Learning Scalable Representation for Source Code

Anonymous ACL submission

Abstract

This paper presents a scalable distributed
code representation (SDCR) learning tech-
nique, which addresses the most common spar-
sity and out-of-vocabulary (OoV) concerns si-
multaneously. We introduce abstract syntax
tree (AST) to reflect the structural information
of code snippet and adopt the well-recognized
‘bag of AST paths’ as its intermediate represen-
tation, so that the unique structural and syntac-
tic information of programs can be captured.
Our proposed SDCR is supported by two core
pillars. First, we provide comprehensive em-
pirical study showing that only 1% of the AST
paths can account for approximately 75% of the
AST path occurrences. That is, dropping most
of unnecessary AST paths still allows SDCR to
perform well. Second, all AST paths (without
leaf nodes in AST) are made up of a limited
number of descriptive path elements, for which
a lightweight encoder may produce a good em-
bedding of any AST path. Incorporating these
two pillars enables us to represent code snip-
pets with better generalizability and scalability.
Based on extensive experiments on two real-
world datasets, we show that our SDCR have
superior performance against the state-of-the-
art with nearly 40% reduction in the number of
model parameters.

1 Introduction

Code representation learning, as a fundamental
technique to support various software engineering
tasks, has attracted many recent interests. In this
issue, a code snippet is learned to be represented
as a low-dimensional distributed vector (a.k.a. em-
bedding), and thus the development of machine
learning-based software tools can be facilitated.

It is well-known that programming languages are
highly structured in contrast to natural languages.
So far, approaches to learning distributed code rep-
resentations are mainly through tokens in source
program (Iyer et al., 2016; Feng et al., 2020; Zhang

g
=}
g
o

o

o
4
o

tribution function

0.6
0.4

o

N
1
IS

o
N

o
S

0 200000 400000 600000
i-th AST paths

0 20 40
i-th AST path elements

Cumulative distribution function
o
o

Cumulative dis

(a) AST paths (b) AST path elements

Figure 1: Cumulative distribution function (CDF) of
AST path occurrences and AST path element occur-
rences.

et al., 2021), AST structure (Mou et al., 2016; Alla-
manis et al., 2018; Chen et al., 2018; Zhang et al.,
2019; Wang et al., 2021; Bui et al., 2021; Guo
et al., 2021), and paths in AST (Alon et al., 2018,
2019b,a; Zhang et al., 2021). Indeed, substantial
empirical study has showed that a family of AST
path-based (e.g. root-to-leaf paths and leaf-to-leaf
paths) representations are more effective in many
program prediction tasks (Alon et al., 2018). Com-
pared with plain text and simple AST structure, the
AST paths can dig deeper into program syntax and
reveal more semantic information.

However, while offering those promising char-
acteristics, the prior AST path-based learning tech-
niques still encounter two major obstacles that hin-
der their generalizability and scalability:

(1) Unlike natural languages where out-of-
vocabulary (OoV) words are relatively limited, pro-
gramming languages have increasing number of
OoV AST paths as the data size grows, leading to
serious noise problem to the representation models.
Additionally, AST path occurrences are immensely
sparse at most cases. Figure 1(a) illustrates this
by showing that the CDF of AST path occurrences
goes up sharply at first and then quickly converges.
Nevertheless, those OoV and sparse AST paths are
always not trivial and carry unique information of

control

)= ()

(o)

(oo) [ovmoor] [rome)

! Code snippet:

: 1. for (int element: elements) 1.
: 2. if (element == target) 2.
1 3. return true;

element P name * expr | name { target
if N if U return J expr { literal { true

& T

AST Paths:

Figure 2: Example of a code snippet, and its AST as well as AST paths.

a code snippet intuitively.

(2) The number of paths in AST are explosive.
For example, an AST with n leaf nodes will have
O(n?) leaf-to-leaf paths, resulting in infeasible
traversal for the previous AST path-based mod-
els. Although abstraction and downsampling are
proposed to limit the number of AST paths (Alon
et al., 2018), the signals of many useful AST paths
will still not be captured.

