments. On the ALOHA setup,
segmentation score predicts real-world performance after offline training with 50
demonstrations.

1 INTRODUCTION

In spite of vast progress in computer vision, the question of how to learn a good visual representation
for robotics remains open (Chen* et al., 2021). Elsewhere in computer vision, internet datasets are
retrofit to new tasks with transfer learning, which promises both generalization and fast adaptation to
downstream tasks in exchange for large-scale pre-training. But in the field of robotics, this promise
has yet to be fulfilled even though policies learned from pixels struggle substantially with data
efficiency (Cobbe et al., 2018) and especially generalization under visual changes in a scene (Cobbe
et al., 2019a).

Recent work (Damen et al., 2018; Grauman et al., 2022) posits that the missing piece is a large
pre-training dataset of object interactions across diverse environments — the ImageNet (Deng et al.,
2009) or CommonCrawl (Raffel et al., 2020) of manipulation. That is, if we want to improve the
visual generalization ability of pre-trained models we simply need to collect datasets of this kind
at scale. Indeed, training on large datasets of first-person human interaction data increases policy
performance and learning efficiency downstream (Nair et al., 2022; Xiao et al., 2022), but these
evaluations occur in environments that are very similar to those used for policy learning. Robotic
applications commonly contain environments with varying lighting conditions, scene textures, and
background objects, and we want pre-trained representations to allow the robot to handle such vari-
ability. Yet we have few concrete measures of how well pre-trained representations generalize out-
of-distribution. To take a step towards understanding these problems, our goal in this paper is to
thoroughly answer the questions “which models generalize?” and “how can we predict how well a
pre-trained model will generalize?”
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Our first key finding is that, when evaluated under visual distribution shifts, models that are de-
signed for manipulation and control do not outperform standard visual pre-training methods. This
finding violates our intuitions about what is needed to scale up robot learning and brings into ques-
tion what constitutes relevant data, how to quantify useful features, and the importance of design
choices such as model architecture. In other words, we need more guiding principles to help us
understand what representations are good for manipulation and make the problem of iterating on
pre-training strategies much more straightforward. Currently, evaluating a pre-trained policy re-
quires training and rolling out downstream policies across multiple environments and experimental
conditions. Instead, we can take inspiration from computer vision, which has developed proxies for
robust performance on vast out-of-distribution datasets (Geirhos et al., 2021).

With spatial features accuracy drops 37% with 
distractors

Without spatial features accuracy drops 85% 
with distractors

Figure 1: We find that the emergent segmenta-
tion ability of ViT attention heads (measured by
Jaccard index) predicts performance under visual
distribution shift. We refer to models with this
property as having “spatial features.” Notice how
the attention of MVP shifts towards the sugar box
distractor object in the bottom right image. The at-
tention of DINO on the top shifts less. The impact
of this factor overshadows other design choices
such as data relevance.

Our second key finding is that the emergent
segmentation ability of a ViT model is a strong
predictor of out-of-distribution generalization
performance. We visualize this phenomenon,
which we refer to as “spatial features,” in Fig-
ure 1. Other metrics of model quality, such as
linear probes on ImageNet (Chen et al., 2020),
and metrics of out-of-distribution performance,
such as in-domain accuracy (Miller et al., 2021)
and shape-bias (Geirhos et al., 2019), are not
predictive for this model class, despite their
predictive power in other commonly-studied
domains like image classification. This hints at
the possibility that the transfer setting of manip-
ulation differs from computer vision tasks typi-
cally studied within the robustness literature.

To reach the conclusions above, we run 9,000
different simulated evaluations. Our simu-
lated environments are adapted from two dif-
ferent existing visual distribution shift bench-
marks (Xing et al., 2021; Xie* et al., 2023)
to capture the shifts that arise commonly in
robotics applications: changes in lighting,
background and object texture, and the ap-
pearance of distractors. More specifically, we
train policies on top of 15 pre-trained mod-
els, including 4 models designed for manipu-
lation or control: R3M (Nair et al., 2022), two
MVP variants (Xiao et al., 2022; Radosavovic
et al., 2022), and VIP (Ma et al., 2022). We
further validate these findings by comparing
a model designed for manipulation against a
model with a similar parameter count on a
real-world screwdriver pick-up task using the
ACT training framework (Zhao et al., 2023).
Through these experiments, we make two strik-
ing findings: (1) pre-trained visual models designed for control do not necessarily generalize better
than models pre-trained on more standard computer vision datasets and (2) the emergent segmenta-
tion performance of a ViT model is a strong predictor of the out-of-distribution generalization of a
down-stream policy.

