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ABSTRACT

In this paper, we study and analyze zeroth-order stochastic approximation algo-
rithms for solving black-box bilevel optimization problems, where only the upper
and lower function values can be obtained. (Aghasi and Ghadimi, 2024) pro-
posed the first full zeroth-order bilevel method that utilizes Gaussian smoothing to
estimate the first- and second-order partial derivatives of functions with two inde-
pendent blocks of variables. However, this method suffers from a high dimensional
dependency of O((dy + d2)*), where d; and d> are the dimensions of the outer
and inner problems, respectively. They left an open question: can this dimension
dependency be improved? To answer this question, we propose a single-loop ac-
celerated zeroth-order bilevel algorithm, which achieves a dimension dependency
of O(d; + ds) by incorporating coordinate-wise smoothing gradient estimators
(coord). We develop a new theoretical analysis for the proposed algorithm, which
converges to a stationary point of ®(x) with a complexity of O((d; + dg)e™?)
in expectation settings and O((d; + d2)/ne~2) in finite sum settings. These
complexities are both Best-known with respect to dimension and error €. We also
provide experiment to validate the effectiveness of the proposed algorithm.

1 INTRODUCTION

The goal of bilevel optimization is to minimize the upper-level (UL) function f(x,y) under the con-
straint that y is minimized with respect to the lower-level (LL) function g(x, y). Bilevel optimization
has received increasing attention due to its wide applications in many machine learning problems,
including adversarial networks (Goodfellow et al., 2020), hyperparameter tuning (Franceschi et al.,
2018), neural architecture search (Liang et al., 2020), meta-learning (Rajeswaran et al., 2019),
reinforcement learning (Sutton and Barto, 2018). Formally, it is defined as,

min ®(z) = f(z,y"(z)), y"(z) € argmin g(z,y).

r€R yeRd2
In this work, we focus on the setting where the lower-level objective g(x,y) is strongly convex in y
for any x, and the UL objective f(z,y) is possibly non-convex, which is among the most common
in this research field. Since deterministic approaches necessitate the evaluation of the full dataset
at every iteration, demanding huge computational resources,so it is needed to consider stochastic
method. In many applications of interest, the objective functions f and g have the finite-sum form:
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where (; and &; are independent and identically distributed random variables. When dealing potentially
infinite number of data samples, f and g are commonly represented as the expectation form:

f(z,y) = Ec[f(z,y;Q)], 9(z,y) = E¢[g(z, y; §)].

In strongly convex case, the LL problem has unique solution y*(z), by implicit function theorem, we
can obtain explicit form of hypergradient V ®(x)(Ghadimi and Wang, 2018),

V&(z) = Vaf(w,y"(2)) = Vig(z, y" (2))[Vy,9(x,y" ()] 7'V, f (2,57 (2)). Q)
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Since the gradient expression of ®(z) involves the inverse of the Hessian matrix, it is challenging
to employ gradient-based methods to solve bilevel problems. As a result, previous works often
required second-order oracles (Dagr’eou et al., 2022; Ji et al., 2020). Fortunately, recent advances
have begun addressing this limitation. For example, (Kwon et al., 2023) utilized a penalty method
to avoid the second-order term in the gradient, while (Yang et al., 2023; Huang, 2024) employed
finite differences to replace the Hessian-vector product. Despite the significant progress in first-order
bilevel methods, there are scenarios where zeroth-order methods are still necessary. For various
reasons, such as complexity, lack of access to an accurate model, or computational limitations, there
may be no or limited access to the objective gradient. In these situations, the common practice is
to approximate the gradient using deterministic or randomized finite difference methods (Shi et al.,
2021; Nesterov and Spokoiny, 2017). The scope of application for these methods is vast (see the
remainder of this section for a comprehensive summary of applications in machine learning, and
refer to (Hu et al., 2024; Zhang et al., 2020) for examples in other areas of engineering). Hence, it is
natural to explore zeroth-order bilevel optimization, which requires only function value oracle (or
their stochastic samples).

Although zeroth-order methods and bilevel optimization have many applications, only a few papers
have considered zeroth-order bilevel optimization. In recent years, (Sow et al., 2021) explored a
mixed method that utilizes both first-order and zeroth-order oracles. Additionally, (Aghasi and
Ghadimi, 2024) first proposed a fully zeroth-order method via Gaussian smoothing; however, its
dependency on the problem dimensions can be O((d; + d)*), making it very expensive in practice.
Hence, they left an open question:

Another important direction of research is exploring the dependency of the sample complexity
on the problem dimensions, as well as the existence of alternative approaches with a smaller
share of dimensionality.

This paper aims to answer this question. We propose a zeroth-order bilevel optimization algorithm
called VRZSBO that can achieve O(d; + d3) dependency on dimension by incorporating coordinate
estimators and finite differences.

Before formally introducing our method, we would like to first present the core issues in bilevel
optimization.

1.1 KEY PROBLEM: HYPER GRADIENT ESTIMATION

The main challenge in performing gradient descent on ®(x) is estimating the inverse Hessian
[V2,9(x,y*(x))]"" in (1). Computing the matrix inverse generally incurs a high computational
cost of O(d?). To reduce this expense, numerous approaches have been proposed to approximate
V®(x) at a lower cost. We divide these categories into three groups (1)Neumann series approach
(2)Quadratic auxiliary function approach (3)Penalty method,due to page limitations, more detailed
content is deferred to the Appendix.:

1.2 RELATED WORK

Among all the work, the most closely related works with ours are (Aghasi and Ghadimi, 2024)(zeroth-
order bilevel optimization), (Yang et al., 2023)(use gradient difference), (Chu et al., 2024)(use
page). Compared to (Aghasi and Ghadimi, 2024), we improved their dependency of dimension from
O((dy +da)*) to O(dy + da), and they don’t provide analysis of finite sum case. Compared to (Yang
et al., 2023), we only use function oracles while they use gradient oracles, and they don’t provide
analysis of finite sum case. Compared with (Chu et al., 2024), we only use function oracles while
they use Hessian-vetor product oracles.

In conclusion our main contribution can be summarized as follows
* By incorporating zeroth-order Coord gradient estimator, we improve zeroth-order complexity

dependency of dimension from O((d; + d2)*) to O(d; + da), which is Best-known in
dependence of dimenison, as shown in Table 1.
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Table 1: Comparison of different NC-SC bilevel methods for finding an e- stationary point of ().

Oracle type denotes what kind of oracle the method are use. CZ’k denotes a-times differentiability
with Lipschitz k-th order derivatives.

Method oracle type | Upper-level f Lower-level g | Finite Sum Expectation
F3SA (Kwon et al., 2023) e cp? cy? - O(e™5)
AccBO(Gong et al., 2024) Hv/Jv (Lo, Ly)-smooth | C2? - O(e3)
SPABA(Chu et al., 2024) Hv/lv ot cp? O(y/ne?) O(e73)
ZDSBA(Aghasi and Ghadimi, 2024) | 0% ot cy? - O((dy + do)*e™5)
SABA(Dagr’eou et al., 2022) Hv/lv c2? o O(n?/3¢=2) -
SRBA(Dagréou et al., 2024) Hv/lv o2 o O(y/ne?) -
VRZSBO(this paper) oth ot cr? O((dy + do)y/me2) | O((dy + dy)e™3)

* We make a decoupling analysis including both finite sum and expectation case, our analysis
separates the errors originating from different sources, which means our analysis can be
easily transferred into other analyses.

* Compared with the double-loop zeroth-order algorithm in (Aghasi and Ghadimi, 2024),
Our algorithm achieves optimal dependency about € and dimension in both finite sum and
expectation case with a simple single-loop structure, as show in Table 1.

* Qur algorithm use only standard assumptions, some additional assumption in recent work,
for example g(z,y) is 3"¢ Lipschitz(Dagréou et al., 2024) or bounded ||y*(z)||(Aghasi and
Ghadimi, 2024) are not needed in our paper.

2 PRELIMINARIES

Notation Throughout the paper, || - || denotes the Euclidean norm for vectors, and operator norm for

matrices, we use hat line V to denote zeroth-order estimator, & to denote sample(for example f(z; £)),
we denote vector ¢ := (z,y) and Euclidean ball B(r) = {v € RP : ||v|| < r}. Hv and Jv denote
Hessian-vector and Jacobian-vector Products, respectively, D to denote finite difference operator.

Assumption 1 (Basic Assumptions). Let vector ¢ := (x,y), the following results hold:(1) g(x, y) is u-
strongly convex with respect to y.(2) f(c) and g(c) are L-smooth with respect to c.(3) ||V f(x, y)|| <
CYy for a constant Cy.(4) g(c) is p-Hessian Lipschitz with respect to c.(5)®(x) are lower bounded.

Assumption 2 (Stochastic Case). The following assumption for stochastic case

* Stochastic functions f(x,y; &) and g(x,y,§) also satisfy assumption 1.

2 2
* B[||V2,9(z,4:€) - Va,9(z,9)||7] < 0% E[|| V2, 9(z, ;) — Vi, g9(x,9)[|"] < 02,
* ElIVy9(z,:6) = Vyg(2.9)[°] < 0 B[V, f(2,4:6) =V f (2,9)]] < 0%,

o EB[|Vaf(z,y:€) — Vaof(z,y)|°] < o>

Remark 1. These kind of assumptions are often used in related research (Yang et al., 2023; Aghasi
and Ghadimi, 2024) to achieve the state-of-the-art complexity. Furthermore, to simplify the symbols
and improve readability,we use the same Lipschitz constant for both f(x) and g(x), we assume the
same variance constant for gradient and second order terms. In additional, to improve readability in
some part, we denote Ly, = max{L, p} and k = %

3 THE PROPOSED ALGORITHM

3.1 GENERAL FRAMEWORK

In this part we discuss the main framework, recall that we introduce the framework that use quadratic
auxiliary function in (21) , by minimizing the following auxiliary function, we can get an approxima-
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Algorithm 1 Variance reduced Zeroth-order Stochastic Bilevel Optimizer (VRZSBO)
Initialization:ﬁg = hiwv,o = % Zil Dﬁv(t + 1;&) — @yf(xt_ﬂ, Y1413 Gi)s Vg0

+ S Ve f (@1, Yer1; ) — DIy (t+156), vy0 = 5 S V(@ yern; &)
fort=0,1,--- ;T —1do

Yt = Yt — NyUy t > vy, defined in (16)

ztp1 = Projg,._y (2t — 12051 > v, ; defined in (15)

Tl = Tt — NaVsz ¢ > v, defined in (17)
end for

tion of 2* := [V2,g(x,y*(x))] "'V, f(x,y*(x)):

1
R(I, Y, Z) = ivazyg(‘Ta y)Z - ZTvyf(SC, y)

A natural idea is to perform gradient descent on R(z, y, z), so we define search direction as follows,

hyt = Vyg(@e,ye), hap = V.R(xe,ye,2) = Vi, g(xe,ye)ze — Vo f (T, 1),

and hypergradient approximation as follows,

het = Vo f(@e,y) — viyg(xtayt)zb (2)
for this approximation of hypergradient, we have the following error bound.
Lemma 1. Under assumption 1, for the error between hypergradient ®(x+) and approximation h, ;

in (2), we have the following upper bound,

e = V(@ )II* < O(L7aar®) lye =y (@)|° + O(Lnan) llze — 2117 )
The detailed proof is given in lemma E.15.