Therefore, similar to research issues in the other
machine learning fields (He et al., 2021), a scal-
able learner for programming languages is also
very much needed. In order to precisely understand
and represent the source code, it is necessary to
utilize the lost information caused by undesirable
sparse and OoV AST paths. Figure 1(a) also shows
our findings that only 1% of AST paths account
for around 75% of occurrences, which is far more
than 80/20 rule. This indicates that only 1% of
AST paths may enable the representation model to
perform well, resolving the problem of exploding
number of AST paths. Furthermore, it is worth not-
ing that AST (without leaf nodes in AST) is only
composed by limited number of descriptive path
elements (usually less than 100), such as <if_stmt>,
<block_content>, <break> and <return>. An ap-
propriate use of those path elements may mitigate
the OoV AST path problem, and boost the qual-
ity of code embeddings. Besides, AST path ele-
ment occurrences are not as sparse as AST paths,
as depicted in Figure 1(b). As a matter of fact,

the minimum number of AST path element occur-
rences in most cases are still more than 100, which
can greatly enhance the quality of model training.
This is partially inspired by the similar sparsity
problem in information retrieval, where the factor-
ization machine divides the second-order factors
into two dense vectors so that their model can be
well-trained (Rendle, 2010).

Based on the key ideas, we present SDCR, a
straightforward, effective and scalable code rep-
resentation learning technique. SDCR can rise to
the challenge of the most common sparsity and
OoV problems when generating code embeddings,
and meanwhile enjoy a significant reduction in the
number of model parameters. We evaluate our pro-
posed model design on two real-world datasets and
the experiment results show its superiority in effec-
tiveness and efficiency over the state-of-the-art.

2 Representing Code as AST Paths

Programming languages are highly structured,
requiring a good data structure to reflect their
meaning. The abstract syntax tree (AST) is a
well-recognized intermediate representation of the
source code, and has shown to be useful in many
previous works (Raychev et al., 2015; Gupta et al.,
2019).

Figure 2 elaborates an example of a Java code
snippet and its corresponding AST. The abstract
syntax tree (AST) is a structure to represent the
abstract syntactic structure of code in a specific

(" Source code:
1. boolean

3.
4. return true;
5. return false;

A J

1% Path
Embedding

AN /
traverse
Path Element
(" AST paths: A Embedding
1. clement 1 name 1 expr | name | targe
2. if1if | return | expr | literal | truc
i\ 3.)

Parsing AST

Concatenate to
generate context
embedding

M
(int[] elements, int target) { Leg 'Z(lien
2. for (int element: elements) embedding —
if (element == target) —_

parse -
Ve . N Right token —
AST: () ’ embedding

Fully
connected g M

layer
Attention
weights
\\
/ \

Source Code
Embedding

-

o 00

\
S

o 00

Prediction

(

o 00 :

(

Figure 3: Overview of proposed SDCR.

programming language. In AST, the leaf nodes
represent constant, identifiers and names, often pro-
vided by programmers, while the non-leaf nodes
represent the grammar or the structure of the pro-
gramming language. All non-leaf nodes except root
node have their descendants and ancestors, portray-
ing the syntax of the code snippet. The mutual
conversion between a code snippet and its AST is
supported, indicating that there is no information
loss during the conversion. By learning representa-
tions from AST, the syntax and semantics of code
snippets can be easily captured, which unveils the
deeper information beyond the plain text.

However, either graph neural networks (GNNs)
methods, such as GCN (Kipf and Welling, 2016)
and GraphSAGE (Hamilton et al., 2017), or tree-
based learning techniques, such as TBCNN (Mou
etal., 2015, 2016) and TBLSTM (Chen et al., 2018)
does not work well for learning AST. AST has
unique structural information where its leaf nodes
are tokens and non-leaf nodes are descriptive path
elements, weakening their capability to represent
program languages. Thus, AST leaf-to-leaf path-
based methods are introduced in this paper and an
example AST path of the code snippet in Figure 2
can be formulated as follows:

(1

element T name 1 expr | name | target

where the first and last items are leaf nodes in AST,
representing tokens, and in-between items are non-
leaf nodes in AST, representing descriptive path
elements. 1 and | are the direction of traversal.
More formally, a leaf-to-leaf AST paths can be
represented as a triplet:

<z p,at > ()

where x* and x? are the start and end leaf nodes of
AST paths, respectively, and p is all non-leaf nodes
in the traversal path from z° to z'.