2 RELATED WORK

Representation learning for manipulation. The correct approach to visual representation learning
for robotics is still an open question. There is evidence that separating visual representation learning
from policy learning can further improve performance (Pari et al., 2022; Parisi et al., 2022). Recent
works have shown that models pre-trained on large manipulation-relevant datasets (Goyal et al.,
2017; Damen et al., 2018; Shan et al., 2020; Grauman et al., 2022) or learned with visual affordances
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Figure 2: Evaluation Scheme. We begin our evaluation procedure by training a policy with behavior
cloning on top of frozen features. In every experimental setting, we ablate the encoder used to extract
features from the image observation. The learned policy is then evaluated in each of the visual shift
environments to attain a zero-shot success value.

from RGBD data (Yen-Chen et al., 2020) can improve the efficiency and performance of policy
learning (Karamcheti et al., 2023) in comparison to standard vision datasets such as ImageNet (Deng
et al., 2009), but they do not focus on performance under visual distribution shift. We evaluate
the performance of R3M (Nair et al., 2022), MVP (Xiao et al., 2022; Radosavovic et al., 2022),
and VIP (Ma et al., 2022). Other work has studied generalization of pre-trained representations
to new reinforcement learning tasks for manipulation (Ma et al., 2022) and navigation (Sax et al.,
2018) where the agent is able to train on visual data from the new environment. Separate from the
question of pre-training visual representations is the question of how to best train policies on top of
pixel observations (Laskin et al., 2020b; Yarats et al., 2021). Majumdar et al. (2023) benchmarks
the performance of pre-trained visual representations on a handful of manipulation environments,
but they focus on in-domain performance and also investigate navigation environments. Hu et al.
(2023) shows that model performance is highly sensitive to downstream policy learning strategy.
We use imitation learning for our evaluation protocol, which they find to be a more stable measure
of performance.

Robustness in computer vision. There is extensive work studying the impact of design choices,
such as architecture, loss, and data, on the performance of visual models under distribution shift.
See Geirhos et al. (2021) for a comprehensive comparison. Most relevant to our paper are studies of
shape-bias and architecture. While shape-biased models tend to be more robust than texture-biased
ones (Geirhos et al., 2019), the impact of architecture on robustness is less straightforward. For
example, vision transformers exhibit better robustness to universal adversarial attacks (Shao et al.,
2022), but they are more susceptible to patch-level attacks (Fu et al., 2022). When compared on
natural distribution shifts (Hendrycks & Dietterich, 2019; Hendrycks et al., 2021a;b), vision trans-
formers and convolutional networks achieve comparable performance when provided with enough
data (Bhojanapalli et al., 2021). But for occlusions specifically, vision transformers appear to have
an edge (Naseer et al., 2021). Miller et al. (2021) studies the predictive power of in-domain per-
formance for out-of-distribution generalization. Unlike all of these prior works, we focus on how
pre-trained representations affect robustness in downstream robotics tasks, instead of downstream
vision tasks.

Learning robust policies. Unlike work that focuses on changes in dynamics or initial state distri-
bution (Huang et al., 2021; Raileanu et al., 2020; Laskin et al., 2020a; Cobbe et al., 2019b; Packer
et al., 2018; Farebrother et al., 2018), we focus exclusively on the setting of visual distribution shifts.
Kirk et al. (2021) and Zhao et al. (2019) provide a comprehensive survey on non-visual distribution
shifts in decision making problems. Policy adaptation approaches enable visual robustness specifi-
cally by leveraging insights from domain adaptation during policy training (Hansen & Wang, 2021;
Fan et al., 2021; Yoneda et al., 2021) or during deployment (Hansen et al., 2021). Other policy
adaptation approaches blend pre-training together with reinforcement learning across diverse visual
environments (Yuan et al., 2022). In the special case of closing the sim-to-real domain gap, a popular
approach is to add randomized textures while training in simulation (Sadeghi & Levine, 2017; Tobin
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Figure 3: Visual Generalization Performance. Models trained with supervision on ImageNet
are shades of blue. Models trained with self-supervision on ImageNet are in red. Models trained
explicitly for manipulation and control tasks are orange. Dotted bars denote ResNets and slashed
bars denote ViTs. Surprisingly, the best performing models are not necessarily the ones designed
for manipulation. Each bar is an average over 30 experimental conditions.

et al., 2017; Peng et al., 2018; James et al., 2019). By contrast, our work is interested in explaining
properties of a robust visual model for control. Consequently, our insights can be leveraged with or
without any task specific data.

3 ENVIRONMENTS, EVALUATION PROTOCOL, AND PRE-TRAINED MODELS

Our goal is to understand how robust existing representations for manipulation are to visual distri-
bution shifts that are realistic in robotic applications. To that end, we learn policies on top of frozen,
pre-trained encoders and then evaluate these policies zero-shot under changes in lighting, object and
scene texture, and the presence of distractors. These shifts are visualized in Appendix Figure 8 and a
high level summary of our evaluation procedure is visualized in Figure 2. In this section, we describe
the specifics of the manipulation environments, distribution shifts, and policy training setups.

Environments and tasks. We study ten tasks across two simulated manipulation environments,
which are selected based on their popularity in studying learning-based approaches to manipulation.
Within FrankaKitchen (Gupta et al., 2020) we evaluate performance on opening a microwave, sliding
a cabinet door open, pulling a cabinet open, turning a knob, and turning on a light. Within Meta-
World (Yu et al., 2019) we study assembling a ring onto a peg, placing an object between two bins,
pushing a button, opening a drawer, and hammering a nail.

