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Abstract

This paper presents a scalable distributed001
code representation (SDCR) learning tech-002
nique, which addresses the most common spar-003
sity and out-of-vocabulary (OoV) concerns si-004
multaneously. We introduce abstract syntax005
tree (AST) to reflect the structural information006
of code snippet and adopt the well-recognized007
‘bag of AST paths’ as its intermediate represen-008
tation, so that the unique structural and syntac-009
tic information of programs can be captured.010
Our proposed SDCR is supported by two core011
pillars. First, we provide comprehensive em-012
pirical study showing that only 1% of the AST013
paths can account for approximately 75% of the014
AST path occurrences. That is, dropping most015
of unnecessary AST paths still allows SDCR to016
perform well. Second, all AST paths (without017
leaf nodes in AST) are made up of a limited018
number of descriptive path elements, for which019
a lightweight encoder may produce a good em-020
bedding of any AST path. Incorporating these021
two pillars enables us to represent code snip-022
pets with better generalizability and scalability.023
Based on extensive experiments on two real-024
world datasets, we show that our SDCR have025
superior performance against the state-of-the-026
art with nearly 40% reduction in the number of027
model parameters.028

1 Introduction029

Code representation learning, as a fundamental030

technique to support various software engineering031

tasks, has attracted many recent interests. In this032

issue, a code snippet is learned to be represented033

as a low-dimensional distributed vector (a.k.a. em-034

bedding), and thus the development of machine035

learning-based software tools can be facilitated.036

It is well-known that programming languages are037

highly structured in contrast to natural languages.038

So far, approaches to learning distributed code rep-039

resentations are mainly through tokens in source040

program (Iyer et al., 2016; Feng et al., 2020; Zhang041
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Figure 1: Cumulative distribution function (CDF) of
AST path occurrences and AST path element occur-
rences.

et al., 2021), AST structure (Mou et al., 2016; Alla- 042

manis et al., 2018; Chen et al., 2018; Zhang et al., 043

2019; Wang et al., 2021; Bui et al., 2021; Guo 044

et al., 2021), and paths in AST (Alon et al., 2018, 045

2019b,a; Zhang et al., 2021). Indeed, substantial 046

empirical study has showed that a family of AST 047

path-based (e.g. root-to-leaf paths and leaf-to-leaf 048

paths) representations are more effective in many 049

program prediction tasks (Alon et al., 2018). Com- 050

pared with plain text and simple AST structure, the 051

AST paths can dig deeper into program syntax and 052

reveal more semantic information. 053

However, while offering those promising char- 054

acteristics, the prior AST path-based learning tech- 055

niques still encounter two major obstacles that hin- 056

der their generalizability and scalability: 057

(1) Unlike natural languages where out-of- 058

vocabulary (OoV) words are relatively limited, pro- 059

gramming languages have increasing number of 060

OoV AST paths as the data size grows, leading to 061

serious noise problem to the representation models. 062

Additionally, AST path occurrences are immensely 063

sparse at most cases. Figure 1(a) illustrates this 064

by showing that the CDF of AST path occurrences 065

goes up sharply at first and then quickly converges. 066

Nevertheless, those OoV and sparse AST paths are 067

always not trivial and carry unique information of 068
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1. for (int element: elements) 
2. if (element == target)
3. return true;

for

for control block

init

decl

type name range

name expr

nameint

elements

( )

element for

if_stmt

conditionif

( )expr

name

element

operator

==

name

target

if

return

return expr

literal

true

;

Code snippet:

1. element ↑ name ↑ expr ↓ name ↓ target
2. if ↑ if ↓ return ↓ expr ↓ literal ↓ true

AST Paths:

Figure 2: Example of a code snippet, and its AST as well as AST paths.