Main Challenge: We discussed the main framework in Section 3.1.However, one issue is
that this equation contains terms involving gradients and matrix-vector products, which are difficult
to compute directly in some practical applications. This motivates us to introduce the zeroth-order
method, which only requires function value resources (or their stochastic samples). To address the
issue, we design the new ZO-estimators and provide some new analysis tools in Sections 3.2 and 3.3.

3.2 ESTIMATE GRADIENT

In this section, we discuss how to approximate the gradient using function values. We begin by
defining the following zeroth-order operator that approximates the gradient.

Definition 1 (Zeroth-order estimator). We define the following coord zeroth order operator that
approximates the gradient, this kind of approach can also be found in (Liu et al., 2018; Ji et al., 2019)

dy
V(e g) = Y0 1 o very) — 1 (o) e
A Zd:ll 1
Vag(a,y) =) ~[g( +very) =g (x.y)er
A Zd:21 1
Vyf(w,y) =D~ [f @y +ver) = f (zy)]er
A Zdzzl 1
Vyg(e,y) = o @,y +ver) —g(x,y)] e
(=1

The following lemma shows the error of the zeroth-order gradient estimator for any L-smooth
function.
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Lemma 2 (Gradient estimate error). For any L-smooth function p(x), its gradient Vp(x) and its

zeroth-order estimator V p(x), we have:

L%dv?
4 )

| Vo) - Vp(x)H2 < )

the detailed proof is given in lemma D.1 of Appendix.

By using lemma 2, we can easily obtain the following corollary, choose sufficiently small smoothing
parameter v, the gradient estimation error can be bounded by a constant .
Corollary 1. With sufficiently small zeroth-order smoothing parameter v, for any gradient and
gradient estimator appears in our paper , we have

|95 = V5| < sand ||[Vg(e) - va(e)| < )
where § = BYTIRY G £(c) = [V, (c), V, (c)] and Vg = [Vog(c), V,9(0)] with ¢ = (z,y).

3.3 ESTIMATE HESSIAN-VECTOR (HV) AND JACOBIAN-VECTOR(JV) PRODUCTS

Next, we discuss how to approximate the martrix-vector products (Hv and Jv) by function values.

Definition 2 (Estimate Hv/Jv by zeroth-order estimator). We define the following zeroth order
operator that approximates the Hv/Jv

s Hv/Jv:
H,(t) := viyg(xtayt)zt; Jo(t) == Vrzcyg(xtayt)zt- (6)
In the above term, we define the Hessian/Jacobin vector product that will be used in the
computation of section 3.1.

approzximate

* Gradient difference = Hv/Jv
Vyg(l‘t, Yt + th) - Vyg(xh yt)

DH,(t) := h ) @)
DJ(t) = Veg(@e, ye + hz}i) - ng(ffuyt). )

In the above term we define an ZO estimator that estimates the Hv term using gradients.

approximate
=

« 70 gradient difference

3 _ Vyg(@e, ye + h2e) — Vyg(we, yr)

DH,(t) := 3 ) ©))
DJy(t) = Vag(e, i + hz}i) - @wg(xtvyt). (10)
In the above term, we define an estimator that use zeroth-order information .
* Sampled ZO approximate Sampled gradient
DH, (t;€) = @yg(‘rhyt + hzt;}fl) - @yg(ft»yt;f), (11)
D, (k) = Vag(@e, ye + hzt;fL) - ﬁxg(xtayt;f). (12)

In the above term, we define an estimator that use stochastic zeroth-order information .

In Definition 2, we define some estimators that estimate gradient difference using function values.
Next, we give the following error bound
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Lemma 3. Under assumption 1, and (Dﬁv (t), DH,(t), DJ,(t), J, (t)) is given in Definition 2
with h = %\/g where T, = max,cpa, ||2*()

, we have
HDEJ(t) - Hv(t)HQ < O(5) and HDJU(t) - J,,(t)H2 < 0®). (13)

The proof sketch in terms of Hv is given as follows:

N I - eroth-ord finite di
DALE) " DAL T DI )

where lemmas D.4 and D.5 are provided in Appendix. And the similar derivation to Hv for Jv is
outlined as follows :

DJ,(t; €) “PPTEMYC D J(t)

approzimate approzimate

DJ,(t To(t).

3.4 ALGORITHM DESIGN

With the above estimator, we design the following zeroth-order stochastic bilevel optimization
algorithm, denoting the zeroth-order approximation from Section 3.2 to Section 3.3 as follows:

ﬁy,t = ﬁyg(xmyt), iLz,t = Dﬁv(t) - @yf(xhyt)a iLr,t = @mf(mta l/t) - Djv(t)- (14

In the finite sum or expectation case, we only have access to a sample point ¢. Variance reduction
techniques are commonly used to achieve optimal rates in stochastic optimization. Among these,
PAGE (Li et al., 2020) is an effective method that utilizes a single-loop iterative format. Drawing
from its success, we extend the PAGE concept to our zeroth-order bilevel optimization framework
and design the following estimators as stochastic approximations of (14):

LS8 DH,(t+1;6) — Vyf(€es1,90415C)  with probability p,

z = ks i . . 15
Vet Ver + L0 SUDH,(E+1;6) — DH,(;€)  with probability 1 — p. (1)
Rk .
*% Doic1 Vo f (@i, Y15 G) — Vo f(@, 85 G)
Vi = 5 POy %g(ﬂsfﬂ, Yer136i) A with probability p, (16)
v Uyt + % Doict1 Vyg(@ig1, Y41 &) — Vyg(ae, ye; &) with probability 1 — p.
LS Vaf (@1, yes1: G) — DIt +1;) with probability p,
Vgl = 17

Vpt 2 Vo f(@e1, Yen; G) — Vaf (24, y5:¢;)  with probability 1—p.
b A A~
—1 3 DJ,(t+1;&)-DJ,(t:&)

Furthermore, our algorithm is formally presented in Algorithm 1.

3.5 CONVERGE ANALYSIS

We will analyze the coordinate estimator in both finite-sum and expectation cases. As an example,
we provide the key results in the finite-sum setting and include sketch of Theorem 1 in Appendix E.5
to give readers a more intuitive understanding.

Inner Iteration Analysis: We first analyze the descent of inner iteration z; and ¥, since the objective
function of z; and y; are u-strongly convex and L-smooth, we can decrease them linerarly as follows.

Lemma 4. Under assumption 1, let {z;} be a sequence generated by Algorithm 1, we have

Nz * 12 4772 2
- Zp— 2 ||” +
5 e = 2717 + = )

vz,t - hz,t

hz,t - hz,t

2
|

s = sl <0

4
— (1 =2Ln.) |20 — 2> + — 13 ey — e,
Nz

where l 7+ represents the smoothness constant of z*(x). ,and the detailed proof is given in lemma E.6
of Appendix.
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Lemma 5. Under assumption I, let {y;} be a sequence generated by Algorithm 1, we have

Ny bt 2 2 4 2
) Ny — yi 1™ — (1= 2Lny) [lyesr — el + —15- [|we41 — 4|

6 Ty ft
2
)

Hyt+1 - yt*+1||2 <(1-

]+

Uyt — Pyt

where ly « represents the smoothness constant of y* (x),and the proof of this lemma is almost identical
to that of lemma 4.

Next, we need to bound variance terms term vy ¢+ — hy ¢||? and ||v, ¢+ — h. ¢||. Firstly, we discuss
the variance descent property of z; in finite sum case

Lemma 6 (Variance descent in z for finite sum). Under assumptions 1 and 2, we have

]

2(1 —
+ % ((8T§ +3L%) [leesr — C15||2 +8L? || 2441 — Zt||2 +8r2p5 + 662) _

2

2
Uz i1 — hz,t+1H < (1-pE|

Uz,t - hz,t

B|

The detailed proof is given in lemma E.7 of Appendix.

And variance descent property of ;.

Lemma 7 (Variance descent in y for finite sum). Under assumptions 1 and 2, we have

2]+ (lgp)

“ 2
E H’Uy’t+1 — hy’t+1H S (]. —p)E[H’Uyt — h/y,t

(3L2 leess — eil® + 652) .
The detailed proof is simliar to lemma 6.

Outer Iteration Analysis: For iteration x;, we have similar function value descent lemma and
variance descent lemma.

Lemma 8 (Inexact descent of function ®). Under assumptions I and 2, let {x¢, ys, 21 } be a sequence
generated by Algorithm 1, we have

1 L

- ) @e — zel|* +

1 31
21y 2

5 [y

Nz 2
Bon) <0(a) - o) -

3Ny

+ (L +4r20%) [y = y"|° +AL% (|20 — 27()” + 267 + 8r2p0),

The detailed proof is given in lemma E.18 .

Next, we give the descent property of variance term.

Lemma 9 (Variance descent of x in finite sum case). Under assumptions I and 2, we have

]

2(1 —
+ % ((8@ +3L2) flespr — eol|® + 8L2 ||zt — z||? + 16r2p8 + 662) .

2 .
Vg t4+1 — hx,t+1H <(1 —p)E[’

Vet — hz t

2
E| d

we ref reader to lemma E.19 for detail proof.
Finally by defining the Lyapunov function ;:

18(L? + 2r2p*)n, . 36m, L2 p? .
b= () + Ve (g, =i 1?) + 22227 (2, — 7 ?)
Ny YR

2 | T2L? + 220", ‘2 L L, ‘
pu? pp?

and combining the above inner and outer iteration, the final complexity result is obtained

2

)

Vy,t — Nyt

3Nz
. Uzt — hz,t

2

H'Ua:,t - ilx,t
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Theorem 1 (Finite sum case). For finite sum case under assumpnons 1 and 2, let {xt,yt, 2t } be
a sequence generated by Algorlthm 1, choose 1, < %,nz < e < m p= f’

b= \/’ﬁ,B =n,v S (9(\/d17+d—21{4[/;r’n1x) to let § < O(Limx"#) 5 h = \/7 we obtain:

Bl — ] < —11*3[39”(||V‘1>(1‘t)||2 - 2¢%)],
and total oracle cost is # funtion = dT(pn—+b) +dn = O((dy +da)/ne L2, k*). The detailed
proof can be found in Theorem E.1 of Appendix.

