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Abstract

This paper introduces EVINCE (Entropy Vari-
ation and INformation CompetencE), a cutting-
edge dialogue framework that orchestrates ad-
versarial debates and collaborative insights
among multiple large language models (LLMs).
By integrating advanced principles from con-
ditional statistics, information theory, and in-
context learning, EVINCE masterfully bal-
ances the exploration of diverse perspectives
with the exploitation of established priors. Cen-
tral to our innovation is the validation of the
dual entropy theory, which we developed to de-
termine the optimal pairing of LLMs with one
high and one low entropy for enhanced prob-
abilistic prediction accuracy. We also employ
several information-theoretic metrics, such as
mutual information, cross-entropy, Wasserstein
distance, and Jensen-Shannon divergence, to
measure communication opportunities, dia-
logue progress, and convergence. This meticu-
lous approach fosters an interpretable and pro-
ductive multi-LLM dialogue, leading to more
informed and reliable outcomes. We illustrate
EVINCE’s potential by applying it to health-
care, demonstrating its effectiveness in improv-
ing disease diagnosis, and discuss its broader
implications for enhancing decision-making
across various domains.

1 Introduction

Ensemble approaches in machine learning, where
multiple predictors combine to address classifica-
tion and regression tasks, have consistently demon-
strated superior performance compared to individ-
ual models (Kuncheva and Whitaker, 2003; Di-
etterich, 2000; Krogh and Vedelsby, 1995). The
diversity of errors across these models is a cru-
cial factor in their effectiveness. Recent research
has explored extending this ensemble concept to
Large Language Models (LLMs) collaborating on
classification, question answering, and other tasks
(Michael et al., 2023; Chan et al., 2023; Liang et al.,

2023; Du et al., 2023). While initial findings sug-
gest accuracy improvements similar to traditional
ensemble methods, multi-LLM collaboration holds
the potential for much broader impact. As noted by
(Chang, 2023a), this approach can unearth novel
perspectives, mitigate biases, and even contribute to
creative endeavors like writing a novel, thereby ex-
tending its capabilities far beyond accuracy gains.

Achieving optimal performance in multi-LLM
ensembles requires more than simply maximiz-
ing error diversity. A critical balance must be
struck between confident, well-supported predic-
tions and the exploration of novel and diverse per-
spectives. To facilitate this balanced approach, we
introduce EVINCE (Entropy Variation through IN-
formation CompetencE), a framework designed to
foster structured debates among multiple LLMs,
thereby maximizing prediction accuracy while en-
couraging the exploration of alternative viewpoints
to mitigate biases. EVINCE represents a new
paradigm in collaborative LLM research, effec-
tively navigating the trade-off between exploration
and exploitation in joint predictions. EVINCE rests
on three key theoretical pillars:

Conditional Statistics: Conditional Statistics:
By placing LLLMs in adversarial stances and de-
manding rigorous justification for their positions,
EVINCE leverages in-context learning to elicit
from the opposing LLMs diverse perspectives
backed by robust reasoning and evidence. This
method, rooted in the Bayesian framework of con-
ditional statistics (Finn et al., 2017; Brown et al.,
2020; Xie et al., 2021), effectively modifies the
linguistic behaviors of LLMs, shifting them away
from the default optimization for maximum likeli-
hood next-token prediction.

Dual Entropy: Our theoretical proof (via
Jensen’s Inequality) (Section 3.3) and empirical
studies (Section 4) reveal a key insight: optimal
accuracy in a two-LLLM ensemble is achieved when



the agents begin with differing levels of entropy.
Specifically, one LLM should initially exhibit high
prediction entropy, signaling a willingness to ex-
plore diverse perspectives, while the other should
maintain low entropy, emphasizing precision and
stability. This dual entropy configuration maxi-
mizes the ensemble’s ability to balance exploration
and exploitation, as the high-entropy LLM intro-
duces a wider range of possibilities, including those
that may challenge or counteract potential biases in
the low-entropy LLM’s initial predictions. Mean-
while, the low-entropy LLM acts as a stabilizing
force, grounding the exploration in a foundation
of established knowledge. Through a process of
communication and reasoning, evaluated by the So-
cratic method and metrics from information theory
(which we will elaborate on in the subsequent dis-
cussion), the two agents converge towards a collab-
orative and accurate prediction, ideally mitigating
biases that may have been present in either agent’s
initial viewpoints. This finding challenges the tra-
ditional notion that faster agreement among agents
necessarily leads to better outcomes, highlighting
the importance of initial diversity in avoiding tun-
nel vision and fostering robust decision-making.

From Divergence to Conciliatory: EVINCE be-
gins by positioning two agents in a state of dual en-
tropy, then fosters effective information exchange
between LLMs to gradually reduce cross entropy
and Wasserstein distance, and maximize mutual
information in their prediction distributions. This
enhances the depth and breadth of their predic-
tions. The framework initiates debates with high
contentiousness (Chang, 2023a), using mutual in-
formation to quantify the potential for productive
communication. As the diversity of predictions,
measured by the divergence metrics, decreases be-
low a threshold, contentiousness is modulated, en-
couraging collaboration. This culminates in a joint
prediction, accompanied by explainable arguments
and counterarguments.

Diversity in predictive modeling can introduce
noise, while an overly strong belief in existing
perspectives may hinder the exploration of new
ideas. To address these challenges, EVINCE em-
ploys several proxy metrics in conjunction with a
“contentiousness” parameter to achieve a balance.
By reasoning through and analyzing several case
studies, we demonstrate how EVINCE enhances
prediction accuracy, robustness, and stability. The
framework facilitates a debate process where rigor-

ous arguments and counterarguments are recorded,

making the decision-making process transparent.

Transparency allows humans to understand the rec-

ommendations clearly, provide feedback, and make

final predictions that are well-informed, encom-
passing a comprehensive range of pros and cons.
The main contributions of this paper are:

1. EVINCE Framework Design: Different from
using debate as a way to improve accuracy via
redundancy, EVINCE’s approach is vastly dif-
ferent and thus facilitates information discov-
ery, bias mitigation, and decision-making that
requires both breadth and depth of information.

2. Theoretical Foundations: We establish a theo-
retical basis for EVINCE, rooted in conditional
Bayesian statistics, mutual information, and dual
entropy. These principles are applied to mea-
sure, monitor, and modulate collaborative LLM
interactions, contributing to a deeper understand-
ing of how LLMs can effectively cooperate for
improved decision-making. The dual entropy
theory is novel and ground-breaking, illustrat-
ing how a productive decision-making process
should start with room for diverse input and sta-
ble objectives, and then, through information ex-
change, converge to optimal decision/prediction.

3. Empirical Validation: We provide empirical
validation of EVINCE’s underlying maxims and
theories, highlighting the framework’s effective-
ness in balancing exploration and exploitation
to enhance prediction accuracy. We also intro-
duce a set of maxims derived from our empirical
findings, offering practical guidance for optimiz-
ing mutual information and minimize various
divergence measures.

2 Related Work

The core objective of adversarial debate, as em-
bodied in EVINCE, is to foster diverse opinions
and challenge assumptions, ultimately leading
to more comprehensive and informed decision-
making. This contrasts with traditional ensemble
learning methods, which prioritize error diversity
for improved accuracy.

2.1 Ensemble and Multi-Agent Learning

Ensemble methods like Bagging (Breiman, 1996),
Boosting (Freund and Schapire, 1997), and Mix-
tures of Experts (Jacobs et al., 1991) have focused
on combining predictions from multiple models
to improve overall accuracy. Early LLM debate



frameworks also followed this trend (Michael et al.,
2023; Chan et al., 2023; Liang et al., 2023; Du
et al., 2023).

