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ABSTRACT

Accelerated Mirror Descent (Acc-MD) is derived from a discretization of an
accelerated mirror ODE system using a variable–operator splitting framework. A
new Cauchy–Schwarz type inequality enables the first proof of linear accelerated
convergence for mirror descent on a broad class of problems. Unlike prior methods
based on the triangle scaling exponent (TSE), Acc-MD achieves acceleration in
some cases where TSE fails. Experiments on smooth and composite optimization
tasks show that Acc-MD consistently outperforms existing accelerated variants,
both theoretically and empirically.

1 INTRODUCTION

Consider the unconstrained problem
min
x∈Rn

f(x),

where f is convex but may not have a Lipschitz-continuous gradient. Let φ be a smooth and strictly
convex mirror function that defines the underlying geometry. Mirror descent (Nemirovskij and Yudin,
1983) updates as

∇φ(xk+1)−∇φ(xk) = −αk∇f(xk),

extending gradient descent to non-Euclidean settings. Nesterov (2005) proposed an accelerated
variant using estimate sequences.

Recent work views optimization algorithms as discretizations of continuous-time dynamics whose tra-
jectories converge to minimizers. Wibisono et al. (2016) derived a Bregman Lagrangian that captures
accelerated flows and showed that its discretization gives accelerated mirror descent. Krichene et al.
(2015) extended the ODE framework for Nesterov acceleration (Su et al., 2016) to accelerated mirror
descent, with discretizations yielding a class of first-order methods with O(Lf/k

2) convergence,
where Lf is the Lipschitz constant of∇f . More recently, xiang Yuan and Zhang (2023) developed
high-resolution ODEs and recovered the optimal O(Lf/k

2) rate for accelerated mirror descent
methods from (Nesterov, 2005).

However, the analyses in (Nesterov, 2005; Wibisono et al., 2016; Krichene et al., 2015; xiang Yuan
and Zhang, 2023) do not incorporate the notion of relative smoothness, i.e., Df (x, y) ≤ LDφ(x, y),
where Df and Dφ denote the Bregman divergence of f and φ, respectively. As a result, their
convergence guarantees may be loose outside the Euclidean setting, especially when L� Lf . This
reflects a limitation of Nesterov’s original theory (Nesterov, 2005), which does not fully use the
geometry induced by the mirror map.

Under the relative smoothness condition, mirror descent achieves anO(L/k) convergence rate, as first
shown in (Birnbaum et al., 2011). The notion of relative strong convexity, µDφ(x, y) ≤ Df (x, y),
was later introduced in (Lu et al., 2018), leading to a linear convergence rate of 1− µ/L.

Mirror descent also extends to composite optimization problems of the form F (x) = f(x) + g(x),
where f is smooth and g is convex but may be non-smooth. The resulting Bregman Proximal Gradient
(BPG) method (Teboulle, 2018) achieves a convergence rate of O(L/k) under relative smoothness;
see also (Bauschke et al., 2017; Lu et al., 2018; Zhou et al., 2019).

Hanzely et al. (2021) proposed the Accelerated Bregman Proximal Gradient (ABPG) method, which
attains an accelerated rate of O(L/kγ) using the triangle scaling exponent (TSE) γ. Full acceleration
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O(L/k2) requires γ = 2 in both the algorithm and the analysis, which limits applicability and
prevents generalization to broader Bregman geometries. In addition, no accelerated linear convergence
has been shown under relative strong convexity.

Contributions The main contributions of this work are as follows:

• Building on the variable and operator splitting framework of (Chen et al., 2025), we propose a new
accelerated mirror descent (Acc-MD) flow with initial conditions x(0) = x0, y(0) = y0:{

x′ = y − x,
(∇φ(y))

′
= −µ−1∇f(x) +∇φ(x)−∇φ(y),

(1)

We split the variable into x and y. At equilibrium, y∗ = x∗ and ∇f(x∗) = 0, recovering
stationarity. The auxiliary variable y decouples the primal update and inertial motion.

• From an implicit–explicit discretization of (1), we design an Acc-MD method; see Algorithm 1.
The method is simpler than existing counterparts in the literature, e.g., algorithms in (Nesterov,
2005; Krichene et al., 2015; Hanzely et al., 2021).

• We give the first accelerated linear convergence guarantee under relative strong convexity µ, with
rate (1 +

√
µ/Cf,φ)−1, where Cf,φ comes from a Cauchy–Schwarz inequality; see Assumption

(A2). We show that in some cases, even when the TSE parameter γ = 1, our method achieves
acceleration while ABPG (Hanzely et al., 2021) does not.

• We extend the framework to the convex case µ = 0 using a perturbation and homotopy argument,
and recover the optimal O(Cf,φ/k

2) accelerated rate with Assumption (A2). Without (A2), it is
shown in (Dragomir et al., 2022) that the optimal complexity of mirror descent methods is O(1/k).

• We extend the algorithm to composite optimization minx f(x) + g(x). With variable and operator
splitting∇f(x) +∇g(y), the change is minimal:

(∇φ(y))
′

= −µ−1(∇f(x) +∇g(y)) +∇φ(x)−∇φ(y), (2)

and the algorithm follows from implicit discretization in ∇g(y). The method works for non-
smooth g with a proximal operator. Since some constrained problems can be written as composite
optimization, Acc-MD also applies to constrained settings.

• We benchmark Acc-MD on a range of smooth, non-smooth, and constrained convex problems,
showing consistent advantages in both theory and practice over existing mirror descent methods.

Limitation While our approach avoids the triangle scaling property, both the algorithm and the anal-
ysis rely on accurate estimates of the relative strong convexity µ and the constant Cf,φ. Developing
adaptive schemes for these parameters is an important direction for future work.

Although we provide examples where (A2) holds but TSE fails to give acceleration, we cannot expect
(A2) to be verified for every problem. Further relaxation of this assumption deserves study.

Another limitation is the convexity assumption. Extending the analysis to non-convex objectives
remains open. In such settings, the design of suitable non-convex mirror functions may be important
for guiding convergence, but theoretical guarantees are currently lacking.

Preliminaries Let V be a normed vector space. For f ∈ C1(V ), define the Bregman divergence

Df (y, x) := f(y)− f(x)− 〈∇f(x), y − x〉.

For f ∈ C1(V ), f is convex if and only if Df (y, x) ≥ 0 for all x, y ∈ V . If f is strictly convex, then
Df (y, x) = 0 holds if and only if x = y. In general, the Bregman divergence is not symmetric, i.e.,
Df (y, x) 6= Df (x, y). Its symmetrization is

Df (y, x) +Df (x, y) = 〈∇f(y)−∇f(x), y − x〉.

