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ABSTRACT

Large Language Models (LLMs) frequently produce hallucinations, which typ-
ically refer to the information that appears reasonable but is false or inaccurate
generated by LLMs. On the other hand, hallucinations aren’t entirely negative.
Exploring the notion of good hallucinations that may contribute to creativity and
innovation in LLMs. We propose a new metric to assess the quality of creativ-
ity in hallucination, focusing on correctness, consistency, and reasoning diversity.
We sampled LLM’s responses many times and used semantic clustering to indicate
the good hallucination sample, trying to evaluate the responses using our proposed
metric. Our experiments explore different prompting strategies and hyperparam-
eter configurations, providing comprehensive results based on these metrics to
investigate their impact on creativity. Preliminary results show that LLMs can
generate creative responses from hallucinations while maintaining a low rate of
factual errors. This research offers a more fine-grained and unique perspective on
hallucinations in LLMs, proposing a possible strategy to harness the creative po-
tential in hallucinations to raise awareness that hallucinations are not necessarily
an absolutely negative phenomenon.

“Maybe hallucinations are just another reality that we don’t see most of the time.”
− Lynne Ewing

1 INTRODUCTION

Large Language Models (LLMs), such as GPT-4o and Claude 3.5 Sonnet, have significantly ad-
vanced the field of Natural Language Processing (NLP) by demonstrating remarkable capabilities
in generating human-like text (Chen et al., 2024; 2023), performing complex language tasks (Wei
et al., 2022), and engaging in coherent dialogues. These models have been instrumental across
various domains, including content creation, code synthesis, education, and conversational agents,
transforming academic research and industrial applications (Shen et al., 2023; Ge et al., 2023).

Despite these advancements, the persistent challenge of hallucinations in LLMs remains a significant
concern. Hallucinations refer to factually incorrect, logically inconsistent, or nonsensical outputs,
yet sometimes appear to be true (Farquhar et al., 2024). Such outputs are typically unwelcome, es-
pecially in critical applications like legal consultation, medical advice, or scientific research, where
accuracy and reliability are of utmost importance (Gunjal et al., 2024). As a result, significant efforts
have been made to mitigate hallucinations through fine-tuning with accurate datasets, improving
output consistency, and using post-processing methods like fact-checking (Guan et al., 2024).

We propose an emerging perspective that suggests not all hallucinations are entirely detrimental.
In contexts that emphasize creativity and innovation, hallucinations can contribute positively by
introducing novel ideas or unconventional reasoning paths. Specifically, when a LLM arrives at
a correct answer through an alternative reasoning process, it may offer valuable insights to foster
creative problem-solving ability in a special way. After presenting this perspective, we further raise
the research question in our study: Can certain hallucinations, instead of being purely negative, play
a constructive role in fostering creativity while ensuring accuracy and maintaining correctness?

In this study, we explore the notion of good hallucinations—instances where LLMs generate dif-
ferent reasoning paths that still lead to correct answers. Examining these alternative and dynamic
reasoning processes, we aim to understand how LLMs can contribute to creative thinking without
compromising factual accuracy. The Torrance Tests of Creative Thinking (TTCT) is the most widely
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used and extensively researched creativity assessment across fields like psychology, with substantial
data supporting its reliability and validity (Torrance, 1966; Hass et al., 2016). To this end, we pro-
pose metrics to evaluate the quality of these good hallucinations, focusing on accuracy, coherence,
and reasoning diversity, which closely align with the TTCT in psychology (Zhao et al., 2024).

We evaluated multiple times generated responses and employed semantic clustering tech-
niques (Randriamihamison et al., 2021) to quantify the diversity and creativity of the reasoning
paths. Our research explores various prompting techniques and hyperparameter configurations based
on psychological creativity metrics to understand their impact on generating creative yet accurate
outputs. Specifically, we examine the impact of different prompting strategies and settings, such as
temperature adjustments to change certainty, on the diversity and correctness of the generated rea-
soning paths to determine which approach better balances creative freedom with factual precision.

• Introduction of the concept good hallucination: We define and explore the good hallucinations
that, despite diverging in reasoning paths, contribute to creativity without sacrificing accuracy.

• Development of metrics for quality assessment of good hallucination: We propose metrics
focusing on correctness, consistency, and reasoning diversity, align with the TTCT in psychology.
Semantic clustering techniques are utilized to evaluate these metrics quantitatively.

• Experimental analysis of prompting techniques and hyperparameters: We conduct extensive
experiments to understand how different prompting strategies and hyperparameter settings like
temperature adjusting influence the generation of creative yet accurate outputs in LLMs.

This research highlights these positive aspects of hallucinations and offers a refined perspective on
their role in LLMs’ outputs. We hope strategies to leverage good hallucinations in applications that
benefit from creative problem-solving, thereby enhancing the flexibility and utility of AI systems.

2 METHODOLOGY

Our methodology evaluates the creativity of Large Language Models (LLMs) by introducing a novel
metric that combines both the accuracy and the diversity of their generated reasoning paths. This
is achieved by sampling multiple outputs from the LLM, clustering them based on semantic simi-
larity, and calculating a composite creativity score that encapsulates both correctness and variety in
reasoning, as illustrated in Figure 1.

2.1 SEMANTIC CLUSTERING FOR REASONING PATHS

To assess the diversity of reasoning paths, we generate multiple outputs from the LLM and clus-
ter these outputs using two different methods: (1) clustering based on text embeddings, and (2)
clustering via LLM-based prompting.