EVINCE distinguishes itself by prioritizing the
generation of diverse predictions to explore a wider
range of perspectives. Recent research on multi-
LLM collaboration, building on in-context learning
and Bayesian frameworks (Xie et al., 2021; Zhang
et al., 2023), has shown promising results. How-
ever, the challenge remains in effectively moderat-
ing communication between LLMs. EVINCE ad-
dresses this by employing quantitative measures to
calibrate and adjust individual LLM behaviors, con-
tributing to the growing field of multi-agent LLM
communication (Abdelnabi et al., 2024; Chan et al.,
2023; Fu et al., 2023; Li et al., 2023; Liang et al.,
2023; Michael et al., 2023; Smit et al., 2024).

2.2 Metrics for Managing Diversity,
Contentiousness, Information Quality,
and Convergence

EVINCE employs various metrics to manage the

debate’s dynamics and progress:

* Fostering Diversity & Quality: Shannon en-
tropy and relative entropy measure diversity of
perspectives (Cover and Thomas, 2006; Shan-
non, 1948), while the CRIT algorithm assesses
argument quality (Chang, 2023b).

* Balancing Exploration & Stability: Correla-
tion coefficients track opinion evolution and de-
bate stability (Brown et al., 2005), Wasserstein
Distance measures prediction distribution differ-
ences (Kantorovich, 1942; Rubner et al., 2000;
Villani, 2008), and Mutual Information quan-
tifies information overlap (Cover and Thomas,
2000).

* Examining Information Overlap & Termi-
nation: Jensen-Shannon Divergence assesses
distribution similarity (Lin, 1991), Cross En-
tropy measures asymmetric differences (Shore
and Johnson, 1980), and Kullback-Leibler Diver-
gence reveals asymmetric differences between
probability distributions (Kullback, 1951).

Section 3 details how EVINCE utilizes these
metrics to balance exploration and exploitation,
leading to optimal predictions. The dual entropy
theorem provides further theoretical justification
for the framework.

3 Maxims, Algorithm, and Theorem

Problem Statement: Organize a structured de-
bate between two equally competent large language
models (LLMs), LLM 4 and LLMpg, to conduct ¢
rounds. At each round ¢, each model produces a
probability distribution, denoted as PX) and Pg ),
over C' possible outcomes, accompanied by sup-
porting arguments Rg) and Rg). The goal is to
design an iterative debate process that leverages
the structured exchange of arguments to enable
the models to converge on an optimal prediction
distribution P* across the C' classes.

3.1 Maxims with Theoretical Foundations

Progress towards the optimality goal is guided and
measured by metrics introduced in Section 2. This
section explains how they can be used in com-
plementary ways to facilitate proper trade-offs be-
tween diversity and convergence, exploration and
exploitation, and several other factors.

Maxim #1: Orchestrate Two Equally Compe-
tent LLMs in Structured Debate: Integrating
two equally competent LLMs ensures a balanced
exchange of insights and avoids bias. This adver-
sarial setup fosters diversity in predictions, each
supported by justifications, promoting critical eval-
uation and uncovering potential blind spots.

How? Choosing LLMs with comparable per-
formance on a shared validation set, a balanced
debate can be ensured. Suitable models include
GPT-4, Claude, and Gemini. Conditioning differ-
ent instances of the same LLM to support opposing
stances on a subject matter can also be effective due
to the theoretical justification of in-context learn-
ing with conditional Bayesian statistics (Xie et al.,
2021).

Maxim #2: Encourage the Accurate Rather
Than the “Popular” Prediction: Typically,
LLMs, with their maximum likelihood next-token
prediction objective, tend to favor the most pop-
ular predictions. By conditioning LLMs within
specific contexts, we can prioritize specific stance
over popularity, mitigating confirmation biases.

How? Using the proxy metrics in Table 1,
EVINCE dynamically adjusts the “contentiousness”
level in debates (see Appendix G for details). These
metrics quantify agreement, diversity, and mutual
information, promoting productive information ex-
change and enhancing prediction quality.



Metric

Pros

Cons

Remedies

Cross  Entropy
(CE) (Shore and
Johnson, 1980)

Measures how well the pre-
dictions of one model fit the
actual distribution of another
model’s outputs (asymmetric).

Computationally intensive
especially with large mod-
els and data sets; sensitive
to the exact nature of proba-
bility distributions.

Optimize computation strategies; use
approximations or sampling methods
to manage large data sets or complex
models.

Entropy Shannon
(Shannon, 1948)

Indicates level of diversity;
high suggests exploration of
possibilities, and low for confi-
dence on few choices

High entropy might indicate
noise rather than useful di-
versity; low entropy might
mask important variability.

Use critical reading methods (Ap-
pendix A) to assess argument quality;
implement noise detection to differenti-
ate between useful diversity and noise.

Jensen-Shannon

Symmetric and bounded (0 to

May be less sensitive to

Increase sensitivity settings or resolu-

(Kullback, 1951)

two probabilistic distributions.

defined if a distribution has
zero probabilities

Divergence (JS) 1), providing an interpretable | small differences between | tion of the metric; combine with other

(Lin, 1991) measure of distributional dif- | distributions. metrics to capture finer distinctions be-
ferences. tween distributions.

KL Divergence Measures difference between | Asymmetric; not well- | Use smoothing techniques to avoid

zero probabilities; consider symmet-
ric alternatives like JS divergence

Mutual Info (MI)
(Shore and John-

Measures reduction of uncer-
tainty; symmetric.

Does not indicate the di-
rectionality of information

Supplement with directional informa-
tion metrics; normalized with max en-

son, 1980) flow. tropy of A and B.

‘Wasserstein Direct measure of how similar | Not bounded but can be nor- | Define context-specific bounds for low,
Distance (WD) or different the model outputs | malized or bounded for con- | medium, and high divergence; con-
(Kantorovich, are; it depicts symmetric rela- | sistent interpretation. sider normalizing it for non-directional
1942) tionship. comparisons.

Table 1: Summary of metrics for assessing LLM debates (equations are presented in Appendix E)

Maxim #3. Combine Predictions Weighted by

Diversity and Quality: Weighting the probabil-

ity distributions from two LLMs based on diverse

probabilistic insights and argument quality.
How? Following these three maxims:

* Maxim #3.1 Prediction Reliability: Estimate
the reliability of predictions using entropy-based
measures to quantify uncertainty and informa-
tion content. Typically, lower entropy indicates
higher confidence in a prediction, suggesting
higher reliability.

* Maxim #3.2 Argument Quality: Evaluate the
quality of supporting arguments using tech-
niques inspired by the Socratic method. This
includes identifying logical fallacies, assessing
the relevance and credibility of evidence.

* Maxim #3.3 Aggregation: Employ a weighted
aggregation method, such as a Bayesian model
to combine weighted predictions accounting for
both probabilistic insights and the quality of sup-
porting arguments.

Maxim #4. Evaluating the Convergence Rate
of the Predictions Across the Rounds: This as-
pect focuses on measuring how quickly and effec-
tively the predictions from the LLMs converge over
successive rounds, assessing the efficiency of the
debate and aggregation mechanisms.

How? Convergence is assessed by measuring
mutual information and using proxy metrics such as
Wasserstein distance. When the mutual information
is low or the similarity between predictions is high,

the debate is considered to be converging.

3.2 Algorithm Specifications

With all proxy metrics and their pros, cons, and
combined strengths comprehensively surveyed, and
also examined by our two experiments documented
in Sections 4.2 and 4.3, Algorithm 1 formally spec-
ifies the algorithm of EVINCE with the maxim:s.