3 Proposed Method

Figure 3 shows the overview of our proposed
SDCR. At first, a source code snippet is converted
into AST, and a bag of AST paths are sampled
randomly to capture the information of AST suffi-
ciently. This is different from previous code2vec
(Alon et al., 2019b), where AST paths are sam-
pled in the limitation of their maximum length and
width. Then, the initial AST path embeddings are
queried from the embedding layers. To deal with
sparsity and OoV problem, we synthesize path ele-
ments by a neural network to produce an additional
AST path embedding. Next, we conduct concate-
nation and linear transformation to generate a bag
of AST path embeddings and feed them into an
attention network to obtain the overall code snippet
representation. Finally, a prediction task of func-
tion name is performed so that our proposed SDCR
can be trained.

3.1 Code as a Bag of AST Paths

Before learning the distributed source code repre-
sentation, we introduce ‘bag of AST paths’ model
as the intermediate representation of code snippets.
We denote C as a code snippet, 7 (C) as its AST
and R(C) as its intermediate representation. For-
mally, given a code snippet C, we utilize an AST
parser to transform C to 7 (C). Further, the set of

all pairs of the leaf nodes is denoted as:
} 3)

u,v € T(C)’s
leaves A i # j

TP(C) = { (u,v)

With 7P(C), the intermediate representation of
C that can be derived from it:

R(C) = {(z*,p,2") | A(a®,2") € TP(C)} 4

where we use 3 in R(C), in which case the random
downsampling is applied to construct R(C) so that
the maximum number of AST paths can be limited.
Therefore, a code snippet is transformed into a bag
of AST paths, which is a mathematical object that
can be used in a learning model.

3.2 Path Embedding Generation

Once we obtain the intermediate representation
of a code snippet, we embed them into a low-
dimensional distributed space. Since an AST path
can be represented as a triplet, we divide the embed-
ding module into three parts - start token embed-
ding, in-between path embedding and end token
embedding.

For start and end token embedding, we define
a learnable matrix Wioken g RUX'Hn[+1)xdteken
as the shared token vocabulary, where X*°*¢" are
the set of tokens appeared in training corpus and
“+1” represents OoV tokens. By querying TWtoken,
the start and end token embedding of i-th AST
path can be initialized as i, hl € Rk directly.
Formally, the start and end token embedding of ¢-th
AST path are calculated as:

s __ token s Jtoken
hy = Wioken pf e R

ht = W{foken I c Rdtokcn %)
¢ Jt ’ i

where j; and j; are the dictionary index of start
token and end token.

For in-between path embedding, we should con-
sider sparsity and OoV problem caused by various
data size and countless AST paths. As our empiri-
cal findings mentioned in Section 1, we have two
pillars to support the solution of problems.

The first pillar is that only 1% of AST paths
make up approximately 75% of AST path occur-
rences. Followed by this, we introduce a learnable
matrix WPath ¢ RUXPHF)xd™ ™ g pere xpath
denotes the set of AST paths in the top 1% of oc-
currences and ‘41’ represents OoV AST path. As
a result, not only is the sparsity problem solved,
but also the model enjoys a large reduction in the
number of model parameters. The top 1% based
in-between path embedding of i-th AST path thus
can be calculated as:

W% =wrth o pl e R (6)

where j, is the dictionary index of in-between path.

The second pillar is that all of in-between paths
are composed by very limited number of descrip-
tive path elements. Consequently, by learning a
combination model, the embedding of OoV and
abandoned in-between path can be generated. As
in-between path is a kind of typical sequential data,
we use LSTM (Hochreiter and Schmidhuber, 1997)
to produce path element based in-between path em-
bedding of ¢-th path as:

hY* = LSTM ({pei1, peia, - - -
hPe e R

,p@im}), (7)

where m is the length of path elements, pe;j, is the
k-th path element of i-th AST path and LST M ()
outputs its final hidden state.