2.1.1 GENERATING MULTIPLE OUTPUTS

We prompt the LLM with a specific question or task and generate N different reasoning paths by
sampling its output multiple times using different decoding methods. Formally, let:

Rall = {r1, r2, . . . , rN},
represent the complete set of reasoning paths generated by the LLM, where each ri corresponds to
an individual reasoning path responding to the prompt P .

Given that incorrect responses introduce potential noise and do not contribute meaningfully to the
assessment of creativity, we exclude all reasoning paths leading to incorrect final answers. This
filtering process ensures that only valid reasoning paths are considered for subsequent analysis.

We define the filtered set of reasoning pathsR as:

R = {ri ∈ Rall | Answer(ri) = Correct Answer},
The number of correct reasoning paths is then Ncorrect = |R|.
By restricting our focus to correct reasoning paths, we effectively mitigate the impact of incorrect
or potentially misleading outputs, thereby enhancing the robustness of our creativity analysis. This
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Figure 1. An overview of the proposed metric for evaluating LLM creativity. The process involves generating
multiple reasoning paths, transforming them into embeddings, clustering based on semantic similarity, and
computing a composite creativity score that combines accuracy and diversity metrics.

approach is consistent with the underlying premise that creative reasoning holds value primarily
when it culminates in accurate and valid conclusions.

2.1.2 METHOD 1: CLUSTERING VIA TEXT EMBEDDINGS

In this approach, each reasoning path ri ∈ R is mapped to a high-dimensional vector representa-
tion through a pre-trained text embedding model ϕ. The embeddings for each reasoning path are
expressed as:

ei = ϕ(ri), ∀i ∈ {1, 2, . . . , Ncorrect},

We perform clustering on the set of embeddings E = {e1, e2, . . . , eNcorrect} using agglomerative
hierarchical clustering with a specified distance threshold dthresh. The process begins by treating
each embedding as an individual cluster, then iteratively merges the two closest clusters based on a
chosen distance metric, such as Euclidean distance or cosine similarity. Clustering continues until
the distance between all remaining clusters exceeds the threshold dthresh.

This method allows clusters to form based on intrinsic similarities among the reasoning paths
without predefining the number of clusters. The set of clusters obtained is denoted as C =
C1, C2, . . . , CK , where K is determined by the clustering algorithm based on the data and the
specified threshold.

2.1.3 METHOD 2: CLUSTERING VIA LLM PROMPTING

Alternatively, we leverage the LLM’s understanding to cluster the reasoning paths directly through
a specially designed prompt. We construct a prompt that instructs the LLM to classify the different
reasoning paths and return the clusters in a structured format.

An example prompt is:
You are a helpful assistant that can classify different
reasoning paths. Given the following reasoning paths, please
group them based on their underlying reasoning strategies and
return the clusters in JSON format.

We input the filtered set of reasoning paths R into the LLM along with the above prompt. The
LLM processes this information and outputs the clusters C = C1, C2, . . . , CK , where each cluster
contains reasoning paths that share similar strategies.
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2.1.4 ALGORITHM

The complete process for both methods, including the filtering step and hierarchical clustering, is
outlined in Algorithm 1.

Algorithm 1 Semantic Clustering of LLM Responses

Require: LLM modelM, prompt P , number of samples N , embedding function ϕ, distance thresh-
old dthresh (for Method 1), clustering prompt Pcluster (for Method 2)

Ensure: Clusters of reasoning paths C = C1, C2, . . . , CK

1: Generate reasoning paths:
2: InitializeRall← ∅
3: for i = 1 to N do
4: Generate reasoning path ri ←M(P ) with stochastic sampling
5: Rall← Rall ∪ ri
6: end for
7: Filter out incorrect answers:
8: R ← ri ∈ Rall | Answer(ri) = Correct Answer
9: if Using Method 1 (Hierarchical Clustering with Distance Threshold) then

10: Compute embeddings E ← ϕ(ri) | ri ∈ R
11: Perform agglomerative hierarchical clustering on E with distance threshold dthresh to obtain

clusters C
12: else if Using Method 2 (LLM Prompting) then
13: Construct clustering prompt Pcluster including reasoning pathsR
14: Obtain clusters C ←M(Pcluster)
15: end if

2.2 CREATIVITY METRIC

We propose a novel creativity metric that combines accuracy and diversity into a unified score. This
metric is meticulously designed to reflect both the correctness of the responses and the variety in
the reasoning paths generated by the LLM, thereby providing a comprehensive assessment of the
model’s creative capabilities.

2.2.1 ACCURACY COMPONENT

The accuracy component A is defined as the proportion of generated responses that are correct:

A =
1

N

N∑
i=1

I
[
Answer(ri) = Correct Answer

]
where N is the total number of generated responses, I[·] is the indicator function, and Answer(ri)
extracts the final answer from reasoning path ri. This component effectively measures the LLM’s
ability to produce correct answers, which is a fundamental aspect of its performance.

2.2.2 DIVERSITY COMPONENT

The diversity component, denoted as D, measures the spread and balance of reasoning paths across
different clusters obtained from the semantic clustering process. It is calculated using the normalized
entropy of the cluster distribution:

D = − 1

logK

K∑
k=1

pk log pk

where K is the total number of clusters resulting from the clustering algorithm applied to the correct
responses, pk represents the proportion of correct responses in cluster Ck, defined as:

pk =
|Ck|

Ncorrect

4
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where |Ck| is the number of correct responses in cluster Ck and Ncorrect is the number of correct
responses after filtering out incorrect answers. This formulation ensures that D ∈ [0, 1], with higher
values indicating greater diversity among the reasoning paths.

