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ABSTRACT

Robotics holds the potential to automate applications such as farming, construc-
tion, and elderly care; making food, shelter, and dignity easily accessible for ev-
eryone. This moonshot goal requires deploying robots in environments that are a
priori unknown and typically uninstrumented (e.g., without optitrack, external re-
ward/reset mechanisms, or digital twins), such as agricultural fields, construction
sites, or private dwellings. It also requires the same robot to perform numerous
different tasks within such environments, with each task defining its own notions
of what an object is and what constitutes a desirable way of interacting with it
(i.e., affordances). Motivated by these considerations, this paper presents a task-
description framework called Vimex (i.e., Visual Memex) that allows a user to
efficiently describe vision-based robotics tasks and the associated objects, parts,
and affordances without requiring specialized equipment or training a deep neu-
ral network. Within this framework, arbitrary object definitions, anywhere on the
spectrum between specific instances to general categories, are established using a
small number of RGB images captured by a consumer camera, while part defini-
tions are established using scribble annotations over these RGB images. Arbitrary
metadata (i.e., any form of task-relevant information) are then attached to these
annotations to form records stored in a memory. Given an RGBD image of a
scene, these records are retrieved to define probability distributions of part loca-
tions and metadata over 3D coordinates using an association process based on
nearest-neighbors. Finally, affordance definitions are established as probabilistic
inference routines conditioned on such part and metadata distributions. To demon-
strate what these abstractions mean and how they can be used to describe tasks to
a robot, experiments that focus on vision-based grasping are presented.

1 INTRODUCTION

Consider a robot that needs to make a sandwich in a typical kitchen. It first needs to take out a jar of
pickles from the refrigerator, and because the exact 3D location of the pickle jar is a priori unknown
it should rely on information from onboard sensors (e.g., images) to localize it. Then, it should grasp
the jar and move it out of the refrigerator without collisions. To complete these two tasks, there is
no need to treat the jar, its lid, and every single pickle inside as separate objects. The robot should
then open the jar, so now the body and the lid need to be treated as separate objects and grasped
accordingly. Afterwards, the robot should recognize and localize a pickle to grasp it, which requires
all pickles to be treated as separate objects. The shape, size, texture, or color of any two pieces of
pickle can show considerable variation, which means a 6DOF pose in reference to a common 3D
model template may not be the most suitable representation for this grasping task. The robot should
then cut the pickle into circular slices to place inside the sandwich, which spawns many new notions
of objects with each cut. The Lagrangian state (i.e., 6DOF pose, velocity, and acceleration) of every
pickle slice may again not be an appropriate or tractable representation to keep track of. Notice that
the only thing the robot has achieved until now was to put pickles in a sandwich, yet the tasks and
semantics (i.e., objects, parts, affordances) involved changed many times. Similar considerations
arise in most application domains we want to automate (e.g., agriculture, construction, elderly care),
highlighting the need for a “task-description framework” (i.e., a common grammar to tell a robot
what to do) whose abstractions accommodate the observations and requirements discussed below.
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Figure 1: This paper aims to provide a framework for describing vision-based tasks to a robot quickly (without
training a neural network), easily (without requiring specialized equipment such as optitrack), and efficiently
(∼10 RGB images with scribble annotations are sufficient). To describe a task, the user first captures a small
number of RGB images that depict an object instance or category. Second, they use a scribble annotation tool
to highlight the task-relevant parts of the object and optionally attach any type of metadata to these annotations.
Given an RGBD image of a scene, the proposed framework then provides methods to: i) recognize the object,
ii) localize its parts and associated metadata in the form of probability distributions over 3D coordinates, iii)
infer decision-variables that control robot behavior (e.g., 6DOF grasp poses) conditioned on these distributions.

First, note that every task defines its own notions of objects, parts, and affordances. These defini-
tions do not have to be consistent across different tasks, nor should they remain the same throughout
the lifetime of a robot after deployment. If a user wants a cup of coffee, it is important to distinguish
the single instance that is their coffee cup from all other cups in their home, and grasp its handle
when pouring coffee inside. If the user wants the dishes done, all cups should be considered a single
category, and they can be grasped in any way that facilitates scrubbing. Therefore, a task description
framework should flexibly accommodate frequent initializations and adjustments of definitions for
objects, parts, and affordances. Second, note that the number and variety of tasks that a user may
want to utilize the same robot for is a priori unknown, open-ended and ever-changing. Whenever
the user comes up with a new task and wants to describe it to a robot (which is quite often), it is
impractical for them to collect hundreds of labeled images or kinesthetic demonstrations, engineer a
reward/reset mechanism, or build a digital twin of their own kitchen, crop field, or construction site
to make adjustments to a neural-network (e.g., train/fine-tune it or modify its architecture to accom-
modate newly defined tasks). They do not have the training, the tools, the time, or the incentive.

These considerations outline the “task description problem” (Agrawal, 2022), and to the best of our
knowledge, state of the art in current robotics literature do not yet provide a satisfactory solution (see
Sec.A.1). We therefore propose Vimex, a task description framework that allows describing vision-
based robotics tasks (and the objects, parts, affordances involved) with a small set of annotated
images without training a neural network or needing specialized equipment (e.g., optitrack).

2 RELATED WORK

Inspirations: Vimex is inspired by Memex (Bush et al., 1945), a hypothetical precursor to the
modern Hypertext (Engelbart, 1963) and WorldWideWeb (Berners-Lee et al., 1994). The two
main ideas introduced by Memex were: i) content-based indexing and retrieval of records (rather
than address-based), ii) formation of associative trails (i.e., hyperlinks) between records to facilitate
cognitive tasks. Both are core principles of Vimex as well. The main observation that motivates this
paper (i.e., every task defines its own objects, parts, and affordances) draws from classical texts in
vision science (Palmer, 1999) and cognitive science (Cohen & Lefebvre, 2005), which themselves
refer to seminal works around categorization (Bruner et al., 1977), the exemplar (Nosofsky, 1986;
Kruschke, 1992) and prototype (Rosch et al., 1978; 1976; Tversky & Hemenway, 1984) theories,
and the theory of affordances (Gibson, 1977).