Then, the four embeddings of i-th AST path
are concatenated to a single vector h;, €
R2d""" +dP* " +d"® (hat represents that AST path:

h&‘ = embedding(< SUf,pthg >)
— [h3, b1, B2 R, ®)

() 1 7

]{(l c Rthoken+dpath+dpe
7

Since every AST path vector h~§‘ is formed by
a concatenation of four independent embeddings,
we adopt a fully connected layer to combine its
components. This is done separately for each AST
path and the computation can be described as:

he = tanh(W'mer . pd))

where J/linear ¢ Rax (2d'Hr +dP i d®) g 4 jearm-
able weight and hyperbolic tangent function tanh
is used as the activation function.

3.3 Attention Aggregation Model

Given a bag of AST path embeddings, we apply
attention mechanism to aggregate them since the
length of bag is varying. The attention mechanism
computes a scalar weight over each AST path em-
beddings, indicating which AST path is relatively
important compared to the other. It is calculated
as the normalized inner product between the com-
bined path embeddings and the global attention
vector a € R%:

~ exp(h" - a)
ZZ:1 exp<h%T -a)

where ¢ is the number of AST paths. The expo-
nential components are used to make the attention

10)

)

weights positive, and they are divided by their sum
to have a sum of 1.

The aggregated vector h¢ € R? represents a
code snippet. It is a linear combination of the bag
of AST path embeddings {h{, h3, ..., hg} factored
by their attention weights:

q
k=1

In this way, the low-dimensional distributed code
representation can be acquired.

1D

3.4 Optimization

Prediction of function names is performed using
the code vector. This is because function names are
often descriptive and provide a high-level summary
of its purpose. Choosing good names are especially
critical for functions in public project APIs, as poor
function names can doom a project to irrelevance
(Hgst and @stvold, 2009).

We define a learnable matrix W' ¢ RIYIxd
as the tag vocabulary, where |Y| is the set of tag
values found in the training corpus. Indeed, each
row vector in W' can be regarded as the tag em-
bedding, which is jointly trained with code vectors.
The predicted probability distribution is computed
as the (softmax-normalized) dot product between
the code vector ~¢ and each of the tag vectors:

e;vp(ng h¢)
ZykeY eajp(Wziag - he)

q(yj) = (12)

We use cross-entropy loss between the predicted
probability distribution p and the ground truth dis-
tribution p. It can be expressed as:

= ()

yey

H(pllq) =)log q(y (13)

Finally, we need to learn these parameters of
SDCR: Wtoken Wpath W tag Wlinear a and pa-
rameters in LST M.

4 Experiment

In this section, we aim to address the following re-
search questions: (1) Will SDCR indeed outperform
the AST-path based baselines in effectiveness and
efficiency? (2) What is the quality of code vectors
learned by SDCR? (3) Why does SDCR perform
well in predicting the semantics of programs?

Dataset Java Small Java Large
Training 14,998 141,308
Validation 5,930 51,529
Testing 6,030 50,548
Num. paths 243,297 911,417
Num. path elems 54 61

Avg. path length 22.50 22.81

Max. path length 93 155

Table 1: Statistics of Java Small and Java Large dataset.

4.1 Setup

Datasets We evaluate our model on two real-
world Java datasets - a small dataset containing
only 1 Java project (intra-project) and a large
dataset containing 10 Java projects (inter-project).
All of projects are collected from the most starred
Java projects in GitHub. We extract functions from
those projects and randomly divide them into three
sets in the ratio of 6:2:2 for training, validation and
testing, respectively. Table 1 shows the statistics of
the experiment datasets. Besides, there are many
AST parsers for Java, such as JavaParser! (Hos-
seini and Brusilovsky, 2013) and srcML?2 (Collard
et al., 2013). In this work, we use srcML to convert
source code to AST.

Evaluation Metrics Ideally, we prefer to eval-
uate the results manually since programming lan-
guages have deep semantic information. However,
given that manual evaluation is hard to scale, we
adopt the measures used in the previous works
(Allamanis et al., 2015, 2016; Alon et al., 2018,
2019b), in which precision, recall and F1 score
are measured in subtoken level and case insensi-
tive manner. The core idea is that the quality of
a function name prediction relies mainly on the
subtokens used to compose it. For instance, for
a function name called is_contain_element, we
also consider a prediction of is_element_contain
are the exact match in subtoken level measures,
contain_element has full precision but low recall,
and is_integer_element_contain has full recall
but low precision.