A key tool in the convergence analysis is the three-point identity of Bregman divergence (Chen and
Teboulle, 1993), which follows directly from the definition:

〈∇f(y)−∇f(x), y − z〉 = Df (y, x) +Df (z, y)−Df (z, x), (3)

2
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Let φ∗ be the convex conjugate of φ. The mappings between primal and dual variables are

χ = ∇φ(x), x = ∇φ∗(χ), η = ∇φ(y), y = ∇φ∗(η).

Here (x, y) are the primal variables and (χ, η) are their dual counterparts. The maps∇φ : V → V ∗

and ∇φ∗ : V ∗ → V are assumed to be efficiently computable. To clarify, we refer to φ as the mirror
function and∇φ as the mirror map.

An important symmetry relation connects the Bregman divergences of φ and its conjugate:

Dφ(x, y) = Dφ∗(η, χ), (4)

with reversed argument order. Moreover, the gradient of the Bregman divergence with respect to its
first argument satisfies

∇Df (·, x) = ∇f(·)−∇f(x), ∇Dφ∗(·, χ) = ∇φ∗(·)−∇φ∗(χ). (5)

Let A be a self-adjoint, positive definite operator on a Hilbert space V with inner product (·, ·). Then

(x, y)A := (Ax, y)

defines a new inner product, and the associated norm is denoted by ‖ · ‖A. The corresponding dual
norm is ‖ · ‖A−1 . The convexity and Lipschitz constants of a differentiable function f relative to
‖ · ‖A are defined by

µf (A) ‖x− y‖2A ≤ 〈∇f(x)−∇f(y), x− y〉 ≤ Lf (A) ‖x− y‖2A ∀x, y ∈ V.
Choosing an appropriate inner product may reduce the condition number κA(f) := Lf (A)/µf (A),
in which case A is called a preconditioner.

Analogously, the mirror function φ may be viewed as a nonlinear preconditioner. This is especially
useful when Lf is unbounded but the relative smoothness L is finite.

2 MIRROR DESCENT METHODS

Given an initial condition x(0) = x0, the mirror descent flow is defined by

d

dt
∇φ(x(t)) = −∇f(x(t)). (6)

Discretizing the flow (6) using the explicit Euler method yields the iteration

∇φ(xk+1)−∇φ(xk) = −αk∇f(xk), (7)

where αk > 0 is the step size. This is equivalent to the classical mirror descent update (Beck and
Teboulle, 2003; Bubeck, 2015; Lu et al., 2018):

xk+1 = arg min
x∈V

{
〈∇f(xk), x〉+

1

αk
Dφ(x, xk)

}
.

As noted by Krichene et al. (2015), the flow (6) can also be written in dual form:

χ′ = −∇f(x), x = ∇φ∗(χ), (8)

which is closely related to the Bregman Inverse Scale Space dynamics (Osher et al., 2016).

We present the following three-point identity connecting the Bregman divergences of φ and f , which
simplifies the convergence analysis compared to prior work, e.g., (Lu et al., 2018).
Lemma 2.1. Let {xk} be the sequence generated by the mirror descent method (7). Then

Dφ(x∗, xk+1)−Dφ(x∗, xk) +Dφ(xk+1, xk)

=αk

[
−Df (xk+1, x

∗)−Df (x∗, xk) +Df (xk+1, xk)
]
.

(9)

Proof. Using the Bregman identity (3) and the update rule (7), we compute

Dφ(x∗, xk+1)−Dφ(x∗, xk) +Dφ(xk+1, xk) = 〈∇φ(xk+1)−∇φ(xk), xk+1 − x∗〉
= − αk〈∇f(xk)−∇f(x∗), xk+1 − x∗〉 = αk [−Df (xk+1, x

∗)−Df (x∗, xk) +Df (xk+1, xk)] .

3
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To establish linear convergence, we adopt the notions of relative smoothness and relative strong
convexity introduced in (Lu et al., 2018). The significance of relative smoothness is that f may not
be smooth, i.e., Lf =∞, while L remains bounded.

(A1) The convex function f is said to be relatively smooth and relatively convex with respect to a
mirror function φ if there exist constants µ ≥ 0 and L ≥ µ such that

µDφ(x, y) ≤ Df (x, y) ≤ LDφ(x, y) ∀x, y ∈ V. (10)

Using the linearity of the Bregman divergence, this is equivalent to Lφ− f and f − µφ being convex.

Theorem 2.2. Suppose f satisfies assumption (A1), and let {xk} be the sequence generated by the
mirror descent iteration (7). Then for any step size αk ≤ 1/L, we have the decay property

Dφ(x∗, xk)−Dφ(x∗, xk+1) ≥ αk
[
Df (xk+1, x

∗) +Df (x∗, xk)
]
. (11)

In particular, if αk = 1/L for all k ≥ 0, then linear convergence holds:

Dφ(x∗, xk) ≤
(

1− µ

L

)k
Dφ(x∗, x0). (12)

Proof. From the identity (9) and assumption (A1), we have

Dφ(x∗, xk+1)−Dφ(x∗, xk) ≤ −αk
[
Df (xk+1, x

∗) +Df (x∗, xk)
]

+ (αkL− 1)Dφ(xk+1, xk)

≤ −αk
[
Df (xk+1, x

∗) +Df (x∗, xk)
]
≤ −αkµDφ(x∗, xk).

Choosing αk ≡ 1/L and rearranging the inequality to get the desired linear convergence.

Similar results hold for proximal mirror descent methods (e.g., BPG) for composite optimization. We
omit the details here, as an accelerated version will be presented in the next section.

3 ACCELERATED MIRROR DESCENT METHODS

We follow the recent variable and operator splitting (VOS) framework of (Chen et al., 2025) to develop
accelerated mirror descent methods. We assume that f satisfies assumption (A1) with constants L
and µ > 0.

Flow Introducing dual variables χ = ∇φ(x) and η = ∇φ(y), we can write the accelerated mirror
descent flow (1) as

x′ = y − x, η′ = −µ−1∇f−µ(x)− η, (13)

where f−µ := f − µφ, or equivalently f = f−µ + µφ. Under assumption (A1), f−µ is convex.

Stability We define a Lyapunov function:

E(x, η) := Df−µ(x, x∗) + µDφ∗(η, χ∗), (14)

where x∗ is a minimizer of f and χ∗ = ∇φ(x∗). This energy couples primal and dual Bregman
divergences, capturing the geometry induced by the mirror map. We establish exponential stability by
verifying a strong Lyapunov property (Chen and Luo, 2021).