2.2.3 UNIFIED CREATIVITY SCORE

The unified creativity score C synthesizes the accuracy and diversity components into a single scalar
value using a weighted geometric mean:

C = (A+ ϵ)α × (D + ϵ)1−α

where α ∈ [0, 1] controls the trade-off between accuracy and diversity, and ϵ is a small constant
added to prevent multiplication by zero.

2.2.4 ALGORITHM

The procedure for computing the creativity score is detailed in Algorithm 2.

Algorithm 2 Computation of the Creativity Score

Require: Set of reasoning paths Rall, total number of responses N , weighting parameter α, small
constant ϵ

Ensure: Creativity score C
1: Filter correct responses:
2: R ← ri ∈ Rall | Answer(ri) = Correct Answer
3: Ncorrect ← |R|
4: Compute accuracy:

A← Ncorrect
N

5: Cluster correct reasoning paths to obtain C = C1, C2, . . . , CK

6: Compute cluster proportions:

pk ←
|Ck|

Ncorrect
, ∀k ∈ {1, 2, . . . ,K}

7: Compute diversity:
D ← − 1

logK

∑K
k=1 pk log pk

8: Compute creativity score:
C ← (A+ ϵ)α × (D + ϵ)1−α

2.2.5 INTERPRETATION AND PARAMETER SELECTION

The creativity score C allows for balancing accuracy and diversity through the parameter α. When
α = 1, C focuses purely on accuracy. At α = 0, the score shifts to prioritize diversity among correct
responses. For intermediate values of α, the score incorporates both accuracy and diversity, with the
specific weight determined by α. For example, choosing α = 0.75 would prioritize accuracy while
still considering diverse reasoning strategies.

2.3 IMPLEMENTATION DETAILS

For each prompt P , we generated 15 reasoning paths to maintain computational feasibility while
capturing diverse strategies. Using the baseline LLM, we applied nucleus sampling with a top-
p (Holtzman et al., 2020) value of 0.9 to introduce variability without sacrificing coherence. The
clustering approach used agglomerative hierarchical clustering (Randriamihamison et al., 2021) with
cosine distance. We set a threshold of 0.3 for merging clusters, determined through preliminary
experiments to balance clustering granularity.

3 EXPERIMENTS

We employed a diverse range of datasets to comprehensively assess the performance of various
Large Language Models (LLMs), such as Llama-3 (Dubey et al., 2024), across different reasoning
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GSM8k MultiArithLLM
Acc Div α = 0.25 α = 0.5 α = 0.75 Acc Div α = 0.25 α = 0.5 α = 0.75

Llama 3-8B 77.26 73.56 72.77 72.53 72.79 96.18 85.53 87.48 89.65 92.08
Llama 3.1-8B 82.93 81.26 80.66 80.50 80.73 59.71 86.32 76.81 69.53 63.85
Mistral 0.2-7B 44.90 58.91 52.66 48.08 44.73 71.92 79.18 75.41 72.79 71.06
Qwen 2.5-7B 88.27 81.10 81.79 82.81 84.14 98.84 83.80 86.34 89.06 92.03

Table 1. Main results on math reasoning datasets. The largest value in each column is in bold, and the second
largest is underlined.

tasks. These datasets are divided into three categories: mathematical reasoning, creative problem-
solving, and commonsense and strategic question-answer tasks. Below, we introduce each dataset
and provide a brief summary in Section3.1 of its task and purpose within its respective category.

3.1 DATASET DESCRIPTION

3.1.1 MATHEMATICAL REASONING DATASETS

GSM8K: The Grade School Math 8K (GSM8K) dataset (Cobbe et al., 2021) comprises 8,500 high-
quality grade school math word problems. Each problem requires the solver to perform multi-step
reasoning and numerical calculations to arrive at the correct solution.

MultiArith: MultiArith (Kojima et al., 2023) is a dataset containing multi-step arithmetic word
problems. These problems involve sequential numerical reasoning, where multiple arithmetic oper-
ations must be executed in the correct order to solve the problem.

These datasets assess the LLM’s ability to understand mathematical concepts and perform precise
arithmetic operations.

3.1.2 CREATIVE PROBLEM-SOLVING DATASETS

RiddleSense: RiddleSense (Lin et al., 2021) is a dataset featuring challenging riddles that demand
creative thinking and inferential reasoning. The riddles often include figurative language, analogies,
and double meanings, requiring abstract interpretation beyond literal comprehension.

MacGyver: The MacGyver (Tian et al., 2024) dataset explores the creative problem-solving capa-
bilities of modern LLMs in a novel constrained setting. It consists of over 1,600 real-world problems
deliberately designed to trigger innovative usage of objects and necessitate out-of-the-box thinking.
The tasks require the model to devise creative solutions using limited resources, focusing on intricate
aspects of physical reasoning, planning, and unconventional thinking.

These datasets evaluate the LLM’s capacity for creative thinking and its ability to generate innovative
solutions to unconventional problems.

3.1.3 COMMONSENSE AND STRATEGIC REASONING DATASETS

StrategyQA: StrategyQA (Geva et al., 2021) is a question-answering dataset where each question
necessitates implicit reasoning steps and strategic thinking. The model must construct multi-hop
reasoning paths and apply strategic knowledge to derive the correct answers.