a code snippet intuitively.069

(2) The number of paths in AST are explosive.070

For example, an AST with n leaf nodes will have071

O(n2) leaf-to-leaf paths, resulting in infeasible072

traversal for the previous AST path-based mod-073

els. Although abstraction and downsampling are074

proposed to limit the number of AST paths (Alon075

et al., 2018), the signals of many useful AST paths076

will still not be captured.077

Therefore, similar to research issues in the other078

machine learning fields (He et al., 2021), a scal-079

able learner for programming languages is also080

very much needed. In order to precisely understand081

and represent the source code, it is necessary to082

utilize the lost information caused by undesirable083

sparse and OoV AST paths. Figure 1(a) also shows084

our findings that only 1% of AST paths account085

for around 75% of occurrences, which is far more086

than 80/20 rule. This indicates that only 1% of087

AST paths may enable the representation model to088

perform well, resolving the problem of exploding089

number of AST paths. Furthermore, it is worth not-090

ing that AST (without leaf nodes in AST) is only091

composed by limited number of descriptive path092

elements (usually less than 100), such as <if_stmt>,093

<block_content>, <break> and <return>. An ap-094

propriate use of those path elements may mitigate095

the OoV AST path problem, and boost the qual-096

ity of code embeddings. Besides, AST path ele-097

ment occurrences are not as sparse as AST paths,098

as depicted in Figure 1(b). As a matter of fact,099

the minimum number of AST path element occur- 100

rences in most cases are still more than 100, which 101

can greatly enhance the quality of model training. 102

This is partially inspired by the similar sparsity 103

problem in information retrieval, where the factor- 104

ization machine divides the second-order factors 105

into two dense vectors so that their model can be 106

well-trained (Rendle, 2010). 107

Based on the key ideas, we present SDCR, a 108

straightforward, effective and scalable code rep- 109

resentation learning technique. SDCR can rise to 110

the challenge of the most common sparsity and 111

OoV problems when generating code embeddings, 112

and meanwhile enjoy a significant reduction in the 113

number of model parameters. We evaluate our pro- 114

posed model design on two real-world datasets and 115

the experiment results show its superiority in effec- 116

tiveness and efficiency over the state-of-the-art. 117

2 Representing Code as AST Paths 118

Programming languages are highly structured, 119

requiring a good data structure to reflect their 120

meaning. The abstract syntax tree (AST) is a 121

well-recognized intermediate representation of the 122

source code, and has shown to be useful in many 123

previous works (Raychev et al., 2015; Gupta et al., 124

2019). 125

Figure 2 elaborates an example of a Java code 126

snippet and its corresponding AST. The abstract 127

syntax tree (AST) is a structure to represent the 128

abstract syntactic structure of code in a specific 129
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1. boolean existTarget(int[] elements, int target) {
2. for (int element: elements) 
3. if (element == target)
4. return true;
5. return false;

Source code:

parse

AST:

traverse

1. element ↑ name ↑ expr ↓ name ↓ target
2. if ↑ if ↓ return ↓ expr ↓ literal ↓ true
3. …

AST paths:
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Figure 3: Overview of proposed SDCR.