3.3 Entropy Duality Theorem (EDT)

Theorem EDT: Optimal Pairing of LLMs for
Probabilistic Prediction Accuracy. The optimal
pairing of LLMs for diagnosis accuracy, in terms of
stability, accuracy, and robustness, occurs when the
LLMs are 1) equivalent in the quality of the infor-
mation they process, and 2) exhibit contrasting en-
tropy values in their prediction distributions—one
high and one low.

[Proof]: In Appendix B.

4 Empirical Study

This empirical study investigates the application
of EVINCE to disease diagnosis, leveraging large
language models (LLMs) as diagnostic tools. We
aim to validate the following three hypotheses:

1. Contentiousness & Prediction Quality: Ini-
tial LLM disagreement (measured by Wasser-
stein distance) increases with higher initial con-
tentiousness but decreases as debate progresses.
Individual LLM prediction uncertainty (Shannon
entropy) will follow a similar pattern.



Algorithm 1 Specifications of Algorithm EVINCE

1: Input: Information set S, Class labels C'; Two equally competent LLMs: LLM 4 and LLM g (Maxim #1);

2: Output: P, final probability distribution over C}

3: Variables: ¢: debate round; R = () aggregated arguments;

PX), Pg): prediction distributions of LLM 4 and LLMp on C' of round ¢; Rif), Rg): supporting reason sets;
A = 90%: debate contentiousness, initialize to high to foster adversary between LLMs (Maxim #2);
p: prompt = “Predict top-k probability distribution on C' with S and R at contentiousness A”;

4: Functions: CRIT(d) (Chang, 2023b), Critical Reading Inquisitive Template for evaluating argument quality;
ARA (Guo et al., 2024), Algorithmic Robust Aggregation for optimal prediction aggregation (Maxims #3);

5: Initial Predictions ¢ = 0O:

LLM:s generate their predictions in probability distributions with supporting reasons:

(PY=Y, RY) = LLMA(S, p),

6: Debate Iterations:
6.1. Update Predictions:

(PY=", RY)) = LLMp (S, ).

Calculate the confidence-based weights using the inverse of entropy (Maxim #3.1):

a=1/HPP)+1), B=1/HEPP)+1).

Use the blending mechanism to update predictions (Maxim #3.3):

P =aPP + (1-a)Py, PV

= PP + (1

- )P

6.2. LLMs Generate New Predictions: Both LLMs use accumulated R = R U Rx) U Rg)

(P, RYTY) = LIMA((PE™), R, p),

(PSHD | RGHD)

= LLMg((PX), R, p).

6.3. Exit Condition Check with Wasserstein distance (Maxim #4):

it Wp(P{™), PUTY) < ¢ EXIT; t=t+1,

A=A x 80%.

7: Final Decision: Weighted prediction by quality scores of the evaluator e.g., CRIT (Appendix A) (Maxim #3.2):

Py = Qa P L 0PIt /04 4+ Q5.

2. EDT Effectiveness & Confusion Matrices: LLM
pairs following the Entropy Duality Theorem
(EDT) will have complementary error patterns,
leading to higher combined prediction accuracy
than non-EDT pairs.

3. EVINCE & Historical Misdiagnoses: EVINCE,
applied to real-world data, will improve diagnos-
tic accuracy and identify potential misdiagnoses
or ambiguities within the ground truth.

Problem Statement: Given a set of symptoms,
denoted as S, and a context x, the goal is to pre-
dict a probability distribution of top-k diseases
over C' possible diseases. This is represented as
P =LLM(S, k), where each LLM generates top-
k predictions on C (k < (') based on the input
symptoms S and context .

P = (p(topltok € D | S,k).

Context « is where dual entropy is adjusted through
three knobs: temperature, the k of top-k, and the
contentious level A. A distribution tends to have
high entropy when all three knobs are set high, and
vice versa.

Resources, Dataset & Data Preparation: Our
study utilizes a dataset obtained from Kaggle (Patil,
2020), which comprises 4,921 patient records.

Each record includes the diagnosed disease along
with up to 17 symptoms such as fever, cough, fa-
tigue, itchiness, and difficulty breathing. We first
remove duplicates from the dataset, resulting in
304 unique diagnostic instances spanning 40 dis-
eases. (The refined dataset is uploaded as supple-
mentary data.) Each instance acts as a test case
where EVINCE utilizes the inherent knowledge of
LLMs (GPT-4, Gemini, and Claude3) instead of
training them through few-shot techniques on this
specific dataset. Our computing resources are spon-
sored by Azure, with a monthly budget of US$500.

Evaluation: We evaluate the quality of pre-
dictions using the top-k Mean Reciprocal Rank
(MRR). If one of the top-k predicted diseases
matches the ground truth diagnosis, the score is
the reciprocal of its rank (1 for the top prediction,
1/2 for the second, 1/3 for the third, etc.). If none
of the top-k predictions are correct, the score is 0.

4.1 Study #1: Post vs. Pre-Debate Accuracy

For each of the 304 patient instances, we employ
GPT-4, Gemini, and Claude3, to perform indepen-
dent disease predictions and then use EVINCE to
pair them to evaluate performance gain.

In our first experiment, we set k = 5 for both
LLM agents. One agent had a high temperature
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Figure 1: Pre-/post-debate accuracy on all patients on all diseases shows EVINCE helps

while the other had a low temperature. The con-
tentiousness level was set very high (A = 0.9 out
of 1) to encourage significant cross entropy. Set-
ting k = 5 ensures some minimal common ground,
meaning the probability of shared information is
sufficient to foster meaningful interaction. High
contentiousness promotes counterarguments and
information exchange.

Pre- and Post-Debate Evaluation We con-
ducted two sets of experiments. First, as a baseline,
we constrained disease predictions to the 40 la-
bels in the dataset, mimicking common supervised
learning assumptions. While this yielded high ac-
curacy (95-97%), it’s unrealistic for real-world di-
agnosis where a general practitioner considers all
possibilities. This constraint also highlights the
flexibility of LLMs, which are not confined by
training data labels and thus less prone to over-
fitting some erroneous labels (further discussed in
the next two studies).

Next, we removed the label constraint to bet-
ter simulate real-world conditions. In this uncon-
strained scenario, all 304 patient cases yielded sta-
ble results across GPT-4, Gemini-3, and Claude-3,
with a standard deviation of just 1.5%. Prior to
debate (light blue bars in Figure 1), GPT-4 led in
accuracy (82.8%), followed by Gemini (80.3%)
and Claude (79.5%).

Implementing EVINCE with GPT-4 and Claude-
3 pairing and GPT-4 and Gemini-3 pairing consis-
tently improved accuracy by 4-5 percentage points
(green bars in Figure 1). The GPT-4 and Claude-3
pairing achieved 87.5% accuracy (Figure 1a), ri-
valing state-of-the-art clinical performance like the
REFUEL algorithm (Peng et al., 2018).

However, the story doesn’t end here. The remain-
ing 12.5% of inaccurate cases for the GPT-Claude
pairing might not be solely EVINCE'’s fault. If we
consider the potential 11% US misdiagnosis rate
reported by John Hopkins (Newman-Toker et al.,
2023b), this discrepancy could point to mislabeled

data in the original dataset. This presents a ground-
breaking opportunity: EVINCE could potentially
identify and correct errors in existing datasets, a
concept we explore further in Section 4.3.

4.2 Study #2: Confusion vs. Opportunities
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Figure 2: Confusion matrices

Two key factors contribute to EVINCE’s im-
proved diagnostic accuracy: (1) structured debates
with reasoning encourage LLMs to explore alterna-
tive diagnoses in both breadth and depth, leading to
more comprehensive analysis and decision-making
(see Appendices C and D); and (2) pairing high-
and low-entropy LLMs balances exploratory diver-
sity with exploitative stability, resulting in more
robust and high-quality decisions, as demonstrated
in this second study.