CommonsenseQA: CommonsenseQA (Talmor et al., 2019) is a multiple-choice question-answering
dataset designed to test the model’s ability to utilize commonsense knowledge. The questions cover
a wide range of everyday situations, requiring the model to select the most plausible answer based
on general world understanding.

These datasets test the LLM’s understanding of commonsense knowledge and its ability to perform
strategic, multi-hop reasoning.
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RiddleSense MacGyverLLM
Acc Div α = 0.25 α = 0.5 α = 0.75 Acc Div α = 0.25 α = 0.5 α = 0.75

Llama 3-8B 43.21 81.76 67.68 57.09 48.99 43.67 40.44 41.12 41.82 42.55
Llama 3.1-8B 59.89 86.20 76.86 69.68 64.05 46.34 43.13 45.42 45.73 46.03
Mistral 0.2-7B 50.77 71.10 62.99 57.26 53.16 37.61 34.72 35.31 35.93 36.58
Qwen 2.5-7B 64.84 76.65 71.94 68.53 66.05 45.26 42.21 42.95 43.71 44.48

Table 2. Main results on creative problem-solving datasets.

CommonsenseQA StrategyQALLM
Acc Div α = 0.25 α = 0.5 α = 0.75 Acc Div α = 0.25 α = 0.5 α = 0.75

Llama 3-8B 41.15 78.75 64.87 54.51 46.65 62.09 77.51 71.51 67.05 63.72
Llama 3.1-8B 69.63 85.38 79.76 75.40 71.97 73.53 82.54 78.54 75.71 73.77
Mistral 0.2-7B 64.19 77.97 72.50 68.56 65.70 57.65 69.02 63.93 60.40 58.00
Qwen 2.5-7B 80.87 81.58 80.41 79.83 79.71 70.50 73.79 71.51 70.07 69.27

Table 3. Main results on commonsense and strategic datasets. The largest value in each column is in bold, and
the second largest is underlined.

3.2 MAIN EXPERIMENT

In this section, we present the core experiments conducted to evaluate the performance of the se-
lected Large Language Models (LLMs) across various tasks. The primary objective is to assess the
models’ overall capabilities using the established creativity metric.

For each dataset, we generated multiple outputs per prompt. Specifically, we sampled 15 reasoning
paths for each question to capture the diversity of possible solutions. The models were evaluated
using the proposed creativity metric, which combines accuracy and diversity into a unified score.

Results. As shown in Tables 1, 2, and 3, Qwen 2.5-7B (Hui et al., 2024) achieves the high-
est accuracy in math reasoning (GSM8K: 88.27%, MultiArith: 98.84%) and commonsense tasks
(CommonsenseQA: 80.87%), highlighting its strength in precise, knowledge-driven tasks. Llama
3.1-8B (Dubey et al., 2024) excels in strategic reasoning and creative problem-solving, scoring
highest in StrategyQA (73.53%) and MacGyver (46.34%), while also leading in diversity on Rid-
dleSense (86.20%). Llama 3-8B and Mistral 0.2-7B (Jiang et al., 2023) perform competitively but
generally lower, with Mistral 0.2-7B trailing in accuracy across most datasets. The results show that
Qwen 2.5-7B and Llama 3.1-8B stand out for their strong performance across different reasoning
and problem-solving tasks.

3.3 HYPERPARAMETER SENSITIVITY

In this subsection, we explore how different hyperparameter settings impact the outputs of the Large
Language Models (LLMs). Specifically, we focus on two key parameters: the temperature in the
sampling process and the inference strategies employed during text generation. We conduct experi-
ments using the Llama 3.1-8B model on the GSM8K and StrategyQA datasets to evaluate the effects
of these parameters on creativity and accuracy.

3.3.1 EFFECT OF TEMPERATURE ON MODEL PERFORMANCE

The temperature parameter in the sampling process controls the randomness of the LLM’s output.
Lower temperatures make the model’s output more deterministic, favoring high-probability tokens,
while higher temperatures increase randomness, allowing for more diverse but potentially less coher-
ent outputs. We varied the temperature parameter over the values 0.1, 0.5, 0.7, and 0.9, generating
multiple reasoning paths for the prompts in the GSM8K and StrategyQA datasets at each setting. We
then computed the accuracy (Acc), diversity (Div), and unified creativity scores at different values
of the weighting parameter α to evaluate the performance across these settings.

Results. As shown in Table 4, the temperature setting significantly affects both accuracy and diver-
sity across the GSM8K and StrategyQA datasets. A temperature of 0.6 achieves the highest diversity
on GSM8K (82.16%) while maintaining a strong accuracy of 84.57%. Conversely, a temperature of
0.8 yields the highest accuracy on StrategyQA (73.53%) and the highest diversity (82.54%). Lower
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GSM8K StrategyQALlama 3.1-8B
Acc Div α = 0.25 α = 0.5 α = 0.75 Acc Div α = 0.25 α = 0.5 α = 0.75

t = 0.2 84.17 66.99 67.26 67.84 68.86 69.90 72.34 70.27 68.97 68.27
t = 0.4 84.80 76.80 76.87 77.31 78.13 69.00 73.93 70.55 68.30 66.90
t = 0.6 84.57 82.16 81.74 81.85 82.39 70.63 75.09 72.09 70.16 69.03
t = 0.8 82.93 81.26 80.66 80.50 80.73 73.53 82.54 78.54 75.71 73.77

Table 4. Effects of different temperature settings on the Llama 3.1-8B model’s performance on the GSM8K
and StrategyQA datasets. The largest value in each column is in bold, and the second largest is underlined.