Lemma 3.1. Let E(x, η) be defined by (14), and define the vector field G(x, η) = (y −
x, −µ−1∇f−µ(x)− η), where the dual variables satisfy χ = ∇φ(x) and η = ∇φ(y). Then

−∇E(x, η) · G(x, η) = E(x, η) +Df−µ(x∗, x) + µDφ(y, x∗). (15)

As a consequence, any solution (x(t), y(t)) of the flow (1) satisfies the exponential decay bound

E(x(t), η(t)) ≤ e−tE(x(0), η(0)). (16)

Proof. Using the identity (5), we compute the gradients of the Lyapunov function:

∂xE = ∇f−µ(x)−∇f−µ(x∗), ∂ηE = µ (∇φ∗(η)−∇φ∗(χ∗)) = µ(y − x∗).

4
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Thus, by the direct calculation and symmetry relation (4), we have
−∇E(x, η) · G(x, η) = 〈∇f−µ(x)−∇f−µ(x∗), x− y〉

+ µ
〈
y − x∗, µ−1(∇f−µ(x)−∇f−µ(x∗)) + η − χ∗

〉
= 〈∇f−µ(x)−∇f−µ(x∗), x− x∗〉+ µ〈∇φ∗(η)−∇φ∗(χ∗), η − χ∗〉
= Df−µ(x, x∗) +Df−µ(x∗, x) + µDφ∗(χ∗, η) + µDφ∗(η, χ∗)

= E(x, η) +Df−µ(x∗, x) + µDφ(y, x∗).

Since Df−µ(x∗, x) ≥ 0 and Dφ(y, x∗) ≥ 0 by convexity of f−µ and φ, we obtain the inequality
∇E(x, η) · G(x, η) ≤ −E(x, η),

from which the exponential decay (16) follows by Grönwall’s inequality.

As a corollary, we have x(t), y(t) ∈ B(x∗, R) for all t ≥ 0, where B(x∗, R) denotes the ball of
radius R centered at x∗.

Accelerated Mirror Descent Methods To obtain the accelerated convergence rate, we need one
more assumption.

(A2) There exists Cf,φ > 0 such that the following relative Cauchy Schwarz inequality holds

| 〈∇f−µ(x)−∇f−µ(x̂), y − ŷ〉 | ≤ 2
√
Cf,φD

1/2
f−µ

(x, x̂)D
1/2
φ (ŷ, y), ∀x, x̂, y, ŷ ∈ V.

We propose an accelerated mirror descent (Acc-MD) method by an implicit–explicit scheme of (1):
xk+1 − xk

α
= 2yk+1 − yk − xk+1, (17a)

∇φ(yk+1)−∇φ(yk)

α
= − 1

µ
∇f(xk) +∇φ(xk)−∇φ(yk+1). (17b)

Instead of a standard explicit Euler discretization, y is discretized semi-implicitly as (2yk+1 − yk),
and x implicitly as xk+1 in (17a). In (17b), ∇f−µ(xk) is explicit and −∇φ(yk+1) is implicit.
The implicit term improves stability, similar to the proximal point algorithm. The discretization
y ≈ (2yk+1 − yk) acts as an accelerated over-relaxation (AOR), symmetrizing the error equation and
enabling our proof of the accelerated rate.

An equivalent computation favorable form is given as Algorithm 1.

Algorithm 1 Accelerated mirror descent (Acc-MD) method

1: Parameters: x0, y0 ∈ Rn, µ, Cf,φ.
2: Set α =

√
µ/Cf,φ.

3: for k = 0, 1, 2, . . . do

4: yk+1 = arg min
y∈Rn

(1 + α)φ(y)−
〈
−α
µ
∇f(xk) + α∇φ(xk) +∇φ(yk), y

〉
.

5: xk+1 =
1

1 + α
[xk + α(2yk+1 − yk)].

6: end for

Convergence analysis For four points (x, x̂, y, ŷ) and α ∈ R, introduce the cross term
Bα(x, x̂, ŷ, y) = Df−µ(x, x̂) + µDφ(ŷ, y)− α〈∇f−µ(x)−∇f−µ(x̂), y − ŷ〉. (18)

Lemma 3.2. Let Assumption (A2) hold. Then for |α| ≤
√
µ/Cf,φ, we have Bα(x, x̂, ŷ, y) ≥ 0.

Proof. By (A2) and the inequality 2ab ≤ a2 + b2, we have

α| 〈∇f−µ(x)−∇f−µ(x̂), y − ŷ〉 | ≤ 2α
√
Cf,φD

1/2
f−µ

(x, x̂)D
1/2
φ (ŷ, y)

≤ α
√
Cf,φ/µ

(
Df−µ(x, x̂) + µDφ(ŷ, y)

)
.

Therefore Bα(x, x̂, ŷ, y) ≥ 0 if α ≤
√
µ/Cf,φ.

5
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Define the modified Lyapunov function

Eα(x, y) := Bα(x, x∗, x∗, y) := E(x, η)− α 〈∇f−µ(x)−∇f−µ(x∗), y − x∗〉 . (19)

As shown in Lemma 3.2, when α ≤
√
µ/Cf,φ, Eα(x, y) ≥ 0 is indeed a Lyapunov function.

Lemma 3.3. Let (xk, yk) be the sequence generated by Acc-MD iterations (17), then it holds

Eα(xk+1, yk+1)− Eα(xk, yk) = − αEα(xk+1, yk+1)

− αB−α(x∗, xk+1, yk+1, x
∗)− Bα(xk, xk+1, yk+1, yk).

(20)

Proof. Denote z = (x, η). Expand the difference of the Lyapunov function E(z) at zk+1:

E(zk+1)− E(zk) = 〈∇E(zk+1), zk+1 − zk〉 −DE(zk, zk+1)

= α 〈∇E(zk+1),G(zk+1)〉 −DE(zk, zk+1)

+α 〈∇f−µ(xk+1)−∇f−µ(x∗), yk+1 − yk〉+ α 〈yk+1 − x∗,∇f−µ(xk+1)−∇f−µ(xk)〉 .
The last line is the difference with the implicit Euler discretization and can be symmetrized as

α 〈∇f−µ(xk+1)−∇f−µ(x∗), yk+1 − x∗〉 − α 〈∇f−µ(xk)−∇f−µ(x∗), yk − x∗〉
+α 〈∇f−µ(xk+1)−∇f−µ(xk), yk+1 − yk〉 .