Similar Frameworks: Most ideas and design choices employed in Vimex are reiterations of con-
cepts that have continually been revisited in computer vision and robotics. Early work by Lowe
(1999; 2001) describes a framework that represents each object as a set of its images, and each im-
age as a set of descriptors placed at salient points. This process is then used to build a database of
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exemplar objects whose descriptors are matched to the descriptors of test images to recognize ob-
jects within. These ideas are central to Vimex as well. Another important idea from the same body
of work is the “probability of non-accidental cooccurance” (Lowe, 1985)1, which provides a quali-
tative explanation about why descriptors obtained from the foundation model of Oquab et al. (2023)
are particularly suitable for establishing spatial correspondences to exemplar images. Subsequent
work by Belongie et al. (2002) builds upon the same concepts to create another exemplar-based
object recognition system. Of particular importance are the proposed shape context distance, im-
age appearance distance, and bending energy metrics, as Vimex implements functionally analogous
terms for nearest-neighbor retrieval. Another major influence, also named Visual Memex by its au-
thors, is presented by Malisiewicz (2011), from which Vimex borrows two main ideas: i) using
nearest-neighbor classifiers with a small positive-set and a disproportionally large negative-set to
represent objects, and ii) going beyond object recognition to retrieve and transfer other sources of
information. Finally, Manuelli et al. (2019) proposes defining affordances in reference to a set of
task-relevant 3D keypoints. Inspired by this, Vimex defines affordances in reference to continuous
distributions over 3D coordinates instead of discrete 3D keypoints; and instead of training a different
keypoint regression network for every task, it prompts (Gu et al., 2023) a foundation model (Oquab
et al., 2023) for spatial descriptors. For further elaboration on related work, please see Sec.A.1.

3 PRELIMINARIES

Global and Spatial Descriptors: In Vimex, the global descriptor zglb and spatial descriptors {zi} of
an input image are obtained from the CLS and spatial tokens of the final attention block of DINOv2
(Oquab et al., 2023). The spatial descriptor index i runs over the 2D grid of patches used as input
to the ViT-B backbone (Dosovitskiy et al., 2020). The resolution of this spatial descriptor grid can
be set arbitrarily by adjusting the kernel-size and stride of the first convolution layer that performs
the linear embedding of spatial patches (the positional embeddings of the resulting tokens should
also be interpolated accordingly). The important thing about these descriptors is that the inner-
product zT1 z2 implements a semantically meaningful nearest-neighbors similarity metric for image
retrieval and patch matching. For a qualitative explanation, together with connections to the concept
of “probability of non-accidental cooccurance” (Lowe, 1985), please see Sec.A.2.1.

Class-Agnostic Segmentation: Object recognition in Vimex requires an object discovery (Tuyte-
laars et al., 2010; Rubinstein et al., 2013; Burgess et al., 2019) method that can create a set of
segmentation mask proposals {mi} in a class-agnostic manner (i.e., binary masks without any se-
mantic labels) given an image. The Segment Anything foundation model (SAM) (Kirillov et al.,
2023) is used off-the-shelf for this purpose. We assume that if a task-relevant object is present in
an image, its associated segmentation mask will be present in {mi}. Given SAM’s internet-scale
training, we empirically observed this assumption to be valid.

Appearance and Optimal Transport Distances: Let I1, I2 denote two images with corresponding
global and spatial descriptors (zglb,1 , {zi,1}), (zglb,2 , {zj,2}), with |{zi,1}| = N1 and |{zi,2}| =
N2. The nearest-neighbor distance used in Vimex is a composition of two terms. The first term,
called the appearance distance, is computed as dac(I1, I2) = −max(0, zTglb,1zglb,2), and serves an
analogous function as the appearance cost of Belongie et al. (2002). The second term is the optimal
transport distance dot(I1, I2) between the spatial descriptors of the two images (Peyré et al., 2019).
It is computed between two uniform distributions with N1 and N2 bins, using the N1×N2 pairwise
cost matrix Cij = −zTi,1zj,2, and with the Sinkhorn-Knopp (SK) algorithm (Cuturi, 2013). This is
practically identical to the shape context matching cost of Belongie et al. (2002) (instead of solving
the exact assignment problem with the Hungarian algorithm, Kantorovich’s relaxation is solved with
the SK algorithm). The two distances are combined as d(I1, I2) = −dac(I1, I2) dot(I1, I2).

4 VISUAL MEMEX: USER INPUTS FOR TASK-DESCRIPTION

User Inputs for Object Recognition: Consider two example robotic grasping scenarios: i) a robot
that should distinguish a user’s personal cup from all other cups and grasp its handle (requiring
instance-level specificity), and ii) a robot that should pick strawberries in a field by grasping their
stems (requiring category-level generalization). For the cup example, the user captures ˜5 images of

1This is named “probability of accidental occurance” in (Lowe, 1985).
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their personal cup, and for the strawberry picking example, the user goes out into the field and cap-
tures ˜50 images of different strawberries, using a consumer RGB camera for both cases. The central
object in each image is automatically segmented (Kirillov et al., 2023) to remove the background.
The images are then cropped to a tight square around the object and resized to a standard resolu-
tion (e.g., 224 × 224) to form the set of positive exemplars Dpos = {Ii}. In general, the number
of images |Dpos| necessary depends on the intrinsic visual variation between different viewpoints
of an instance (Koenderink & Van Doorn, 1979), and between different instances of a category
(Belongie et al., 2002). Similar to (Malisiewicz, 2011), a much larger negative exemplar set (e.g.,
∼ 106 images) is then created automatically as follows. First, images of a common large dataset
such as Deng et al. (2009); Li et al. (2020) are processed the same way as Dpos (i.e., background
removal, cropping, and resizing) to form Dneg = {Ii}. Then the median d(Ii, Ij) between all pairs
(Ii, Ij) in Dpos are computed. All images in Dneg whose nearest-neighbor distance to Dpos is smaller
than this are marked. The user then decides whether the marked images should stay in Dneg, moved
to Dpos, or removed entirely. For a final and optional step, the user manually captures and adds any
other negative exemplar images they want to Dneg (e.g., for the cup example, images of all cups other
than the user’s personal cup can be placed in Dneg to ensure instance-level specificity). In practice,
only the descriptors rather than the full images need to be stored (e.g., ˜20 MB for Li et al. (2020)).

User Inputs for Part Localization The user annotates the images in Dpos with a scribble annotation
tool to mark task-relevant parts (e.g., the handle of the cup, or the strawberry stems). For the straw-
berry case, not all images need to be annotated (around ˜5 is sufficient). The set of spatial descriptors
from all annotated regions for a task-relevant part is denoted as A = {zj}. Afterwards, two crucial
statistics are computed over Dneg. The first one is cmean, the average zT1 z2 between two randomly
sampled spatial descriptors from two randomly sampled images in Dneg. The second one is cA, the
average of Ezj∼A[z

T
j z] where z is a randomly sampled spatial descriptor from a randomly sampled

image in Dneg. The annotation (A, cA) and the scalar cmean are stored for later use in Sec.5.2.

