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ABSTRACT

Cybersecurity operations demand assistant LLMs that support diverse workflows
without exposing sensitive data. Existing solutions either rely on proprietary
APIs with privacy risks or on open models lacking domain adaptation. To bridge
this gap, we curate 11.8B tokens of cybersecurity-focused continual pretraining
data via large-scale web filtering and manual collection of high-quality resources,
spanning 28.6K documents across frameworks, offensive techniques, and security
tools. Building on this, we design an agentic augmentation pipeline that simulates
expert workflows to generate 266K multi-turn cybersecurity samples for super-
vised fine-tuning. Combined with general open-source LLM data, these resources
enable the training of RedSage, an open-source, locally deployable cybersecurity
assistant with domain-aware pretraining and post-training. To rigorously evaluate
the models, we introduce RedSage-Bench, a benchmark with 30K multiple-choice
and 240 open-ended Q&A items covering cybersecurity knowledge, skills, and
tool expertise. RedSage is further evaluated on established cybersecurity bench-
marks (e.g., CTI-Bench, CyberMetric, SECURE) and general LLM benchmarks
to assess broader generalization. At the 8B scale, RedSage achieves consistently
better results, surpassing the baseline models by up to +5.59 points on cybersecu-
rity benchmarks and +5.05 points on Open LLM Leaderboard tasks. These find-
ings demonstrate that domain-aware agentic augmentation and pre/post-training
can not only enhance cybersecurity-specific expertise but also help to improve
general reasoning and instruction-following. All models, datasets, and code will
be released to advance reproducibility and open cybersecurity LLM research.

1 INTRODUCTION

The rapid evolution of cybersecurity threats has elevated the need for proactive and comprehensive
defense strategies, as organizations face increasingly sophisticated attacks and advanced persistent
threats (Khraisat et al., 2024). Modern cybersecurity involves a wide range of critical tasks, includ-
ing threat analysis, incident response, vulnerability management, and security monitoring. However,
the complexity of security tools and the depth of expertise required to operate them, particularly in
handling incidents, pose significant challenges (Cichonski et al., 2021). These challenges are com-
pounded by a global skill shortage, with research estimating a demand–supply gap in the millions

Figure 1: Overview of the RedSage pipeline. RedSage is trained through continual pre-training on
cybersecurity-filtered corpora and post-training with curated and augmented conversation data, fol-
lowed by evaluation on a comprehensive benchmark covering knowledge, skills, and tool expertise.
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Table 1: Comparison of cybersecurity LLM benchmarks.
Columns indicate knowledge (Know.), skills (Skill), tool profi-
ciency (Tool), and use of quality scoring (Qual.). Size = total
samples. Agentic CTF benchmarks (e.g., NYU-CTF, CyBench)
are excluded as they are interactive rather than base LLM eval.

Name Know. Skill Tool Qual. Size

SecEval ✓ ✗ ✗ ✗ 2,000
CyberMetric ✓ ✗ ✗ ✗ 10,000
CyberBench ✓ ✗ ✗ ✗ 80,422
SECURE ✓ ✗ ✗ ✗ 4,072
CS-Eval ✓ ✗ ✗ ✗ 4,369
SecBench ✓ ✗ ✗ ✗ 47,910
CTI-Bench ✓ ✓ ✗ ✗ 5,610
CyberSecEval ✗ ✓ ✗ ✗ 1,000
RedSage-Bench (Ours) ✓ ✓ ✓ ✓ 30,240

Figure 2: Taxonomy of Red-
Sage Seed&Bench dataset. It
spans knowledge, practical of-
fensive skills, and tool expertise
(CLI and Kali Linux).

of unfilled cybersecurity positions ((ISC)2, 2022). Consequently, there is growing momentum to
employ cybersecurity-tuned LLMs to augment human analysts.