Analysis of Confusion Matrices We use confu-
sion matrices to analyze the performance of two
LLMs on diagnosing Hepatitis types A to E. GPT-4
shows limited accuracy, particularly for types C
and D, achieving only 50% accuracy for types A
and B. In contrast, Claude exhibits a wider spread
of predictions across all Hepatitis types, as shown
in Figure 2.

These matrices highlight how Claude’s flexibil-
ity in exploring diverse diagnostic hypotheses can
significantly aid the debate process. The initial un-
certainty or “confusion” (high entropy) exhibited
by Claude brings new information to the table, po-
tentially challenging and correcting the more con-
fident (low entropy) predictions of GPT-4, which
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might otherwise stubbornly persist with incorrect
diagnoses. This dynamic interplay exemplifies the
delicate dance between exploration and exploita-
tion that EVINCE facilitates. By encouraging the
exploration of alternative hypotheses, even when
one model seems certain, EVINCE can uncover
nuances and details that lead to more accurate and
comprehensive diagnoses.

Observations from Information Metrics Fig-
ure 3a illustrates how the entropy levels of both
LLMs stabilize after three rounds of debate, in-
dicating a convergence towards a similar, stable
entropy state. This convergence is corroborated by
a consistent improvement in Wasserstein distance
(WD) between the two models’ predictions over
successive rounds, as shown in Figure 3b. Notably,
Figure 3c shows that the normalized mutual infor-
mation (MI) between the prediction distributions
of GPT-4 and Claude improves by 14%, suggesting
an increase in shared information throughout the
debate. Additionally, Figure 4 shows the consistent
convergence of all divergence metrics.

Comparative Performance: EVINCE demon-
strates a 5% higher accuracy rate in diagnosing spe-
cific types of liver diseases compared to a baseline
approach (Figure 1a), underscoring its capability
to handle complex diagnostic scenarios effectively.
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Figure 4: Convergence of all metrics

4.3 Study #3: Ground-Truth Remediation

This study illustrates how EVINCE can identify po-
tential misdiagnoses, explain the reasoning behind
them, and recommend corrective actions. Tradi-
tionally, machine learning scientists rely on labeled
data as “ground truth.” However, as evidenced by
research like that of Newman-Toker et al. (2021)
(Newman-Toker et al., 2023a) from Johns Hopkins,
misdiagnosis is a widespread issue in healthcare
systems globally. These erroneous diagnoses, of-
ten treated as ground truth, can be perpetuated by
supervised learning algorithms, exacerbating the
problem within the healthcare system.

In the debate scenario detailed in Appendix D,
where Jaundice is the ground truth diagnosis, Fig-
ure 5a illustrates initial differences between GPT-4
and Claude’s predictions. Jaundice is absent in
GPT-4’s top-5 (with 0% in red), while ranked third
by Claude. Although Claude influences GPT-4 to
include Jaundice in its third prediction in the sec-
ond round, subsequent rounds see both LLMs drop
Jaundice to the fourth position of 10%.

Meanwhile, Hepatitis A, initially GPT-4’s top
prediction (30% in dark blue), is quickly demoted
to fifth and eventually drops out of the top-5 en-
tirely due to Claude’s influence. Hepatitis B, ini-
tially ranked second by GPT-4 and top by Claude,
stabilizes in the second position in rounds 3 and
4 (in light blue). Notably, Hepatitis C rises from
second place on both lists to the top position and
remains there (in black).

As demonstrated in the previous study, Wasser-
stein distance (WD) effectively measures the di-
vergence between LLM predictions and assesses
debate convergence. Figures 5b and 5c show that
WD stabilizes after three debate rounds, coinciding
with a plateau in normalized mutual information
(MI) between GPT-4 and Claude. This stabilization
suggests their predictions converge.

Figure 6 illustrates the convergence of all diver-
gence metrics—including Jensen-Shannon diver-
gence, cross-entropy, and Kullback-Leibler diver-
gence—particularly between the second and third
rounds. Although the final joint prediction for
Hepatitis C reached a high consensus of 37.5%,
it deviates from the actual condition of Jaundice,
which the Kaggle dataset reports with 10% con-
fidence. EVINCE provides general practitioners
with alerts and suggests remedial actions (see Ap-
pendices D.9 and C.8) to address this discrepancy.
Recommended actions include querying additional
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symptoms from the patient and conducting specific
laboratory tests.

4.4 Experiment Remarks

EVINCE initiates debates with high contentious-
ness, encouraging dual prediction entropy between
LLMs, as supported by the EDT theorem. It uti-
lizes normalized mutual information (MI) to track
shared knowledge accumulation throughout the de-
bate, while Wasserstein distance (WD) and Jensen-
Shannon divergence (JSD) quantify dissimilarity
between LLM predictions.

These metrics (EDT, WD, JSD, MI) provide a
comprehensive view of debate progress. WD and
JSD assess the potential for further communication
and refinement, while MI monitors shared under-
standing, aiding in determining the optimal stop-
ping point.

The asymmetric nature of KL divergence and
cross entropy warrants further investigation. De-
spite eventual convergence in our case studies, dis-
crepancies observed in the second round, where
one direction increases while the other decreases,
suggest potential value in exploring asymmetric
information. Future work will re-evaluate the use
of these metrics if asymmetry proves beneficial.

5 Concluding Remarks

We have developed EVINCE, an innovative frame-
work that enhances collaborative decision-making

among Large Language Models (LLMs) through
structured, adversarial debates. This framework
leverages conditional statistics (in-context learn-
ing), information theory, and a novel concept called
dual entropy to guide the debate, ensuring a balance
between exploration and exploitation. EVINCE not
only improves prediction accuracy and robustness
but also produces explainable outcomes grounded
in information metrics.

By assigning adversarial roles and adjusting
the level of contentiousness, EVINCE encourages
LLMs to explore a broader range of perspectives.
Through mutual persuasion and the exchange of
information, the reliability of predictions is signifi-
cantly enhanced. The introduction of dual entropy
theory, which pairs one LLM with high initial en-
tropy (for diverse exploration) with another LLM
with low entropy (for focused refinement), further
stabilizes information exchange and promotes com-
prehensive consideration of various viewpoints.

Our validated Entropy Duality Theorem pro-
vides empirical evidence of EVINCE'’s effective-
ness. In the domain of medical diagnostics,
EVINCE outperforms traditional solo LLM ap-
proaches by identifying potential ground-truth er-
rors and providing clear justifications for its con-
clusions. This success demonstrates the potential
of EVINCE for broad application in various fields
where informed decision-making is crucial.

Looking ahead, EVINCE is poised to drive fur-
ther innovations in LLM collaboration across di-
verse domains. It represents a significant advance-
ment in Al-human interaction, promoting a synergy
of intelligence, reliability, and transparency that
augments human decision-making. By ensuring
that Al-supported decisions are both efficient and
ethically sound, EVINCE fosters a collaborative
environment where human judgment is respected
and enhanced by the capabilities of advanced Al
systems.



6 Limitations

While EVINCE demonstrates significant potential
in improving diagnostic accuracy, several chal-
lenges remain for future research.

Firstly, the cost of supporting multi-LLM, multi-
round dialogue increases significantly. Integrating
EVINCE-like mechanisms directly into LLM ar-
chitectures could enable internal cross-validation,
reducing the need for costly external communi-
cation. Preliminary investigations into using a
lightweight “guardrail-LLM” for adversarial ad-
vice show promise in mitigating this cost issue.