Remark 2. We emphasize the computation of total function queries: each gradient estimator v
requires O(dy + dz) function queries. In expectation, each iteration costs (pB + (1 — p)b) - O(1)
gradient estimators. Therefore, the total number of function queries is O((dy +d2)(pB+ (1 —p)b)T).

Theorem 2 (Expectation case). For expecation case,under assumptzons 1 and 2, let {x¢,yy, zt}

be a sequence generated by Algorithm I, we choose 1, < 2»@7772 < me < O(Ll%#), p= =5,
— g1 e

b = 0€ K] , U S 7m§ to let 5 < O(L})naxﬂ(k)? \/> B > O max )’ we

can find the stationary point in T' = ; = O(e2L2 k%), and total oracle cost is # funtion =

O((dy +doy)oe 3LA . K8). The detatled proof can be found in Theorem E.2 of Appendix.

m. a.X

4 DISCUSSION

4.1 IMPROVED DIMENSION DEPENDENCE COMPARED TO (AGHASI AND GHADIMI, 2024)

To simplify notation, let d = d; + d2.The improved efficiency of our method with respect to
dimensionality d stems from two key factors: (1) Our single-loop structure eliminates the inner loop
in (Aghasi and Ghadimi, 2024), saving O(d) complexity from solving inner problems. (2) We use a
finite-difference approximation for Hessian-vector or Jacobian-vector products, requiring only two
gradient evaluations, with O(d) oracle cost. This is significantly more efficient than the Gaussian
smoothing method in (Aghasi and Ghadimi, 2024) Proposition 2.5, where approximating the Hessian-

vector product incurs a variance of O(d?) due to term (d + 4)(d + 2) ||Vizq|‘i =O(d? vamqnz)
leading to O(d?) variance for hypergradient estimation and O(d?) outer loop iterations.This is slower

than our estimation method by a factor of d2. Combining the two above, our complexity is d* faster
than that of (Aghasi and Ghadimi, 2024).

4.2 DISCUSSION ON € AND d1, do DEPENDENCY

We first illustrate that both single-level problems and min-max problems are special cases of bilevel
problems. By setting f(z,y) = f(x), we recover a single-level problem, and by taking g(x,y) =
—f(z,y), we obtain a min-max problem. This implies that the lower bounds for these problems are
valid for bilevel optimization under the same assumptions.

1. Our dimension dependency, O(d; + ds), matches the best-known results for simpler min-
max problems (Wang et al., 2023; Xu et al., 2023). Moreover, our € dependency aligns
with the state-of-the-art complexity for first-order nonconvex-strongly convex (NC-SC)
bilevel problems (Yang et al., 2023; Chu et al., 2024; Dagréou et al., 2024), establishing our
dependency on € and d;, d; as the "best-known" results.

2. Since (Duchi et al., 2015) establishes a Q(d) lower bound for single-level smooth convex
problems, which are simpler than NC-SC bilevel problems (e.g., by setting f(x,y) = f(z)),
a Q(d; ) dependency is inevitable.

3. Our assumptions align with those used to derive the lower bound in (Dagréou et al., 2024) for
NC-SC finite-sum bilevel problems, confirming that the O(1/ne~2) dependency is inevitable
in the finite-sum case .

4. The O(e~?) lower bound for single-level problems (Arjevani et al., 2023) in the expectation
case is constructed under the mean-square-smooth assumption, which is slightly stronger
than the typical assumption of smoothness about smoothness of f(z,y, &) for all £. Thus,
strictly speaking, O(e~3) is not necessarily optimal in € for the expectation case.
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Althoud based on existing lower bounds, the dependency on d; is inevitable,however,the optimality
of the do dependency remains unclear. It would be particularly interesting if the exponent of dy
could be reduced to less than 1 for lower level strongly convex optimization, as this would imply
a theoretical speedup of zeroth-order algorithms compared to first-order algorithms (assuming the
gradient computation cost is O(dy + d2)).

5 EXPERIMENTS

5.1 HYPER-REPRESENTATION

We verify our algorithms on hyper-representation (HR) with linear and two-layer network embedding
models using synthetic data, as also discussed in (Sow et al., 2021). The hyper-representation (HR)
problem (Franceschi et al., 2018; Grazzi et al., 2020a) aims to find a regression model through
a two-phased optimization process. The inner level determines the optimal parameters w for the
linear regressor, while the outer level seeks the optimal parameters A for the embedding model (i.e.,
representation). Mathematically, this problem can be framed as the following bilevel optimization:

. _ 1 . * 2 * . 1 . 2 v 2
\nin f()\)*TanT(Xl,A)w =Y stw —argngﬁI(}Q%HT(XQ,/\)U)*}/QH Jr§Hw|| ;
(18)

where X5 € R"2*™ and X; € R™*™ represent the synthesized training and validation data matrices,
and Y2 € R™2, Y, € R™ are their corresponding response vectors. For the shallow HR scenario,
the embedding function 7'(-; \) is a linear embedding model . The data matrices X7, X5 and labels
Y1, Y5 are generated using the same methodology as described in (Grazzi et al., 2020a).

We first compare the effect of different h and v on the zeroth-order estimator. As shown in Figure
1(a) and 1(b), we observe that the zeroth-order estimator is more accurate when h and v are set
to 0.05 and 0.005. Second, we evaluate our proposed VRZSBO algorithm against baseline bilevel
optimizers AID-FP, AID-CG, ESJ, and HOZOG (see Appendix B for details on the baselines and
hyperparameters). Figures 2(a) and 2(b) display performance comparisons on linear models with
dimensions 128 and 256. In both cases, VRZSBO performs comparably to or even better than the
first-order methods.

100 —— VRZSBO_v=0.5
w0 VRZSBO_v=0.05
—— VRZSBO_v=0.005

—— VRZSBO_h=0.5
VRZSBO_h=0.05

—— VRZSBO_h=0.005

—— VRZSBO_h=0.0005

—— VRZSBO_v=0.0005

Outer level loss

Outer level loss

o o
0 20

60 80 [ 20 60 80

40 40
Iterations Iterations

(a) Compare the effect of different v on  (b) Compare the effect of different i on
zeroth-order estimator zeroth-order estimator

Figure 1: Zeroth-order tuning parameters

—— VRZSBO
ES)
—— HOZOG
20 —— AID-CG
3200 —— AID-FP

Outer level loss
2

[ 100 200 400 500 600 [ 100 200 400 500 600

300 300
Iterations Iterations

(a) d=128 (b) d=256

Figure 2: Comparison of algorithms on hyper-representation
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5.2 HYPER-CLEANING

We compare the performance of our VRZSBO algorithm with several bilevel optimization methods,
including F2SA (Kwon et al., 2023), SPABA (Chu et al., 2024), AID-FP (Grazzi et al., 2020b),
ZDSBA (Aghasi and Ghadimi, 2024), and BSA (Ghadimi and Wang, 2018), in terms of runtime. The
comparison is conducted on a low-dimensional data hyper-cleaning problem (Yang et al., 2023) using
a linear classifier on the MNIST dataset, which is formulated as follows.

1

min Ly (A, w") = 7o > Lep((w) wiy) (19)
(zi,9:)ES,
1
s.t. w' =argmin L(\, w) := 5] Z o\ Lop(w” i, yi) + Cllw|®,  (20)
" (wi,y:)€SS

Here, L g represents the cross-entropy loss, Sy and St denote the validation and training datasets,
with sizes set to 20,000 and 5,000, respectively. The parameters A = {\; };cs, and C are regu-
larization terms, and o(-) denotes the sigmoid function. In our experiments, we achieve superior
runtime performance compared to the current state-of-the-art zeroth-order bilevel algorithm ZDSBA,
demonstrating the efficiency of our method.Although our algorithm does not yet achieve the same
performance as the best first-order methods, it retains the key advantage of being fully zeroth-order,
making it suitable for scenarios where gradient information is unavailable.

—— F2SA —— F2SA
25+ —— VRZSBO 25 —— VRZSBO
SPABA SPABA
—— AID-FP | —— AID-FP
@ ZDSBA n ZDSBA
S BSA 2 BSA
= £
@ =
A \/ V\/\/-\’\, A \/ \f\/\/—\,\l
0= f f f f ' ' 0 ' 0= f ' f ' f f f d
0 50 100 150 200 250 300 350 400 0 50 100 150 200 250 300 350 400
Running Time /s Running Time /s
(a) Test loss (b) Train loss

Figure 3: Comparison of algorithms on hyper-cleaning

6 CONCLUSION

In this paper, we propose VRZSBO, a zeroth-order algorithm for nonconvex-strongly convex bilevel
optimization. Our algorithm improves the best-known complexity from O(e~3(d; + dz)?*) (Aghasi
and Ghadimi, 2024) to O(e~3(d; + dz)), achieving Best-known dependence on ¢ and dimension.
We also analyze the finite sum case, yielding a complexity of O(e~2y/n(d; + d2)). Experiments
validate the effectiveness of our algorithm. Future work may investigate the use of rand zeroth-order
estimators for similar complexity and the extension of zeroth-order methods to additional problems,
such as NC-PL bilevel optimization (Kwon et al., 2024; Chen et al., 2024).

10
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A FURTHER DETAILS ON HYPERGRADIENT ESTIMATION

1. Neumann series (Yang et al., 2021; Khanduri et al., 2021): This method is based on the
well-known Neumann series, which approximates the inverse of a matrix as:

Ny (I =nVog(x,y"(x) = [Vi,g(x,y(@)] "

i=0
In practice, since we do not let ¢ — oo, it can be shown that the error

term Hn Zin(I — Va9, y* () — [szg(m,y(x))]*lu decreases exponentially

(Ghadimi and Wang, 2018) with K. Thus, V®(z) can be approximated by:

_ K = v2,a(e.y))
Ve(2) = Vo f(n,y) = T Vi,90@y) ) (1 - yL> Vyf(@,y)-
9

k=1
The main limitation of this approach is that it requires many matrix computations, which are
expensive in practice.