programming language. In AST, the leaf nodes130

represent constant, identifiers and names, often pro-131

vided by programmers, while the non-leaf nodes132

represent the grammar or the structure of the pro-133

gramming language. All non-leaf nodes except root134

node have their descendants and ancestors, portray-135

ing the syntax of the code snippet. The mutual136

conversion between a code snippet and its AST is137

supported, indicating that there is no information138

loss during the conversion. By learning representa-139

tions from AST, the syntax and semantics of code140

snippets can be easily captured, which unveils the141

deeper information beyond the plain text.142

However, either graph neural networks (GNNs)143

methods, such as GCN (Kipf and Welling, 2016)144

and GraphSAGE (Hamilton et al., 2017), or tree-145

based learning techniques, such as TBCNN (Mou146

et al., 2015, 2016) and TBLSTM (Chen et al., 2018)147

does not work well for learning AST. AST has148

unique structural information where its leaf nodes149

are tokens and non-leaf nodes are descriptive path150

elements, weakening their capability to represent151

program languages. Thus, AST leaf-to-leaf path-152

based methods are introduced in this paper and an153

example AST path of the code snippet in Figure 2154

can be formulated as follows:155

element ↑ name ↑ expr ↓ name ↓ target (1)156

where the first and last items are leaf nodes in AST,157

representing tokens, and in-between items are non-158

leaf nodes in AST, representing descriptive path159

elements. ↑ and ↓ are the direction of traversal.160

More formally, a leaf-to-leaf AST paths can be161

represented as a triplet:162

< xs, p, xt > (2)163

where xs and xt are the start and end leaf nodes of 164

AST paths, respectively, and p is all non-leaf nodes 165

in the traversal path from xs to xt. 166

3 Proposed Method 167

Figure 3 shows the overview of our proposed 168

SDCR. At first, a source code snippet is converted 169

into AST, and a bag of AST paths are sampled 170

randomly to capture the information of AST suffi- 171

ciently. This is different from previous code2vec 172

(Alon et al., 2019b), where AST paths are sam- 173

pled in the limitation of their maximum length and 174

width. Then, the initial AST path embeddings are 175

queried from the embedding layers. To deal with 176

sparsity and OoV problem, we synthesize path ele- 177

ments by a neural network to produce an additional 178

AST path embedding. Next, we conduct concate- 179

nation and linear transformation to generate a bag 180

of AST path embeddings and feed them into an 181

attention network to obtain the overall code snippet 182

representation. Finally, a prediction task of func- 183

tion name is performed so that our proposed SDCR 184

can be trained. 185

3.1 Code as a Bag of AST Paths 186

Before learning the distributed source code repre- 187

sentation, we introduce ‘bag of AST paths’ model 188

as the intermediate representation of code snippets. 189

We denote C as a code snippet, T (C) as its AST 190

and R(C) as its intermediate representation. For- 191

mally, given a code snippet C, we utilize an AST 192

parser to transform C to T (C). Further, the set of 193

all pairs of the leaf nodes is denoted as: 194

T P(C) =
{
(u, v)

∣∣∣∣ u, v ∈ T (C)’s
leaves ∧ i ̸= j

}
(3) 195
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With T P(C), the intermediate representation of196

C that can be derived from it:197

R(C) = {(xs, p, xt) | ∃(xs, xt) ∈ T P(C)} (4)198

where we use ∃ in R(C), in which case the random199

downsampling is applied to construct R(C) so that200

the maximum number of AST paths can be limited.201

Therefore, a code snippet is transformed into a bag202

of AST paths, which is a mathematical object that203

can be used in a learning model.204

3.2 Path Embedding Generation205

Once we obtain the intermediate representation206

of a code snippet, we embed them into a low-207

dimensional distributed space. Since an AST path208

can be represented as a triplet, we divide the embed-209

ding module into three parts - start token embed-210

ding, in-between path embedding and end token211

embedding.212

For start and end token embedding, we define213

a learnable matrix W token ∈ R(|Xtoken|+1)×dtoken214

as the shared token vocabulary, where Xtoken are215

the set of tokens appeared in training corpus and216

‘+1’ represents OoV tokens. By querying W token,217

the start and end token embedding of i-th AST218

path can be initialized as hsi , h
t
i ∈ Rdtoken directly.219

Formally, the start and end token embedding of i-th220

AST path are calculated as:221

hsi = W token
js , hsi ∈ Rdtoken

hti = W token
jt , hti ∈ Rdtoken

(5)222

where js and jt are the dictionary index of start223

token and end token.224

For in-between path embedding, we should con-225

sider sparsity and OoV problem caused by various226

data size and countless AST paths. As our empiri-227

cal findings mentioned in Section 1, we have two228

pillars to support the solution of problems.229

The first pillar is that only 1% of AST paths230

make up approximately 75% of AST path occur-231

rences. Followed by this, we introduce a learnable232

matrix W path ∈ R(|Xpath|+1)×dpath where Xpath233

denotes the set of AST paths in the top 1% of oc-234

currences and ‘+1’ represents OoV AST path. As235

a result, not only is the sparsity problem solved,236

but also the model enjoys a large reduction in the237

number of model parameters. The top 1% based238

in-between path embedding of i-th AST path thus239

can be calculated as:240

h1%i = W path
jp

, h1%i ∈ Rdpath (6)241

where jp is the dictionary index of in-between path. 242

The second pillar is that all of in-between paths 243

are composed by very limited number of descrip- 244

tive path elements. Consequently, by learning a 245

combination model, the embedding of OoV and 246

abandoned in-between path can be generated. As 247

in-between path is a kind of typical sequential data, 248

we use LSTM (Hochreiter and Schmidhuber, 1997) 249

to produce path element based in-between path em- 250

bedding of i-th path as: 251

hpei = LSTM({pei1, pei2, . . . , peim}),
hpei ∈ Rdpe

(7) 252

where m is the length of path elements, peik is the 253

k-th path element of i-th AST path and LSTM() 254

outputs its final hidden state. 255

Then, the four embeddings of i-th AST path 256

are concatenated to a single vector hi,a ∈ 257

R2dtoken+dpath+dpe that represents that AST path: 258

h̃ai = embedding(< xsi , pi, x
t
i >)