User Inputs for Metadata Retrieval: Vimex defines a memory as a set M = {(zi,Ri)} of tuples,
where zi denotes a spatial descriptor and Ri contains the associated metadata (i.e., any set of task-
relevant information that will later be retrieved and utilized). Considered together as a single tuple,
(zi,Ri) is referred to as a record. The exact nature of the metadata Ri and the associated process of
obtaining it naturally depends on the specific task and its affordances. For the grasping experiments
in Sec.7, Ri = {di} where di are the “antipodal distances” (i.e., computed by starting from a point vi
on the object and following the surface normal ni inwards until the first intersection with the surface
on the other side). For more elaboration on measuring {di} from RGB images, see Sec.A.3.1.

5 VISUAL MEMEX: INFERENCE

5.1 OBJECT RECOGNITION

The steps involved in object recognition are as follows. First, mask proposals {mi} are obtained
using SAM. For each mask proposal mi, the background is removed and a tight square around
the mask is cropped and resized to the standard resolution, resulting in an image Ii. As in Lowe
(1985); Belongie et al. (2002); Malisiewicz (2011), {Ii} are then classified using a binary nearest-
neighbor classifier based on the metric d(I1, I2), and (Dpos,Dneg) defined before. Because there is
a large difference between the sizes of (Dpos,Dneg), it is crucial to balance their contributions to the
nearest-neighbor classification rule (Malisiewicz et al., 2011). We therefore implement an “any top-
K” rule: the classification label is positive if and only if there exists any positive exemplar within
the top-K nearest neighbors, where K is set through cross-validation within (Dpos,Dneg). There are
multiple benefits of this approach. First, the user only needs a small number of RGB images to
build the classifier. Second, detections are always paired with a nearest-neighbor, which provides a
good degree of interpretability. As a result, the classifier can easily be modified and calibrated in an
active-learning manner (Settles, 2009). For example, to immediately fix a false-negative, all that is
necessary is to take a few images of the problematic object and place them in the positive set.

5.2 PART LOCALIZATION

Given an RGBD image of a scene Iscn, object recognition provides a segmentation mask mobj.
Then, pixels inside mobj are backprojected into 3D and the tight axis-aligned rectangle volume Vobj
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surrounding these points is computed. We define a function fobj that assigns a descriptor to every
coordinate x ∈ Vobj as follows:

• fobj(x) = z if x lies on the object surface inside mobj, where z is the spatial descriptor from
DINOv2 computed on the pixel projection of x.

• fobj(x) = zocc if x belongs to occluded space inside mobj, where zocc is a unique identifier.
• fobj(x) = znull if x belongs outside mobj or any empty space in Iscn, where znull is another

unique identifier.

As usual, whether x is occluded, in empty space, or on the object surface is determined by project-
ing it onto the RGBD image Iscn and comparing the depth values. Assume that the user provides
annotations {(An, cA,n})Nn=1 for N different parts as described in Sec.4. We then define:

c∗n(x) =


0 if fobj(x) = znull.
cA,n if fobj(x) = zocc,
Ez∼An [z

T fobj(x)] otherwise.

Let us use the notation A(x) = An to denote the probabilistic event that x ∈ Vobj belongs to part
An. Using c∗n(x), we define the corresponding probability measure as:

p[A(x) = An] =
ec

∗
n(x)

ecmean +
∑N

n=1 e
c∗n(x)

.

For visible points on the object surface mobj, this soft-max distribution is an increasing function of
the nearest-neighbor descriptor similarity between fobj(x) and the set An. For occluded points, it
defaults to the large-scale dataset statistics cA,n computed over Dneg, and for empty points it is zero.

5.3 METADATA RETRIEVAL

Given the memory M = (zi,Ri), let us define the notation R(x) = Ri to denote the probabilistic
event that metadata Ri is associated with x ∈ Vobj. Using descriptors fobj, we define:

p[R(x) = Ri] =

0 if fobj(x) = znull or zocc,
e
zTi fobj(x)∑
i e

zT
i

fobj(x)
otherwise.

For visible points on the object surface mobj, this soft-max distribution is an increasing function of
the nearest-neighbor descriptor similarity between fobj(x) and zi. No metadata is associated with
occluded points or empty points so the corresponding probability density is zero.

5.4 INFERRING AFFORDANCES

Suppose we are provided with an arbitrary set of “visual decision variables” {xm}Mm=1, where all
xm are 3D points (e.g., task-space points on the robot, semantic keypoints on objects, vertices that
define arbitrary splines, surfaces, volumes or other geometric primitives, or any other information
that should be inferred from visual input to control robot behavior). As defined in Sec.5.2, 5.3, let
A(xm) denote the binary random variable that xm belongs to a certain part and let R(xm) denote
the metadata it has. Using all xm, A(xm), and R(xm) as optimization variables, suppose that we
also transcribe an optimization loss ℓ(x1:M ,A(x1:M ),R(x1:M )) capturing desirable outcomes and
constraints involved in a task2. Note that x1:M itself can be parametrized through any coordinate
map (e.g., forward kinematics). To infer affordances, this optimization loss is treated as a proba-
bility distribution 1

Z e−ℓ(x1:M ,A(x1:M ),R(x1:M )).3 As defined in Sec.4 and Sec.5.3, different outcomes
{Am}Mm=1 and {Rm}Mm=1 for part and metadata assignments on the visual decision variables have

2We assume that the loss goes to ∞ when constraints are violated
3Note that configurations with a low loss are assigned a higher probability density, and as usual, the constant

normalization factor 1
Z

is ignored as it has no influence on inference (Thrun, 2002).
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probability densities
∏M

m=1 p[A(xm) = Am] and
∏M

m=1 p[R(xm) = Rm], respectively. These three
distributions corresponding to the optimization loss, part assignments and metadata assignments are
then multiplied together (with an independence assumption) to form a single probability distribu-
tion p(x1:M ,A(x1:M ),R(x1:M ))) which captures how well any outcome x1:M ,A(x1:M ),R(x1:M )
achieves the task-relevant affordance. We then infer likely outcomes from this distribution using
Monte Carlo sampling routines to obtain a particle-filter representation (Thrun, 2002). As sam-
pling from arbitrary and highly multi-modal distributions is very much an open problem in statistics
(Gelman et al., 2013; Brooks et al., 2011), our Monte Carlo routines are inevitably task-specific and
ad-hoc in nature. At this point, a sensible question to ask is why the optimization loss ℓ is treated as
a probability distribution 1

Z e−ℓ(x1:M ,A(x1:M ),R(x1:M )) rather than minimizing it directly. For an elab-
oration, please see Sec.A.4.1. If needed, please also see Sec.A.4.2 for a simple example to clarify
and ground the abstract discussion provided here.