Recent efforts have produced cybersecurity-trained LLMs, yet most emphasize a single training
stage while overlooking others. For instance, some extend pretraining on domain-specific corpora
(Kassianik et al., 2025b) but apply limited post-training with only 835 samples (Yu et al., 2025)
or fewer than 30K cybersecurity-filtered items (Weerawardhena et al., 2025), while others focus on
supervised fine-tuning with large cybersecurity Q&A collections without pretraining to strengthen
domain knowledge (Deep Hat, 2025). Further, existing cybersecurity benchmarks offer only partial
coverage, such as omitting tool proficiency and qualitative evaluation of free-response Q&A beyond
simple MCQs (see Table 1 and Fig. 2). Beyond these gaps, most works also do not release their data
or pipelines, limiting reproducibility and openness (see Table 2).

To address these gaps, we present RedSage (Retrieval-Enhanced Data-driven Security Assistant
Guidance and Evaluation), an open-source LLM tailored for cybersecurity. As illustrated in Fig. 1,
RedSage integrates large-scale continual pretraining on cybersecurity-filtered corpora, post-training
with curated and agentically augmented datasets, and rigorous evaluation across knowledge, skills,
and tool proficiency. Our key contributions are: (1) assembling an 11.8B-token corpus of cyber-
security data for domain-specific continual pretraining, (2) constructing a 266K-sample augmented
dataset via an agentic pipeline for supervised fine-tuning, followed by preference alignment with
open-source data, (3) introducing RedSage-Bench, a benchmark with 30K MCQs for broad cover-
age and 240 open-ended Q&A items for quality evaluation across knowledge, skills, and tools, and
(4) RedSage, an open 8B model with data and code, achieving state-of-the-art results on established
cybersecurity benchmarks while also improving on general benchmarks.

2 RELATED WORKS

2.1 CYBERSECURITY BENCHMARKS

General Knowledge. Several benchmarks assess LLMs’ understanding of core cybersecurity con-
cepts via structured Q&A. SecEval (Li et al., 2023) includes 2K+ MCQs across nine domains
(web, system, application security). CyberMetric (Tihanyi et al., 2024) provides 10K MCQs gen-
erated with RAG and expert validation, spanning penetration testing and network security. Cyber-
Bench (Liu et al., 2024) extends beyond MCQs to tasks such as NER, summarization, and clas-
sification. SECURE (Bhusal et al., 2024) targets Industrial Control Systems with domain-specific
MCQs on risk reasoning and vulnerability analysis. CS-Eval (Yu et al., 2024) covers 42 subcate-
gories across three cognitive levels (Knowledge, Ability, Application) using MCQs, multi-answer,
T/F, and open-ended items. SecBench (Jing et al., 2024) offers 44,823 MCQs and 3,087 SAQs in
Chinese and English, capturing both factual recall and logical reasoning.
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Table 2: Comparison of cybersecurity-tuned LLM training datasets. Pretraining and curated columns report
token counts (B = billion, M = million). SFT reports the number of supervision samples. ✓= present; ✗=
absent; N/R= not reported.

Name Pretrain
Tokens (B)

Curated
Tokens (M)

SFT
Samples

Agentic
Augmented

Open
Data

Open
Model

PRIMUS 2.57 191 835 ✗ ✓ ✓
Foundation-Sec-8B 5.10 ✗ 28K ✗ ✗ ✓
DeepHat ✗ ✗ >1M ✗ ✗ ✓
Lily-Cybersecurity-7B ✗ ✗ 22K ✗ ✗ ✓
Cyber-DAP ✗ 119 ✗ ✗ ✗ ✗
SecGemini (closed) N/R N/R N/R ✗ ✗ ✗
Ours (RedSage) 11.7 850 266K ✓ ✓ ✓

Dataset statistics are compiled from official publications, technical reports, and model cards.

Applications and Agentic Tasks. Application-oriented benchmarks probe reasoning beyond re-
call. CTIBench (Alam et al., 2024) defines four tasks: MCQs, common vulnerabilities and
exposures(CVE)-to-common weakness enumeration(CWE) mapping, common vulnerability scor-
ing system (CVSS) prediction, and threat actor attribution in cyber threat intelligence. CyberSe-
cEval (Wan et al., 2024) examines model risks across eight areas (e.g., exploit generation, prompt
injection). Agentic evaluations such as NYU-CTF (Shao et al., 2024) and CyBench (Zhang et al.,
2025) assess red-team capabilities through capture the flag (CTF) challenges (e,g web exploitation,
reverse engineering) in interactive settings.