= [hsi , h
1%
i , hpei , hti],

h̃ai ∈ R2dtoken+dpath+dpe

(8) 259

Since every AST path vector h̃ai is formed by 260

a concatenation of four independent embeddings, 261

we adopt a fully connected layer to combine its 262

components. This is done separately for each AST 263

path and the computation can be described as: 264

hai = tanh(W linear · h̃ai ) (9) 265

where W linear ∈ Rd×(2dtoken+dpath+dpe) is a learn- 266

able weight and hyperbolic tangent function tanh 267

is used as the activation function. 268

3.3 Attention Aggregation Model 269

Given a bag of AST path embeddings, we apply 270

attention mechanism to aggregate them since the 271

length of bag is varying. The attention mechanism 272

computes a scalar weight over each AST path em- 273

beddings, indicating which AST path is relatively 274

important compared to the other. It is calculated 275

as the normalized inner product between the com- 276

bined path embeddings and the global attention 277

vector a ∈ Rd: 278

αi =
exp(hai

T · a)∑q
k=1 exp(h

a
k
T · a)

(10) 279

where q is the number of AST paths. The expo- 280

nential components are used to make the attention 281
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weights positive, and they are divided by their sum282

to have a sum of 1.283

The aggregated vector hc ∈ Rd represents a284

code snippet. It is a linear combination of the bag285

of AST path embeddings {ha1, ha2, ..., haq} factored286

by their attention weights:287

hc =

q∑
k=1

αk · h̃ak (11)288

In this way, the low-dimensional distributed code289

representation can be acquired.290

3.4 Optimization291

Prediction of function names is performed using292

the code vector. This is because function names are293

often descriptive and provide a high-level summary294

of its purpose. Choosing good names are especially295

critical for functions in public project APIs, as poor296

function names can doom a project to irrelevance297

(Høst and Østvold, 2009).298

We define a learnable matrix W tag ∈ R|Y |×d299

as the tag vocabulary, where |Y | is the set of tag300

values found in the training corpus. Indeed, each301

row vector in W tag can be regarded as the tag em-302

bedding, which is jointly trained with code vectors.303

The predicted probability distribution is computed304

as the (softmax-normalized) dot product between305

the code vector hc and each of the tag vectors:306

q(yj) =
exp(W tag

j · hc)∑
yk∈Y exp(W tag

k · hc)
(12)307

We use cross-entropy loss between the predicted308

probability distribution p and the ground truth dis-309

tribution p. It can be expressed as:310

H(p||q) = −
∑
y∈Y

p(y) log q(y) (13)311

Finally, we need to learn these parameters of312

SDCR: W token, W path, W tag, W linear, a and pa-313

rameters in LSTM .314

4 Experiment315

In this section, we aim to address the following re-316

search questions: (1) Will SDCR indeed outperform317

the AST-path based baselines in effectiveness and318

efficiency? (2) What is the quality of code vectors319

learned by SDCR? (3) Why does SDCR perform320

well in predicting the semantics of programs?321

Dataset Java Small Java Large
Training 14,998 141,308
Validation 5,930 51,529
Testing 6,030 50,548
Num. paths 243,297 911,417
Num. path elems 54 61
Avg. path length 22.50 22.81
Max. path length 93 155

Table 1: Statistics of Java Small and Java Large dataset.