2. Quadratic auxiliary function (Dagr’eou et al., 2022; Dagréou et al., 2024; Yang et al., 2023;
Chu et al., 2024): let z* = [VZ g(x,y* ()] 'V, f(z,y*(x)). We can rewrite this as
szg(z,' y*(x))z =V, f(z,y"(x)). Since Vf/yg(z, y*(x)) is invertible, this linear system
has a unique solution z*, which is also the minimizer of the following quadratic function:

1
R(z,y,2) = 52" Vi, 0@, y" (x)2 = 2" Vy f(2, 5" (@), 1)

By performing gradient descent on R(x,y, z), we obtain an approximate solution z, and
we approximate V& (z) as:

Our paper also adopts this approach, which was first introduced in (Arbel and Mairal, 2022;
Dagr’eou et al., 2022). (Dagr’eou et al., 2022) achieved a complexity of (’)(n%e_z) in
the finite-sum setting using Hessian-vector product oracles and a third-order smoothness
assumption. Later, (Dagréou et al., 2024) improved this to the optimal O(n%e_Q). (Yang
et al., 2023) extended the results to the expectation setting, achieving the optimal O (e=3)
rate. Incorporating the PAGE method (Li et al., 2020), (Chu et al., 2024) achieved optimal
rates in finite sum and near-optimal rates expectation case.

3. Penalty method((Ye et al., 2022; Kwon et al., 2023; 2024; Chen et al., 2024)): This kind of

method based on an observation that the gradient of a value function migl g(z,y) can be
yeR*2

easily expressed as :

Vy(z,y"(x)) = Vag(z,y"(2)) + V" (2) Vyg(2,y" (2)) = Vag(z,y™(2)),  (22)
| —
=0
this expression gives us the most significant insight: the gradient of the value function is
independent of the Jacobian matrix Vy*(x). To utilize the observation mentioned above,

let us first define the penalty function: £y (z,y) := f(z,y) + Mg(z,y) — g(x,y*(x))), and
auxiliary function:

LX(z) = [z, 97 (@) + Mg (2, yx(2)) — 9(z, y"(2))),

where y3(z) = argmin £, (z,y). It has been shown (Kwon et al., 2023) that the gra-
yER92

dient VL% (x) serves as a good approximation of V®(x), with an error bound given by

VL3 (x) — VO(z)|| < O (3). More interestingly, utilizing the observation from (22), the

gradient V L3 () takes on a simplified form:

VL (z) = Vo f(x,yx(2)) + A (Vag(@,y5(2)) — Vag(z,y" ().
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The key advantage is that, unlike the gradient of ®(2) in (1), the gradient of £, (x) involves
only first-order terms, avoiding the need to compute second-order terms. The main challenge,
however, is that the approximation error of y*(z) and ¥} (z), used to estimate VL3 (), is
multiplied by A. Thus, obtaining accurate estimators for y*(z) and y3(«) is crucial. To
our best knowledge, (Kwon et al., 2023) first proved this framework in the stochastic case,
but it has suboptimal complexities of O(e¢~?) in the deterministic case and O(e~°) in the
expectation case. (Chen et al., 2023) later improved the deterministic complexity to a near-
optimal @(6’2), (Kwon et al., 2024) later reduced the complexity of expectation case to

O(e™*), still leaving a gap of O(e~!) from the optimal rate of single-level problem(i.e,e ~2).

Consequently, stochastic bilevel optimization with strongly-convex lower-level problems is now as
efficient as single-level optimization, prompting the exploration of more challenging scenarios, such
as zeroth-order optimization (where first-order oracles are inaccessible) and cases lacking strong
convexity at the lower level (Huang, 2024; Chen et al., 2024; Kwon et al., 2024).

B DETAILS FOR EXPERIMENT

B.1 HYPER-REPRESENTATION

We first take the following introduction from Sow et al. (2021):

e HOZOG (Guet al., 2021): a hyperparameter optimization algorithm that uses evolution strategies
to estimate the entire hypergradient (both the direct and indirect component). We use our own
implementation for this method.

e AID-CG (Grazzi et al., 2020a): approximate implicit differentiation with conjugate gradient. We
use its implementation provided at https://github.com/prolearner/hypertorch

o AID-FP (Grazzi et al., 2020a): approximate implicit differentiation with fixed-point. We experi-
mented with its implementation at the repositery https://github.com/prolearner/
hypertorch

e ITD-R (REVERSE) (Franceschi et al., 2017): an iterative differentiation method that computes
hypergradients using reverse mode automatic differention (RMAD). We use its implementation
provided at https://github.com/prolearner/hypertorch.

Hyperparameters setup For VRZSBO we use v = {0.01,0.005}, h = {0.01,0.005},n, =
0.00005,n, = 0.0001,n, = 0.001,for HOZOG we set 1 = 0.01.For other method,the number
of inner GD steps is fixed to/N = 20 with the learning rate of & = 0.001. For the outer optimizer, we
use Adam with a learning rate of 0.05. The value of ~y in (18) is set to be 0.1. For all double-loop
methods, we set N = 10, o = 0.001, 8 = 0.001, and use Adam with a learning rate of 0.01 as the
outer optimizer.

B.2 HYPER-CLEANING

For our VRZSBO,we set v = 0.0001,h» = 0.001,n, = 0.1,7, = 0.5,n, = 0.5,B = 1000,b =
100,p = 0.5.For ZDSBA,we set v = 0.0001, ~ = 0.001,n, = 0.001,n, = 0.01,n, = 0.001.For
SPABA ,we set ), = 0.1,n, = 0.5,1, = 0.5,B = 1000, b = 100,p = 0.5.We set the number of
inner-loop iterations to 20 for AID-FP,FZSA and BSA,and choose 0.1 as the both inner and outer
stepsize.
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Table 2: Meaning of Symbols

Symbol  Meaning

Smoothing parameter used in gradient estimation

h Smoothing parameter used in estimating Hv/Jv
Cy Lipschitz constant of f(x,y) iny
L Lipschitz constant of f(x,y), g(x,y), and their sample functions

Strong convexity constant of g(z,y) in y

r. Upper bound of || zf ||

Hessian-Lipschitz constant of ¢g(z,y) and its sample functions

) Upper bound on the error between the zeroth-order estimator and the gradient

H,(t) Hessian vector product V2 g (¢, y1) 2

DH,(t)  Finite difference that approximates the vector product V2, g(¢, y¢) 2
DH,(t)  Zeroth-order estimator for DH,(t)
DH,(t;€) Stochastic sample estimator for D H,(t)
Loos Largest smoothness constant
K Largest condition number

C USEFUL LEMMAS

Lemma C.1 (Xu et al., 2017)). For p-Hessian Lipschitz continuous function f(x), we have we have

2
u

[Vf(x+u) = VI(x) = V2 f(x)ul| <
Lemma C.2 (Jensen’s inequality). For convex function f(x) we have

f(E[z]) < E[f(2)], (24)
two extended versions of Jensen'’s inequality are

[EL]) < Ella]], for = € R
k 2
D a
i=1

Lemma C.3 (Young’s inequality). For any vectors a,b, € R%, and > 0, the following inequality
holds:

k
<k laill?, fora; € R".

i=1

lall* < (1 + Olla = blI* + (1 +¢77) [IBlI*,

an extended version of Young’s inequality is

lal® |, <lIbl>

Lemma C.4 (variance decomposition). For random vector x € R® and any y € RY, the variance of
x can be decomposed as

E [|lz — Elz]lI*] = E [llz — y/I*] - E[IE[z] - 9],

which implies
E [l — E[]I”] <E [Jla)].
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Lemma C.5. For random variable X,Y, if X, Y are independent, and E[X] or E[Y] = 0, we have

E[I|IX - Y|*) = E[|X|*] + E[|Y1*)-

Proof.

E(|X - YI*] = E[IXI* + 1Y) + 2E(X, Y)] = E[|X|*] + E[|Y]).

Lemma C.6. Fori.id. 1,272,723 %, , if Elx;] = z,E[|lz; — z|%] < 0% we have

S - e
biZle x < o
Proof.
1< ’
i=1
1 & ’
:b—2E Z(J;i—a?)
i=1
L&
2
= = Sl — o))
i=1
E(]l: %]

1
= LEllles — o’ <

(25)

(26)

where the second inequality holds because ||a + b||> = [|a]|® + [|b]|* + 2(a, b), and E[(z; — x,2; —

x)] = 0(j # 4) for iid random variable x;.

Lemma C.7 ((Li et al., 2020)). Suppose that function f is L -smooth and let x4y := x4 — ng*, then

for any gt € R% and 1 > 0, we have
n I L 1
flan) < fa) = BV I = (5= 5 ) lowa =l + Jla' = V1@

D COORD ESTIMATE AND ERROR BOUND

Table 3: some bound of estimator

Error term Meaning bound
H@p(x) — Vp(x) H2 error between gradient and its zeroth-order estimator lemma D.1
H@p(a:; €) — Vp(z) H2 variance of zeroth-order estimator lemma D.2
H@p(xl; ) — Vp(ag; €) H2 the Lipschitzness of sample zeroth-order gradient estimator lemma D.3
|DH,(t) — H,(t)|? the error between finite difference and Hessian vector product lemma D.5
HDﬁv (t) — DH,(t) H2 the error between D H,(; £) and its sample estimator lemma D.6
HDFAL, (t:€) — DH,(t) H2 the Lipschitzness of sample zeroth-order Hv estimator lemma D.7
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D.1 ERROR BOUND

D.1.1 ZEROTH-ORDER ESTIMATOR FOR GRADIENT

Lemma D.1 (Restatement of lemma 2). For L-smooth function p(x), its gradient Vp(x) and its

zeroth-order estimator NV p(z), we have

- 2 L2
Vp(z) — Vp(x)H < Zva' 27

Proof.

=1
d
_Z Ofv(x)  Ip(x) ? < LQd 2
B dr,  Ox =
P i i
in second inequality we use H af“(x) agg(:: = H foctves) —f(x 1) {Vp(e).ver) ’ < ek O

Corollary 2. Choose suffciently small zeroth-oreder smooth parameter v, the gradient estimation
error can be bounded by a constant §:

NACEAIC] B (28)
and A

|Vg(e) - vg(e)| < 4. (29)
where § = Lv/ditdov d1+d2” . In the following lemma, we disscuss the error between zeroth-order estimator

Vp(z) and stochastlc zeroth-order estimator Vp(z; £),
Lemma D.2. Under assumptions I and 2, we have

E[[Va(a: ) ~ Vo) ] < 65° + 30> (30)

Proof.

| [¥o(:©) - Vot

. 2 . 2
<3||Vp(aie) - vmm;g)H +3||Vp(2) = Vp@)|| + 3E[IVp(x) = V(e I
< 662 + 302,
. 2 . 2
where the last inequality holds because HVp(x;f) - Vp(x;f)H and HVp(x) - Vp(x)H are
bounded by 62, and E[||Vp(z) — Vp(z; €)|*] < o2. O

In the following lemma, we disscuss the Lipschitzness of sample zeroth-order gradient estimator.
Lemma D.3. under assumptions 1 and 2, we have

[9p(1:6) = Vptan )| <82 flos - + 657 (3D
Proof.
[9pt1:6) - Fptenie)|

< 319p(r156) — Ul OIF + |[Votw: &) - Vatens &) + |Vl ©) - Vatan )|

< 3L% |2y — 2”4 682,
where the last inequality holds due to D.1 and assumption 1 . [

19



Under review as a conference paper at ICLR 2025

Corollary 3. since f(z,y) and g(x,y) satisfy assumptions 1 and 2, the conclusion of above lemma
D.2, D.3 holds for g(x,y) and f(x,y).