While these efforts advance evaluation of knowledge and applications, they rarely isolate compe-
tence in understanding and operating security tools or systematically assess the quality of free-form
responses. As summarized in Table 1, most benchmarks specialize in either knowledge or appli-
cations, and even agentic ones lack explicit tool-focused assessment. We address these gaps with
RedSage-Bench, which jointly measures knowledge, skills, and tool proficiency (Fig. 2).

2.2 CYBERSECURITY DATASETS AND MODELS

Early Cybersecurity Datasets. Early domain-specific models such as CyBERT (Ranade et al.,
2021), SecureBERT (Aghaei et al., 2022), and CTI-BERT (Park & You, 2023) showed the value of
domain-adaptive fine-tuning. However, their datasets were not released. Moreover, as encoder-based
models, they require task-specific fine-tuning, restricting scalability.

Cybersecurity Datasets for LLMs. With the advent of LLMs, several groups curated
cybersecurity-specific corpora. PRIMUS (Yu et al., 2025) (Trend Micro) provides 2.75B tokens for
continued pretraining, 835 samples for supervised fine-tuning, and reasoning distillation, extending
Llama-3.1-8B-Instruct into Llama-Primus-Base and -Merged. Foundation-Sec-8B (Kassianik et al.,
2025a) (Cisco) collects 5.1B tokens via large-scale scraping and filtering, continuing pretraining
on Llama-3.1-8B-Base and adding a cybersecurity post-training stage, though its dataset remains
closed. Community efforts include DeepHat (formerly WhiteRabbitNeo), reportedly trained on
1M+ Q&A pairs for real workflows (Deep Hat, 2025), and Lily-Cybersecurity, which fine-tunes
Mistral-7B on 22K hand-crafted and lightly refined conversations (Sego Lily Labs, 2024). Cyber-
DAP (Salahuddin et al., 2025) highlights the effectiveness of smaller curated corpora for continued
pretraining, while SecGemini (Google Security Blog, 2025) offers a closed model with live threat
intelligence but unreleased data. We summarize these datasets in Table 2.

Unlike prior work with limited augmentation, we introduce agentic augmentation to transform cu-
rated cybersecurity resources into diverse, realistic multi-turn dialogs simulating expert–assistant
workflows across knowledge, offensive operations, and tool proficiency for domain-specific fine-
tuning. RedSage is, to our knowledge, the only effort combining large-scale continual pretraining,
curated data, agentically augmented SFT, and full openness (data, model, and code) (Table 2).

3 REDSAGE

We build RedSage through a data-centric pipeline comprising (1) large-scale filtering of cybersecu-
rity text and curation of high-quality resources for continual pretraining, (2) agentic augmentation
to create supervised fine-tuning data, and (3) benchmark construction for evaluation (Fig. 3).
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Figure 3: RedSage data pipeline combining large-scale text collection, curated cybersecurity resources, and
agentic augmentation for supervised fine-tuning and benchmark generation. Best viewed in Zoom.

3.1 REDSAGE PRE-TRAINING DATA

CyberFineWeb. We construct CyberFineWeb by filtering FineWeb (Penedo et al., 2024a), a cleaned
large-scale web corpus aggregated from Common Crawl (2013–2024; ∼15T tokens). To extract cy-
bersecurity content, we fine-tune a binary classification model based on ModernBERT-base (Warner
et al., 2024), a state-of-the-art encoder trained on 2T+ tokens. Applying this filter yields a cyberse-
curity candidate pool of ∼125M documents (∼89.8B tokens).

To avoid catastrophic forgetting on general knowledge, we mix CyberFineWeb with general-
knowledge samples from FineWeb-Edu (Lozhkov et al., 2024) at a 30% replay ratio. FineWeb-Edu
is a 1.3T-token educational subset shown to improve general LLM benchmarks. This strategy fol-
lows prior work on replay-based continual learning (Ibrahim et al., 2024; Guo et al., 2025), though
unlike dynamic replay, we embed these examples directly into the static corpus. We then apply
global near-duplicate removal with MinHash-LSH over the combined data. This yields a dedupli-
cated mixed corpus of ∼52M documents (∼46.8B tokens), while inheriting FineWeb’s upstream
extensive filtering and PII removal.