Then we use identity (15) to expand 〈∇E(zk+1),G(zk+1)〉 and rearrange the terms to get

Eα(xk+1, yk+1)− Eα(xk, yk) = − αE(xk+1, ηk+1)− αDf−µ(x∗, xk+1)− µαDφ(yk+1, x
∗)

−DE(zk, zk+1) + α 〈∇f−µ(xk+1)−∇f−µ(xk), yk+1 − yk〉
= − αEα(xk+1, yk+1)− αDf−µ(x∗, xk+1)− µαDφ(yk+1, x

∗)

− α 〈∇f−µ(xk+1)−∇f−µ(x∗), yk+1 − x∗〉
− Bα(xk, xk+1, yk+1, yk).

Theorem 3.4 (Convergence of Acc-MD method). Suppose f is µ-relatively convex with µ > 0 and
(A2) holds with constant Cf,φ. Let (xk, yk) be generated by scheme (17) with initial value (x0, y0),
ηk = ∇φ(yk), and step size α =

√
µ/Cf,φ. Then there exists a constant C0 = C0(x0, y0, µ, Cf,φ)

so that we have the accelerated linear convergence

Df−µ(xk+1, x
∗) + µDφ∗(ηk+1, χ

∗) ≤ C0

(
1

1 +
√
µ/Cf,φ

)k
, k ≥ 1. (21)

Proof. By Lemma 3.2, for α =
√
µ/Cf,φ, we can drop negative terms from the identity (20) to get

the linear convergence

Eα(xk+1, yk+1) ≤ 1

1 + α
Eα(xk, yk) ≤

(
1

1 +
√
µ/Cf,φ

)k+1

Eα(x0, y0). (22)

From the proof of Lemma 3.3, we have

αE(xk+1, ηk+1) ≤ Eα(xk, yk)− Eα(xk+1, yk+1) ≤

(
1

1 +
√
µ/Cf,φ

)k
Eα(x0, y0),

which leads to (21).

Discussion on (A2) Without (A2), it is shown in (Dragomir et al., 2022) that the optimal complexity
of mirror descent type methods is O(1/k). Hence, (A2) is crucial to achieve acceleration. We now
verify Assumption (A2) for a large class of functions.
Theorem 3.5. Assume f−µ = f − µφ is smooth and φ is strongly convex. Then

Cf,φ ≤ inf
SPDA

Lf−µ(A)

µφ(A)
≤
Lf−µ
µφ

.

6
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Proof. For any SPD A, we have

〈∇f−µ(x)−∇f−µ(x̂), y − ŷ〉 = 〈A−1/2(∇f−µ(x)−∇f−µ(x̂)), A1/2(y − ŷ)〉
≤ ‖∇f−µ(x)−∇f−µ(x̂)‖A−1‖y − ŷ‖A.

Applying strong convexity of φ in ‖ · ‖A norm and co-coercivity of f−µ in ‖ · ‖A−1 norm, we obtain

2Dφ(ŷ, y) ≥ µφ(A)‖y − ŷ‖2A, 2Df−µ(x, x̂) ≥ 1

Lf−µ(A)
‖∇f−µ(x)−∇f−µ(x̂)‖2A−1 .

Combining the above yields the first estimate. Taking A = I to get the second.

The mirror functions φ can be rescaled so that µφ = 1. Theorem 3.5 can be used to verify (A2) for
two examples in (Collins et al., 2008). We write f = f−µ + µφ. Although f may not have bounded
Lf , the shifted function f−µ does. Equivalently, the non-Lipschitz component of f can serve as the
mirror function, with the remainder being smooth. See the Entropic Mirror Descent example in the
numerical section.

Another important class is when the mirror function φ has continuous Hessian in the ball B(x∗, R),
which covers the Quartic Objective example in the numerical section.
Theorem 3.6. Assume f satisfies (A1), and φ ∈ C2,1(V ) with φ being 1-strongly convex. When
(x, x̂, y, ŷ) ∈ B(x∗, R), (A2) holds with

Cf,φ ≤ (L− µ)
(
1 + 2L∇2φR

)
,

where L∇2φ is the Lipschitz constant of∇2φ restricted to B(x∗, R).

Proof. Take A = ∇2φ(ξy) for some point ξy between y and ŷ such that Dφ(y, ŷ) = 1
2‖y − ŷ‖

2
A. As

φ is 1-strongly convex, ‖e‖ ≤ ‖e‖A for any e ∈ V . Let ξx be a point between x and x̂ satisfying
〈∇φ(x)−∇φ(x̂), x− x̂〉 = ‖x− x̂‖2∇2φ(ξx). By assumption ξx, ξy ∈ B(x∗, R) and

|‖e‖2∇2φ(ξx) − ‖e‖
2
∇2φ(ξy)| ≤ L∇2φ‖ξx − ξy‖‖e‖2 ≤ 2L∇2φR‖e‖2 ∀e ∈ B(x∗, R).

We use the relative smoothness to get
|〈∇f−µ(x)−∇f−µ(x̂), x− x̂〉| ≤ (L− µ)‖x− x̂‖2∇2φ(ξx)

≤ (L− µ)
(
‖x− x̂‖2∇2φ(ξy) + L∇2φ‖ξx − ξy‖‖x− x̂‖2

)
≤ (L− µ)(1 + 2L∇2φR)‖x− x̂‖2A,

which implies Lf−µ(A) ≤ (L − µ)(1 + 2L∇2φR). Applying Theorem 3.5 to get the desired
estimate.

In particular, when φ is quadratic, ∇2φ is constant and L∇2φ = 0, recovering a sharper estimate
Cf,φ ≤ L− µ. In our implementation, we take Cf,φ = L as an effective estimate. Again adaptivity
of Cf,φ may further improve the convergence.

Extension to convex optimization For convex objectives, i.e., µ = 0, we consider the following
perturbed flow: {

x′ = y − x,
(∇φ(y))′ = ε−1

[
ε
(
∇φ(x)−∇φ(y)

)
−∇f(x)

]
,

(23)

for a fixed perturbation level ε > 0. In dual variables, this becomes
x′ = y − x, η′ = −ε−1∇f(x) + χ− η,

where χ = ∇φ(x) and η = ∇φ(y). Owing to the variable splitting structure, the perturbation does
not change the stationary points of the original system.

To accelerate convergence, we employ a homotopy strategy that gradually decreases the perturbation
level. Starting from ε0, we run accelerated mirror descent for mk iterations at level εk, and update

εk+1 =
εk
2
, mk+1 =

√
2mk.