Distribution shifts. We construct environments to study out-of-distribution generalization within
FrankaKitchen and Meta-World. Within FrankaKitchen, we reimplement the texture and lighting
changes from KitchenShift (Xing et al., 2021). Within Meta-World we use texture changes from
Xie* et al. (2023) and reimplement the same lighting changes as in FrankaKitchen. In both environ-
ments we include three levels of distractors: one, three, and nine YCB objects (Calli et al., 2015).
We show average performance on each of these distributions shifts as well as performance on the
original training distribution, which samples initial positions of the table and kitchen at random.
More details about the implementation and parameterization of the distribution shifts are provided
in Section A.3.

Policy training. Policy training is done in the same manner as R3M (Nair et al., 2022). A summary
of the evaluation scheme is provided in Figure 2. We train an MLP on top of the pre-trained embed-
ding with imitation learning (IL), which, given actions sampled from expert trajectories, a ∼ Dtrain,
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Figure 5: We plot the relationship between different metrics and out-of-distribution (OOD) gener-
alization. There is a promising correlation between shape-bias and OOD performance for ResNets,
but not ViTs. Instead, OOD performance for ViTs is strongly correlated with Jaccard index.

minimizes the mean squared error objective, ||a − â||22. Here â denotes the action predicted from a
given policy. Details of the training procedure are provided in Section A.4. The embedding weights
are frozen during policy learning, so the pre-trained models receive no task data. We train 3 different
seeds within each task for each of two different camera angles. In total, we learn 60 policies for each
model and perform 11 evaluations per policy, including on the train distribution.

Formally, for a pre-trained representation ϕ we learn policies, πϕ, each trained with a different seed,
camera angle, and task. We average the performance of πϕ along each experimental condition and
compute the mean performance and error across seeds.

Models. We categorize models by loss type and data source: supervised ImageNet models, self-
supervised ImageNet models, and models trained for manipulation and control tasks.

4 GENERALIZATION OF MODELS PRE-TRAINED FOR MANIPULATION

One factor motivating work in learning-based robotics is the hypothesis of scale: if we collect more
high-quality manipulation data, we should see improvements in policy generalization. However,
our understanding of what high-quality data looks like for manipulation and control tasks is still
imprecise. Past work on pre-training visual representations for manipulation and control tasks has
focused on collecting large object interaction datasets and developing manipulation-relevant losses.
But the generalization ability of such models in comparison to standard pre-training methods is still
unknown. The goal of this section is to ask: which models generalize?

To focus our analysis, we compare models pre-trained for manipulation to two self-supervised Ima-
geNet models and two supervised ImageNet models. Our main result is presented in Figure 3 where
we plot the average success rate of the learned policies in the training environment distribution,
within each class of visual shift, and across all types of visual shifts. All of the model names as
well as the datasets, dataset sizes, model sizes, and loss functions are listed in Appendix Table 2.
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We recommend that readers visit this table to get a high level view of each model in our comparison
suite.

Figure 4: Average success rates for training
and test distribution across both environments for
every model in our evaluation suite. The best-
performing model that was designed for manip-
ulation ranks seventh out of all models evaluated.

Models pre-trained for manipulation. Past
work has trained visual representations for
manipulation in two ways: by training with
manipulation-specific losses or on data of
human-object interactions. We focus on three
recently introduced pre-trained models for ma-
nipulation that use different combinations of
these approaches: Masked Visual Pretraining
(MVP) (Xiao et al., 2022), Reusable Repre-
sentations for Robot Manipulation (R3M) (Nair
et al., 2022), and Value-Implicit Pre-Training
(VIP) (Ma et al., 2022). We include impor-
tant characteristics of these models, including
dataset sizes, architecture sizes, and augmenta-
tions in Section A.1 and Table 2.

These models perform strongly within the train-
ing distribution: R3M and VIP in particular
comfortably beat standard pre-training base-
lines. This is expected, especially for R3M
which was evaluated on the same training en-
vironment. However, under subtle distribution
shifts, models designed for manipulation strug-
gle to generalize as well as supervised or self-
supervised training with ImageNet. This is sur-
prising for a few reasons. First, each manipu-
lation model is trained on a larger dataset than
the pre-trained baselines. Ego4D alone is 4.5M
frames while ImageNet is only 1.2M. By pa-
rameter count, MVP is also larger than the ViT-
S baselines. Finally, we expect human-object
interaction datasets such as Ego4D to be more
similar to the distribution of images observed
when training a manipulation policy. The view-
points are more varied and the scenes are less curated than ImageNet. Although we expect this to
improve the generalization of the learned policy, these results show that other factors may supersede
the impact of data relevance or scale alone.