6 VISUAL MEMEX: APPLICATIONS TO GRASPING

We now describe how Vimex is applied to vision-based 6DOF grasping with a two-finger parallel-
jaw gripper (Yan et al., 2018; Song et al., 2020; Sundermeyer et al., 2021; Du et al., 2021). First,
we observe that such vision-based grasping scenarios are covered by two mutually exclusive subsets
based on whether the grasp axis (i.e., the line that passes through the two gripper fingers) inter-
sects the camera plane or is parallel to it. We call the former a “visible grasp” since one of the
intended points of contact is always visible to the camera, and the latter an “occluded grasp” since
both intended points of contact are not visible (this is sometimes called a top-down grasp (Mahler
et al., 2017; Kleeberger et al., 2020; Tang et al., 2021; Zhao et al., 2021)). We define two separate
affordances for these two cases. For the visible grasp, there is a single annotation set Apart that
captures the task-relevant surface to be grasped (e.g., the handle of a pan or a drill). The metadata
Rpart attached to these annotations capture their antipodal distances, as defined and collected using
the procedure described in Sec.4. The single decision variable xc corresponds to the intended point
of contact on the object surface, and is parametrized by the end-effector pose Tend ∈ SE(3). The
optimization loss ℓ(xc,A(xc),R(xc)) captures the following objectives and constraints:

• xc should lie on the object surface within mobj,

• The total probability mass
∫
V
p[A(x) = Apart] dx inside a rectangular volume V centered

around xc should be maximized,
• |ŵT n̂c| should be maximized, where ŵ(Tend) is the direction of the line passing through

the two gripper fingers and n̂c(xc) is the outwards surface normal on xc,
• ||xc − 1

2R(xc)n̂c − xmid|| should be minimized, where xmid(Tend) is the midpoint of the
gripper fingers and the overall term tries to center this midpoint half the antipodal distance
away from xc towards the inside of the object,

• The end-effector shouldn’t intersect the visible points on the object surface within mobj.

The associated Monte Carlo routine for inference first samples points xc within mobj, samples
xmid from a gaussian centered at xc − 1

2R(xc)n̂c, samples a rotation angle α around the rotation
axis n̂c, and finally converts the rotation α, n̂c and translation xmid to Tend ∈ SE(3). The set of
(xc,Tend) sampled this way are treated as particles of a particle filter, their weights are computed us-
ing p(xc,A(xc),R(xc)) and then normalized. For the occluded grasp, the same annotation set Apart
as the visible grasp is used. This time, no metadata is attached to these annotations. There is again
a single decision variable xmid parametrized by Tend ∈ SE(3) that corresponds to the midpoint of
the gripper fingers. The optimization loss ℓ(xmid,A(xmid)) captures the following:

• xmid should lie on the object surface within mobj,

• The total probability mass
∫
V
p[A(x) = Apart] dx inside a rectangular volume V centered

around xmid should be maximized,
• The minimum distance between all points on the end-effector and all occluded points within
Vobj (i.e., fobj(x) = zocc from Sec.5.2) should be maximized,

• The end-effector shouldn’t intersect the visible or occluded points within Vobj (i.e., all
points on the end-effector should lie in empty space).
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Any Top-K K-NN

Average Chair Elephant Average Chair Elephant

N=1 73.6 ± 8.3 53.6 ± 3.0 96.8 ± 7.1 58.6 ± 4.8 50.4 ± 0.6 70.9 ± 8.7
N=5 87.4 ± 2.8 63.4 ± 4.1 99.1 ± 0.2 67.5 ± 3.0 51.6 ± 1.3 95.3 ± 5.6
N=10 91.4 ± 1.6 70.1 ± 3.3 99.2 ± 0.2 72.2 ± 2.4 52.9 ± 1.3 97.8 ± 1.0
N=25 94.7 ± 0.8 79.8 ± 2.0 99.3 ± 0.2 78.1 ± 1.5 56.5 ± 1.5 98.4 ± 0.2
N=50 96.3 ± 0.6 85.2 ± 1.4 99.5 ± 0.2 82.0 ± 1.1 59.8 ± 1.2 98.7 ± 0.2
N=100 97.2 ± 0.4 89. 7 ± 1.0 99.5 ± 0.1 85.5 ± 0.8 63.9 ± 0.9 99.4 ± 0.1

Table 1: Classification accuracies on the COCO dataset for nearest-neighbor based object recognition, with
(i.e., Any Top-K) and without (i.e., K-NN) the proposed approach to counter the imbalance between the sizes of
(Dpos,Dneg). N is the number of positive exemplars, Average is the mean accuracy across all categories, while
Chair and Elephant are the hardest and easiest (i.e., most and least visually diverse) categories respectively
(please see Table.3 for complete results on all other categories). Standard deviations are computed over 1000
random samples of the N exemplars. As can be seen, default K-NN performs poorly, and introducing the any
top-K approach increases the classification accuracy above %90 using as few as 10 exemplars, thus addressing
the functional and practical requirements previously identified for a task description framework.

Average Bird Head Bird Body Bird Wing Bird Foot Bird Tail

N=2 , S=14 82.9 66.2 63.5 85.3 68.6 66.4
N=2 , S=7 88.7 81.4 71.1 90.8 89.2 69.6
N=5 , S=7 91.6 90.8 85.3 90.5 86.8 89.7

Table 2: Part localization success rate on the PartImageNet dataset. N is the number of annotated images, S is
the stride used for the spatial descriptor grid (i.e., lower means denser), and Average is the mean success rate
across all part categories. Also shown are five parts of the bird supercategory as they provide a good illustrative
example of the common trends across all categories (please see Table.4 for complete results on all other part
categories). It can be seen that small parts (e.g., Bird Foot) mainly benefit from an increase in spatial descriptor
density while parts with less clear-cut definitions (e.g., more visual variety, like Bird Tail) mainly benefit from
an increase in the number of exemplars. Overall, ∼ 5 annotations are sufficient for a success rate above %90,
addressing the functional and practical requirements previously identified for a task description framework.