Competing Methods We compare our SDCR
with the most recognized AST path-based model,
code2vec (Alon et al., 2019b), as well as its vari-
ant code2vec_most that only uses the AST paths in
the top 1% of occurrences. We also evaluate the

"http://javaparser.org/
Zhttps://www.srcml.org/

Approach Java Small Java Large
Precision Recall F1 score | Precision Recall F1 score

code2vec 0.3315 0.3566 0.3436 0.5441 0.5615 0.5526
code2vec_most | 0.3346 0.3611 0.3474 0.5468 0.5596 0.5531
pe_mean 0.3290 0.3558 0.3418 0.5415 0.5545 0.5479
pe_attention 0.3319 0.3554 0.3432 0.5548 0.5677 0.5612
pe_lstm 0.3481 0.3755 0.3613 0.5453 0.5612 0.5531
SDCR_mean 0.3403 0.3645 0.3520 0.5413 0.5562 0.5487
SDCR_attention | 0.3362 0.3601 0.3478 0.5699 0.5645
SDCR_Istm

Table 2: Performance comparison between the competing methods. The cell marked with dark blue achieves the
highest performance in that column and the cell marked with light blue achieves a better performance in that
column compared with the most recognized AST path-based baseline code2vec.

variants of SDCR, that is, SDCR_mean by replac-
ing LSTM module with mean computation unit,
SDCR_attention by replacing LSTM module with
attention mechanism. Furthermore, we conduct ab-
lation experiments on SDCR similarly - we remove
the embeddings of top 1% of AST paths hil% and
only utilize the embeddings generated by the AST
path elements hY°. They are named as pe_mean,
pe_attention and pe_lIstm, respectively. Note that
we remove the directional path elements 1" and
for LSTM module as it is a sequence-aware model.
The hyperparameters for each model are tuned on
validation set for maximizing F1 score and the re-
sults on the unseen test set are reported.

4.2 Performance Comparison and Ablation
Study (RQ1)

Table 2 shows the overall performance of the mod-
els under two real-world datasets. From this ta-
ble, we observe that our proposed SDCR_Istm sig-
nificantly outperforms code2vec in F1 score, by
0.0251 on Java Small dataset and by 0.0121 on Java
Large dataset. It is noteworthy that SDCR_mean
and SDCR_attention achieve promising results in
Java Small and Java Large dataset, respectively.
A possible reason is that SDCR_attention may
trap into the overfitting problem when the train-
ing corpus is small. Their advantages in F1 score
are also significant, outperforming code2vec by
0.0084 from 0.3436 to SDCR_mean’s 0.3520 on
Java Small dataset and by 0.0119 from 0.5526 to
SDCR_attention’s 0.5645 on Java Large dataset.
Besides, the ablation experiments are also in-
teresting. For the ablation model of code2vec,
code2vec_most outperforms code2vec in all met-
rics except recall on Java Large dataset. This is

code2vec
code2vec_most

pe_mean

pe_attention HEl Java Small

pe_lstm HEl Java Large
SDCR_mean
SDCR_attention

SDCR_Istm

0.00 025 050 0.75 1.00 125 1.50
Number of parameters le8

Figure 4: Number of parameters used in each model.

because code2vec_most only uses the AST paths
in top 1% of occurrences, easing the sparsity prob-
lem that exists in code2vec. For the ablation mod-
els of SDCR, an interesting phenomenon is that
the advantage of pe_lstm is not significant over
code2vec on Java Large dataset, while SDCR_lstm
achieves the highest F1 score compared with the
others. This indicates that all modules in the core
design of SDCR are important. They work together
to address the common sparsity and OoV problems.

Figure 4 shows the number of parameters used
in each model, which can be roughly divided into
three levels - code2vec with the most number of
model parameters, SDCR_mean, SDCR_attention
and SDCR_Istm with moderate number of model
parameters (around 40% reduction), as well
as code2vec_most, pe_mean, pe_attention and
pe_lstm with the least number of model parameters
(around 85% reduction). It can be observed that
the number of model parameters are significantly
reduced by SDCR compared with the baseline on
either Java Small or Java Large dataset.