Supervised ImageNet models. Supervised training on ImageNet has long been a baseline for vi-
sual pre-training. Past work has found that features learned with supervised learning on ImageNet
are also a strong baseline for control: even frozen features are competitive with ground-truth state
information on a variety of simulated control tasks (Parisi et al., 2022). However, Parisi et al.
(2022) also find that self-supervised learning outperforms supervised learning. Our results contra-
dict this finding. Figure 4 shows that supervised training on Stylized ImageNet achieves a higher
success rate in the training distribution than self-supervised training on ImageNet with a masked
auto-encoding loss. These models maintain the same rank out-of-domain as well. Even without
stylization, in-domain performance of supervised ImageNet models are competitive with models
trained with MAE on FrankaKitchen. From these results, we conclude that the presence of supervi-
sion is not as predictive of in-domain or out-of-domain performance as other factors. We also find
that supervised ImageNet training is still a strong baseline for model generalization: in both settings
ViT-INSUP outperforms R3M and MVP.

Self-Supervised ImageNet Models. In Figure 3 we include two self-supervised ViT-S models. Un-
der visual distribution shifts, the model trained with the DINO objective outperforms all three mod-
els that are designed for manipulation. Moreover, this trend holds for every distribution shift except
Meta-World with distractors. The distractors evaluation suite averages over different levels of dis-
tractions and therefore favors models with a high performance in training. In Appendix Section A.8
we plot model performance across different levels of distractors and find that several self-supervised
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ViTs experience a smaller drop in performance as more distractors are added compared to ResNet
based pre-trained manipulation models like R3M and VIP.

Figure 6: What happens to models with a high Jaccard
index under an object-level distribution shift? Surpris-
ingly, the models with the highest Jaccard index main-
tain the highest performance as the number of distrac-
tors increases.

Training with masked autoencoding per-
forms well under distribution shifts in
Meta-World, but is less strong under dis-
tribution shifts within FrankaKitchen. In
Figure 4, we see that MoCo. v3, ViT-B
also performs strongly out-of-distribution.
When we compare MoCo and DINO
against MAE-style training we see that
MoCo and DINO use a more extensive
set of augmentations. Taking this into ac-
count alongside the observation that a ViT
trained with supervision on Stylized Im-
ageNet performs well out-of-distribution
we conclude that choice of augmentations
outweighs the importance of supervision.
This extends the findings of Geirhos et al.
(2021) to the setting of robust manipula-
tion.

ViTs vs ResNets. One important de-
sign choice when selecting a pre-trained
model is the choice of architecture. We
focus on ResNets and ViTs. In all of
our experiments, we use ResNet-50 (He
et al., 2016) to be consistent with past
work on visual pre-training (Parisi et al.,
2022; Nair et al., 2022; Ma et al., 2022).
Vision transformers (ViTs) (Dosovitskiy
et al., 2021) have seen widespread adop-
tion within computer vision (Khan et al.,
2022), but have only recently been used for learning representations for control (Xiao et al., 2022).
We find that, on average, ViTs have a slight edge on out-of-distribution generalization compared
to equivalently trained ResNets. In Figure 4, out of the seven pre-trained models that perform best
out-of-distribution six are ViTs. Ablating architecture alone while holding dataset, training aug-
mentations, and parameter count constant, we can compare the model pairs “MoCo. v3, RN” and
“MoCo. v3, ViT”, “RN-DINO” and “ViT-DINO”, and “RN-INSUP” and “ViT-INSUP.” In the latter
two pairs, the ViT variant is much stronger out-of-distribution than the ResNet variant. For MoCo,
the two variants achieve similar performance out-of-distribution.

Summary. This section identified which pre-trained models generalize, with several interesting
findings. First, models designed for manipulaiton do not necessarily perform well under subtle
distribution shifts in comparison to more standard pre-training methods. Second, the presence or
absence of supervision does not matter as much as other factors on both in- and out-of-distribution
generalization. Finally, ViTs have a slight edge over ResNets in out-of-distribution generalization.

5 PROPERTIES OF ROBUST VISUAL REPRESENTATIONS FOR MANIPULATION

Our findings in the last section are both surprising and somewhat unsatisfying because they contra-
dict many of our intuitions about scale and generalization. In our evaluation suite, we saw that better
generalization is not cleanly explained by more data, bigger models, or more relevant data. The
goal of this section is to identify the properties of pre-trained models that are predictive of general-
ization. To that end, we correlate out-of-distribution performance with three metrics that have been
previously connected to generalization in the machine learning and computer vision literature—
in-domain performance, accuracy of a linear probe trained on ImageNet, and shape-bias. We also
include a fourth metric, which is specific to ViTs: the emergent segmentation accuracy of the output
attention heads. We describe each metric in detail in Section 5.1, discuss our setup for correlating
performance in Section 5.2, and analyze our results in Section 5.3.
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5.1 METRICS

Training Distribution

Test Distribution

Figure 7: Real world training and test
distribution. The test distribution dif-
fers from the training distribution in the
position of the target objects and the di-
rection of the lighting.

ID vs OOD. One of the goals of this paper is to under-
stand how well the findings from existing evaluations of
pre-trained models hold under the inevitable environment
changes that we expect to see in a real-world setting. If in-
distribution performance is reasonably predictive of gen-
eralization to our suite of distribution shifts, it is sufficient
for researchers to continue developing pre-trained models
with existing methods of evaluation. Past work has also
shown that the in-distribution performance of a pre-trained
model is positively correlated with out-of-distribution per-
formance for a variety of computer vision tasks (Miller
et al., 2021). Concretely, we measure in-distribution per-
formance as the success rate of the policy within the train-
ing distribution.