The associated Monte Carlo routine for inference first samples points xmid within mobj, samples a
rotation axis ŵ such that ŵT n̂mid is positive, samples a rotation angle α, and finally converts the
rotation α, ŵ and translation xmid to Tend ∈ SE(3). These samples (xmid,Tend) and their weights
p(xmid,A(xmid)) are again represented as a particle filter. The two particle filters that represent
6DOF pose distributions for the visible and occluded grasps are then mixed together and forwarded
to the downstream planning and control pipeline to generate behavior.

7 EXPERIMENTS

This section presents experimental evaluations for the three main capacities provided by Vimex:
object recognition, part localization, and inferring affordances.

Object-recognition: Evaluations use the train-subset of the COCO dataset (Lin et al., 2014), by first
converting it to an image classification dataset. To achieve this, for all object instance masks {mi}
in every image, the background is removed, a tight square is cropped around the mask, and resized
to the standard resolution, resulting in an image where a single object is present over a black back-
ground. The reason we opt for this evaluation method, rather than using COCO as is and running
an instance segmentation evaluation, is because the proposed method in Sec.5.1 solely focuses on
object classification after an off-the-shelf class agnostic segmentation method provides the masks
{mi}. Table.1 shows the resulting classification accuracies for K-NN without balancing and for the
proposed any top-K balancing method. As can be seen, the default K-NN classifier performs poorly,
and introducing the any top-K approach increases the classification accuracy above %90 for most
categories using as few as 10 exemplars to represent a category. Such few numbers of exemplars be-
ing sufficient for good performance suggests that the first step of isolating and standardizing object
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Figure 2: A visualization of the complete Vimex pipeline and the respective results of object recognition,
part localization, and the inference of grasp affordances, on 3 simulated and 3 real-world examples. As can
be seen, part localization generalizes to different poses and inter-category appearance variations to produce
well-behaved distributions, resulting in antipodal grasps that cover the correct object parts without collisions.

instances (i.e., by background removal, cropping, and resizing) makes the subsequent classification
much easier (e.g., compared to the Imagenet K-NN evaluations presented in (Oquab et al., 2023)).

Part Localization: Evaluations use the train-subset of the PartImageNet dataset (He et al., 2022)
with the following Monte Carlo procedure. A single Monte Carlo trial for any part category starts
with randomly sampling N annotation images {Iann,i}Ni=1 and a target image Itarget that all contain
the part, together with their ground truth part masks {mann,i}Ni=1 and mtarget. All spatial descriptors
within {mann,i}Ni=1 are pooled to form the annotation set Apart. The distribution p[A(p) = Apart] is
then computed over all spatial descriptors in Itarget, and the pixel coordinate p with the highest prob-
ability mass is selected. If p lies within mtarget, it means that the target part is localized successfully.
For each part category, 1000 such Monte Carlo trials are run. As shown in Table.2, the resulting part
localization success rates increase well above %90 using as few as 5 annotations to represent a part,
validating the efficacy of the proposed approach.

Inferring Affordances: There are two sets of evaluations: in simulation and in the real-world.
For simulated experiments, a table-top manipulation station in a private dwelling setting is set with
complete textures and realistic rendering, using the Drake simulation environment (Tedrake & the
Drake Development Team, 2019) with assets from ReplicaCAD (Szot et al., 2021). This setup
contains 3 different objects (i.e., cracker-box, pitcher, bleach) placed in 4 different poses on a table,
resulting in 12 scenes in total. All objects are defined using 5 RGBD images captured away from
the scene, and there are two different part annotations per object. Given an RGBD image, the task is
to generate antipodal grasps on the object around each of the two part annotations. Fig.2 visualizes
the highest likelihood grasps and the intermediate steps for a subset of scenes for brevity (please see
Sec.A.4.1 and the supplementary material for the full results). For all 12 scenes, the inferred grasps
are antipodal, free of collisions, and cover the correct parts. For real-world experiments, a similar
table-top manipulation station is set up containing 3 different object categories with 2 instances per
category (i.e., 6 objects in total: black/red pan, red/blue drill, pink/blue glove). All objects are
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Figure 3: Real-world evaluations on 10 different grasping scenarios involving 3 object categories. As can be
seen, a single annotated image provides a sufficient task description that generalizes to different object poses
as well as to category-level variations in shape and appearance.

defined using 10 RGBD images captured away from the scene, and there are 5 part annotations
in total (i.e., pan handle/side, drill handle/top, glove thumb). To test generalization, annotations
solely come from the images of one instance (i.e., black pan, red drill, pink glove) while the task
is to generate grasps given RGBD images of both instances. Fig.2 visualizes the highest likelihood
grasps and the intermediate steps for a subset of the scenes, while Fig.3 shows a robot hand executing
these grasps for all scenes (please see Sec.A.4.1 and the supplementary material for videos). Again,
it can be seen that all 10 grasps are antipodal, free of collisions, and cover the correct parts.

8 CONCLUSION

The main focus of this paper is the task-description problem in robotics, particularly in settings
where the following three considerations apply: i) the robot will be deployed in an a priori unknown
and uninstrumented environment; ii) it will be expected to perform an a priori unknown, open-ended,
and ever-changing set of tasks in that environment; iii) every such task will define its own notions
of objects, parts, and affordances. With these considerations in mind, we proposed a framework
named Vimex, which allows a user to describe arbitrary objects, parts, and affordances involved
in a vision-based task to a robot. This description process is intended to be quick (i.e., no need
to train a neural network), easy (i.e., no specialized equipment is necessary other than a consumer
camera), and efficient (i.e., ∼10 RGB images with scribble annotations are sufficient). Components
of Vimex were evaluated on COCO, PartImageNet, and on simulated and real-world robotic grasping
scenarios. The main direction for future work is to expand the decision variable and metadata
types involved in Vimex such that given RGBD images from a scene, the association and metadata
retrieval processes described here can be employed to assemble together a complete intuitive-physics
simulation (Battaglia et al., 2013) for that scene. Such a simulation can then be utilized as is by
existing planners (Cohn et al., 2023; Toussaint et al., 2022; Garrett et al., 2021) to enable vision-
based decision-making in a POMDP setting (Kaelbling et al., 1998; Botvinick & Toussaint, 2012).
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A APPENDIX

A.1 RELATED WORK (EXPANDED)