D.1.2 ZEROTH-ORDER ESTIMATOR FOR HESSIAN-VECTOR PRODUCT

Remark 3. we only prove the conclusion about Hessian vector product, the proof and conclusions of
Jacobian vector product are the same with same as the former .

In the following lemma, we disscuss the error between finite difference(defined in (7)) and its
zeroth-order estimator(defined in (9)).

Lemma D.4. Under assumption 1, we have

|pit) - D) < 2—3 (32)

Proof.

| P - DHL)|

Vyg(@e, ye + hzt) — Vyg(ae, ye + hey)
h

Vyg(ifta yt) - vyg(xta yt)
h

&

O

In the following lemma, we disscuss the error between finite difference(defined in (7)) and Hessian
vector product(defined in (6)).

Lemma D.5. Under assumption 1, we have

phi?

HDHv(t) - Hv(t)H < 2 (33)
Proof.
Vyg(x,y+ hz) — Vyg(z,y
1DH, (1) ~ Hy (1)) = | LI ZVad @) ga ),
Le - 2
=7 Hvyg(aﬁ, y+hz) = Vyg(z,y) — Vy,9(x, y)hth
_ 1plhal?
~h 2
- phr;
-2
where the third inequality holds due to lemma C.1. O

In the following lemma, we disscuss the error between finite difference(defined in (9)) and Hessian
vector product(defined in (6)).

Lemma D.6. Under assumption 1, choose h = %\/%) we have

| D) — )| <4208 (34)
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Proof.
. 2
|pi) - ()|
. 2
<2||DAL(t) - DH0)| + 2 DH(8) ~ Ho(0))
46 p2h2rt
< 2(—= z
<25+ 105
< 4r2ps,
where the last inequality holds because we choose h = % %. O

In the following lemma, we discuss the error between DfIv(t; &)(defined in (9)) and its sample
estimator(defined in (11)).

Lemma D.7 (variance of sample zeroth-order estimator). Under assumptions 1 and 2, for our
zeroth-order estimator, we have

~ N 2
HDH,,(t; £) — DHv(t)H < 31202 + 2472 6.

Proof.
A . 2
|pi () - DL
A 2 R 2

< 3I|H,(6:€) — Ho(®)* +3 | DA€ — Ho: )| +3 || Hu(t) - DHL)

< 3r20? 4+ 12r2p8 + 1212 pé.
where the last inequality holds due to lemma D.6, and

2

1H(t:€) = Ho@)I* = [[(V3,9(ze:y0) = Viyg(ae, y: ) 2" < o7 ||z O

In the following lemma, we disscuss the Lipschitzness of sample zeroth-order Hv estimator.

Lemma D.8 (Lipschitzness of the zeroth order estimator for Hv). Under assumptions 1 and 2, we
have

N N 2
HDHU(@H;@ — DA, (zs; g)H < 812 [|ersn — efl|® 4+ 8L |zier — z||® + 160200, (35)

Proof.

|DA (i) DR 0)||
< A([[H (zt41;6) — H(xt;ﬁ)Hz + “Dﬁu(xt;f) - H(fﬁt;f)HZ + “Dﬁv(ﬂctJrl;f) - H(%Héf)HQ)

2 2
<8|[(V2,9(zes1,yer1:€) — Viya(@e, ye;:€)ze||” + 8(|Viyg(@e, s €) (ze41 — 20)||” + 1672p6
< 8% ||epsr — cl|” + 8L? ||z — 2| + 16726,

where the second inequality holds due to the conclusion of lemma D.6. [
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E CONVERGENCE ANALYSIS

Table 4: lemma used in converge analysis

Meaning lemma
inexact gradient descent of z lemma E.6
variance descent z (finite sum case) lemma E.7
variance descent z (Expectation case) lemma E.8
inexact gradient descent of y lemma E.12
variance descent of y (finite sum case) lemma E.13
variance descent of y (Expectation case) lemma E.14
inexact gradient descent of ®(x) lemma E.18
variance descent of x (finite sum case) lemma E.19
variance descent of z (Expectation case) lemma E.20
converge analysis of ®(z) (finite sum case)  Therorem E.1
converge analysis of ®(x) (Expectation case) Therorem E.2

E.1 BASCI PROPERTY ABOUT BILEVEL PROBLEM

Lemma E.1 (bound of ||z} |)). Under assumption 1, for any zf = [V2,g(x¢,y1)] =V f (21, yt), we

have
271 < 7 (36)
where r, 1= G
m
Proof.
1221l = [11V5y9(ze, vl ™'V f ey | < Vg9, y)l 7H IV f (e ye) || < %
O
Lemma E.2 (Lipschitzness of z*). Under assumption 1 we have
281 = 2| < Lz lleers — el - (37
where Lz = (% + C;szp) = O(K?)
Proof.
|21 — 2] =]V yyg (o1, Y1) Vi f (@1, ye41) — [Vayg(@e, y)] ™ Vo f (ze, )|
< H yyg $t+1,yt+1)]_ H IVyf $t+17yt+1) Vyf(ze,y)ll
+IVyf (@, y0)l H[V oy9(@e1, Y )] T = (Vg2 y0)] 7|

= IV2, 9@ i1, yer )] IV f(@es1, yeg1) = Vi f (@, 90|

IV f @y P V20t 1) (V2901 yie1) — V2, 0(20,50)) V2 g(e 1) |

L C
+fp

=

) leera = cell -
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O
E.2 DESCENT PROPERTY IN z
In the following lemma, we disscuss the error bewteen h ; and its zero-order estimator.
Lemma E.3. Under assumptions 1 and 2, we have
R 2 ) )
’ By — oy ’ < 262 + 8r2pd (38)
Proof. use lemma D.6, we obtain
. 2 . 2 . 2 ) )
‘ hot— oyl <2 HDH,,(t) - Hv(t)H 12 Hvyf(xt7yt) — V)| <267+ 8r2p6
O
Lemma E.4. Under assumptions 1 and 2 we have
. . . 2
H (DHv(t;g) — Vo f (e e g)) - ‘ < 6(1 4 2)0? + 48r2pd + 1202, (39)

Proof.

H (Df{v(t;@ — Vyf (@, ye; C)) - Bz,t '2
<2 DA€ - DR + 2|9, i €) - Ty o)
< 2(3r20” + 24r2p6 + 652 + 307)
= 6(1 + 12)0? + 48r2pd + 1247,

2

where the second inequality holds due to the conclusions of lemmas D.7 and D.2, which are used
. . 2 . . 2
to upper bound and to upperbound HDHU (t;€) — DH,(t) H and Hvyf(xt, Y1;¢) — Vy f(ze, ye)

Lemma E.S ((Necoara et al., 2019)). The projected gradient descent update rule of convex function
f is given as follows:

Tpy1 = [2p — oV (2)]

where X is a closed convex set, cy is the step size, and [-] x denotes the projection onto X. We have
the following property:

(xpt1 —xk + i Vf (), —xp41) >0 Ve X. (40)

In the following lemma, we disscuss the inexact descent property of z;.

Lemma E.6 (Restatement of lemma 4). Under assumption 1, let {z:} be a sequence generated by
Algorithm 1,we have

« 2 N 4 « 2 . 2
ot = il <= T ot = 17 4 == o = | e =) = (1 = 220 ot = 2
4 2
+ UZLLZQZ* Ct41 — Ct” .
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Proof. The following proof is inspired by (Necoara et al., 2019) Theorem 11 . note that
V2.R(z,y,2) = V2,9(x,y), so R(x,y, z) is L-smooth and ji-strongly convex in z.

l2t+1 — Zf||2
= |lzt41 — Zt||2 + 2241 — 26,28 — ) + ||z — Z:HQ
=~ llzep1 — 2l* + 221 — 26241 — 27) + |20 — 2|7
% —|lzeg1 — z||> + 212 ((VZR (cty2t) ,2f — ziy1) + <iLtZ —V.R(ct,2t),2f — zt+1>)

+ Nzt — 27 1P £ 1remz 121 — 2|

b 2 * 2 Nz |32 2 * 12
<= lztr1 — 2" + a2 ll2f — zeall” + . hi = V.R(ct,z)|| + |lze — 2|l
— 20, ((VoR (co, 20) s 2 — 27) + (VR (cos21) s 21 — 20)) £ Lrams 2641 — 2|
c 2 || 2 N
<o Iz =zl 2 |[b = VeR (e 2|~ 20 (R (e 20) = R (s 27)
2

+ (Ir=m> — 1) |2e41 — 2|+ N2 — 277

~ 2
b = VR (e )| + (e = 1) e — 2,

d 2 «2 M
<llze — 2f 117 + (2v2 — map) 241 — 25117 + %

where step (a) holds because z; € B(r,).Therefore, we can use lemma D.5, step (b) holds due to
Young’s inequality, step (c) holds due to the Lipschitzness of R(z,y, z) in z, step (d) holds due to the

strong convexity of R(z,y, 2) in z (R (¢t, ze41) — R (ct, 27)) > M). Now, let 7 = £, we
obtain
L+ ZE) oo — 2 (D)

2n,

<z — 2717 +
¢ 7

020 — VaR(ce, 20)||” = (1= Ln.) [|ze41 — 2% (42)
after that,

. 112
2001 — 2744 |

= |leerr £ 2 — 2 ||

A=

2
I

1
(I 4+73) [lze41 — 2 |7 + (1 + %) |2 — Z:+1||2

1
< (1+73) lzes1 — 20 I1° + (1 + 5 lleva - al?,
3

where step (a) holds due to Young’s inequality. Combine with (42), we have

lzt1 = 2l

(1+3) 2 27, 2 2 1 2
< T (o _V.R (- - 1y -
S+ ) 2t — 2 |I” + u vzt 2R(ee, 20)]|” = ( n2) 1zt — 2™ ) + o 7+ |let+1 — e
a B " 2n, 4
S0 2 (o = 571+ 22 o = VRlen 20l = (L= I o = 5l ) 4~ v —

b z * 4 z 7 2 7 2 4

<= T et = 21+ = (o = |+ [ = B[ ) = (U= 2Zm) Noes = 2+ e Nevia =l
where step (a) holds due because we choose 3 < £, and let 1. < 1, such that (gfﬁ) =

2
M_/Y ne .
L= mrmey S 1 oy <155
step(b) holds because (1—"2)(1—2Ln.) > 1—"—n. L > 1-2Ln., note that V. R(cy, 2) = h. ¢,
.2 .2
and |jv, ; — hz,t||2 < 2(‘ Vet — hog|| + ’ h.+—h.4|| ), hence, we have finished proof. O
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In the following lemma, we disscuss the variance descent property of variance term in finite sum case.