Imagenet vs OOD. Training linear probes on Imagenet is
a common protocol for evaluating the quality of learned
representations (He et al., 2019; Chen et al., 2020). Hu
et al. (2023) make the related finding that the ImageNet
k-NN accuracy of a pre-trained model is predictive of per-
formance on imitation learning with a visual reward func-
tion. We evaluate ImageNet validation set accuracy for all
models with linear probes available.

Shape-Bias vs OOD. Shape bias is the extent to which
a model makes prediction decisions based on shape. We
calculate shape bias as the percent of shape classification
decisions out of the set of texture or shape classifications
on the Stylized-ImageNet validation set (Geirhos et al.,
2019) using the same probes described above.

Jaccard vs OOD. Finally, for all of the ViT models, we look at the emergent segmentation perfor-
mance. We denote this nonlinear, deterministic transform as M . Formally, we compute the Jaccard
index by calculating the mIoU on the PASCAL VOC validation set, DPascal:

J(xi, xj) = EDPascal

[
A ∩B

A ∪B

]
Where A is a shorthand for positive classification for the target class by M(ϕ(·)) and B is a short-
hand for positive label for the target class. J is evaluated pixel-wise over image indices xi and xj .
We evaluate the Jaccard index of an interpolated attention map averaged across heads in the last
attention block at the [CLS] token.

5.2 SETUP

We measure the coefficient of determination (R2) and Spearman’s rank correlation (ρ) for the corre-
lation between the out-of-distribution success rate and each metric described above. Our goal is to
find a metric that will result in high correlation between the metric and the OOD success, i.e. both
coefficients being close to 1.0. We fit separate trend lines to ViTs and ResNets. Because of the lack
of available probes, we exclude MVP, MVP ViT-S HOI, R3M, VIP, and MAE-IN ViT-S from the
shape bias and ImageNet probe correlations. Each point represents one of the 15 pre-trained models
we evaluated and represents the average of 6,000 evaluation runs.

5.3 RESULTS

We visualize the correlation between each metric and the average out-of-distribution success rate in
Figure 5. Although we see a positive relationship between in- and out-of distribution generalization,
there are pre-trained models that notably deviate from this trend. Among ViT models one example is
MVP, ViT-S (HOI): the average success rate of this model drops to 6.63 from 39.86. By contrast, we
find that ImageNet accuracy of a linear probe poorly predicts generalization performance for ViTs.
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We also see little correlation between shape-bias and OOD performance for ViT models, but a
promisingly strong correlation on the subset of ResNets evaluted. This is surprising because hu-
mans make highly shape-biased decisions and increasing shape-bias increases the robustness of
imagenet trained CNNs (Geirhos et al., 2019; 2021). One explanation of this finding is that the ViT
architecture obviates the need for shape-biased features. For example, a ResNet-50 trained with the
DINO training scheme has a strong shape-bias, but not the equivalent ViT model.

Model Success

MVP 0%
MoCo-v3 40%

Table 1: Success rates on the task of
picking up the screwdriver.

Finally, we visualize the relationship between the Jaccard
index and OOD performance on all ViT models in Fig-
ure 5. There is a strong positive correlation between Jac-
card index and OOD performance both in terms of rank
correlation and the coefficient of determination. These re-
sults suggest that while shape-bias may not be predictive
of the OOD generalization ability of a pre-trained ViT, the
segmentation ability is a predictive alternative.

One counter-argument to the use of Jaccard index as a
metric for for OOD performance is that it would be less predictive for object-level distribution shift,
which would occur any time a large distractor is placed in the background of the image. In Figure 6,
we plot the success rates of each ViT model as the number of objects increases and verify that the
models with the higher Jaccard index actually maintain the highest performance as the number of
distractors increases.

5.4 VALIDATING IN THE REAL WORLD

In this section, we validate our finding on a real-world generalization scenario by comparing a ViT-B
model designed for control (MVP) against a model not designed for control but with a high emergent
segmentation score (MoCo-v3).

Setup. We learn policies for picking up a screwdriver on the ALOHA setup using the ACT training
framework (Zhao et al., 2023). The training dataset is comprised of 50 episodes collected by an
expert human demonstrator. Images are collected from 4 camera view points (one on each wrist,
one top camera, and one front camera). We replace the standard encoder with a ViT-B and change
the initialization of the encoder based on the experimental condition (i.e., we select for a different
pre-trained model). We follow the standard ACT training paradigm with the hyperparameters listed
in Appendix Table 4. From the training data to the test runs there is a distribution shift in both
the placement of the target object (the screwdriver) and in the direction of the lighting. This is
visualized in Figure 7. We calculate success on screw pick ups averaged over 10 rollouts in the test
environment.

Results. We find that MoCo-v3 is stronger on this setting than MVP, even though it is not explicitly
designed for manipulation. We find that the MoCo-v3 initialized encoder is able to achieve a success
rate of 40% on this task while the MVP initialized encoder is not able to successfully grasp the
target object. Qualitatively, the MVP model fails in localizing the object when attempting the grasp,
whereas MoCo-v3 model reliably localizes the object, but experiences more failure in finding the
right grasp point.