Secondly, while EVINCE’s contentious param-
eter can foster diversity, ensuring this diversity is
meaningful rather than noise or hallucination re-
mains a challenge. An LLM might generate irrel-
evant diagnoses, leading to unproductive debates.
Although our empirical study has not yet observed
this phenomenon, as LLMs tend to assign low prob-
abilities to unlikely outcomes, further research is
needed to rigorously investigate the possibility of
debate-induced noise.

Finally, though the dual entropy theory is theoret-
ically proven and we have demonstrated the ability
to induce dual-entropy conditions by adjusting pa-
rameters like temperature, top-k, and contentious
level, further research is needed to systematically
evaluate the relative effectiveness of these parame-
ters and explore the potential for introducing new
parameters. Ablation studies will be crucial in
determining the optimal configuration for various
applications.

As Al continues to advance, frameworks like
EVINCE will play an increasingly important role
in harnessing the full potential of LLMs for solving
complicated real-world problems. The principles
and approaches presented in this paper provide a
foundation for future research and application, of-
fering the potential for substantial enhancements
in machine understanding, debate, and decision-
making. It is crucial to ensure that these advanced
methods are integrated with human oversight to
maintain transparency and control, especially in
sensitive domains such as healthcare.
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series of questions to explore complex ideas and
help individuals arrive at their own understanding
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of a concept. It is based on the belief that knowl-
edge cannot be simply imparted, but must be dis-
covered through a process of questioning and dia-
logue.

To illustrate how these methods can practically
be applied, let’s use the example of critical reading.
Critical reading is a crucial component of critical
thinking, which involves evaluating the quality and
credibility of written materials, from research pa-
pers to blog posts (Lai et al., 2017; Paul and Binker,
1990). It requires a systematic and analytical ap-
proach, asking relevant questions, and using effec-
tive prompts to gain deeper understanding of the
text (Elder and Paul, 2010).

To aid in critical reading, we introduce a prompt
template called CRIT (Chang, 2023b), which
stands for Critical Reading Inquisitive Template.
Given a document d, CRIT evaluates it and pro-
duces a validation score I'. Let 2 denote the con-
clusion or claim of d, and let R be the set of rea-
sons supporting the claim. We define (v,,6,) =
V(r = Q) as the causal validation function, where
v, denotes the validation score, 6, the source cred-
ibility score, for each reason-to-conclusion argu-
ment r = (). Table 2 presents the pseudo-code of
I' = CRIT(d), which generates the final validation
score I' for document d with justifications.

EVINCE uses CRIT to evaluate argument qual-
ity of the participating LLMs involved in the debate.
The input to CRIT from each LLM is first its stance
on the debate subject, e.g., a set of predicted dis-
eases, and the arguments are its reasons to arrive
at the prediction. Each document in the case of
EVINCE is the prediction set as the conclusion {2,
the arguments as set R, and the opposing LLM’s
counterarguments as R’. With this document, CRIT
is able to produce validity and credibility scores in
I" for the LLM.

For detailed prompts, examples, and an em-
pirical study verifying the effectiveness of CRIT,
please consult (Chang, 2023b).

Appendix B: Proof of EDT Theorem

Theorem EDT: Optimal Pairing of LLMs for
Probabilistic Prediction Accuracy. The optimal
pairing of LLMs for diagnosis accuracy, in terms
of stability, accuracy, and robustness, occurs when
the LLMs are equivalent in the quality of the infor-
mation they process, and exhibiting contrasting en-
tropy values in their prediction distributions—one
high and one low.

11

[Proof]: Given two LLMs, LLM 4 and LLMp,
following Maxim #1 with prediction distributions
P4 and Ppg, respectively. The information entropy
of LLM 4, H(Py), is high, and of LLMpg, H(Pg),
is low.

Step 1: Define the combined prediction distri-
bution. Let the combined prediction distribution

of LLM 4 and LLMp be denoted as P~. We can
express P as a weighted average of P4 and Pp:

Pc = aPs+ (1 —a)Pp, where0 < a <1and
a is decided by CRIT in Appendix A.
Step 2: Express the information entropy of the

combined prediction distribution. Using the defi-
nition of information entropy, we calculate:

H(Pc) =~ Pc(i)log, Po(x:)

Z[aPAm)mfa)PB(m)] log,[aPa (i) +(1-a) Ps (2:)].

Step 3: Apply Jensen’s Inequality to the infor-
mation entropy of the combined prediction dis-
tribution. Jensen’s inequality is applied to the

convex function f(x) = —x log, x. For a convex
function and a set of probabilities p;, Jensen’s in-
equality states that:

f (szwz) < sz‘f(wi)

Thus, the entropy of the combined distribution is:

H(Pc) > aH(Pa)+ (1 —a)H(PB)

where equality holds when P4 = Pg.

Step 4: Analyze the lower bound of the com-
bined information entropy. As H(P,) is high
and H(Pg) is low, we can express their relation-
ship as:

H(PA) = H(PB) =+ A, where A > 0.

Substituting this into the inequality from Step 3,
we have:

H(Pc) > a[H(P)+A]+(1—«a)H(Pg) = H(Ps)+aA.

Step 5: Interpret the lower bound of the com-
bined information entropy. The lower bound
of H(Pc), and hence the robustness of the model,
is maximized when « is maximized, which corre-
sponds to giving more weight to the high-entropy
model (LLM 4). This setup facilitates the explo-
ration of diverse possibilities and enhances ro-
bustness against noise and perturbations in the in-
put data, while still ensuring that predictions are
grounded by the more certain outcomes predicted
by the low-entropy model (LLMp).



| Function I' = CRIT(d)

Input. d: document; Output. I': validation score;
Vars. §2: claim; R & R': reason & counter reason set;
Subroutines. Claim(), FindDoc(), V alidate();
Begin
#1 Identify in d the claim statement 2;
#2 Find a set of supporting reasons R to €2;
#3 Forr € Revalr = )
If Claim(r), (vr, 0») = CRIT(FindDoc(r));
else, (vr, 0-) =V (r = Q);
#4 Find a set of rival reasons R’ to €2;
#5 Forr’ € R, (7,+, 0,+) = V(r' = Q) eval rival arguments;
#6 Compute weighted sum I', with ~y,., 0., 7,7, 6,.7.
#7 Analyze the arguments to arrive at the I" score.
#3 Reflect on and synthesize CRIT in other contexts.
End

Table 2: CRIT Pseudo-code. (The symbol = denotes both inductive and deductive reasoning.)

Step 6: Conclude the proof. By combining the
prediction distributions of LLM 4 and LLM g, with
one having high information entropy and the other
low, we achieve an optimal balance that maxi-
mizes the lower bound of the combined informa-
tion entropy. This balance between exploration
(high entropy) and exploitation (low entropy) opti-
mizes overall prediction accuracy and robustness,
as proved through information theory and the prop-
erties of entropy. Thus, the theorem is established.

Appendix C: EVINCE Debate - Dengue
Fever vs. Chikungunya

This experiment addresses a diagnostic challenge
involving multiple potential diseases. A patient
presents with the following 12 symptoms: [skin
rash, joint pain, vomiting, fatigue, high fever,
headache, nausea, loss of appetite, pain behind
the eyes, back pain, malaise, muscle pain, red spots
over the body]. In this case, GPT-4 provides the
initial diagnosis, with Gemini following suit. The
confirmed diagnosis for this experiment is Dengue
Fever. Given the satisfactory diversity in predic-
tions from the two LLMs, the debate progresses
and converges smoothly.