This geometric schedule ensures an accelerated sublinear convergence rate with complexity
O(Cf,φ/k

2). The convergence analysis follows (Chen et al., 2025) and is detailed in Appendix A.
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Extension to composite optimization Consider the composite optimization problem

min
x∈Rn

F (x) := f(x) + g(x), (24)

where f satisfies the relative smoothness and convexity condition (10), and g is convex but may be
non-smooth, with a well-defined generalized proximal operator. The mirror function φ is chosen for
f .

We extend the accelerated mirror descent method to the composite setting by discretizing the modified
flow (2). The only change lies in Line 4 of Algorithm 1, where yk+1 is computed via a generalized
proximal operator:

yk+1 = arg min
y∈Rn

(1 + α)φ(y) +
α

µ
g(y)−

〈
−α
µ
∇f(xk) + α∇φ(xk) +∇φ(yk), y

〉
. (25)

Since y is treated implicitly, the convergence analysis remains the same as in the smooth case,
showing the flexibility of the VOS framework. For details, see Appendix B. A perturbation and
homotopy argument can be further applied if µ = 0.

4 NUMERICAL EXAMPLES

We evaluate the performance of Acc-MD on a variety of convex optimization problems. All experi-
ments were conducted in MATLAB R2023a on a desktop with an Intel Core i5-7200U CPU (2.50
GHz) and 8 GB RAM. Random seeds were fixed for reproducibility.

We compare Acc-MD against several state-of-the-art first-order methods from the literature. In all
tested scenarios, Acc-MD consistently outperforms competing algorithms by a large margin.

Entropic Mirror Descent This example arises in log-linear models in supervised machine learning.
According to Collins et al. (2008), the dual function of the log-linear objective can be written as

f(x) =

d∑
i=1

xi log xi +
1

2
x>Ax,

where x = (xi) ∈ Rd denotes the probability of labels, and A = gg> with a given g ∈ Rd.

We take Shannon’s entropy function φ(x) =
∑
i xi log xi as the mirror function. It is well known that

the Bregman divergence Dφ(x, z) can be reformulated as the KL-divergence between two discrete
probability measures:

Dφ(x, z) = KL(x, z) =
∑
i

xi log

(
xi
zi

)
.

(Collins et al., 2008, Lemma 7) proved that f is 1-relatively strongly convex and (1+ |A|∞)-relatively
smooth with respect to φ, where |A|∞ refers to the largest entry in magnitude across all rows and
columns of A. Thus, assumption (A1) holds.

To verify Assumption (A2), we note that f−µ = 1
2x
>Ax is quadratic and Lf−µ(A) = 1. By Pinsker’s

inequality, ‖y − ŷ‖1 ≤
√

2 KL(ŷ, y), we obtain

‖y − ŷ‖A ≤ ‖g‖2‖y − ŷ‖2 ≤ ‖g‖2‖y − ŷ‖1 ≤ ‖g‖2
√

2 KL(ŷ, y) = ‖g‖2
√

2Dφ(ŷ, y).

Therefore, Assumption (A2) holds with constant

Cf,φ =
Lf−µ
µφ

= ‖g‖22 = ‖A‖2.

By Theorem 3.4, Acc-MD exhibits accelerated linear convergence rate(
1 +

√
‖A‖2

)−1

= (1 + ‖g‖2)
−1
,

when applied to this example, while other existing entropic mirror descent methods achieve at most
the sublinear rate O(1/k2).
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We compare Acc-MD with Accelerated Bregman Proximal Gradient (ABPG) and Bregman Proximal
Gradient (BPG) from Hanzely et al. (2021) (Figure 1a). For this example, the TSE component is
γ = 1, and ABPG achieves only a non-accelerated rate of O(1/k), converging slightly slower than
BPG. This agrees with the results in (Hanzely et al., 2021, Section 6.1.1). Acc-MD significantly
outperforms the other methods and shows a steep and stable error curve.

200 400 600 800 1000 1200 1400 1600 1800 2000
Number of Steps

10-8

10-6

10-4

10-2

100

Acc-MD
ABPG
BPG

(a) Log error curves on the entropic MD problem.

200 400 600 800 1000 1200 1400 1600 1800 2000
Number of Steps

10-8

10-6

10-4

10-2

100

(b) Log error curves on the quartic problem.

Figure 1: Comparison of log error curves for different problems.

Quartic Objective We evaluate Acc-MD on smooth convex minimization problems and compare
it with the following first-order methods:

1. Nesterov’s accelerated mirror descent (NAMD) (Nesterov, 2005);
2. Nesterov’s accelerated gradient (NAG) (Nesterov, 1983) with step size 1/(k + 3);
3. Accelerated over-relaxation heavy ball (AOR-HB) (Wei and Chen, 2025);
4. Mirror descent (MD) (Lu et al., 2018).

All methods use the stopping criterion ‖∇f(xk)‖ ≤ tol · ‖∇f(x0)‖ with tolerance tol = 10−6.

We consider the smooth, strongly convex objective in Section 2.1 of (Lu et al., 2018):

f(x) =
1

4
‖Ex‖42 +

1

4
‖Ax− b‖44 +

1

2
‖Cx− d‖22,

where C and E are n× n positive definite matrices. The mirror function is chosen as

φ(x) =
1

4
‖x‖42 +

1

2
‖x‖22.

The update step takes the form yk+1 = ∇φ∗(c) = θc, where θ > 0 solves the cubic equation
‖c‖22θ3 + θ − 1 = 0, and can be calculated by root function in MATLAB, and c = 1

1+α

[
α∇φ(xk) +

∇φ(yk)− α
µ∇f(xk)

]
. We refer to (Lu et al., 2018) for the full derivation.

Let λC and λE denote the smallest eigenvalues of C and E, respectively. Since ‖∇2f‖ grows
quadratically with ‖x‖2, the gradient∇f is not globally Lipschitz. To apply NAG and AOR-HB, we
assume ‖x‖2 ≤ R and estimate the global parameters as

Lf = (3‖E‖4 + 3‖A‖4)R2 + 6‖A‖3‖b‖2R+ 3‖A‖2‖b‖22 + ‖C‖2, µ = λ2
C .

According to Lu et al. (2018), (A1) holds with the relative smoothness constant L = Lf when R = 1,
and the relative strong convexity constant µ = min

{
λ4
E/3, λ

2
C

}
.

Since φ is smooth, we can apply Theorem 3.6 to verify (A2).

Set n = 256, A ∼ 1√
n
N (0, In×n), C = In + C0C

>
0 /n with C0 ∼ N (0, In×n), E = 2In +

E0E
>
0 /n with E0 ∼ N (0, In×n), b = 0, and d ∼ Unif(0, 1)n. This gives µ = µφ = 1, L remains

fixed, while Lf grows with R = ‖d‖2, highlighting the benefit of using relative smoothness. This is
experimentally verified in Figure 1b, where Acc-MD and MD converge faster and more stably than
all other non-mirror-type methods. Moreover, Acc-MD outperforms MD, making it the best method
for this problem.