GSM8K StrategyQALlama 3.1-8B
Acc Div α = 0.25 α = 0.5 α = 0.75 Acc Div α = 0.25 α = 0.5 α = 0.75

Greedy 84.17 66.99 67.26 67.84 68.86 69.90 72.34 70.27 68.97 68.27
Top-k = 50 82.93 81.26 80.66 80.50 80.73 73.53 82.54 78.54 75.71 73.77
Top-p = 0.95 84.73 79.54 79.08 79.27 80.03 69.90 72.34 70.27 68.97 68.27
DoLa 86.45 76.12 78.58 81.12 83.74 75.89 78.24 77.64 77.05 76.47

Table 5. Effects of different decoding methods on the Llama 3.1-8B model’s performance on the GSM8K and
StrategyQA datasets. The largest value in each column is in bold, and the second largest is underlined.

temperatures (0.2 and 0.4) result in higher accuracy but lower diversity, indicating more determin-
istic and less varied outputs. These results demonstrate a trade-off between accuracy and diversity
controlled by the temperature parameter, suggesting that selecting an optimal temperature depends
on the specific requirements of the task, whether prioritizing precision or creativity.

3.3.2 COMPARISON OF INFERENCE STRATEGIES

The choice of inference strategy during text generation plays a crucial role in shaping the quality,
diversity, and creativity of the model’s outputs, extending beyond the impact of tuning parameters
such as temperature. This section compares standard decoding methods with two advanced strategies
recently introduced in the literature.

Standard Decoding Methods Greedy search are commonly employed decoding techniques.
Greedy search deterministically selects the token with the highest probability at each step. While
this approach is efficient, it often leads to homogeneous outputs that lack diversity.

To introduce variability and enhance the diversity of generated content, stochastic methods like
Top-k sampling (Fan et al., 2018) and Top-p (nucleus) sampling (Holtzman et al., 2020) are used.
Top-k sampling limits the candidate tokens to the k most probable options at each decoding step and
samples from this subset. This method prevents the model from considering low-probability tokens,
reducing irrelevant or nonsensical outputs while still allowing for diversity.

Top-p sampling, on the other hand, selects tokens from the smallest possible set whose cumulative
probability exceeds a predefined threshold p. This dynamic approach adjusts the candidate pool
based on the distribution of the probabilities, providing a balance between diversity and coherence.
Both Top-k and Top-p sampling aim to mitigate the shortcomings of greedy search by avoiding
deterministic and repetitive outputs, thereby improving the overall quality of the generated text.

Advanced Decoding Strategies Recent advancements in decoding methods have introduced more
sophisticated strategies to enhance the quality of generated content. Decoding by Contrasting
Layers (DoLa), introduced by Chuang et al. (2024), leverages the internal structure of transformer
models by contrasting logits from deeper and earlier layers. In our experiments, we use layer 32
as the mature layer and layers 0, 2, 4, 6, 8, 10, 12, 14 as candidate premature layers. This technique,
based on the observation that factual knowledge tends to concentrate in specific layers, emphasizes
such layers to reduce hallucinations and improve the factual accuracy of generated content. These
strategies were tested using the Llama 3.1-8B model, generating multiple reasoning paths per prompt
and evaluated for accuracy, diversity, and creativity across the GSM8K and StrategyQA datasets.

Results. Table 5 shows that decoding strategy significantly impacts accuracy and diversity on
GSM8K and StrategyQA. DoLa achieves the highest accuracy, with 86.45% on GSM8K and 75.89%
on StrategyQA, surpassing greedy search and stochastic methods. Top-k sampling (k = 50) yields
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GSM8k StrategyQALlama 3.1-8B
Acc Div α = 0.25 α = 0.5 α = 0.75 Acc Div α = 0.25 α = 0.5 α = 0.75

CoT 82.93 81.26 80.66 80.50 80.73 73.53 82.54 78.54 75.71 73.77
AP 86.94 83.76 84.54 85.34 86.13 76.34 83.76 84.16 84.56 84.96
DT&CT 85.37 84.72 84.15 84.53 84.96 75.23 85.10 81.52 80.01 77.58

Table 6. Effects of different prompting methods on the Llama 3.1-8B model’s performance on the GSM8K and
StrategyQA datasets. The highest value in each column is in bold, and the second highest is underlined.

the highest diversity, with scores of 81.26% on GSM8K and 82.54% on StrategyQA. Top-p sam-
pling offers balanced performance, falling between DoLa and Top-k.

3.4 PROMPTING STRATEGIES COMPARISON

We investigate the impact of various prompting strategies on the performance of the Llama 3.1-8B
model on the GSM8K and StrategyQA datasets (see Table 6). Specifically, we compare Chain-of-
Thought (CoT)(Wei et al., 2023), Analogical Prompting (AP)(Yasunaga et al., 2024), and Divergent-
Convergent Thinking (DT&CT) (Tian et al., 2024). CoT prompts the model to generate intermediate
reasoning steps by providing labeled exemplars, guiding the reasoning process. In contrast, AP
encourages the model to self-generate relevant knowledge or exemplars before solving the problem,
eliminating the need for labeled examples and allowing tailored knowledge generation. DT&CT,
inspired by cognitive science, prompts the model to enumerate potential solutions through divergent
thinking, followed by convergent thinking to analyze and select a feasible solution.