6 CONCLUSION

Summary. In this paper, we make several surprising findings about the generalization ability of
pre-trained visual representations for manipulation tasks. First, we find that, contrary to the current
direction in the literature, models pre-trained on manipulation-relevant data do no necessarily gen-
eralize better than models trained on standard pre-training datasets (such as ImageNet). Instead, we
uncover a recipe for strong generalization: ViT models with a high emergent segmentation accu-
racy generalize well under visual distribution shifts. Emergent segmentation accuracy is not only
a stronger predictor of generalization than many other metrics for robustness, but also requires no
additional training to evaluate. This insight can guide the development of pre-trained vision mod-
els in future work: preferring architecture development and training algorithms that lead to strong
emergent segmentation as opposed to only training on more manipulation-relevant data.

9



Under review as a conference paper at ICLR 2024

7 REPRODUCIBILITY

All of our code is open-sourced and all changes to relevant libraries are available in the supple-
mentary materials. We also include all of the XML files that we used to generate our visual shift
scenarios. Our appendix includes the exact hyperparameters we used to conduct our simulated pol-
icy training and our real-world experiments.
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A APPENDIX

A.1 PRE-TRAINED MODEL DETAILS

RN-INSUP (He et al., 2016) is a ResNet model trained on the ImageNet classificaiton task. We use
the default weights and model provided by the Pytorch (Paszke et al., 2019) library.

ViT-INSUP is a Vision Transformer (Dosovitskiy et al., 2021) that has been distilled (Touvron et al.,
2021) from a larger network that was trained on the ImageNet classification task. In our experiments,
we use the model weights and architecture provided in Naseer et al. (2021) with a patch size of 16.

SIN-SUP (Naseer et al., 2021) trains a vision transformer on Stylized Image-Net (SIN) (Geirhos
et al., 2019). The SIN dataset was constructed to increase the degree to which a model makes
predictions on shape instead of texture. Our model weights come from Naseer et al. (2021) and we
use the non-distilled DeiT (Touvron et al., 2021) training variant.

ViT-DINO (Caron et al., 2021) is trained with extensive augmentations and a self-supervised, con-
trastive loss that together lead to emergent segmentation within the self-attention heads of the ViT
model. We use the model and weights provided by Caron et al. (2021). Interestingly, we don’t
find the DINO objective to lead to a high shape-bias. This suggests that there are other metrics that
measure the degree to which a model is object-centric other than shape-bias.

ResNet50-DINO is learned with the same recipe as ViT-DINO. We use the model and weights from
Caron et al. (2021).

MoCo. v3, RN (Chen* et al., 2021) leverages a contrastive loss with momentum encoding (He
et al., 2019) of positive targets. It is trained with the same recipe as MoCo. v3, ViT-B.

MoCo. v3, ViT-B (Chen* et al., 2021) are trained in a similar manner as the original MoCo (He
et al., 2019), but with changes to improve the stability of training, which are specific to the ViT
archiecture. We use the checkpoint after 300 epochs.

MoCo. v3, ViT-S (Chen* et al., 2021) is trained in a similar manner as MoCo. v3, ViT-B. Even
though the smaller model benefits from a longer training horizon, we use the checkpoint at 300
epochs for consistency.

MAE-IN, ViT-S follows the same training recipe as MVP, but on top of the ImageNet dataset. We
use the weights provided by Radosavovic et al. (2022).

R3M (Nair et al., 2022) trains a ResNet model with a combination of manipulation-specific losses–
including a time-contrastive loss (Sermanet et al., 2018), video-language alignemnt loss, and L1-
regularization–on the Ego4D (Grauman et al., 2022) dataset.
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Figure 8: We visualize each distribution shift from the left camera angle on the FrankaKitchen (top)
and Meta-World (bottom) environments.

MVP (Radosavovic et al., 2022) trains a ViT-B for masked autoencoding (MAE) (He et al., 2021) on
the Ego4D (Grauman et al., 2022), Something-Something (Goyal et al., 2017), YouTube 100 Days
of Hands (Shan et al., 2020), EpicKitchens (Damen et al., 2018), and ImageNet (Deng et al., 2009)
datasets. Unlike R3M, the model is not designed to be exclusive to manipulation.

MVP, ViT-S (HOI) (Xiao et al., 2022) is a predecessor of the model described above that trains a
ViT-S/16 with an MAE objective on Something-Something (Goyal et al., 2017), YouTube 100 Days
of Hands (Shan et al., 2020), EpicKitchens (Damen et al., 2018), and ImageNet (Deng et al., 2009).

VIP (Ma et al., 2022) uses an action-free dual of the Algaedice (Nachum et al., 2019) objective to
learn representations that are useful for trajectory optimization or reinforcement learning of con-
trol tasks unseen during representation pre-training. They train a ResNet-50 on Ego4D with this
objective.

CLIP, ViT-B/16 (Radford et al., 2021) uses contrastive language-image pre-training to learn visual
representations trained on an extensive internet datsaet. The learned models exhibit strong zero-shot
performance for multiple tasks such as image classification.