We provide more examples, including applications to composite convex optimization (LASSO) and
constrained convex optimization (quadratic optimization on the simplex), in Appendix B.
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APPENDIX A: EXTENSION TO CONVEX OPTIMIZATION

For convex functions, i.e, µ = 0, we consider the perturbed system{
x′ = y − x,

(∇φ(y))′ = ε−1
[
ε(∇φ(x)−∇φ(y))−∇f(x)

]
,

(26)

for some fixed ε > 0. With the dual variables, the perturbed flow is equivalent to

x′ = y − x, η′ = −ε−1∇f(x) + χ− η.

Consider the Lyapunov function

E(x, η; ε) := Df (x, x∗) + εDφ∗(η, χ∗). (27)

We treat ε as a fixed parameter and take derivative with respect to x and η.
Lemma 4.1. Let E be the Lyapunov function (27), and let G be the vector field of the perturbed
acclerated mirror descent flow (26). The following perturbed strong Lyapunov property holds:

−∇E(x, η; ε) · G(x, η) = E(x, η; ε) +Df (x∗, x) + εDφ∗(χ, η)− εDφ∗(χ, χ∗). (28)

Proof. By direct calculations,

−∇E(x, η; ε) · G(x, η) = 〈∇f(x)−∇f(x∗), x− x∗〉+ ε(∇φ∗(η)−∇φ∗(χ∗), η − χ).

Using the three-point identity of the Bregaman divergence, the additional cross term expands as:

ε〈∇φ∗(η)−∇φ∗(χ∗), η − χ〉 = ε (Dφ∗(η, χ∗) +Dφ∗(χ, η)−Dφ∗(χ, χ∗)) .

Therefore,

−∇E(x, η; ε) · G(x, η) = E(x, y; ε) +Df (x∗, x) + εDφ∗(χ, η)− εDφ∗(χ, χ∗).

Consider the perturbed AOR accelerated mirror descent method:

xk+1 − xk
α

= yk − xk+1, (29a)

∇φ(yk+1)−∇φ(yk)

α
= −ε−1(2∇f(xk+1)−∇f(xk)) +∇φ(xk+1)−∇φ(yk+1). (29b)

An equivalent but computation favorable form is given as

xk+1 =
1

1 + α
(xk + αyk),

yk+1 = arg min
y∈Rn

(1 + α)φ(y)−
〈
α∇φ(xk+1) +∇φ(yk)− α

ε
(2∇f(xk+1)−∇f(xk)), y

〉
.

(30)

Introduce the dual variables ηk = ∇φ(yk), χk = ∇φ(xk), k = 0, 1, 2, · · · to rewrite (29b) as

ηk+1 − ηk
α

= −1

ε
(2∇f(xk+1)−∇f(xk)) + χk+1 − ηk+1. (31)

For four points x, x̂, y, ŷ, introduce the term

Bα(x, x̂, ŷ, y; ε) = Df (x, x̂) + εDφ(ŷ, y) + α 〈∇f(x)−∇f(x̂), y − ŷ〉 . (32)

Define the modified Lyapunov function

Eα(x, y; ε) := Bα(x, x∗, x∗, y; ε) := E(x, η; ε) + α 〈∇f(x)−∇f(x∗), y − x∗〉 . (33)

For simplicity, we shall use Bα(x, x̂, ŷ, y) and Eα(x, y) when there is no confusion to skip ε.
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Lemma 4.2. Let (xk, yk) be the sequence generated by perturbed Acc-MD (29), then it holds

Eα(xk+1, yk+1)− Eα(xk, yk) ≤ − αEα(xk+1, yk+1)− αDf (x∗, xk+1)

+α 〈∇f(xk+1)−∇f(x∗), yk+1 − x∗〉
−Bα(xk, xk+1, yk+1, yk) + αεDφ(x∗, xk+1)

(34)

Proof. Denote z = (x, η). Expand the difference E(x, η) at (xk+1, ηk+1),

E(xk+1, ηk+1)− E(xk, ηk) = 〈∇E(zk+1), zk+1 − zk〉 −DE(zk, zk+1)

= α 〈∇E(zk+1; ε),G(zk+1)〉 −DE(zk, zk+1)

− α 〈∇f(xk+1)−∇f(x∗), yk+1 − yk〉
− α 〈yk+1 − x∗,∇f(xk+1)−∇f(xk)〉

We write the cross term as

〈∇f(xk+1)−∇f(x∗), yk+1 − yk〉+ 〈yk+1 − x∗,∇f(xk+1)−∇f(xk)〉
= 〈∇f(xk+1)−∇f(x∗), yk+1 − x∗〉 − 〈∇f(xk)−∇f(x∗), yk − x∗〉

+ 〈∇f(xk+1)−∇f(xk), yk+1 − yk〉

Then use identity (28) to expand 〈∇E(zk+1),G(zk+1)〉 we get

Eα(xk+1, yk+1)− Eα(xk, yk) = − αE(xk+1, ηk+1)− αDf (x∗, xk+1)

− αεDφ(yk+1, xk+1) + αεDφ(x∗, xk+1)

−DE(zk, zk+1)− α 〈∇f(xk+1)−∇f(xk), yk+1 − yk〉
= − αEα(xk+1, yk+1)− αDf (x∗, xk+1)

− αεDφ(yk+1, xk+1) + αεDφ(x∗, xk+1)

+ α 〈∇f(xk+1)−∇f(x∗), yk+1 − x∗〉
− Bα(xk, xk+1, yk, yk+1),

where noted that Dφ∗(χk+1, χ
∗) = Dφ(x∗, xk+1). Drop the negative terms and rearrangement we

get the desired result.

We make an analogy to the assumption (A2).
Assumption 4.3. There exists Cf,φ > 0 such that the following relative Cauchy Schwarz inequality
holds

| 〈∇f(x)−∇f(x̂), y − ŷ〉 | ≤ 2
√
Cf,φD

1/2
f (x, x̂)D

1/2
φ (ŷ, y), ∀x, x̂, y, ŷ ∈ V.

Lemma 4.4. Let Assumption 4.3 hold. Then for |α| ≤
√
ε/Cf,φ, we have Bα(x, x̂, ŷ, y) ≥ 0.