Results. As shown in Table 6, the Analogical Prompting method achieves the highest accuracy
on both GSM8K and StrategyQA datasets. It outperforms CoT and DT&CT across various metrics,
suggesting that self-generated, problem-specific exemplars enhance the model’s reasoning capabili-
ties without the need for labeled examples.

3.5 QUANTITATIVE RESULTS

In our experiments on the MacGyver dataset, we successfully clustered the various reasoning paths
generated by the Llama 3.1-8B model. The clustering process effectively grouped different valid
reasoning strategies while excluding incorrect paths. As shown in Figure 2, this demonstrates the
model’s ability to generate diverse and correct solutions, with clear distinctions made between valid
and erroneous reasoning. This separation ensures that only meaningful and plausible problem-
solving approaches are considered, enhancing both the model’s creative problem-solving capabilities
and the overall evaluation of its outputs.

4 RELATED WORK

4.1 HALLUCINATIONS IN LARGE LANGUAGE MODELS

Hallucinations in LLMs are commonly defined as outputs that are factually incorrect, contextually
irrelevant, or semantically incoherent (Farquhar et al., 2024; Venkit et al., 2024; Ye et al., 2024).
These inaccuracies can manifest as incorrect information, fabricated references, or misleading state-
ments, thus compromising the reliability of LLMs in applications requiring factual precision (Gunjal
et al., 2024; Cheng et al., 2024). Several factors contribute to hallucinations in LLMs, including
limitations in training data, which often contains inaccuracies, biases, and inconsistencies (Jiang
et al., 2024; Liu et al., 2024). The architecture and objectives of LLMs, particularly their reliance
on next-word prediction, also play a role in generating plausible but incorrect outputs (?Xu et al.,
2024b). Additionally, inference techniques like beam search or temperature settings can influence
the likelihood of hallucinations (Holtzman et al., 2020; Xu et al., 2024a).

4.2 CREATIVITY IN ARTIFICIAL INTELLIGENCE

Creativity in AI refers to a system’s ability to generate novel and valuable ideas, solutions, or arti-
facts. Boden (Boden, 1998) categorizes creativity into combinational, exploratory, and transforma-
tional, each representing different levels of novelty and utility. In the context of LLMs, creativity

9
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Q: Your office chair’s wheel has come loose, and you don’t have any tools to fix it. 
You do have a notebook, printer paper, a cup, a desk lamp, a pair of scissors, a 
paperclip, a sticky note, a stack of paper, a bottle of water, a pencil, a stapler. 
Regrettably, the stack of paper is not sturdy and collapses under the weight of the 
chair. How can you prop the chair until you get the right tools to fix it? 

Reasoning Path 2

Step 1:  Locate the chair's leg closest to the collapsed paper stack.
Step 2:  Place a long piece of paper (from the stack) under the leg, and use 
another paper to create a makeshift "L" shape by folding it (tools: paper, 
scissors).
Step 3:  Place the "L" shape under the chair's leg to provide additional 
support (tools: folded paper).
Step 4: Handle the papers together (tool: stapler).

Step 1: Place the cup under the loose wheel to prevent further movement. 
   Tools: Cup
Step 2: Use the stapler to staple the paperclip to the underside of the chair, 
near the wheel, to create a makeshift support. 
   Tools: Stapler, Paperclip

Step 1: Place the tealight candle near the lock to heat it, but not directly 
on the key. Tool: Tealight candle 
Step 2: Once the lock is warm, use the blunt-ended steel tweezers to 
carefully try to pull the key out. Tool: Blunt-ended steel tweezers

Wrong Paths

Reasoning Path 1

Figure 2. Quantitative results from the MacGyver dataset showing the clustering of reasoning paths. Overlap-
ping blocks represent responses that belong to the same cluster, indicating similarity in reasoning strategies.

often involves generating original text, proposing innovative solutions, and synthesizing diverse
concepts. Although hallucinations are typically seen as flaws, they can sometimes reflect creative
processes (Jiang et al., 2024; Esling & Devis, 2020). In tasks like creative writing or ideation, hal-
lucinations may introduce novel ideas that, while factually incorrect, can inspire users to explore
new directions (Mohammadi, 2024; Zhou & Lee, 2021; Cheng, 2021). Evaluating creativity in AI
involves assessing both the novelty and utility of the generated content, with creative outputs need-
ing to be both original and contextually appropriate (Boden, 1998; Marrone et al., 2022; Mazzone
& Elgammal, 2019; Câmara Pereira, 2003).

5 CONCLUSION AND FUTURE WORK

In this study, we introduced the concept of good hallucinations in Large Language Models (LLMs),
demonstrating that certain hallucinations can enhance creativity and innovation. We developed a
novel creativity metric that integrates accuracy and diversity, and utilized semantic clustering tech-
niques to evaluate various models, revealing that Qwen 2.5-7B and Llama 3.1-8B effectively balance
these aspects across different reasoning tasks. Additionally, our experiments with hyperparameter
settings and advanced decoding strategies highlighted optimal configurations for maximizing both
correctness and creative output. The comparison of prompting strategies showed that Analogical
Prompting significantly boosts reasoning capabilities by enabling self-generated, problem-specific
exemplars. Future work will focus on refining creativity metrics, expanding evaluations to more
models, developing controlled generation techniques, and addressing ethical considerations to har-
ness the full creative potential of LLMs while ensuring reliability and integrity.