Lemma E.7 (Restatement of lemma 6). Under assumptions 1 and 2, we have

2
'Uzq,t-i-l - hz,t-i—l H

<@ —p)E[‘

E

2 2(1 —
va = b T4 % (82 +8L2) llevsn = ol +8L2 ||z11 — 20l + 167203 + 66 .

Proof. recall that

% Zil D?v(t + 1;@) — @yf(xtﬂ, Yer1; ¢i)  with probability p,
Uzt = UZ¢+ %Zi:l EDHU<t+1;§i) _DHlJ(t§§i)
- Z?:l Vo f(@ey1,Ye415G) — Vy f (26,965 () with probability 1 — p

then

2
E ‘ Uz,t-i—l - hz,t+1 H

2

B
:%E H (; DH,(t+1;&) — Vy f(Tes1, Yes1; Ci)) = hag1

X 2
+ (1 =p) ||v2e + ZDﬁIv(t +1,6) = Vyf(@er1,ve115G) — [DHL(66) = Vo f (@, 965.6)] = oy £ ey
i=1
<1 = pEons — e
1 i
+ (1 - p)E[ 3 ZDﬁv(t +1:6) = Vo f (@i, ye15G) — [DH(66) = Vi f (0,463 G)] — haigr + ha| ]
. ) ) 2
<1 = pElons — hea| 1+ S5 PE DI+ 1560 = 9y fween,ves ) — D56 = Ty f s G|
<= PR — hes 2}

+ 208 (5| ¢+ 1) - 0 6601 1+ B9 o) - Ve o)

~

<1 E 2 2(1—p) 2 2 2 2 2 2 2
<1 = p)E[||vay — haop|| ]+ T (87 +3L7) |lct1 — ¢l|” + 8L ||ze41 — 2¢]|” + 1675 pd + 66

where the second inequality holds since we let B = n in finie sum case, and E[ Zf 1 DH, (t+
1§§i) - vyf(mt—&-la Yt415 Cz) - [DHv(t;gi) - yf(xtayh Cz)] h 41+ hz t] =0,

the last inequality holds due to the conclusions of lemmas D.8 and D.3, which are used to bound

. N R R 2
[HDHv(tJr L&) = Vyf (i1, Y15 G) — [DHy(856) — Vy f (24, yt; Cz‘)]” ]

In the following lemma, we disscuss the variance descent property of z; in Expectation case.

Lemma E.8 (Expectation variance descent in z). Under assumptions 1 and 2, we have

E Vap — Py

]

2(1 -
+ % ((8r2 4+ 3L%) llevss — ll” + 8L2 1201 — 2[1* + 16r2p5 + 66%) + S (6(1+12)0 +48r2p0 + 125%).

. 2
Va4l — hz,t+1” <(1- P)E[‘
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Proof. recall that
LS8 DA, (t+1;¢) — Vyf (@11, 9141;¢)  with probability p,

R Z§:1 S DH,(t+1;&) - DH,(: &)
-3 Z?:l Vyf(@ii1,ye415C) — Vyf (2,91 ¢)  with probability 1 — p

and for the same reason as lemma E.7, but the only difference is

pE[H% 3 (Df{v(t; ) — Vo f(xe,ys; ()) — iLZ’Hl]HQ # 0.Therefore , we have:

2
E ‘ Uz t4+1 — hz,t+1H

2

B
p ~ ~ A
:E]E H (; DH,(t+1;&) — Vy f(@i41, Yoy Ci)) —hz i1

7 2 2(1-p) 2 2 2 2 2 2 2
+ (L= p)E[|[vze = ha|| [+ == ((16rF +3L%) lleers — cel|” + 8L [|ze41 — 2" + 16720 + 65
a2
SEp(S(l +72)0? + 24r2ps + 66%)
2%, 20 —p) 2 2 2 2 2 2 2
+ (L= P)E[|[vze = ha|| |+ =5 (872 +3L%) llerss — el + 8L flzea — 22" + 16rZp0 + 657 ),

where step (a) holds due to the following inequality
2

B
%E H(ZIDJELJ(t—Fl;&) v f(xt+1>yt+17<2)>_ 241

2
<2 UIDH (&) — DALY ] +E [Hv F o913 G) = Vi f )| ])
2p 9
_E(B(l +72)0? + 2412 p6 + 66%),
where the last inequality holds due to the lemmas D.2 and D.7.
O
E.3 DESCENT PROPERTY IN ¥
Lemma E.9 (Lipschitzness of y*). Under assumption 1 we have
s —vill € Ly |21 — @) - 43)

where Ly« = K

Proof. from the strong convexity of g(x,y) iny
Lllzers — 2l 2 Vyg(ae, y7) = Vyg(@ern, vl = [[Vyg(@ern, i) = Vyg(@ern, vl = ullyin — vl

where the second equality holds due the optimality of y; and y;,,(.e, Vyg(z:,y;) and
Vyg(Tis1, i) =0). O

Lemma E.10. Under assumptions 1 and 2 we have

. . 2
E [Hvyg(ft,yﬁf) - hz,t+1H ] < 302 + 662 (44)

Proof. Use the conclusion of lemma D.2 then we obtain the result directly. O

In the following lemma, we disscuss the error bewteen h,, ; and its zero-order estimator.
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Lemma E.11. Under assumptions 1 and 2, we have

N 2
hy,t - hy,t ‘ S 62- (45)

Proof.

2
< §2.

Hvy,t - hy,tH2 = Hvyg(mhyt) - @yg(wtvyt)

In the following lemma, we disscuss the inexact descent property of y;.

Lemma E.12 (Restatement of lemma 5). Under assumption 1,let {y;} be a sequence generated by
Algorithm 1, we have

Mk 2 4 2
ye1 — yi | y ) lye =y l* = (1= 2Lny) llyesr — vell* + ﬂl% Typ1 — 4|
Y
4n . R 2
+ Ty(Hvyt - hy,tH + th,t - hy,tH )-
Proof. the proof is the same with lemma E.6, we omit it. [

In the following lemma, we disscuss the variance descent property of variance terms in finite sum
case.

Lemma E.13 (Restatement of lemma 7). Under assumptions I and 2, we have

Uyt — hy

. 2
E ‘ Uy t4+1 — hy,t+1H < (1-p)E[

<3L2 lees — eil® + 652) .

Proof. the proof is the same with lemma E.7, we omit it. O

In the following lemma, we disscuss the variance descent property of y, in Expectation case.

Lemma E.14 (variance of y in Expectation case). Under assumptions 1 and 2, we have

7 2 P 2 (1-p) 2 2 2 p 2 2
E Uy, t+1 — hy,t+1 S (1 —p)]E[ Uyt — hy,t ] + T 3L ||Ct+1 — CtH + 60 + E (66 + 30 )

Proof. the proof is the same with lemma E.8, we omit it. O

E.4 DESCENTIN x

Lemma E.15 (Restatement of lemma 1). Under assumption 1, for the error between hypergradient
®(z) and approximation hy ;. in (2), we have the following upper bound,

e = VO(x) | < (2L + 4r20%) llys — y"II* +4L% |z — 7| (46)

Proof. ||y — V®(ay)|*:
e — V()|
* * 2
< 2(|Vef(2,yt) — Vo f (we,yf) || +2 Hvzyg Te,Yt) 2t — Viyg(fftvyt 2t ||

< 2L2 |lys — y 12 + 4|zl | V2, 9(2e, ye) — V2, 9(ae,
< (207 + 4r2p%) ||y — y*|1? + 4L2 ||z — 2717

2 2
"z — 211

+ Hvryg T, yt)

O
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Lemma E.16. Under assumptions 1 and 2, for the variance of sample zeroth-order estimator, we
have

E U] (DJut:€) = Vs (w0, :0)) ﬁzmm <6(1+r2)0" 412205 657 @4)

Proof.
& [|(P69) - 9t 0) = e

< 2E [HDjv(t;ﬁ) - Djv(t)HQ] +2E [H%f(xt,yt;o — Vo f (@4, 1)

< 2(3r20% 4 2472 p6 + 662 + 30?)
=6(1+72)0” + 48r2pd + 1252

]

where the last inequality holds due to the conclusions of D.7 and D.2, which are used to upper bound

E [HDjv(t;f) - Djv(t)HQ} and E [Hﬁwf(%yt; - @ﬁf(xtvyt)H2:|. ‘

Lemma E.17 (Smoothness of function ®(z) ). we have
[®(x1) = (22)|| < Lg |21 — 22 (48)
where Ly = O(k3).
See Lemma 2.2 in (Ghadimi and Wang, 2018) for detail proof.
Lemma E.18 (Restatement of lemma 8). Under assumptions 1 and 2, for Algorithm 1, we have:

N 1 L 3771 7
Bom) <0(a) - ZIVEE)IP - (5~ 5 ) o = aul? + o~ hael?
31 2 2 2 P 2 P 2 2
5 (L7 +472p7) [lye — 371" + AL% [|2¢ — 2" + 267 + 8r2pd),

+

Proof. from the conclusion of lemma C.7, we have

Nz 1 L Nz
Bom) <o) — ZITO@I - (51 = 5 ) lows = aul? + Zlloes - V(o) P

7: 1 L

<0(a) - ZIVR@)I - (5 = 5 ) lowa — ol

30, ) A 2
B (fon = bl + [ = B ||+ e = VO ()I)

. 1L 3, )

<@() - VRN - (5 = 52 ) lows — o + 2l = bl

3 x * *
+ SERL? + 4r20%) llge =y [P+ 4L2 |20 — 27| + 267 + 812p0),
here, to obtain the last inequality, we bound |/h, ¢ — V®(z;)||> by using lemma E.15 and
hx,t - h:r,t