Proof. From the Cauchy Schwarz inequality, we can derive

| 〈∇f(x)−∇f(x̂), y − ŷ〉 | ≤
√
Cf,φ
ε

[Df (x, x̂) + εDφ(ŷ, y)] . (35)

Theorem 4.5 (Convergence of perturbed Acc-MD method). Suppose f is convex and relative Cauchy
Schwarz inequality holds with constant Cf,φ. For any ε > 0, let (xk, yk) be generated by scheme
(29) with initial value (x0, y0), ηk = ∇φ(yk), and step size 0 < α =

√
ε/Cf,φ. Assume there exists

R > 0 such that
Dφ(x∗, xk) ≤ R/2, Dφ(x∗, yk) ≤ R/2, ∀k ≥ 0. (36)

Then we have the linear convergence with perturbation

Eα(xk, yk, ε) ≤

(
1

1 +
√
ε/Cf,φ

)k
Eα(x0, y0, ε) + εR, k ≥ 0. (37)
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Proof. By Lemma 4.4,

Eα(xk+1, yk+1)− Eα(xk, yk) ≤ − αEα(xk+1, yk+1)− αDf (x∗, xk+1)− αεDφ(x∗, yk+1)

+ α 〈∇f(xk+1)−∇f(x∗), yk+1 − x∗〉
− Bα(xk, xk+1, yk+1, yk)

+ αε(Dφ(x∗, xk+1) + εDφ(x∗, yk+1)).
(38)

For α =
√
ε/Cf,φ, we can drop negative terms from the inequality (38) to get the accelerated linear

convergence

Eα(xk+1, yk+1) ≤ 1

1 + α
Eα(xk, yk) +

αε

1 + α
(Dφ(x∗, xk+1) +Dφ(x∗, yk+1))

≤ 1

1 + α
Eα(xk, yk, ε) +

αε

1 + α
R

≤
(

1

1 + α

)k+1

Eα(x0, y0, ε) +
αεR

1 + α

k∑
i=0

1

(1 + α)i
.

Summing up the geometric series we get the desired result.

To achieve an accuracy Eα(xk, yk) = O(ε), the number of iterations is bounded by(
1 +

√
ε/Cf,φ

)−k
= O(ε) =⇒ k = O

(√
Cf,φ
ε
| ln ε|

)
.

Compared to the dominant complexity O(ε−1/2), the logarithmic factor O(| ln ε|) is negligible. This
establishes the nearly optimal complexity of accelerated gradient methods.

Since the perturbation will not change the equilibrium point x∗, we can choose strictly decreasing
εk+1 and use the homotopy argument to remove the | ln ε| dependence (Chen et al., 2025, Theorem
8.4). The modified algorithm is summarized in Algorithm ??. Consequently, the method achieves an
effective sublinear convergence rate of O(1/k2) in terms of gradient evaluations.

Algorithm 2 AccMD with homotopy perturbation.

1: Parameters: Inititial value and tolerance (x0, y0, ε0) and termination tolerance ε.
2: Set k = 0 and m0 = (

√
Cf,φ +

√
ε0) ln(2(R+ 1))ε

−1/2
0

3: while εk > ε do
4: εk+1 = εk/2, mk+1 =

√
2mk

5: Apply perturbed AccMD scheme (30) with the initial value (xk, yk), the parameter εk+1 and
the step size α =

√
εk+1/Cf,φ for mk+1 iterations to get (xk+1, yk+1)

6: k = k + 1
7: end while
8: return (xk, yk)

APPENDIX B: EXTENSION TO COMPOSITE OPTIMIZATION

Consider the composite optimization problem

min
x∈Rn

F (x) := f(x) + g(x), (39)

where f satisfies the relative smoothness and convexity condition, and g is convex but possibly
non-smooth, with a well-defined generalized proximal operator. We propose the accelerated mirror
descent flow for composite case{

x′ = y − x,
−µ (∇φ(y))

′
+ µ(∇φ(x)−∇φ(y))−∇f(x) ∈ ∂g(y),

(40)
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with initial conditions x(0) = x0, y(0) = y0. Introducing dual variables χ = ∇φ(x) and η = ∇φ(y),
the flow (40) becomes

x′ = y − x, η′ = −µ−1
φ [∇f−µ(x) + q(y)]− η,

where f−µ := f − µφφ and q(y) ∈ ∂g(y) is one sub-gradient of g at y.

We make an analysis analogous to the smooth convex case. Define a Lyapunov function:

E(x, η) := Df−µ(x, x∗) + µDφ∗(η, χ∗), (41)

where x∗ is a minimizer of f + g and χ∗ = ∇φ(x∗).
Lemma 4.6. Let E(x, η) be defined by (41), and define the vector field G(x, η) = (y −
x, −µ−1

φ [∇f−µ(x) + q(y)] − η), where q(y) ∈ ∂g(y), and the dual variables satisfy χ = ∇φ(x)

and η = ∇φ(y). Then

−∇E(x, η) · G(x, η) ≥ E(x, η) +Df−µ(x∗, x) + µφDφ(y, x∗). (42)

As a consequence, any solution (x(t), y(t)) of the flow (40) satisfies the exponential decay bound

E(x(t), η(t)) ≤ e−tE(x(0), η(0)). (43)

Proof. First, observe that at minimum x∗, 0 ∈ ∇f(x∗) + ∂g(x∗), so there is q(x∗) ∈ ∂g(x∗) that
∇f(x∗) + q(x∗) = 0 holds. From the gradients of the Lyapunov function:

∂xE = ∇f−µ(x)−∇f−µ(x∗), ∂ηE = µφ (∇φ∗(η)−∇φ∗(χ∗)) = µφ(y − x∗),
we compute

−∇E(x, η) · G(x, η)

= 〈∇f−µ(x)−∇f−µ(x∗), x− y〉+ µφ

〈
y − x∗, µ−1

φ (∇f−µ(x) + q(y)) + η
〉

= 〈∇f−µ(x)−∇f−µ(x∗), x− x∗〉+ µφ〈∇φ∗(η)−∇φ∗(χ∗), η − χ∗〉
= 〈∇f−µ(x)−∇f−µ(x∗), x− x∗〉+ 〈y − x∗,∇f(x∗) + q(y)〉+ µφ〈∇φ∗(η)−∇φ∗(χ∗), η − χ∗〉
= Df−µ(x, x∗) +Df−µ(x∗, x) + 〈y − x∗, q(y)− q(x∗)〉+ µφDφ∗(χ∗, η) + µφDφ∗(η, χ∗)

≥ E(x, η) +Df−µ(x∗, x) + µφDφ(y, x∗),

where the last inequality follows from convexity of g as 〈y − x∗, q(y)− q(x∗)〉 ≥ 0.