A.1.1 CONTROL FROM PIXELS

Reinforcement learning (RL) (Sutton & Barto, 2018; Schulman et al., 2017; Haarnoja et al., 2018)
and behavior cloning (BC) (Billard et al., 2008; Chi et al., 2023; Xie et al., 2023) algorithms excel at
learning a single complex task and can incorporate images as part of their state representations. But
on their own, they do not provide an efficient interface to describe, modify, or combine open-ended
sets of different tasks on the fly (e.g., without implementing a reward/reset mechanism or collecting
∼100 demonstrations to train a model for a few hours). Therefore it may be more suitable to treat
them as parametrizable (i.e., goal-conditioned) skills within a higher task-level planning framework
(Konidaris et al., 2018; 2012; Sutton et al., 1999). Affordances inferred by Vimex can potentially be
employed as an interface for such a task-level planner to pick and parametrize RL/BC based skills
(e.g., see Curtis et al. (2022)), highlighting a synergy between Vimex, Task and Motion Planning
(TAMP) (Toussaint, 2015; Garrett et al., 2021; Toussaint et al., 2022), and RL/BC.

Another related approach is using vision-language-action models (VLAs) (Brohan et al., 2023;
Driess et al., 2023; Ahn et al., 2022; Shridhar et al., 2022). These models represent images, text, and
actions using the same format (e.g., explicitly as input-output tokens of a transformer or implicitly in
the joint representation space of multiple encoders), and then capture their co-occurrence statistics
with a probabilistic model trained over a very large (e.g., internet-scale) dataset. Generating samples
from this distribution conditioned on the robot’s current context and a task description (represented
in the same format as images, text, and actions) in turn can produce a wide range of sensible behav-
ior. While this approach shows very impressive results, these capacities are mostly emergent and not
interpretable. In comparison, affordances in Vimex are inferred from probability densities that are
built piece-by-piece from exemplars and optimization losses, making the overall framework more
interpretable and easy to debug, understand, and control. That being said, inference and sampling
on these arbitrarily complex probability densities is a challenging problem, and the statistical con-
tingencies captured by VLAs can help initialize and guide this process to make it faster and more
effective (see Fang et al. (2023); Yang et al. (2023) for relevant ideas).

A.1.2 IMAGE CLASSIFICATION AND SEGMENTATION

A standard approach to image classification (Krizhevsky et al., 2012; He et al., 2016; Dosovitskiy
et al., 2020) or segmentation (He et al., 2017; Cheng et al., 2021; Jain et al., 2023) is to train a model
on the fixed class definitions provided by a dataset (Deng et al., 2009; Zhou et al., 2019). This
approach may not be the most suitable task-description method for robotics applications, because
of the observations and requirements outlined in Sec.1. Another approach is that of foundation
models (Bommasani et al., 2021) trained on internet scale data that can be prompted (Gu et al.,
2023) to adapt them for new tasks without modifying their weights. Of particular importance to us
are (Oquab et al., 2023; Kirillov et al., 2023), as the statistics they capture about objectness and
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co-occurance probabilities between image regions (see Lowe (1985)) are central to the way Vimex
localizes object parts and retrieves the associated metadata.

A.2 PRELIMINARIES

A.2.1 GLOBAL AND SPATIAL DESCRIPTORS OF DINOV2

The inner-product zT1 z2 between the spatial descriptors of DINOv2 implements a semantically
meaningful nearest-neighbors similarity metric for image retrieval and patch matching. The training
process can provide a qualitative explanation for this observation. It randomly samples patches from
a batch of images retrieved from internet-scale data. Then, it minimizes a loss function that causes
the inner products between descriptors of patches that come from the same image to be closer com-
pared to those that come from different images. This means that at the end of training, zT1 z2 acts
similar to an unnormalized probability density that captures the likelihood of two patches being co-
observed within the same image, bringing to mind the “probability of non-accidental co-occurance”
described by Lowe (1985) and the aspect-graphs described by Koenderink & Van Doorn (1979).
Since analogous sets of points on two different physical entities from the same semantic category
have similar co-observation probabilities, the inner-product distributions within these two sets also
end up being similar. And because the combined effects of internet-scale data, limited representa-
tion capacity, and training regularization create an incentive for compression (Tishby & Zaslavsky,
2015), these two sets of descriptors end up being packed closely rather than redundantly replicating
their similar metric structure on different parts of the descriptor space.

A.3 VISUAL MEMEX: USER INPUTS FOR TASK-DESCRIPTION

A.3.1 MEASURING ANTIPODAL DISTANCES

The user first retrieves a physical instance of an object (e.g., their personal cup, or a strawberry
from the field). They then capture multiple RGB images of it from different viewpoints, which are
automatically converted to a metrically accurate 3D mesh of the object through a standard pipeline
(Schonberger & Frahm, 2016; Cignoni et al., 2008). Every vertex vi on this object mesh is associated
with a spatial descriptor zi by projecting it to the nearest image and computing the spatial descriptor
at this projection coordinate. Finally, the antipodal distance di is computed by following the surface
normal ni inwards starting from vertex vi until the first intersection with the object surface on the
other side. This way, a record (zi,Ri = {di}) is constructed from every vertex vi. This process can
be iterated to scan an arbitrary number of objects (i.e. to improve category-level generalization), and
the associated records are pooled together to form the memory M = {(zi,Ri)}.

A.4 VISUAL MEMEX: INFERENCE

A.4.1 INFERRING AFFORDANCES

First, note that the minimum of the optimization loss directly corresponds to a maximum likelihood
estimate for the latter density. Still, explicitly representing the entire distribution as a particle filter
rather than a single point estimate has the advantage of allowing a downstream planning and control
pipeline to reason about uncertainty, particularly when the loss is multimodal and different modes
of behavior are valid. Furthermore, it is often the case that the loss function we transcribe is not
a perfect description of the behavior we want, or we do not have access to ground-truth objectives
or dynamics but instead work with surrogates or approximate models. In such cases, sensible but
not necessarily globally optimal samples are still valuable as they can be tested in the real-world to
debug and improve all components (e.g., task-description input from the user, the optimization loss
definition) through trial and error. For more elaboration on these motivations as well as theoretical
connections between sampling and optimization, see (Cheng, 2020).