C.1 Moderator’s Prompt

“Identify potential diseases linked to the symptoms
(skin rash, joint pain, vomiting, etc.). Provide
top-3 predictions with justifications, supplemen-
tary symptom inquiries, and relevant lab tests.”

C.2 GPT-4’s Opening Round

Top-3 Predictions: Dengue Fever (60%), Chikun-
gunya (25%), and Zika Virus (15%).
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Justifications: Most symptoms are classic signs
of Dengue Fever. Red spots over the body could
correspond to petechiae, often seen in Dengue due
to thrombocytopenia (a decrease in platelet count).

Chikungunya can cause similar symptoms to
Dengue, such as fever, severe joint pain, muscle
pain, headache, nausea, and rash. Joint pain from
Chikungunya is often very debilitating and can be
more prolonged than in Dengue.

Zika Virus symptoms can include fever, rash,
joint pain, malaise, and conjunctivitis, with
a milder presentation compared to Dengue or
Chikungunya. The presence of a rash and con-
junctivitis is notable, although Zika is less likely to
cause severe muscle pain or high fever.

C.3 Gemini’s Opening Round

Top-3 Predictions: Viral Infection (60%), Autoim-
mune Disease (20%), Bacterial Infection (15%).
Justifications: Symptoms common in viral infec-
tions. Autoimmune diseases is possible, but less
likely due to vomiting and nausea. Bacterial infec-
tion is less probable given rash and muscle pain.

C.4 GPT-4’s Second Round

Top-3 Predictions: Dengue Fever (60%), Chikun-
gunya (25%), and Zika Virus (15%).
Justifications: GPT-4 maintains its predictions,
countering Gemini’s assessment with three points.
First, while viral infections can cause these symp-
toms, the specific combination suggests a more
targeted diagnosis. Second, the acute onset of high
fever, joint pain, and rash is less typical for autoim-
mune diseases. Finally, the rash and red spots are
not characteristic of bacterial meningitis.



C.5 Gemini’s Second Round

Top-3 Predictions: Dengue Fever (50%), Chikun-
gunya (30%), and Viral Infection (20%).
Justifications: Gemini’s initial prediction consid-
ers a Viral Infection as the most likely cause due to
its broad range of potential symptoms. However,
GPT-4’s focus on Dengue Fever and Chikungunya,
with their specific symptom profiles, provides a
more precise explanation for the patient’s condition.
Here’s what is lacking in the first set of predictions:
* Specificity: While a Viral Infection could explain
most symptoms, it does not account for joint
pain and the presence of a rash, which are more
characteristic of DF or Chikungunya.

* Detailed justifications: The first analysis does
not delve as deeply into the reasons behind each
disease possibility. GPT-4’s explanation for
Dengue Fever and Chikungunya is more compre-
hensive, strengthening the connection between
symptoms and diagnosis.

Importance of additional information: Empha-
size how geographic location and travel history
can significantly impact the likelihood of these
specific diseases.

C.6 GPT-4’s Third Round

Top-3 Predictions: Dengue Fever (60%), Chikun-
gunya (35%), and Zika Virus (5%).

Justifications: Though GPT-4 slightly adjusts
probabilities, it considers the adjustment arbitrary
without new information that would specifically
shift the likelihood between Dengue and Chikun-
gunya. GPT-4 refutes Gemini’s Viral Infection pre-
diction as lacking specificity. The symptoms de-
scribed are quite distinctive and align closely with
specific viral infections transmitted by mosquitoes.

C.7 Gemini’s Third Round

Top-3 Predictions: Dengue Fever (60%), Chikun-
gunya (35%), and Zika Virus (5%).
Justifications: Agreeing that GPT’s critique is
spot-on, and reiterating the need for more info.

C.8 Final Joint Recommendations to GP

After seeking further input from GPT-4, Gemini
fully concurs with GPT-4’s final suggestions, even
though the moderator instructs Gemini to maintain
its original stance. Both LLMs jointly recommend
additional symptom examinations and lab tests:

A comprehensive diagnostic approach for
Dengue Fever requires a combination of clinical
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assessment, laboratory testing, and consideration
of the patient’s travel and vaccination history, as
well as the epidemiological context. Clinical symp-
toms such as skin rash, joint pain, vomiting, and
red spots over the body provide valuable clues to
the diagnosis, but additional symptoms like nausea,
vomiting, diarrhea, bleeding, bruising, and drowsi-
ness can indicate the severity and progression of
the disease.

Recommended Laboratory Tests:
* Complete Blood Count (CBC): Identify throm-
bocytopenia or leukopenia.

» Serology Tests: Detect specific IgM and IgG
antibodies for Dengue, Chikungunya, and Zika.

* Polymerase Chain Reaction (PCR): Direct detec-
tion of viral RNA.

* NSI Antigen Test for Dengue: Early and specific
detection of Dengue virus.

* Urine Test for Zika: Viral presence in urine.

Appendix D: EVINCE Debate - Jaundice
vs. Hepatitis

In this experiment, GPT-4 and Claude receive an
identical list of symptoms from the moderator,
aimed at guiding disease diagnosis, facilitating de-
bate, and shaping subsequent recommendations.
The “ground-truth” disease is Jaundice. (We do not
shorten the debate content for review.)

D.1 Moderator’s Opening Prompt

“What potential disease could be associated with
the following symptoms: itching, vomiting, fatigue,
weight loss, high fever, yellowish skin, dark urine,
and abdominal pain? Please offer top-five predic-
tions with probabilities normalized to one, sup-
ported by justifications. Additionally, in the end
of debate, include a list of supplementary symp-
tom inquiries and recommend relevant lab tests to
strengthen the confidence in your prediction.”

D.2 GPT-4 Opening Round

* Hepatitis C (HCV): 40% Justification: Hepati-
tis C is a viral infection that can cause both
acute and chronic hepatitis. The combination
of symptoms like fatigue, abdominal pain, nau-
sea, vomiting, jaundice, dark urine, and weight
loss strongly suggests HCV. Itching may also
occur due to liver dysfunction.

* Hepatitis B (HBV): 30% Justification: Hepati-
tis B is a viral infection that can cause acute or



chronic liver inflammation. Symptoms are sim-
ilar to HCV, including fatigue, abdominal pain,
nausea, vomiting, dark urine, jaundice, and itch-
ing. The presence of these symptoms warrants
testing for both HBV and HCV.

Cirrhosis: 15% Justification: Cirrhosis is a late
stage of liver scarring that can result from var-
ious liver diseases. The combination of symp-
toms like fatigue, weight loss, abdominal pain,
jaundice, dark urine, and itching suggests ad-
vanced liver disease, possibly cirrhosis.

Obstructive Jaundice: 10% Justification: Ob-
structive jaundice occurs when there is a block-
age in the bile ducts. The presence of jaun-
dice, dark urine, itching, abdominal pain, nausea,
vomiting, and weight loss suggests a possible ob-
struction. However, the absence of fever makes
an infectious cause like cholangitis less likely.

Acute Liver Failure: 5% Justification: Acute
liver failure is a rare but life-threatening con-
dition characterized by rapid deterioration of
liver function. The presence of jaundice, abdom-
inal pain, nausea, vomiting, fatigue, and itching,
along with the acute onset of symptoms, may in-
dicate acute liver failure. However, the absence
of altered mental status (hepatic encephalopathy)
makes this less likely.

D.3 Claude Opening Round

Hepatitis B(HBV): 35% Reasoning: Hepatitis B
is a viral infection that can cause acute or chronic
liver inflammation. Symptoms include fatigue,
abdominal pain, nausea, vomiting, dark urine,
jaundice, joint pain, and itching.