Since Df−µ(x∗, x) ≥ 0 and Dφ(y, x∗) ≥ 0 by convexity of f−µ and φ, we obtain the inequality

∇E(x, η) · G(x, η) ≤ −E(x, η),

from which the exponential decay (43) follows by Grönwall’s inequality.

We generalize the Acc-MD scheme for composite case
xk+1 − xk

α
= 2yk+1 − yk − xk+1, (44a)

∇φ(yk+1)−∇φ(yk)

α
∈ − 1

µ
[∇f(xk) + ∂g(yk+1)] +∇φ(xk)−∇φ(yk+1). (44b)

An equivalent computation favorable form is given as Algorithm 3.
As the subgradient of g is evaluated implicitly in scheme (44), the convergence analysis becomes
identical to the smooth convex case. Combining with the convergence result of ODE flow Lemma
4.6, we derive the following theorem for Algorithm 3:
Theorem 4.7 (Convergence of Acc-MD method for composite optimization). Suppose f is µ-
relatively convex and relative Cauchy Schwarz inequality holds with constant Cf,φ and g is convex.
Let (xk, yk) be generated by scheme (44) with initial value (x0, y0), ηk = ∇φ(yk), and step
size α =

√
µ/Cf,φ. Then there exists a constant C0 = C0(x0, y0, µ, Cf,φ) so that we have the

accelerated linear convergence

Dfµ(xk+1, x
∗) + µDφ∗(ηk+1, χ

∗) ≤ C0

(
1

1 +
√
µ/Cf,φ

)k
, k ≥ 1.

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Algorithm 3 Accelerated mirror descent (Acc-MD) method for composite optimization

1: Parameters: x0, y0 ∈ Rn, µ, Cf,φ.
2: Set α =

√
µ/Cf,φ.

3: for k = 0, 1, 2, . . . do
4: yk+1 = arg miny∈Rn(1 + α)φ(y) + α

µg(y)−
〈
α∇φ(xk) +∇φ(yk)− α

µφ
∇f(xk), y

〉
.

5: xk+1 =
1

1 + α
[xk + α(2yk+1 − yk)].

6: end for

LASSO problem We consider the over-parameterized LASSO problem:

min
x∈Rd

F (x) :=
1

2
‖Ax− b‖2 + λ‖x‖1, (45)

where A ∈ Rn×d with n < d. The ground truth x∗ is sparse, supported on 50 randomly selected
indices. Each nonzero entry is drawn as xi = ηi + sgn(ηi), with ηi ∼ N (0, 1). The design matrix A
is Gaussian with column-wise variance scaling: aij ∼ N (0, j2). The response vector is generated as
b = Ax∗ + ξ, where ξ ∼ N (0, σ2In) with σ = 1. We set λ = 1 throughout the experiments.

We adopt the reference function φ(x) = 1
2x
>Dx, where D = diag(A>A). Since ∇2f =

A>A, the smoothness constant is Lf = ρ(A>A), and the relative smoothness constant is
L = ρ(D−1/2A>AD−1/2). As the problem is over-parameterized (n < d), the relative strong
convexity vanishes (µ = 0), and we employ the perturbed variant of Acc-MD; see Algorithm 2 in
Appendix A.

As D is diagonal and positive definite, the Acc-MD subproblem (25) can be solved by a generalized
soft-thresholding operator in closed form.

As shown in Fig. 2 and Fig. 3, the proposed Acc-MD method converges significantly faster than the
competing approaches.

0 200 400 600
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Figure 2: Function error curve of LASSO
problem, n = 150, d = 200.

0 100 200 300
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100
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Figure 3: Function error curve of LASSO
problem, n = 1000, d = 2000.

Quadratic on the simplex We consider the constrained optimization problem over the (n − 1)-
dimensional simplex ∆n = {x ∈ Rn |

∑n
i=1 xi = 1, xi ≥ 0}:

min
x∈∆n

f(x) :=
1

2
‖Ax− b‖2.

This can be viewed as a composite optimization problem, where g is the indicator function of ∆n.

Let A = (aij) ∈ Rn×n be a Gaussian matrix with aij ∼ N (0, j2), and set the ground truth
to x∗ = (1, . . . , 1)>/n with b = Ax∗. We use the reference function φ(x) = 1

2x
>Dx, where

D = diag(A>A) is strictly positive definite. The mirror maps ∇φ and ∇φ∗ are then simple to
evaluate, and the relative smoothness and convexity constants L, µ can be estimated analogously. As
shown in Table 1, L remains nearly constant across problem sizes, and the relative condition number
L/µ is significantly better than the Euclidean counterpart Lf/µf .

The Acc-MD subproblem (25) becomes

xk+1 ∈ arg min
x∈∆n

‖x− zk+1‖2D, with zk+1 = D−1z̃k+1, (46)
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where z̃k+1 = 1
1+α

[
∇φ(yk)+α∇φ(xk)− α

µ∇f(xk)
]
. Problem (46) is a projection onto the simplex

under a weighted norm. We solve it by introducing the Lagrangian:

L(x, λ, β) =
1

2
‖x− z‖2D − λ

(
n∑
i=1

xi − 1

)
− β>x,

with KKT conditions:

di(xi − zi)− λ− βi = 0, xi ≥ 0, βi ≥ 0, xiβi = 0, 1 ≤ i ≤ n,
n∑
i=1

xi = 1.

The solution satisfies xi = max(0, zi + λ/di), and λ is the unique solution to
n∑
i=1

max

(
0, zi +

λ

di

)
= 1,

which can be efficiently found by the bisection method.

As shown in Table 1, Acc-MD outperforms competing methods in both iteration count and runtime.
The non-accelerated BPG method is omitted as it fails to converge within a reasonable time.

Table 1: Quadratic optimization on the simplex. Stopping criterion: f(x) < 10−12f(x0).

Problem Size Acc-MD ABPG FISTA AOR-HB

n Lf µf L µ #Iter Time #Iter Time #Iter Time #Iter Time

125 4.04× 106 0.6228 3.78 9.86× 10−5 1159 0.16 5225 0.47 39145 1.14 22930 0.53
250 3.17× 107 0.0146 3.96 1.99× 10−7 1669 0.38 6602 1.20 81633 5.25 24133 1.68
500 2.46× 108 0.1176 3.97 3.79× 10−7 4439 1.96 6183 3.18 102666 24.57 67621 14.49
1000 2.00× 109 0.0592 3.95 1.34× 10−7 4960 6.07 6221 10.26 118364 177.83 100283 129.71
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