2
is bounded by the following fact:

2 N 2
hot — has| <262 42 HDHv(t) - Hv(t)H

lemma D.6

< 262+ 8r2ps.
O

In the following lemma, we discuss the inexact descent property of variance term in finite sum case.
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Lemma E.19 (Restatement of lemma 9). Under assumptions I and 2, we have

. 2
E Vg, t+1 — hx,t+1H

Vgt — hz t

)

2 2(1 —
1+ % (8724 8L2) levsn — col® + 8L2 [lz041 — 20> + 16r205 + 662

< (1-pE]

Proof. recall that

DAY o f (@15 Yot ) — DJy(t + L &) with probability p,
Vg,hl = S Vg1 + 3 2 Ve f (@1, Yi1;G) — Vaf (@, ye; G)
S0 DIt +1;:6) — DJ,(t; &) with probability 1 — p
then
. 2
El|lves11 — ha,t+1H
1 & ’
=pE (B > Vel (@er1,ye115G) — DIu(t+1; §z)> ha t41
i=1
b 2
1 ~
+ (1= p)E |ve, + gZV (@41, Y2415 G) — DIy (456) = [Vaf (0,961 C) — DJo(60)] = hopr & hay| ]
.2
<(1 = D)El||va — bt ]
2
b
1 A A -
+ (1 - p)E] 3 vaf($t+1ayt+1§<i) — DJy(t+ 1) — [Vaf (@, ye;G) — DJy(t;6)] = haps1 + hat|| ]
i=1
~ 2 1—p . . . 2
<(1- p)E[‘ Vgt — hag|l ]+ TE[Hf(xtJrlaytJd; G) = DJu(t+1&) — [Vaf (e, y3G) — DJv(t;fi)]H ]
~ 2 2(1—
<(17p)E["U'pt hz,t ]‘i’% ((87’2+3L2) ||Ct+1 *CtH2+8L2 ||Zt+1 72}“24’167"3,054*662) 5
where the second inequality holds since we let B = n in finie sum case, and

E[L S0 Vo f (@1, Yes1; G) = DIt 156) = [V f (20, 923 G) = Do (8 €]~ 1 +hd] = 0,
the last inequality holds due to the conclusions of lemmas D.8 and D.3, which are used to bound

E[Hf(xt-i-layt—&-ﬁ i) = DJu(t+1;&) — [Vaf (e, 965 G) — DJo(:€)] 2]- O

In the following lemma, we disscuss the variance descent property in Expectation case.
Lemma E.20 (Expectation variance descent in x). Under assumptions 1 and 2, we have

2
E

vm,t - hm,t

) 2
Vg 41 — hm,t+1H <(1- P)]E[’

]

2(1 —
+ % ((8r3 4 3L2) [leprs — col® + 8L ||zegr — 2% + 161205 + 652> + %(6(1 +12)0? + 48728 + 1262).

Proof. recall that

XV sz(ﬁﬁtth Y413 Gi) — DIy (t +1&) with probability p,
Vgt 7= Vet + 3 Zézl Va:f(xt+17yt4f1; Gi) = Vaf(xe,ye5Gi)
150 DIt + ;&) — DIy (&) with probability 1 — p
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then
N 2
E ‘ Ux7t+1 hx7t+1H
1< ’
=pE (B ; Vo f(@er1,ye41:G) — DJo(t+ 1 fi)) = hgt41
L2 21—
+ (1= DBl e — || ]+ % ((8r2 4+ 3L%) llevss — ll® +8L2 [z — z|1* + 161295 + 66%)
a?
ggp(gu +12)0? + 24r2ps + 662)
»o 1%, 2(1-p) 2 2 2 2 2 2 2
(1= P)E[|vn = Aot | ]+ = (82 43L2) llevss — aal]* + 8L |1zt — 2l + 16020 + 657

where step (a) hold due to the following inequality:

B
PEl| & 3 Ve f (s ) — DIul66) — he]
i=1
2p R N 2
<Z(E U Ju(t: &) = DI, (1) ] +EU|V F@e i €)= Vaf () ])
§2p(3(1—|—r o2 + 2472 pd + 66%)

where the last inequality due to the conclusion of lemmas D.2 and D.7.

E.5 PROOF SKETCH OF THEOREM 1

The main goal of our proof is to bound potential function, starting from the inexact gradient descent
of ®(x) in Lemma 8, which is a key step to estimate the potential function.

. 1 L 3
Do) <0(a) ~ VSN - (G- = 5 ) low = o + B o -

‘]
21y 2

+ e |lye — ¥ ||° + cana ||2¢ — 27||?) + other terms  for some constant ¢y, ¢.

Observing the following descent of z; and 7; and variance term ||vw c—h ha ||2 in Lemmas 4, 5 and 9:

* 2 *1(12 ny,u 2
||yt+1 - yt+1|| =Myt =y 1" < ———llye —v: || "’ Uy t y7t ) + other terms ,
. 112 4 4 . 2
s = 2l = = 207 < == Nzt = P 4+ =20zt = hase| ) + other terms
. 2 o2 2
and E ’ Vgptt1 — P 41 H - E[’ Vgt — hp || ] < prE[‘ Vgt — ha¢|| ] + other terms .

Next, we define a potential function ¥, as follows:

3 w112 C
Uy i= @ (@) + B[ vz = haall ]+ i (e = i 17) + 5 (1126 = 2411
P 6 6

then by simple calculation, we can obtain the following results for some constants cs, c4:

3Ny

Uiy — Uy <O(wp41) — B(20) — 22l vae — hue|?) = erma lye — y* 117 — cana 20 — 27|12

+es(l[vg.e = hy.el|?) + calllv,e — hae]|*) + other terms

we can see that the negative terms of W;,; — W, can precisely cancels out the positive terms of
D(x441) — P(x4), we further get:

Uiy — Uy < esllvgs — hyl|® + callvz — heyl|® + other terms
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similarly , from the descent of variance term in Lemmas 6 and 7 as follows:

El|vz i1 — hapi ] — Ell|vse — he,

*] < —pE[[|vzy — /Azz7t||2] -+ other terms .

Ellvy.e1 = hyeall® = Ell[vy.e = hy,el|*] < —pE[vy.¢ — hy.e]|%] + other terms .

we define the second potential function ), as follows:

c - c -
Py =y + ESE[”Uy,t - hy,t||2] + fE[HUz,t - hz,t||2]7

Similarly, the negative terms of ;1 — 1, can precisely cancel out the positive variance terms
of Uy — U,. After that, by calculating the "other terms", we get an equation like this for some
constants cs, cg, C7, Cs:

Vet S G| V(@) +500) s (6 s = aill® + e e = wil* + s lz4a = 2l

by the choice of 1., 1, 7., we let cg, c7,c8 < 0, c58 < 1,O(€?). We will obtain the final result in
Theorem 1:

Vg1 <Py — — (||V(I’(35t)||2 —€ )

Theorem E.1 (Restatement of Theorem 1). Deﬁne Lyapunov function

18(L2 + 212 p2)n, . 36m, L2 p? .
b= @ (ay) + 23 P (g, — i) + B2 (12, 2P)
Ny Nzt
30, . T2(L2 + 22?1 L2 144L2p%, .2
+ 1 H'U:z:,t —h , + ( 3 =P )77 vy,t — hy,t + # Uzt — hz,t s
2p pp pp

under assumptions 1 and 2, for Algorithm I, choose 1,y < 2& M S e e < O(L2 — P = ﬁ

2
b=+/nB=n, U<leet5<o(flimﬂ4)’ = \/>we0btaln

Bl — ] < —]E[?’”(||V<I>(a;t)||2 - 2¢%)],
and total oracle cost is
# funtion = dT (pn + b) + dn = O((dy + da)v/ne 2L2, k* + (dy + d2)n).
Proof.
B 1 Ly 3N, .
Bom) <0(a) - LIVRE)IP - (5 — 52 ) v = aul? + 2o — el

3
2
define Lyapunov function

+ S5 (2L + 4207 ||y — v 1P + AL |2 — 21 + 262 + 8r2p0),

3 72(L? + 2r2p?)n, . 144m, L?p? .
L I B (R R (PR}

Ny
by the definition of v, and lemmas E.6, E.12, E.18, E.19, we have

E[W; 1 — ¥y

z

X 1 Ly 31,
<B-ZIVR)IP - (5 - 5 ) o = aul? + 2 (28% 4 80200

36L2p> 4 4 N 2
+]E[7p U (—(I—an)||zt+1 —Zt||2+7l2* Ct+1 —Ct||2+£( Uzt — oy ’ + ‘h
Nz A%
18(L? + 2r2p*)na ( o 4 2, 4y
+E L (= 2Lmy) lgees = el + B s — el + (|
[ Ty v g ! Ny Y " ‘ 2

3(1 = p)ne

E
+ E[ o

((87“3 +3L%) [leer — el +8L7 [|z41 — 2]|* + 167205 + 652)]7

31

. 2
Vy,t — hy,tH + th,t -

h

y,tH2)>]
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2

Then, let lb;p = 1, use the conclusions of lemmas E.11 and E.3 to upper bound ’ hyt— ﬁyt s
p g g
2
‘ hz+— h.t|| ,and rearrange the terms, we obtain:
E[U;y1 — Oy
Na 2 1 Ly 2
<E[-=||V® B e —
<B- 218 - (5= - 5 ) o — i)
72(L? 4 2r2p? 288L2p? 864L2p?
+77x<<21+ (2" + TZP)—!— p)52+<60+p>r§p6)
Ny Nz 2
36L%p%n, 4 14412 p?n, TR
+ B[ ((1 — L) llzer — 2l + —— 13 llerr — ct||2) b e ]
Nz UPTZ
18(L2 + 2r2p?)n, 4 72(L? + 212 %), ok
+E| - —(1=2Lny) lyes1 — well* + %7@/ w1~z ) + 2 Oyt — Py || ]
3(1 — p)n,
+ ]E[(bpp)n ((8’"5 +3L7) [leesr — i + 8L ||zr41 — Zt||2)],
.2 2
denote Lyapunov function ¢y = ¥, + % Uyt — hytl| + % Vap — hogll
.2 2
and use lemma E.7 and E.13 to bound va — hy,t’  \|Vzt — hz ||, we have
Eli11 — 4]
- 1 L
<E- L1061 - (5 - 52 ) o - i)
T2(L2% +2r2p?)  288L%p%  432(L2 + 2r2p?)  864L%p?
Ty Nt I I
864L%p%  2304L%p?
+77x<60—|— 24 2p>r§p5
Nzp H
144L2;0277x ( 2 4 2
+E7 —(1—L772) |Zt+1_Zt|| —‘1-712* Ct 1—Ct||
o | Tl e |
72(L2 4 2r2p? 4
+ BP0 o) s = sl + B v — el )
Ny Ty

+E3n. (82 +3L%) llevs1 — aal]® + 8L2 12041 — 20l
T2(L% + 2r2p%)n, (
2

288122,
+ = (

312 ||ess — arl*) + (872 +3L%) flevs1 — call” +8L2 |z141 — 2l ),
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rearrange terms we obtain:

E[Ypt+1 — i
— V()

T2(L% + 2r2p?)  288L2%p%  432(L% + 2r2p?)  864L>p?