DiNo v2, ViT (Oquab et al., 2023) scales Caron et al. (2021) to more parameters and a larger
dataset. The full model is a 1B parameter ViT trained on LVD-142M, which is a 142M frame
dataset composed of ImageNet-1k, ImageNet-22k, Google Landmarks (Weyand et al., 2020), and
a collection of other datasets spanning fine-grained classification, segmentation, depth estimation,
and retrieval. The full model is distilled into smaller models. We select the ViT-S distilled model
for our experiments. In Table 2, we list the augmentations used on the teacher model. The training
loop is only lightly modified during distillation. Suprisingly, the v2 model sees worse in- and out-of-
domain performance on our evaluation suite in spite of being distilled from a ladrger model trained
on a bigger dataset.

A.2 DETAILS OF THE ENVIRONMENTS

FrankaKitchen (Gupta et al., 2019) is a simulated kitchen environment with a 9-DoF Franka robot.
There a multiple household objects available for interaction. The environment is designed to com-
pose tasks together hierarchically, but we focus on learning policies to successfully complete a
single task. The episode length is 50 and we inherit the randomization scheme used in R3M, which
randomizes the position of the kitchen at the start of each episode.

Meta-World (Yu et al., 2019) is a simulated manipulation environment that consists of various
table-top manipulation interactions. Unlike FrankaKitchen, the scene objects vary between different
tasks. The positions of the objects are randomized at the start of each episode. The maximum
episode length is 500.

A.3 DETAILS OF THE DISRIBUTION SHIFTS

Each distribution shift is visualized from the left camera angle in Figure 8. We don’t use the MuJoCo
scanned object dataset that is used in (Xie* et al., 2023) because of imperfections in the coloring of
the textures.
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Name Loss Function Architecture Datasets Augmentations
RN-INSUP BCE-Loss ResNet-50 ImageNet Random crop,

(23M params) (1.2M frames) Horizontal flip
ViT-INSUP BCE-Loss ViT-S/16 ImageNet Random crop,

(22M params) (1.2M frames) Horizontal flip
SIN-SUP BCE-Loss ViT-S/16 Stylized-ImageNet Random crop,

(22M params) (1.2M frames) Horizontal flip
ResNet50-DINO Distillation ResNet-50 ImageNet Multi-crop,

(23M params) (1.2M frames) Color-jittering,
Gaussian blur,
Solarization

ViT-DINO Distillation ViT-S/16 ImageNet Multi-crop,
(22M params) (1.2M frames) Color-jittering,

Gaussian blur,
Solarization

MoCo. v3, RN Contrastive ResNet50 ImageNet Resize,
(23M params) (1.2M frames) Color-jittering,

Horizontal flip,
Grayscale,

Gaussian blur,
Solarization

MoCo. v3, ViT-S Contrastive ViT-S/16 ImageNet Resize,
(22M params) (1.2M frames) Color-jittering,

Horizontal flip,
Grayscale,

Gaussian blur,
Solarization

MoCo. v3, ViT-B Contrastive ViT-B/16 ImageNet Resize,
(88M params) (1.2M frames) Color-jittering,

Horizontal flip,
Grayscale,

Gaussian blur,
Solarization

MAE-IN, ViT-S Masked auto-encoding ViT-S ImageNet Random resize,
(22M params) (1.2M frames) Random crop

R3M Time-contrastive, ResNet-50 Ego4D Random crop
L1-regularization, (23M params) (4.3M frames)

Video-lang alignment
MVP, ViT-S (HOI) Masked auto-encoding ViT-S EpicKitchens None

(22M params) 100 Days of Hands,
Something-Something

(700k frames)
MVP Masked auto-encoding ViT-B Ego4D, ImageNet None

(88M params) EpicKitchens,
100 Days of Hands,

Something-Something
(4.5M frames)

VIP Algaedice Dual ResNet-50 Ego4D Random crop
(23M params) (4.3M frames)

CLIP, ViT-B/16 Contrastive ViT-B/16 Internet data Random crop
(88M params) (400M pairs)

DiNo v2, ViT Distillation ViT-S/14 LVD Multi-crop,
(21M params) (142M frames) Color-jittering,

Grayscale,
Gaussian blur,
Solarization

Table 2: List of pre-trained models with corresponding loss function, augmentations, and datasets
used for pre-training. We color code by the data and loss type: ImageNet supervised, self-supervised,
trained specifically for manipulation or control tasks, and other.

A.4 POLICY TRAINING DETAILS

We learn a 2-layer MLP on top of the pre-trained, frozen features with 10 demonstrations. We use
the same expert demonstrations as in R3M. We train policies independently over the ‘left cap2‘ and
‘right cap2‘ camera angles and show results averaged over both camera angles. We also provide
proprioception to the policy. The final performance is averaged over the task settings for each seed.
The hyperparamters for policy training are summarized in Table 3. Error bars are 95% confidence
interval over seeds.
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Hyperparameter Value

Loss type MSE
Learning rate 0.001

Batch size 32
Train steps 20,000
Optimizer Adam

Table 3: Hyperparameters for IL Policy Training

Figure 9: Detailed OOD Performance on FrankaKitchen.