10
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6 ETHICAL SAFEGUARDS

In our study on good hallucinations in LLMs, we enforce ethical measures to prevent misuse and
ensure responsible application. Our protocols, released with the models and datasets, include strict
usage guidelines, access controls, safety filters to minimize harmful content, and monitoring sys-
tems to oversee proper use. These efforts demonstrate our commitment to maintaining high ethical
standards, protecting privacy, and promoting responsible innovation in AI research.

7 REPRODUCIBILITY STATEMENT

Our experiments are implemented in Python, utilizing libraries such as PyTorch1 for model interac-
tions, scikit-learn2 for semantic clustering, and sentence-transformers3 for natural language process-
ing tasks. All experiments were conducted on a single NVIDIA A100-80GB GPU. We will publicly
release our full implementation, including code and datasets, upon paper acceptance to guarantee
reproducibility. The codes and resources will be available at the following anonymous link for the
review process: https://anonymous.4open.science/r/hallucination-agent-877A/README.md. Addi-
tionally, we provide detailed documentation and instructions to conduct our experiments, ensuring
that other researchers can validate and build upon our work with ease.
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Nathanaël Randriamihamison, Nathalie Vialaneix, and Pierre Neuvial. Applicability and inter-
pretability of ward’s hierarchical agglomerative clustering with or without contiguity constraints.
Journal of Classification, 2021.

Yongliang Shen, Kaitao Song, Xu Tan, Dongsheng Li, Weiming Lu, and Yueting Zhuang. Hugging-
gpt: Solving ai tasks with chatgpt and its friends in hugging face. In NeurIPS, 2023.

Alon Talmor, Jonathan Herzig, Nicholas Lourie, and Jonathan Berant. Commonsenseqa: A question
answering challenge targeting commonsense knowledge. arXiv preprint arXiv:1811.00937, 2019.

12



648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Yufei Tian, Abhilasha Ravichander, Lianhui Qin, Ronan Le Bras, Raja Marjieh, Nanyun Peng, Yejin
Choi, Thomas L. Griffiths, and Faeze Brahman. Macgyver: Are large language models creative
problem solvers? arXiv preprint arXiv:2311.09682, 2024.

E Paul Torrance. Torrance tests of creative thinking. Educational and psychological measurement,
1966.

Pranav Narayanan Venkit, Tatiana Chakravorti, Vipul Gupta, Heidi Biggs, Mukund Srinath,
Koustava Goswami, Sarah Rajtmajer, and Shomir Wilson. ” confidently nonsensical?”: A
critical survey on the perspectives and challenges of’hallucinations’ in nlp. arXiv preprint
arXiv:2404.07461, 2024.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny
Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. In NeurIPS,
2022.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Brian Ichter, Fei Xia, Ed Chi, Quoc
Le, and Denny Zhou. Chain-of-thought prompting elicits reasoning in large language models.
arXiv preprint arXiv:2201.11903, 2023.

Ziwei Xu, Sanjay Jain, and Mohan Kankanhalli. Chain-of-verification reduces hallucination in large
language models. arXiv preprint arXiv:2401.01234, 2024a.

Ziwei Xu, Sanjay Jain, and Mohan Kankanhalli. Hallucination is inevitable: An innate limitation of
large language models. AI & Society, 2024b.

Michihiro Yasunaga, Xinyun Chen, Yujia Li, Panupong Pasupat, Jure Leskovec, Percy Liang,
Ed H. Chi, and Denny Zhou. Large language models as analogical reasoners. arXiv preprint
arXiv:2310.01714, 2024.

Hongbin Ye, Tong Liu, and Aijia Zhang. Cognitive mirage: A review of hallucinations in large
language models. Journal of Artificial Intelligence Research, 2024.

Yunpu Zhao, Rui Zhang, Wenyi Li, Di Huang, Jiaming Guo, Shaohui Peng, Yifan Hao, Yuanbo Wen,
Xing Hu, Zidong Du, et al. Assessing and understanding creativity in large language models.
arXiv preprint arXiv:2401.12491, 2024.

E Zhou and D Lee. Generative artificial intelligence, human creativity, and art. Creativity Studies,
2021.

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

SUMMARY OF THE APPENDIX

This appendix contains additional details for the ICLR 2025 submission, titled “Hallucinating LLM
Could Be Creative”. The appendix is organized as follows:

• §A provides Implementation Details.

• §B examines the Limitation and Future Work of our research.

• §C discusses the Social Impact of our research.

• §D supplies Data License for the methods we used for comparison.

A IMPLEMENTATION DETAILS

A.1 HYPERPARAMETERS

Our implementation follows established methodologies with specific configurations to ensure opti-
mal performance. The details are as follows:

A.1.1 FRAMEWORK AND LIBRARIES

Implemented in Python using PyTorch4 for model interactions, scikit-learn5 for semantic clustering,
and sentence-transformers6 for natural language processing tasks.

A.1.2 HARDWARE

All experiments were conducted on a single NVIDIA A100-80GB GPU.

A.1.3 SAMPLING PARAMETERS

Number of Reasoning Paths per Prompt N = 15

Decoding Method Nucleus sampling with top-p = 0.9 to balance randomness and coherence.

A.1.4 CLUSTERING CONFIGURATION

Method 1: Clustering via Text Embeddings

• Embedding Model: Sentence-Transformers

• Distance Metric: Cosine distance

• Distance Threshold: dthresh = 0.3 to balance between over-clustering and under-
clustering.

• Clustering Algorithm: Agglomerative hierarchical clustering

Method 2: Clustering via LLM Prompting Prompt Used

You are a helpful assistant that can classify different
reasoning paths. Given the following reasoning paths, please
group them based on their underlying reasoning strategies and
return the clusters in JSON format.