A.4.2 INFERRING AFFORDANCES: A CONCRETE EXAMPLE

To give a concrete example, consider a robot that should spread jam over sliced bread. It first needs
to place a knife on the bread over a region with jam, and then move it on a linear trajectory towards
a region without jam. To describe this task using Vimex, the user manually spreads jam on one
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half of a bread in their kitchen, takes an image of this example demonstration, and provides scribble
annotations {Ajam,+,Ajam,−} on two regions with and without jam. There is no metadata attached
to these regions for this simple example. This single demonstration is sufficient for later localizing
{Ajam,+,Ajam,−} on any slice of bread in anyone’s kitchen. For inference, the visual decision vari-
ables {xm}3m=1 correspond to the start, middle, and end points of a 3D line, and the optimization
loss ℓ(x1:3,A(x1:3)) captures the following objectives and constraints: i) A(x1) = Ajam,+ should
hold, ii) A(x3) = Ajam,− should hold, iii) all x1:3 should lie on the object surface within mobj, iv)
||x1 −x3|| should be maximized. The associated Monte Carlo routine for inference simply samples
random pairs of points within mobj, computes x1:3 for the corresponding line segment, treats all
sampled {x1:3} as particles of a particle filter, evaluates p(x1:3,A(x1:3)) for each particle to com-
pute their weights, and normalizes the sum of their weights to be 1. The single line with the highest
weight can then be followed by the end effector using an appropriate controller, or the entire particle
filter can be used by a more complex pipeline that makes use of uncertainty.

A.5 EXPERIMENTS

A.5.1 INFERRING GRASP AFFORDANCES

Figure 4: The simulation environment is built using Drake and ReplicaCAD. It contains a manipulation station
placed in an apartment and a scanning table.

Fig.4 shows images of the simulation environment. For grasp outputs of all 12 simulated scenes and
grasping videos of all 10 real-world scenes, please see the folders “/experiments/sim” and “/experi-
ments/real world” in the supplementary material.

A.5.2 COMPLETE EVALUATIONS ON COCO AND PARTIMAGENET

Please find below the tables that list complete accuracy evaluations for all COCO categories and
complete part localization success rate evaluations for all PartImageNet categories.
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N=1 N=5 N=10 N=25 N=50 N=100

person 65.5 ± 9.2 85.6 ± 3.9 91.5 ± 1.4 95.3 ± 0.7 96.5 ± 0.6 97.0 ± 0.4
bicycle 85.0 ± 11.0 96.3 ± 0.8 97.1 ± 0.5 97.8 ± 0.4 98.3 ± 0.5 98.4 ± 0.5
car 59.6 ± 6.6 76.9 ± 3.5 83.8 ± 2.2 90.3 ± 1.4 93.7 ± 0.7 95.6 ± 0.5
motorcycle 90.7 ± 9.5 97.7 ± 0.7 98.3 ± 0.5 98.8 ± 0.3 99.0 ± 0.2 99.1 ± 0.2
airplane 63.9 ± 4.5 89.8 ± 3.8 96.4 ± 1.8 98.7 ± 0.5 99.1 ± 0.2 99.2 ± 0.2
bus 77.5 ± 10.9 93.7 ± 1.7 95.6 ± 1.2 97.3 ± 0.5 98.0 ± 0.3 98.4 ± 0.2
train 72.3 ± 9.8 92.4 ± 3.4 96.2 ± 1.4 98.1 ± 0.5 98.7 ± 0.3 99.1 ± 0.2
truck 59.3 ± 5.0 79.0 ± 3.5 87.1 ± 2.5 93.9 ± 0.9 95.9 ± 0.4 96.9 ± 0.3
boat 65.3 ± 8.6 84.7 ± 3.2 90.1 ± 1.4 93.4 ± 0.9 95.1 ± 0.7 96.3 ± 0.6
fire hydrant 98.9 ± 4.9 99.6 ± 0.1 99.6 ± 0.2 99.6 ± 0.1 99.5 ± 0.2 99.5 ± 0.2
stop sign 96.7 ± 6.8 98.8 ± 0.5 99.1 ± 0.5 99.4 ± 0.4 99.7 ± 0.3 99.8 ± 0.2
bench 73.2 ± 11.3 85.7 ± 2.7 88.8 ± 1.5 92.3 ± 1.3 94.4 ± 0.8 95.8 ± 0.5
bird 54.8 ± 2.7 68.4 ± 3.7 79.4 ± 2.9 91.5 ± 1.7 96.4 ± 1.1 98.3 ± 0.7
cat 64.2 ± 5.7 89.7 ± 4.4 96.4 ± 1.5 98.6 ± 0.4 98.9 ± 0.2 99.0 ± 0.2
dog 59.1 ± 4.4 79.6 ± 2.9 88.4 ± 2.1 95.9 ± 0.9 97.8 ± 0.4 98.5 ± 0.2
horse 84.1 ± 8.1 97.8 ± 1.5 98.9 ± 0.4 99.2 ± 0.1 99.3 ± 0.1 99.3 ± 0.2
sheep 83.2 ± 13.5 93.9 ± 1.2 95.6 ± 1.2 97.0 ± 1.1 97.9 ± 0.7 98.4 ± 0.4
cow 92.3 ± 9.5 97.5 ± 0.5 98.1 ± 0.4 98.4 ± 0.3 98.7 ± 0.2 98.7 ± 0.3
elephant 96.8 ± 7.1 99.1 ± 0.2 99.2 ± 0.2 99.3 ± 0.2 99.5 ± 0.2 99.5 ± 0.1
bear 85.7 ± 9.4 96.5 ± 1.2 97.9 ± 0.7 98.5 ± 0.4 99.0 ± 0.3 99.3 ± 0.3
zebra 98.9 ± 0.9 99.6 ± 0.2 99.8 ± 0.1 99.9 ± 0.1 99.9 ± 0.1 99.9 ± 0.1
giraffe 98.5 ± 6.5 99.8 ± 0.1 99.9 ± 0.1 99.8 ± 0.1 99.8 ± 0.1 99.8 ± 0.1
umbrella 92.5 ± 11.1 97.4 ± 0.3 97.8 ± 0.3 98.1 ± 0.2 98.3 ± 0.2 98.6 ± 0.3
suitcase 65.8 ± 9.6 82.3 ± 3.0 86.7 ± 1.8 90.7 ± 1.1 93.1 ± 1.0 94.9 ± 0.7
cup 59.9 ± 5.5 80.9 ± 5.7 88.4 ± 2.6 93.3 ± 1.0 95.0 ± 0.8 95.9 ± 0.7
bowl 54.1 ± 3.6 65.7 ± 4.4 73.8 ± 3.7 84.4 ± 1.4 89.3 ± 1.0 92.2 ± 0.7
banana 76.0 ± 13.9 92.2 ± 2.7 94.2 ± 1.7 97.0 ± 1.1 98.1 ± 0.7 98.5 ± 0.4
sandwich 56.6 ± 5.0 72.5 ± 5.0 81.7 ± 4.1 89.8 ± 1.8 93.3 ± 1.1 95.5 ± 0.7
orange 82.6 ± 11.2 96.0 ± 1.6 97.5 ± 0.7 98.2 ± 0.6 98.6 ± 0.5 99.0 ± 0.6
broccoli 82.6 ± 12.3 94.8 ± 2.4 96.8 ± 1.4 98.2 ± 0.6 98.7 ± 0.5 99.0 ± 0.5
hot dog 77.1 ± 16.9 93.5 ± 2.0 94.7 ± 0.6 95.8 ± 0.6 96.5 ± 0.6 97.3 ± 0.7
pizza 60.3 ± 7.1 84.1 ± 5.7 92.1 ± 3.4 97.5 ± 1.0 98.3 ± 0.2 98.1 ± 0.2
donut 68.4 ± 12.2 86.8 ± 4.2 91.1 ± 1.8 95.2 ± 1.2 97.3 ± 0.8 97.9 ± 0.6
cake 54.5 ± 3.8 66.6 ± 5.1 75.5 ± 4.0 85.7 ± 1.7 90.4 ± 1.1 93.3 ± 0.7
chair 53.6 ± 3.0 63.4 ± 4.1 70.1 ± 3.3 79.8 ± 2.0 85.2 ± 1.4 89.7 ± 1.0
couch 60.1 ± 8.0 76.2 ± 4.3 81.6 ± 2.3 87.3 ± 1.7 90.9 ± 1.2 93.1 ± 0.6
potted plant 64.9 ± 9.6 86.6 ± 4.5 92.4 ± 1.9 96.2 ± 0.8 97.4 ± 0.5 98.0 ± 0.5
bed 65.2 ± 10.8 81.3 ± 4.2 86.2 ± 2.2 90.0 ± 1.2 92.4 ± 0.7 94.0 ± 0.4
dining table 52.1 ± 1.7 59.2 ± 3.0 66.1 ± 2.4 76.9 ± 2.0 84.5 ± 1.4 89.4 ± 1.0
toilet 95.1 ± 2.4 97.4 ± 0.5 97.8 ± 0.5 98.6 ± 0.3 98.9 ± 0.3 99.0 ± 0.2
tv 61.3 ± 7.2 79.3 ± 5.8 87.1 ± 2.7 92.0 ± 0.8 94.3 ± 0.6 95.9 ± 0.5
laptop 74.5 ± 11.6 90.5 ± 3.1 93.9 ± 1.1 96.1 ± 0.6 97.0 ± 0.3 97.4 ± 0.3
keyboard 80.2 ± 11.6 95.6 ± 2.9 97.5 ± 1.7 98.9 ± 0.4 99.2 ± 0.4 99.3 ± 0.3
cell phone 81.1 ± 11.0 94.2 ± 1.5 95.9 ± 1.1 97.2 ± 0.6 97.8 ± 0.5 97.9 ± 0.7
oven 64.4 ± 9.3 82.9 ± 4.6 87.9 ± 1.8 91.7 ± 1.1 93.9 ± 0.9 95.4 ± 0.7
sink 69.0 ± 10.8 85.0 ± 2.7 88.1 ± 1.5 91.0 ± 1.1 92.5 ± 1.1 93.9 ± 1.3
refrigerator 72.8 ± 10.1 94.1 ± 3.7 96.2 ± 1.7 97.5 ± 0.4 98.1 ± 0.3 98.3 ± 0.2
book 60.6 ± 7.5 80.7 ± 4.8 86.2 ± 1.9 90.4 ± 0.9 92.2 ± 0.7 93.7 ± 0.7
clock 88.4 ± 11.7 96.5 ± 0.6 97.1 ± 0.8 97.9 ± 0.9 98.4 ± 0.8 98.7 ± 0.7
vase 67.2 ± 7.6 85.7 ± 4.5 92.2 ± 2.6 96.3 ± 0.8 97.4 ± 0.7 98.1 ± 0.6
teddy bear 88.3 ± 13.5 96.9 ± 0.5 97.3 ± 0.3 97.8 ± 0.3 98.0 ± 0.3 98.3 ± 0.3