4.1 Setup 322

Datasets We evaluate our model on two real- 323

world Java datasets - a small dataset containing 324

only 1 Java project (intra-project) and a large 325

dataset containing 10 Java projects (inter-project). 326

All of projects are collected from the most starred 327

Java projects in GitHub. We extract functions from 328

those projects and randomly divide them into three 329

sets in the ratio of 6:2:2 for training, validation and 330

testing, respectively. Table 1 shows the statistics of 331

the experiment datasets. Besides, there are many 332

AST parsers for Java, such as JavaParser1 (Hos- 333

seini and Brusilovsky, 2013) and srcML2 (Collard 334

et al., 2013). In this work, we use srcML to convert 335

source code to AST. 336

Evaluation Metrics Ideally, we prefer to eval- 337

uate the results manually since programming lan- 338

guages have deep semantic information. However, 339

given that manual evaluation is hard to scale, we 340

adopt the measures used in the previous works 341

(Allamanis et al., 2015, 2016; Alon et al., 2018, 342

2019b), in which precision, recall and F1 score 343

are measured in subtoken level and case insensi- 344

tive manner. The core idea is that the quality of 345

a function name prediction relies mainly on the 346

subtokens used to compose it. For instance, for 347

a function name called is_contain_element, we 348

also consider a prediction of is_element_contain 349

are the exact match in subtoken level measures, 350

contain_element has full precision but low recall, 351

and is_integer_element_contain has full recall 352

but low precision. 353

Competing Methods We compare our SDCR 354

with the most recognized AST path-based model, 355

code2vec (Alon et al., 2019b), as well as its vari- 356

ant code2vec_most that only uses the AST paths in 357

the top 1% of occurrences. We also evaluate the 358

1http://javaparser.org/
2https://www.srcml.org/
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Approach Java Small Java Large
Precision Recall F1 score Precision Recall F1 score

code2vec 0.3315 0.3566 0.3436 0.5441 0.5615 0.5526
code2vec_most 0.3346 0.3611 0.3474 0.5468 0.5596 0.5531
pe_mean 0.3290 0.3558 0.3418 0.5415 0.5545 0.5479
pe_attention 0.3319 0.3554 0.3432 0.5548 0.5677 0.5612
pe_lstm 0.3481 0.3755 0.3613 0.5453 0.5612 0.5531
SDCR_mean 0.3403 0.3645 0.3520 0.5413 0.5562 0.5487
SDCR_attention 0.3362 0.3601 0.3478 0.5592 0.5699 0.5645
SDCR_lstm 0.3561 0.3821 0.3687 0.5583 0.5712 0.5647

Table 2: Performance comparison between the competing methods. The cell marked with dark blue achieves the
highest performance in that column and the cell marked with light blue achieves a better performance in that
column compared with the most recognized AST path-based baseline code2vec.

variants of SDCR, that is, SDCR_mean by replac-359

ing LSTM module with mean computation unit,360

SDCR_attention by replacing LSTM module with361

attention mechanism. Furthermore, we conduct ab-362

lation experiments on SDCR similarly - we remove363

the embeddings of top 1% of AST paths h1%i and364

only utilize the embeddings generated by the AST365

path elements hpei . They are named as pe_mean,366

pe_attention and pe_lstm, respectively. Note that367

we remove the directional path elements ↑ and ↓368

for LSTM module as it is a sequence-aware model.369

The hyperparameters for each model are tuned on370

validation set for maximizing F1 score and the re-371

sults on the unseen test set are reported.372

4.2 Performance Comparison and Ablation373

Study (RQ1)374

Table 2 shows the overall performance of the mod-375

els under two real-world datasets. From this ta-376

ble, we observe that our proposed SDCR_lstm sig-377

nificantly outperforms code2vec in F1 score, by378

0.0251 on Java Small dataset and by 0.0121 on Java379

Large dataset. It is noteworthy that SDCR_mean380

and SDCR_attention achieve promising results in381

Java Small and Java Large dataset, respectively.382

A possible reason is that SDCR_attention may383

trap into the overfitting problem when the train-384

ing corpus is small. Their advantages in F1 score385

are also significant, outperforming code2vec by386

0.0084 from 0.3436 to SDCR_mean’s 0.3520 on387

Java Small dataset and by 0.0119 from 0.5526 to388

SDCR_attention’s 0.5645 on Java Large dataset.389

Besides, the ablation experiments are also in-390

teresting. For the ablation model of code2vec,391

code2vec_most outperforms code2vec in all met-392

rics except recall on Java Large dataset. This is393

0.00 0.25 0.50 0.75 1.00 1.25 1.50
Number of parameters 1e8

SDCR_lstm
SDCR_attention

SDCR_mean
pe_lstm

pe_attention
pe_mean

code2vec_most
code2vec

Java Small
Java Large

Figure 4: Number of parameters used in each model.