Therefore, our first research question can be ad-

0 2
15
10
°
5 ¥ °
-, . ..
[]
° ° °
-10 'h °
-15 ° o
-20

=25 -20 -15 -10 -5 0 5 10 15

(b) SDCR

Figure 5: Visualization of code vectors from 7 classes
on Java Small dataset produced by code2vec and SDCR.

dressed: SDCR has superiority in generalizability
and scalability - it achieves the highest F1 score
while using relatively fewer model parameters.

4.3 Visualization of Code Representations
(RQ2)

To help understand why the code embeddings pro-
duced by SDCR are better than the code embed-
dings produced by the baseline, we visualize the
code embeddings from 7 random classes on Java
Small dataset. We adopt t-SNE (Van der Maaten
and Hinton, 2008) to embed code embeddings into
two-dimensional space and visualize them in that
space. As shown in Figure 5, it points out that (1)
The vectors produced by SDCR of the same class
stick closer than the vectors produced by code2vec.
For example, the code vectors marked with red
color locate more tightly in SDCR while diffuse
in code2vec. The code vectors marked by brown
color in SDCR have clearer boundary and are eas-
ier to distinguish than in code2vec. (2) Compared
to code2vec, SDCR takes advantage of a larger
vector distribution area. That is, the code vec-
tors of SDCR are distributed more evenly in the
space, yet code2vec only utilizes the lower trian-
gular space. However, we observe that some code

vectors marked in the same color (e.g. pink) are
somewhat far away from each other in SDCR. This
is partially because the handcrafted function names
cannot accurately represent the semantics of pro-
gram, which could indicate further improvement to
SDCR and can be made in the future work.

As a result, our second research question can be
addressed: the code vectors learned by SDCR are
distinguishable and have good expressive quality.

4.4 Qualitative Analysis (RQ3)

We conduct case study to further investigate how
do the models behavior in function name predic-
tion task. As shown in Figure 6, we randomly
pick a function name (get_name in this experi-
ment) to predict, along with an example of a correct
prediction and an example of an incorrect predic-
tion. We standardize all the function names to
case-insensitive underscore nomenclature, and five
names with highest predicted probability are re-
ported. From Case 1, it is clear to see that both
SDCR and code2vec predict correctly for the sim-
ple code snippet. However, compared to code2vec,
SDCR has a higher confidence in the correct an-
swer get_name while lower probability in the in-
correct answers. Besides, all five function names
predicted by SDCR are related to the correct an-
swer, yet code2vec has a completely unrelated func-
tion name example. In Case 2, both SDCR and
code2vec give an incorrect prediction. However,
code2vec is very confident (with 89.97% probabil-
ity) of an incorrect prediction of pre fix, but SDCR
behaviors not confidently (with 49.05% proba-
bility) in predicting an incorrect function name
tostring. Additionally, SDCR generates two very
related function names get_mapping_name and
get_name compared to code2vec. The reason why
SDCR favors get_mapping_name is that a token
named ‘attributeMapping’ exists in the code snip-
pet. In fact, get_mapping_name is to some extent
a better function name than get_name, which sug-
gests an possible application of SDCR in helping
programmers to name a function’s code snippet.
Based on the above results, our third research
question can be addressed: SDCR has better under-
standing and digs deeper into program semantics.

5 Related Work

With the development of deep learning techniques,
researches for source code representations have
attracted much attention. In general, existing code

A code snippet (correct prediction):

2vec:
code2vec get_name T 99.25%

to_string 7 049%
get_message ———————— 0.03%

get 1 002%

}

1. publicstring 01 example ——— on%
2. return this.name;
3.} SDCR:
get_name [EEE—— 9.87%
to_string 3 on%
get_resource 1 0.01%
o A — Y 113
get_origin 1 0.00%
A code snippet (incorrect prediction): code2vec:
prefix | —————— 89.97%
greeting T———— 3.63%
1. private string (String prefix, MergedAnnotation attributeMapping, to_string ——————3 14%
2. Method attribute) { get_usage help ——————— 1.04%
3. String name = attributeMapping.getValue(MergedAnnotation.VALUE, get_greeting 1 061%
4. String.class).orElse(“”);
5. if (IStringUtils.hasText(name)) { SDCR:
6. name = toKebabCase(attribute.getName()); to_string] 49.04%
7 ! et_mappi ame M1 1977%
8. return dotAppend(prefix, name); get_mapping_name 17
9.