4https://pytorch.org/
5https://scikit-learn.org/
6https://www.sbert.net/
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A.1.5 CREATIVITY METRIC PARAMETERS

Weighting Parameter α = 0.75 to prioritize accuracy while still considering diversity.

Small Constant ϵ = 1× 10−10 to prevent multiplication by zero in the creativity score calculation.

A.2 PROMPTING STRATEGIES

We employed three distinct prompting strategies to guide the Large Language Models (LLMs) in
generating reasoning paths: Chain-of-Thought (CoT), Analogical Prompting (AP), and Divergent-
Convergent Thinking (DT&CT). The specific prompts used for each strategy are detailed below.

A.2.1 CHAIN-OF-THOUGHT (COT)

[Problem statement]
Let’s think step by step to solve this problem.

A.2.2 ANALOGICAL PROMPTING (AP)

[Problem statement]
# Instruction:
## Recall relevant exemplars:
## Solve the initial problem:

A.2.3 DIVERGENT-CONVERGENT THINKING (DT&CT)

Give a feasible solution very concisely. Note that some
tools are not useful, so please analyze the affordance of
each presented object and rule out unnecessary ones first.
Use the following format:
1. List the affordance of presented items and whether they
are useful
2. Summary: list useful tools
3. If the problem is solvable under all these constraints,
write the solution. Use Step 1, Step 2, etc., and mention
the tools used in each step. Use as few steps as possible,
and the answer should ideally be less than 100 words.
If you cannot find a feasible solution, just state that it is
not possible and provide a very short justification.
Now, please verify if each step is physically feasible and
afforded. After that, modify the solution if needed.
Use the following format:
Step 1: ...
Step 2: ...
...
Conclusion 1: Whether the problem is indeed solvable given
all the constraints
Conclusion 2: (If still solvable) No modification needed /
Modification needed.
Modified solution:

A.3 PROMPT EXPERIMENTS

To evaluate the impact of different prompting strategies on the creativity and accuracy
of the reasoning paths, we conducted prompt experiments using the three aforementioned
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prompts—Chain-of-Thought (CoT), Analogical Prompting (AP), and Divergent-Convergent Think-
ing (DT&CT)—across all datasets: GSM8K, MultiArith, CommonsenseQA, StrategyQA, and Rid-
dleSense. Each prompt was tested with the baseline LLM to generate diverse reasoning paths, which
were then clustered and assessed using the creativity metric. The results indicated that Analogi-
cal Prompting (AP) and Divergent-Convergent Thinking (DT&CT) were more effective in eliciting
structured and diverse reasoning strategies compared to Chain-of-Thought (CoT), thereby enhancing
the overall creativity score without compromising accuracy.

This comprehensive implementation ensures that our methodology is both reproducible and scalable,
providing a robust framework for future investigations into the creative potential of LLMs.

B LIMITATIONS AND FUTURE WORK

While our study introduces the concept of good hallucinations and a novel creativity metric, it has
several limitations. Firstly, the current metric requires further validation to reliably evoke beneficial
hallucinations across diverse tasks. Secondly, the semantic embedding method used for clustering
lacks fine-grained nuance, necessitating more advanced clustering techniques. Additionally, our ap-
proach faces scalability challenges due to the computational demands of generating and clustering
multiple reasoning paths. Moreover, our evaluation is limited to specific datasets and models, re-
stricting the generalizability of our findings. Future work will focus on refining the creativity metric,
exploring enhanced embedding and clustering methods, improving scalability through optimized al-
gorithms, and extending evaluations to a broader range of models and applications. Furthermore,
we aim to integrate robust ethical safeguards to mitigate potential risks associated with manipulating
LLM outputs for creativity.

C SOCIAL IMPACTS

Harnessing good hallucinations in Large Language Models (LLMs) can significantly benefit fields
that rely on creativity, such as education, design, and the arts, by generating novel ideas and innova-
tive solutions. In scientific research and engineering, these creative hallucinations may inspire new
hypotheses and approaches. However, there are potential negative impacts, including the risk of
misinformation due to blurred factual accuracy and ethical concerns surrounding the generation of
misleading content. Additionally, increased reliance on AI-generated creativity could impact human
roles in creative industries, raising concerns about job displacement and the devaluation of human
ingenuity. To mitigate these risks, it is essential to establish clear guidelines, maintain transparency
about AI-generated content, ensure accountability, and uphold human oversight in the creative pro-
cess. Balancing these benefits with appropriate safeguards will maximize positive social impacts
while minimizing potential harms.

D LICENSES FOR EXISTING ASSETS

Our study utilizes various software libraries, datasets, and pre-trained models under the following
licenses:

• Libraries: PyTorch7 (BSD 3-Clause), scikit-learn8 (BSD 3-Clause), and sentence-transformers9

(MIT License).
• Datasets: GSM8K and StrategyQA are licensed under the Creative Commons Attribution 4.0 In-

ternational License (CC BY 4.0). MultiArith and MacGyver datasets have custom and proprietary
licenses, respectively. RiddleSense and CommonsenseQA are released under the Creative Com-
mons Attribution-NonCommercial-ShareAlike 4.0 International License (CC BY-NC-SA 4.0).

• Models: LLama models are licensed by Meta AI, and Qwen and Mistral models are under Apache
License 2.0.

7https://pytorch.org/
8https://scikit-learn.org/
9https://www.sbert.net/
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