because code2vec_most only uses the AST paths 394

in top 1% of occurrences, easing the sparsity prob- 395

lem that exists in code2vec. For the ablation mod- 396

els of SDCR, an interesting phenomenon is that 397

the advantage of pe_lstm is not significant over 398

code2vec on Java Large dataset, while SDCR_lstm 399

achieves the highest F1 score compared with the 400

others. This indicates that all modules in the core 401

design of SDCR are important. They work together 402

to address the common sparsity and OoV problems. 403

Figure 4 shows the number of parameters used 404

in each model, which can be roughly divided into 405

three levels - code2vec with the most number of 406

model parameters, SDCR_mean, SDCR_attention 407

and SDCR_lstm with moderate number of model 408

parameters (around 40% reduction), as well 409

as code2vec_most, pe_mean, pe_attention and 410

pe_lstm with the least number of model parameters 411

(around 85% reduction). It can be observed that 412

the number of model parameters are significantly 413

reduced by SDCR compared with the baseline on 414

either Java Small or Java Large dataset. 415

Therefore, our first research question can be ad- 416
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Figure 5: Visualization of code vectors from 7 classes
on Java Small dataset produced by code2vec and SDCR.

dressed: SDCR has superiority in generalizability417

and scalability - it achieves the highest F1 score418

while using relatively fewer model parameters.419

4.3 Visualization of Code Representations420

(RQ2)421

To help understand why the code embeddings pro-422

duced by SDCR are better than the code embed-423

dings produced by the baseline, we visualize the424

code embeddings from 7 random classes on Java425

Small dataset. We adopt t-SNE (Van der Maaten426

and Hinton, 2008) to embed code embeddings into427

two-dimensional space and visualize them in that428

space. As shown in Figure 5, it points out that (1)429

The vectors produced by SDCR of the same class430

stick closer than the vectors produced by code2vec.431

For example, the code vectors marked with red432

color locate more tightly in SDCR while diffuse433

in code2vec. The code vectors marked by brown434

color in SDCR have clearer boundary and are eas-435

ier to distinguish than in code2vec. (2) Compared436

to code2vec, SDCR takes advantage of a larger437

vector distribution area. That is, the code vec-438

tors of SDCR are distributed more evenly in the439

space, yet code2vec only utilizes the lower trian-440

gular space. However, we observe that some code441

vectors marked in the same color (e.g. pink) are 442

somewhat far away from each other in SDCR. This 443

is partially because the handcrafted function names 444

cannot accurately represent the semantics of pro- 445

gram, which could indicate further improvement to 446

SDCR and can be made in the future work. 447

As a result, our second research question can be 448

addressed: the code vectors learned by SDCR are 449

distinguishable and have good expressive quality. 450

4.4 Qualitative Analysis (RQ3) 451

We conduct case study to further investigate how 452

do the models behavior in function name predic- 453

tion task. As shown in Figure 6, we randomly 454

pick a function name (get_name in this experi- 455

ment) to predict, along with an example of a correct 456

prediction and an example of an incorrect predic- 457

tion. We standardize all the function names to 458

case-insensitive underscore nomenclature, and five 459

names with highest predicted probability are re- 460

ported. From Case 1, it is clear to see that both 461

SDCR and code2vec predict correctly for the sim- 462

ple code snippet. However, compared to code2vec, 463

SDCR has a higher confidence in the correct an- 464

swer get_name while lower probability in the in- 465

correct answers. Besides, all five function names 466

predicted by SDCR are related to the correct an- 467

swer, yet code2vec has a completely unrelated func- 468

tion name example. In Case 2, both SDCR and 469

code2vec give an incorrect prediction. However, 470

code2vec is very confident (with 89.97% probabil- 471

ity) of an incorrect prediction of prefix, but SDCR 472

behaviors not confidently (with 49.05% proba- 473

bility) in predicting an incorrect function name 474

tostring. Additionally, SDCR generates two very 475

related function names get_mapping_name and 476

get_name compared to code2vec. The reason why 477

SDCR favors get_mapping_name is that a token 478

named ‘attributeMapping’ exists in the code snip- 479

pet. In fact, get_mapping_name is to some extent 480

a better function name than get_name, which sug- 481

gests an possible application of SDCR in helping 482

programmers to name a function’s code snippet. 483

Based on the above results, our third research 484

question can be addressed: SDCR has better under- 485

standing and digs deeper into program semantics. 486

5 Related Work 487

With the development of deep learning techniques, 488

researches for source code representations have 489

attracted much attention. In general, existing code 490
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1. public string getName() {
2. return this.name;
3. }