prefix 9.52%
before_initialize 4.89%
get_name 3.43%

Figure 6: Example of prediction results produced by code2vec and SDCR.

representation works are mainly in three ways:

Token-based Embedding This line of work sim-
ply regards the source code snippet as plain text
and tokenize it into token sequences. (Iyer et al.,
2016) firstly defined code summarization task and
proposed a RNN model to translate the source code
snippet to summary. Followed by this work, (Alla-
manis et al., 2016) described an attentional CNN
model to summarize source code. (Feng et al.,
2020) trained CodeBERT on a tremendous code
corpus, aiming to advance code embedding by the
pre-trained model. However, it is obvious that the
syntax of source code can not be captured by token-
based representation models.

AST-based Embedding To take advantage of
highly structured features of source code, AST
is introduced as the code snippet’s intermediate
representation. It can be directly represented via
Tree-CNN (Mou et al., 2015, 2016), Tree-LSTM
(Chen et al., 2018) and ASTNN (Zhang et al.,
2019). Then, (Allamanis et al., 2018) proposed
to add edges to AST, and use GNN to generate
code embedding. (Wang et al., 2021) extended
the type of edge so that their intermediate repre-
sentation is represented as a heterogeneous graph.
(Bui et al., 2021) adopted self-supervised learn-
ing technique to predict the subtree of AST. (Guo
et al., 2021) incorporated the data-flow information
among variables into pre-training and enhance their
previous CodeBERT to GraphCodeBERT. Never-
theless, simply learning code representations by

AST structures will ignore the unique syntax that
all leaf nodes of AST are constants, handcrafted
tokens, or identifiers, and all non-leaf nodes are
predefined descriptive elements.

AST path-based Embedding Therefore, the
third line of work are becoming very hot topic re-
cently. (Alon et al., 2018) were the first to validate
the superior performance of AST paths based on
abundant empirical experiments. Then, he further
extended his work to well-known code2vec (Alon
et al., 2019b) and code2seq (Alon et al., 2019a),
which are used as substantial baseline in this paper.
(Hu et al., 2018) described a comment generation
method by linearizing the AST into a sequence of
nodes via traversing. However, all of them less con-
sidered the challenge in sparsity and OoV problem,
which is worth further exploration and practice.

6 Conclusion

In this paper, we propose SDCR, a novel scalable
representation learning technique for source codes.
We adopt a bag of AST paths as the intermediate
representation of code snippet, and couple the in-
formation of descriptive path elements and AST
paths in the top 1% of occurrences, mitigating the
common sparsity and OoV problems in AST path
based model. An comprehensive empirical study
is reported to support our core design. By con-
ducting extensive experiments on two real-world
datasets, we verify that our SDCR outperforms the
state-of-the-art in effectiveness and efficiency.

References

Miltiadis Allamanis, Earl T Barr, Christian Bird, and
Charles Sutton. 2015. Suggesting accurate method
and class names. In Proceedings of ESEC/FSE, pages
38-49.

Miltiadis Allamanis, Marc Brockschmidt, and Mah-
moud Khademi. 2018. Learning to represent pro-
grams with graphs. In Proceedings of ICLR.

Miltiadis Allamanis, Hao Peng, and Charles Sutton.
2016. A convolutional attention network for extreme
summarization of source code. In Proceedings of
ICML, pages 2091-2100.

Uri Alon, Shaked Brody, Omer Levy, and Eran Ya-
hav. 2019a. code2seq: Generating sequences from
structured representations of code. In Proceedings of
ICLR.

Uri Alon, Meital Zilberstein, Omer Levy, and Eran Ya-
hav. 2018. A general path-based representation for
predicting program properties. In Proceedings of
PLDI, pages 404—419.

Uri Alon, Meital Zilberstein, Omer Levy, and Eran Ya-
hav. 2019b. code2vec: Learning distributed repre-
sentations of code. In Proceedings of POPL, pages
1-29.

Nghi DQ Bui, Yijun Yu, and Lingxiao Jiang. 2021. In-
fercode: Self-supervised learning of code representa-
tions by predicting subtrees. In Proceedings of ICSE,
pages 1186-1197.