Table 3: Classification accuracies on all categories of the COCO dataset for nearest-neighbor based object
recognition, using the proposed Any Top-K approach for balancing with K=100.
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N=2 , S=14 N=2 , S=7 N=5 , S=7

Quadruped Head % 82 % 93 % 94
Quadruped Body % 86 % 92 % 93
Quadruped Foot % 85 % 93 % 96
Quadruped Tail % 73 % 82 % 85
Biped Head % 86 % 87 % 90
Biped Body % 65 % 77 % 81
Biped Hand % 82 % 87 % 87
Biped Foot % 80 % 81 % 85
Biped Tail % 83 % 84 % 92
Fish Head % 97 % 100 % 99
Fish Body % 96 % 97 % 98
Fish Fin % 87 % 89 % 92
Fish Tail % 94 % 97 % 93
Bird Head % 66 % 81 % 91
Bird Body % 64 % 71 % 85
Bird Wing % 85 % 91 % 91
Bird Foot % 69 % 89 % 87
Bird Tail % 66 % 70 % 90
Snake Head % 86 % 90 % 93
Snake Body % 98 % 100 % 98
Reptile Head % 88 % 94 % 99
Reptile Body % 91 % 97 % 98
Reptile Foot % 91 % 99 % 93
Reptile Tail % 83 % 89 % 96
Car Body % 99 % 100 % 100
Car Tier % 90 % 98 % 98
Car Side Mirror % 44 % 54 % 60
Bicycle Body % 89 % 90 % 90
Bicycle Head % 90 % 91 % 94
Bicycle Seat % 66 % 82 % 85
Bicycle Tier % 96 % 98 % 98
Boat Body % 99 % 99 % 100
Boat Sail % 97 % 96 % 100
Aeroplane Head % 69 % 90 % 99
Aeroplane Body % 91 % 93 % 98
Aeroplane Engine % 66 % 72 % 79
Aeroplane Wing % 78 % 77 % 76
Aeroplane Tail % 92 % 93 % 91
Bottle Mouth % 79 % 88 % 92
Bottle Body % 93 % 99 % 99

Table 4: Part localization success rates for all categories of the PartImageNet dataset.
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