A code snippet (correct prediction):

1. private string getName(String prefix, MergedAnnotation attributeMapping,       
2. Method attribute) {
3. String name = attributeMapping.getValue(MergedAnnotation.VALUE, 
4. String.class).orElse(“”);
5. if (!StringUtils.hasText(name)) {
6. name = toKebabCase(attribute.getName());
7. }
8. return dotAppend(prefix, name);
9. }

A code snippet (incorrect prediction):

code2vec:

SDCR:

code2vec:

SDCR:

example
get

get_message
to_string
get_name 99.25%

0.49%

0.03%

0.02%

0.01%

get_origin
get

get_resource
to_string
get_name 99.87%

0.11%

0.01%

0.00%

0.00%

get_greeting
get_usage_help

to_string
greeting
prefix 89.97%

3.63%

1.43%

1.04%

0.61%

get_name
before_initialize

prefix
get_mapping_name

to_string 49.04%

19.77%

9.52%

4.89%

3.43%

Figure 6: Example of prediction results produced by code2vec and SDCR.

representation works are mainly in three ways:491

Token-based Embedding This line of work sim-492

ply regards the source code snippet as plain text493

and tokenize it into token sequences. (Iyer et al.,494

2016) firstly defined code summarization task and495

proposed a RNN model to translate the source code496

snippet to summary. Followed by this work, (Alla-497

manis et al., 2016) described an attentional CNN498

model to summarize source code. (Feng et al.,499

2020) trained CodeBERT on a tremendous code500

corpus, aiming to advance code embedding by the501

pre-trained model. However, it is obvious that the502

syntax of source code can not be captured by token-503

based representation models.504

AST-based Embedding To take advantage of505

highly structured features of source code, AST506

is introduced as the code snippet’s intermediate507

representation. It can be directly represented via508

Tree-CNN (Mou et al., 2015, 2016), Tree-LSTM509

(Chen et al., 2018) and ASTNN (Zhang et al.,510

2019). Then, (Allamanis et al., 2018) proposed511

to add edges to AST, and use GNN to generate512

code embedding. (Wang et al., 2021) extended513

the type of edge so that their intermediate repre-514

sentation is represented as a heterogeneous graph.515

(Bui et al., 2021) adopted self-supervised learn-516

ing technique to predict the subtree of AST. (Guo517

et al., 2021) incorporated the data-flow information518

among variables into pre-training and enhance their519

previous CodeBERT to GraphCodeBERT. Never-520

theless, simply learning code representations by521

AST structures will ignore the unique syntax that 522

all leaf nodes of AST are constants, handcrafted 523

tokens, or identifiers, and all non-leaf nodes are 524

predefined descriptive elements. 525

AST path-based Embedding Therefore, the 526

third line of work are becoming very hot topic re- 527

cently. (Alon et al., 2018) were the first to validate 528

the superior performance of AST paths based on 529

abundant empirical experiments. Then, he further 530

extended his work to well-known code2vec (Alon 531

et al., 2019b) and code2seq (Alon et al., 2019a), 532

which are used as substantial baseline in this paper. 533

(Hu et al., 2018) described a comment generation 534

method by linearizing the AST into a sequence of 535

nodes via traversing. However, all of them less con- 536

sidered the challenge in sparsity and OoV problem, 537

which is worth further exploration and practice. 538

6 Conclusion 539

In this paper, we propose SDCR, a novel scalable 540

representation learning technique for source codes. 541

We adopt a bag of AST paths as the intermediate 542

representation of code snippet, and couple the in- 543

formation of descriptive path elements and AST 544

paths in the top 1% of occurrences, mitigating the 545

common sparsity and OoV problems in AST path 546

based model. An comprehensive empirical study 547

is reported to support our core design. By con- 548

ducting extensive experiments on two real-world 549

datasets, we verify that our SDCR outperforms the 550

state-of-the-art in effectiveness and efficiency. 551
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