Xinyun Chen, Chang Liu, and Dawn Song. 2018. Tree-
to-tree neural networks for program translation. In
Proceedings of NeurIPS.

Michael L Collard, Michael John Decker, and Jonathan I
Maletic. 2013. SrcML: An infrastructure for the
exploration, analysis, and manipulation of source
code: A tool demonstration. In Proceedings of ICSM,
pages 516-519.

Zhangyin Feng, Daya Guo, Duyu Tang, Nan Duan, Xi-
aocheng Feng, Ming Gong, Linjun Shou, Bing Qin,
Ting Liu, Daxin Jiang, and Min Zhou. 2020. Code-
BERT: A pre-trained model for programming and
natural languages. In Proceedings of EMNLP.

Daya Guo, Shuo Ren, Shuai Lu, Zhangyin Feng, Duyu
Tang, Shujie Liu, Long Zhou, Nan Duan, Alexey
Svyatkovskiy, Shengyu Fu, et al. 2021. GraphCode-
BERT: Pre-training code representations with data
flow. In Proceedings of ICLR.

Rahul Gupta, Aditya Kanade, and Shirish She-
vade. 2019. Neural attribution for semantic bug-
localization in student programs. In Proceedings
of NeurlPS.

William L Hamilton, Rex Ying, and Jure Leskovec.
2017. Inductive representation learning on large
graphs. In Proceedings of NeurlPS, pages 1025-
1035.

Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Pi-
otr Doll’ar, and Ross Girshick. 2021. Masked autoen-
coders are scalable vision learners. arXiv preprint
arXiv:2111.06377.

Sepp Hochreiter and Jiirgen Schmidhuber. 1997. Long
short-term memory. Neural computation, 9(8):1735-
1780.

Roya Hosseini and Peter Brusilovsky. 2013. Javaparser:
A fine-grain concept indexing tool for java problems.
In Proceedings of CEUR-WS, volume 1009, pages
60-63.

Einar W Hgst and Bjarte M @stvold. 2009. Debugging
method names. In Proceedings of ECOOP, pages
294-317.

Xing Hu, Ge Li, Xin Xia, David Lo, and Zhi Jin. 2018.
Deep code comment generation. In Proceedings of
ICPC, pages 200-20010.

Srinivasan Iyer, Ioannis Konstas, Alvin Cheung, and
Luke Zettlemoyer. 2016. Summarizing source code
using a neural attention model. In Proceedings of
ACL-1JCNLP, pages 2073-2083.

Thomas N Kipf and Max Welling. 2016. Semi-
supervised classification with graph convolutional
networks. In Proceedings of ICLR.

Lili Mou, Ge Li, Lu Zhang, Tao Wang, and Zhi Jin. 2016.
Convolutional neural networks over tree structures
for programming language processing. In Proceed-
ings of AAAL

Lili Mou, Hao Peng, Ge Li, Yan Xu, Lu Zhang, and
Zhi Jin. 2015. Discriminative neural sentence mod-
eling by tree-based convolution. In Proceedings of
EMNLP.

Veselin Raychev, Martin Vechev, and Andreas Krause.
2015. Predicting program properties from "big code".
In Proceedings of POPL, pages 111-124.

Steffen Rendle. 2010. Factorization machines. In Pro-
ceedings of ICDM, pages 995-1000.

Laurens Van der Maaten and Geoffrey Hinton. 2008.
Visualizing data using t-sne. Journal of machine
learning research, 9(11).

Wenhan Wang, Kechi Zhang, Ge Li, and Zhi Jin. 2021.
Learning to represent programs with heterogeneous
graphs. In Proceedings of ICLR.

Jian Zhang, Xu Wang, Hongyu Zhang, Hailong Sun,
Kaixuan Wang, and Xudong Liu. 2019. A novel
neural source code representation based on abstract
syntax tree. In Proceedings of ICSE, pages 783-794.

Jingfeng Zhang, Haiwen Hong, Yin Zhang, Yao Wan,
Ye Liu, and Yulei Sui. 2021. Disentangled code
representation learning for multiple programming
languages. In Proceedings of ACL-IJCNLP, pages
4454-4466.