A.5 OOD PERF DETAILS

To provide a more granular understanding of how the complete set of models performs on our
evaluation suite, we break down performance by distribution shift type and environment in Figures 9
and 10.

A.6 IMAGENET VS OOD DETAILS

To evaluate ImageNet accuracy, we use all publicly available probes that have been trained on top
of the frozen model features and evaluate them on the ImageNet validation set. The models with
available probes are RN-INSUP, RN-DINO, MoCo. v3 RN, ViT-INSUP, ViT-DINO, MoCo. v3 ViT,
Dino v2 ViT, MoCo. v3 ViT, SIN-SUP, and CLIP ViT-B/16 and we use the probes that are provided
in the implementations cited in Section A.1.

A.7 SHAPE-BIAS DETAILS

We evaluate shape-bias using the ‘model-vs-human‘ evaluation framework from Geirhos et al.
(2021) and use the same probes from Section A.6 to get classification results on the cue-conflict
validation dataset (Dcue−conflict). The cue-conflict dataset contains images where the shape and
texture cues are in conflict (e.g., a cat with the texture of the elephant). The shape bias of the model
is the ratio of classification decisions made based on the shape cue (e.g., cat) vs the texture cue (e.g.,
elephant).
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Figure 10: Detailed OOD Performance on Meta-World.

Notably, Naseer et al. (2021) find that vision transformers are more shape-biased when making
classification decisions than equivalently trained convolutional networks. In our results, we don’t
find vision transformers to be more strongly shape biased. Vision transformers and convolutional
networks vary in how they handle spatial resolution: spatial resolution decreases in each layer of
ResNet-50 but remains constant within a ViT. This could explain why we see the ViT architecture
somewhat obviating the need for shape-bias in our results.

A.8 DIFFERENT LEVELS OF DISTRACTORS

Figure 11: Different levels of distractors.
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We extend Figure 6 by including results for ResNets in Figure 11. Models are color coded using the
original color scheme in the paper.

A.9 FINETUNING

Figure 12: Finetuning in FrankaKitchen.

Because the goal of this paper is to probe the quality of learned representations, we follow the
tradition of performing evaluation on top of frozen model features. This evaluation is also consistent
with the increasing view of pre-trained visual representations as “foundation models” (Bommasani
et al., 2022; Oquab et al., 2023) that can be deployed without any gradient updates. Nonetheless,
even in the fine-tuning regime, in Figure 12 we still see stronger performance from models that are
not designed for manipulation. In this setting, we increased the number of demonstrations to 25 to
allow for more data diversity when training the encoders.

A.10 REAL-WORLD EXPERIMENT DETAILS

Our demonstration data contains two subtasks: an initial screwdriver pick-up and then a handover
that happen in sequence. We only evaluate success on the subtask of picking up the screwdriver.

Hyperparameter Value

Chunk Size 100
KL Weight 10
Batch size 8

Epochs 10,000
Optimizer Adam

Learning Rate 1e-5

Table 4: Hyperparameters for Policy Training

A.11 ADDITIONAL EXPERIMENTS

Figure 13: Performance on FrankaKitchen with more demonstrations remains consistent.
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Increasing the number of demonstrations. To study the impact of increased demonstrations, we
also show the performance of R3M, MVP, and ViT-DINO with 25 demonstrations in Figure 13.
This is the largest number of demonstrations used in the R3M evaluation suite. We find that the
trend remains consistent, if not exaggerated, with increased demonstrations.

Comparison to PIE-G. PIE-G Yuan et al. (2022) blends pre-training together with reinforcement
learning to learn visually robust representations. The pre-trained model used in PIE-G is a ResNet-
18 with features extracted from the second layer of the network. We extract these features for
comparison in our benchmark and perform average pooling along the spatial dimensions (that is,
along the height and width) to produce a 128-dimensional feature. This model achieves a training
performance of 0.0 across all the FrankaKitchen training tasks.

Figure 14: Jaccard index with ResNet models in-
cluded.

Analysing the Jaccard index of GradCAM
applied to ResNet models. In our experiments,
the Jaccard index was the most predictive met-
ric of out-of-distribution performance. To ar-
rive at an equivalent metric for ResNet mod-
els, we evaluate the Jaccard index of segmen-
tation maps generated with Grad-CAM (Sel-
varaju et al., 2017). To generate our segmen-
tation maps, we use the Grad-CAM implemen-
tation made available by Gildenblat & contrib-
utors (2021). Figure 14 shows that generating
segmentation maps in this way does not give a
predictive metric for out-of-distribution perfor-
mance for ResNets. One explanation for this
result is that Grad-CAM is not the best mea-
sure of the internal spatial features of a ResNet
model. Another hypothesis is that ViTs have
the capacity to model shape directly in their at-
tention heads, which obviates the need for shape-biased features. The ResNet model architecture
may not have the capacity to support this kind of representaiton, which requires shape bias to be
encoded directly in features (Geirhos et al., 2019).
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