+nz<2l+ (L2 +2r20%) | P 432 Jg?“zp)Jr 2p>52
Ny b Mzt 1 1
Cs,

864L%p?  2304L%p?

. (60+ PFy==F >r§p5
Mzt p
CV2
L 288(L2 + 2r2p?)i3. N 576 L2 p21%.
My Nz 2,2 2,2
U nz
216(L* + 2L%r2p?)  288L%p?(8r2 + 3L?
<24r Lor2 4 2160 = ) & (MQZ )>> |1 — 2]
144L2p%  144L3p? 2304L*p?

—E[n, < - P oar? - 302p> [EerA

Tzl 1% 17
E[(72(L2 +2r2p%)  T2(LP 4 2LrZp?)

Ty b Iz

57612 p? 216(L* + 2L%r2p?)  288L2%p*(8r2 + 3L?

- x<n2ug’) + (2402 4+ 9L2) + ( = ) P (MQ ))>Ilyt+1—yt||2]

let’s discuss the how to choose step size to let the coefficient of
lesr — 2l lyesr — vell® o lzer — 2> <0, to simplify denote the coefficient of
lzes1 = 2el® lyer — vel®, 201 — 20| be Ci, Cy, Cs, we have

144L%p? 1 .
(T +24L2+"‘3"4L4 T = = O(g——), weobtain C; <0

A

o ||ze41 — zt||2: letn, <

o lyet1 — yt||23 let n, < i, we obtain

Linax K3

C, = -0 . O(L*)

My
we further let 1, < m thus we can obtain Cy, < 0.

o ||@gr — @] let gy = 2L , denote coefficient of ||z;41 — z¢]|* as C;, we have
1 K5
e (1w (™))

choose 7, < min{%, ﬁ}, we have C, < 0, and we can easily validate that

choosing 1, = 5-, 7, = O(17=r) can simultaneously satisfy both 7, < min{ 4%, 72—}

and ny W .

Thaxf®)

since Cy;, Cy;, C, < 0, choose § suffciently small, i.e, § < WQ) to let Cs, < nz€2, Cs, < nye?,

max

we obtain:
Efpe+1 —r) < —E[2(| V()| — 262,
thus T = 577_—: = O(e 2L2 , ") and total oracle cost is

# funtion = dT (pn + b) + dn = O((dy + do)v/ne 2L2, k* 4 (d1 + da)n).
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Theorem E.2 (Restatement of Theorem 2). Define Lyapunov function

18(L2 + 2r2p°)nq a2\, 36n.L%p° 2
(hye = i) + == (2 - 2?)
My H
s, T2AL+ 220,
pp?

wt = (b (l‘t) +

2

)

Vy,t — Nyt

31,
- Uzt — hz,t

2p

2 144L7p?
4 e
br

+ lvg,: — ilx,t

1,2

1 1 1 _
choose 1, < 500N < 1ol < oy P = ﬁ b=oce k%, to let

2
< -
- d1+dar* Lfr,nax
2

0 < m, B > O(L2 ke 20%),choose h = %\/%, we obtain

max
max

Nz
Efpi1 — ] < —E[Z(IVO(z0)[* = 3¢%)],
and total oracle cost for finding stationary point is

# funtion = dT(pn +b) +dB = O((dy + dg)oe 3LA &%+ (di + d2)o?e 212, k*).

Proof. similar to finite sum case, the only difference with finite sum case is we have additional
variance term

. 1L 3, A
Bom) <0(a) - LIVREIP - (5 — %2 ) o = aul? + 2 o — el
3 T * *
4 20 (212 1 4120 -y [P 4 AL 1 — 2+ 26° + o),

define Lyapunov function

30, ~ 72(L? + 212 p?)n, . 144n, L?p? .
W= @ () 0 oy — 2 2 e () HARETT 2y,
P My U
by the definition of ¥, and lemmas E.6, E.12, E.18, E.20, we have
E[W,y1 — U]
1 L 3
<E[- ||V (a)|* - (2,7 - ;’) less — el? + 5 (26 4 41208) + T2 (9(1 + 12)0” + T2r2p5 + 185%)]

36L2p2n, 4 4n, L2 .2
+E[= L <(1 — L) lzerr — 2l — 1 Nlerer — ol + =2 (||vae — ha ’ + ’ hew = hey ’ )>]
o M2 4
18(L? + 2r2p?)n, 4 4 2 2
+ B2 (1 a) s = gl + ol =l + 22 o |+ [ = )
Yy Yy

3(1—
+ IE[(bpp)n”’ ((872 4 822) levsn = col® + 8L2 [lz041 — 20> + 8206 + 662 )],
A 2 “ 2 1
use lemma E.11 and E.4 to bound ’ hyi = hy| > (|heit — hzg|| let P =1, and rearrange the
terms, we have
E[Wi1q — Uy
N 1 L (14 72)0?
<E- L1905 - %2 ) o - anf? + 2T
72(L% +2r2p?)  288L%p? 18 864L2p* T2
+E[nw(<21+ ( ) P +)62+(60+p+>r§p5>]
MyH Nzt B Nz B
36L2p27]x ( 2 4 2 144L2p2’l7x ~ 2
+E[——— (= (1 = Ln,) ||lzt41 — 2" + . lleer —cil|” ) + ——— vz,t—hz,t‘
[ T + I vy + 7 }
18(L? + 2r2p? 4 72(L2% 4 2r2p? -2
# B (1= o) s = sl B e — ) + D ]
Ny Ny %

3(1 = p)na

E
+E[ o

(82 +8L2) llevss — cul* + 822 2142 — =l )]
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2

. ~ 2 p ~
denote Lyapunov function ¥, = ¥, + W Uyt — hy ‘ + % Ver — hoyll
.2 .2
and use lemma E.8 and E.14 to bound ]E[Hvy,t — hytl| ] ]E[‘ Uzt — Pyl ], we have
Elthi1 — ]
Na 1 L N0 216(L% + 2r2p?)  864L%p*(1 + 1r?)
< - BEZIVREIP - (5 - 52 ) howa = aul? + 2 (o014 r2) 4 220 SREPR T )
T2(L% +2r2p?)  288L%p%  432(L% +2r2p?)  86AL%p?  216(L%+2r2p?) 1728L%p\
+ 1 21+ - - a +— 3 g )0
Ty ke ML 1 1 [ 1
864L%p%  2304L%p%>  6912L2%p?
g (60 4 = P — ) 26
Uy I w*B
144L2p%n, 4
BRI (0= L) o = 2l 4 - e — o)
Nz UB%

+E[

72(L? + 212 p?)n, 4
( ) ((1 2Ly s — el + 2.
my Ty

+ E[31, ((87“2 +3L%) |ttt — cl|® + 8L? [|zp41 — Zt||2)]

72(L2 + 2r2p)n, 288 L% p?n,
+E A r il (3L2 ||ct+1fct||2)+72“7

2
S )1

(802 +8L2) flevs1 — cal]® + 822 |z241 — =],

rearrange terms we obtain:

E[tht+1 — 9]
N 5 1 Ly 5 Mz0? o 216(L% +2r2p?)  864L%p2(1+12)
SE[—§\|V¢(%)H - (2% - Tt — oI + 5 91 +77) + 2 + 2 ]
Cp
T2(L% + 2r2p2)  288L2%p%  432(L% +2r2p?)  864L2%p*  216(L2% + 2r2p?)  1728L%p2
Tyt Nzt p? p? p?B p?B
Cs,

864L%p%  2304L%p>  6912L%p?

—|—77x(60+ : Py QBP>T§p(5
2 1L It %
Cs,
g 1 Ly . 288(L% +2r2p?)i3. N 576 L2 p?1%,.
2, 2 n2p? UH G
216(L* + 2L%r2p?)  288L2%p?(8r2 + 3L?
—MNy (247"3 +9L% + ( 2 ) + P (Mg ))> 2ot — ael|]
144L2p%  144L3p? 2304L%p?

~Ely, (L P ggpe B ) -l

Tz H 7]
B E[<72(L2 +2r2p®)  T2(L° 4 2Lrp?)

Ty 1 w

576L2p? 216(L* + 2L%r2p%)  288L2%p?(8r2 + 3L?

—n, (772/; + (2412 +9L2) + ( - p°) n p (ﬂ2 ))> T

let’s discuss the how to choose step size to let the coefficient of
less — 2l lyesr — vell® s lzer — 2> <0, to simplify denote the coefficient of
|#rs1 = 2el®, [ges1 — wel® s 2001 — 2* be Ca, Gy, Cs, we have

2, 144L%p? o 1 .
. ||Zt+1 — ZtH s let Mz S o 14403 ,2 +24L2+2304L492) = O(Lmaxﬁ)’ we obtain CZ S 0
;L “2
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o lyet1 — yt||22 let n, < i, we obtain

Cy = —O(—— — 1, O(Lp k%))
Ty
we further let 77, < m, thus we can obtain C,, < 0.

o || @igr — o] letn, = ﬁ, denote coefficient of ||z,41 — a4||* as C,, we have

1 6
C, < — ( - 1,0 </{2 + L4/£8>>

choose 7, < min{ %, ﬁ }, we have C,, < 0, and we can easily validate that choosing

Ny = 5.7z = O(3=1) can simultaneously satisfy both 7, < min{#%, 7=} and

1
My < o )

max

. . . 2 2 2
since Cy, Cy, C; < 0, choose ¢ suffciently small,i.e, § < W tolet C5, < 12—, C5, < =F

’
,62

B> O(L% (r*e20?) tolet Cp < Iz

, we obtain:
Elthri1 — ] < —E[2Z(|V(x,)||> — 3¢
[Wrar = i) < —E[([VE(e)[I” — 3€7)],
thus T = €= = O(e72L2 k%) and total oracle cost is

Na max

# funtion = dT(pn +b) + dB = O((dy + dg)oe 3LA &%+ (d1 + d2)o?e 212, k*).

max max
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