Hepatitis C (HCV): 25% Reasoning: Hepatitis
C is a viral infection that can cause both acute
and chronic hepatitis. Symptoms are similar to
HBYV but may also include weight loss and fever.
Jaundice is a common symptom.

Obstructive Jaundice (due to gallstones, pan-
creatic cancer, or bile duct obstruction): 20%
Reasoning: Obstructive jaundice occurs when
there is a blockage in the bile ducts, preventing
bile from reaching the intestines. This can lead
to yellowing of the skin and eyes, dark urine,
itching, abdominal pain, nausea, and vomiting.

Alcoholic Hepatitis: 15% Reasoning: Alcoholic
hepatitis is liver inflammation caused by exces-
sive alcohol consumption. Symptoms include
abdominal pain, nausea, vomiting, fatigue, dark
urine, and possibly fever and weight loss.
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* Hepatitis A (HAV): 5% Reasoning: Hepatitis A

is an acute, self-limiting liver infection transmit-
ted through contaminated food or water. Symp-
toms include fatigue, abdominal pain, nausea,
vomiting, dark urine, and jaundice.

D.4 GPT-4 Second Round
* Hepatitis B (HBV): 35% Symptoms: fatigue,

abdominal pain, nausea, vomiting, dark urine,
jaundice (yellowish skin), joint pain, itching

* Hepatitis C (HCV): 25% Symptoms: fatigue, ab-

dominal pain, nausea, vomiting, dark urine, jaun-
dice (yellowish skin), weight loss, fever, itching

» Obstructive Jaundice (due to gallstones, pan-

creatic cancer, or bile duct obstruction): 20%
Symptoms: yellowish skin (jaundice), dark
urine, itching, abdominal pain, nausea, et al.

* Alcoholic Hepatitis: 15% Symptoms: abdom-

inal pain, nausea, vomiting, fatigue, jaundice
(yellowish skin), dark urine, fever, weight loss

* Hepatitis A (HAV): 5% Symptoms: fatigue, ab-

dominal pain, nausea, vomiting, dark urine, jaun-
dice (yellowish skin)

D.5 Claude Second Round
* Hepatitis C (HCV): 40% Reasoning: Hepatitis C

is a viral infection that can cause both acute and
chronic hepatitis. The combination of symptoms
like fatigue, abdominal pain, nausea, vomiting,
jaundice, dark urine, and weight loss strongly
suggests HCV. Itching may also occur due to
liver dysfunction.

Hepatitis B (HBV): 30% Reasoning: Hepatitis B
is a viral infection that can cause acute or chronic
liver inflammation. Symptoms are similar to
HCYV, including fatigue, abdominal pain, nausea,
vomiting, dark urine, jaundice, and itching. The
presence of these symptoms warrants testing for
both HBV and HCV.

Cirrhosis (due to various causes such as chronic
hepatitis, alcohol abuse, or non-alcoholic fatty
liver disease): 15% Reasoning: Cirrhosis is a
late stage of liver scarring that can result from
various liver diseases. The combination of symp-
toms like fatigue, weight loss, abdominal pain,
jaundice, dark urine, and itching suggests ad-
vanced liver disease, possibly cirrhosis.

Obstructive Jaundice (due to gallstones, pan-
creatic cancer, or bile duct obstruction): 10%
Reasoning: Obstructive jaundice occurs when



there is a blockage in the bile ducts. The pres-
ence of jaundice, dark urine, itching, abdominal
pain, nausea, vomiting, and weight loss suggests
a possible obstruction. However, the absence of
fever makes an infectious cause like cholangitis
less likely.

Acute Liver Failure (due to various causes such
as viral hepatitis, drug-induced liver injury, or
autoimmune hepatitis). 5% Reasoning: Acute
liver failure is a rare but life-threatening con-
dition characterized by rapid deterioration of
liver function. The presence of jaundice, abdom-
inal pain, nausea, vomiting, fatigue, and itching,
along with the acute onset of symptoms, may in-
dicate acute liver failure. However, the absence
of altered mental status (hepatic encephalopathy)
makes this less likely.

D.6 GPT-4 Third Round

Hepatitis C (HCV): 35% Reasoning: Hepati-
tis C is indeed a major cause of the symptoms
listed, including fatigue, abdominal pain, nausea,
vomiting, jaundice, dark urine, and weight loss.
Itching can also occur due to liver dysfunction.

Hepatitis B (HBV): 25% Reasoning: Hepatitis B
shares many symptoms with Hepatitis C, such as
fatigue, abdominal pain, nausea, vomiting, dark
urine, jaundice, and itching. Testing for both
HBYV and HCV is warranted given the overlap in
symptoms.

Cirrhosis: 20% Reasoning: Cirrhosis can re-
sult from chronic hepatitis, alcohol abuse, or
non-alcoholic fatty liver disease. The symptoms
of fatigue, weight loss, abdominal pain, jaun-
dice, dark urine, and itching strongly suggest
advanced liver disease, which could be cirrhosis.

Obstructive Jaundice: 15% Reasoning: Obstruc-
tive jaundice, caused by gallstones, pancreatic
cancer, or bile duct obstruction, is consistent
with jaundice, dark urine, itching, abdominal
pain, nausea, vomiting, and weight loss. The
absence of fever reduces the likelihood of an
infectious cause like cholangitis.

* Acute Liver Failure: 5% Reasoning: Acute liver

failure is less common but serious, characterized
by rapid deterioration of liver function. The
symptoms of jaundice, abdominal pain, nausea,
vomiting, fatigue, and itching, along with the
acute onset of symptoms, suggest this possibility.
However, the absence of altered mental status
(hepatic encephalopathy) makes it less likely.
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D.7 Claude Third Round

Hepatitis C (HCV): 35% Reasoning: I slightly
lowered the probability of HCV from 40% to
35%. While the combination of symptoms
strongly suggests HCYV, the absence of a few key
risk factors (e.g., history of intravenous drug use
or blood transfusions) in the given information
makes me less confident in assigning a higher
probability.

Hepatitis B (HBV): 30% Reasoning: I agree
with the 30% probability assigned to HBV. The
symptoms are indeed similar to HCV, and testing
for both viruses is warranted.

Cirrhosis: 20% Reasoning: I increased the prob-
ability of cirrhosis from 15% to 20%. The pres-
ence of jaundice, dark urine, itching, and weight
loss, along with the other symptoms, strongly
suggests advanced liver disease. Cirrhosis can be
a consequence of chronic liver diseases like hep-
atitis B or C, which have been assigned higher
probabilities.

Obstructive Jaundice: 10% Reasoning: I agree
with the 10% probability for obstructive jaun-
dice. The absence of fever makes an infectious
cause like cholangitis less likely, but the other
symptoms still suggest a possible obstruction.

Acute Liver Failure: 5% Reasoning: I agree
with the 5% probability for acute liver failure.
While the combination of symptoms could in-
dicate acute liver failure, the absence of altered
mental status (hepatic encephalopathy) makes
this diagnosis less likely.

D.8 Joint Final Round
1.

Hepatitis C (HCV) - 35% Justification: The
combination of symptoms strongly suggests
HCYV, but without additional risk factors, a
slightly lower probability is appropriate.

. Hepatitis B (HBV) - 30% Justification: The

symptoms are similar to HCV, and testing for
both viruses is necessary.

. Cirrhosis - 20% Justification: The presence of

jaundice, dark urine, itching, weight loss, and
other symptoms indicates advanced liver disease,
making cirrhosis a more likely possibility.

. Obstructive Jaundice - 10% Justification: The

absence of fever reduces the likelihood of an
infectious cause like cholangitis, but the other
symptoms still suggest a potential biliary ob-
struction.



. Acute Liver Failure - 5% Justification: While
the combination of symptoms could indicate
acute liver failure, the absence of altered mental
status makes this diagnosis less probable.

D.9 Final Joint Recommendations to GP

Gemini and GPT-4 jointly recommend the follow-

ing additional symptom inquiries and lab tests to

confirm a hepatitis diagnosis:

Additional Symptom Inquiries:

1. Onset and Duration: Determining the onset and
duration of symptoms can clarify the illness time-
line and its progression.

Severity and Trend: Evaluating symptom sever-
ity and whether they are worsening or improving
aids in understanding the disease’s trajectory and
treatment responses.

Associated Symptoms: Checking for additional
symptoms like nausea, vomiting, fever, joint
pain, or urine color changes can pinpoint other
hepatitis indicators and exclude other conditions.
Recommended Lab Tests:

1. Liver Function Tests (LFTs): Critical for assess-
ing liver health, LFTs evaluate enzyme levels
such as alanine aminotransferase (ALT) and as-
partate aminotransferase (AST), where abnor-
malities can signify liver inflammation.

Hepatitis Panel: This test checks for hepatitis
A, B, and C viruses, vital for determining the
specific type and guiding treatment strategies.

. Serology Testing: Useful for distinguishing be-
tween acute and chronic hepatitis by identifying
specific antibodies or antigens.

Imaging Studies: Ultrasound or MRI can pro-
vide visual insights into the liver’s state, detect-
ing inflammation, fibrosis, or cirrhosis, thereby
complementing blood-based diagnostics.

Appendix E: Formulas of Metrics

This appendix outlines the mathematical formulas
for various data analysis metrics used in probabilis-
tic and statistical modeling.

Kullback-Leibler Divergence

The Kullback-Leibler Divergence measures the dif-
ference between two probability distributions:

S Pla) ()
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Jensen-Shannon Divergence

The Jensen-Shannon Divergence is a symmetrized
and smoothed version of the KL. Divergence:

JSD(P|Q) = lDKL(P||M)+ 3 PxL(QM)

where M = 1(P + Q).

Wasserstein Distance

The Wasserstein Distance, also known as the Earth
Mover’s Distance (EMD), measures the distance
between two probability distributions:

W(P,Q) = inf d(z,y) dv(z,y).

(P,Q WE%I(IPaQ)/)(xy (z,y) dy(z,y)

Cross Entropy

Cross Entropy measures the average number of bits

Py 1K DI
required to 1d}ént1fy an event from a set of possibili-
ties, under a specific model:

-> P

TeX

)log(Q

Mutual Information

Mu'gual Information measures the amount of infor-
mation that one random variable contains about

another random variable:
V) — )log 229 ) ‘
) ggp(az yles (p(w)p(y)
Normalized Mutual Information
Normalized Mutual Information is calculated as
the mutual information divided by the maximum
of the entropies of the variables:

I(X;Y)
max(H(X), H(Y))"

NMI(X;Y) =

Appendix F: Symptom Checking

This is the typical procedure of a GP to perform

patient symptom checking.

1. Patient History: The GP begins by reviewing
the patient’s medical history, including previ-
ous illnesses, chronic conditions, medications,
allergies, and family medical history.

Symptom Assessment: The patient describes
their current symptoms, including starting time
and severity. This is an interactive process as the
GP queries the patient for additional symptoms
to their reported ones to disambiguate several
possibilities.

. Physical Examination: The GP performs sim-
ple physical exams, which may include check-
ing vital signs (e.g., blood pressure, heart rate,
temperature), examining specific body parts or
systems, and assessing overall physical health.



. Suggest Lab Tests: Depending on the symptoms
and physical examination findings, the doctor
may order diagnostic tests such as blood tests,
X-rays, ultrasound, or other studies. These tests
can help confirm or rule out certain conditions.

Diagnosis: Based on the information gathered,
the doctor formulates a preliminary diagnosis.

Treatment or Management Plan: Once a di-
agnosis is established, the doctor develops a
treatment or management plan. This may in-
clude prescribing medications, recommending
lifestyle changes, suggesting physical therapy,
or providing guidance on managing chronic con-
ditions.

. Referrals: In some cases, the GP may refer the
patient to specialists for further evaluation and
treatment. Specialists have expertise in specific
areas of medicine, such as cardiology, orthope-
dics, or dermatology.

Appendix G: Contentiousness Parameter
Modulation

Table 3 presents how an LLM adjusts its linguistic
behavior after the value of the “contentiousness”
parameter. By modulating contentiousness, it has
been shown that an LLM can condition itself to
adapt to different linguistic behaviors to achieve
a new establish goal and context. Details are pre-
sented in (Chang, 2023a) and also illustrated in
Section 4.

Appendix H: The EnToPPS Framework

EnToPPS integrates predictions from two LLMs,
denoted as A and B, each providing probability
distributions over C classes. The following steps
outline the EnToPPS process:

1. Obtain Top-C Predictions: For each LLM (A

and B), obtain the predicted probabilities for all
C classes, denoted as P4 and Pg:

Pa = [pa1,paz,...,pacl, Ps = [pB1,pB2,...,P5C)

where p 4; and pp; represent the predicted prob-
ability of class ¢ by LLM A and B, respectively.
. Select Top-k Predictions: For each LLM (A and

B), select the top-k predicted classes based on
their probabilities:

Ta = [tai,taz,...,tak], TB =I[tB1,tB2,s...,tBK],

where t 4; and tp; represent the class index of
the i* top prediction by A and B, respectively.
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3. Combine Top-k Predictions: Combine the top-k
predictions from both LLMs to create a set of
unique predicted classes:

Te =TaUTB = [te1,tee, ..., tem), k <m < 2k.

Backfill Missing Probabilities: For each class
in the combined set T, backfill its probability
from the original probability distributions P4
and Pg:
* If aclass t¢; is present in T4, assign its prob-
ability from Pa: po; = pa;-
* If a class t¢; is present in 1'p, assign its prob-
ability from Pp: pc; = pp;.
* Ifaclass t¢; is present in both T’y and T'p, as-
sign the average probability: p; = PAFPBL
5. Normalize Probabilities: Normalize the proba-

bilities of the classes in the combined set T~ to
ensure they sum up to 1:

bci
E;n:1 pcj

where pc;

PC = [p01ap027 s ,pCm],



| C.L. | Tone | Emphasis | Language |

0.9 Highly confrontational; fo- | Flagging risks and downsides; | Definitive and polarizing, e.g.,
cused on raising strong ethi- | ethical quandaries, unintended | “should NOT be allowed,” “unac-
cal, scientific, and social ob- | consequences, and exacerbation | ceptable risks,” “inevitable dis-
jections. of inequalities. parities.”

0.7 Still  confrontational but | Acknowledging that some | Less polarizing; “serious con-
more open to potential bene- | frameworks could make it | cerns remain,” “needs more
fits, albeit overshadowed by | safer or more equitable, while | scrutiny.”
negatives. cautioning against its use.

0.5 Balanced; neither advocating | Equal weight on pros and cons; | Neutral; “should be carefully
strongly for nor against gene | looking for a middle ground. considered,” “both benefits and
editing. risks.”

0.3 More agreeable than con- | Supportive but cautious; focus | Positive but careful; “transfor-
frontational, but maintaining | on ensuring ethical and equi- | mative potential,” “impetus to
reservations. table use. ensure.”

0.0 Completely agreeable and | Fully focused on immense po- | Very positive; “groundbreaking
supportive. tential benefits; advocating for | advance,” “new era of possibili-

proactive adoption. ties.”

Table 3: Changes in linguistic behaviors of LLMs at different contentiousness levels.
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