Finally, we partition the deduplicated corpus into 20 chronological chunks for sequential training
under compute constraints and apply early stopping after 5 chunks to control training cost. This
yields the final CyberFineWeb corpus: ∼13M documents (∼11.7B tokens) used in our model. Im-
plementation details, including classifier training, deduplication parameters, and datasets statistics,
are provided in Appendix A.1.

RedSage-Seed. Web-filtered text offers broad coverage, but its reliability is not assured. To pro-
vide high-quality content, we curate RedSage-Seed: 28,637 samples (∼0.15B tokens) from publicly
available sources organized into three categories: Knowledge (well-established cybersecurity frame-
works and knowledge bases (MITRE Corporation, 2025a;b;c; The OWASP Foundation, 2025)),
Skills (penetration-testing write-ups (0xdf, 2025), hacking techniques (HackTricks, 2025), pay-
load examples (swisskyrepo, 2025), and ethical hacking tutorials/blogs (Null Byte, 2025; Chandel,
2025)), and Tools (CLI cheat-sheets (tldr pages, 2025), Linux manuals (linux.die.net, 2025), Kali
tools (Kali, 2025)). We additionally collect an uncategorized dump of ∼459K documents (∼0.7B
tokens) from trusted cybersecurity sources (Appendix A.2) to supply extra pretraining tokens.

To process these resources, we crawl web-based sources and convert them to Markdown using
ReaderLM-v2 (Wang et al., 2025), while downloadable resources are parsed directly. This hier-
archical Markdown format preserves structure and enables effective chunking for subsequent aug-
mentation stages. Only the categorized seeds are used for augmentation, while both sets support
pretraining. Full statistics, categorization, processing steps, and examples are in Appendix A.2.

3.2 REDSAGE POST-TRAINING DATA

Agentic Data Augmentation. To enable assistants capable of realistic security dialogues, we aug-
ment RedSage-Seed into multi-turn conversations using an agentic framework inspired by AgentIn-
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Table 3: Statistics of RedSage-Seed (curated pretraining corpus) vs. RedSage-Conv (augmented
SFT data) by category. Columns show sample counts, average tokens, and total tokens.

Category Seed Conversation

Samples Avg. Tokens Tokens (M) Samples Avg. Tokens Tokens (M)

Knowledge – General 6,924 2,370 16.4 67,635 1,326 89.6
Knowledge – Frameworks 3,715 2,935 10.5 39,908 1,285 51.0
Skill – Offensive 4,032 9,478 37.8 38,870 1,345 52.3
Tools – CLI 12,943 5,774 78.9 109,261 1,331 145.7
Tools – Kali 1,023 6,693 6.3 10,506 1,356 14.3

Total 28,637 5,231 149.8 266,180 1,326 353.0

Cybersecurity Dumps 459,473 1,524 700,1 – – –

Figure 4: Agentic data augmentation pipeline. Seed data (e.g., CAPEC attack patterns) is processed by the
Planner Agent into skill sets and augmentation plans, which the Augmenter Agent instantiates as grounded,
role-based multi-turn cybersecurity dialogues for supervised fine-tuning (SFT).

struct (Mitra et al., 2024). Unlike prior work with fixed skill templates, our Planner Agent analyzes
each seed data chunk and derives candidate skill sets (e.g., vulnerability analysis, tool-command
generation) along with augmentation strategies that describe how the seed is transformed, adapted
into a conversational or Q&A format, and enriched with explanations. We enforce guidelines on
relevance, diversity, creativity, detail, and formatting. The Augmenter Agent then instantiates each
plan into realistic, role-based multi-turn dialogues grounded in the seed data. This pipeline scales
efficiently, producing multiple dialogues per skill set and filtering outputs for format validity, consis-
tency, and topical relevance. Overall, it yields RedSage-Conv with ∼266K multi-turn conversations
(∼352M tokens), expanding total samples by 9.2× and tokens by 2.3× across knowledge, skills,
and tools while preserving technical depth (Tab. 3). Fig. 4 illustrates the augmentation pipeline,
while detailed statistics, prompts, and examples are provided in Appendix A.3.

General instruction integration. While domain-specific conversations ground the assistant in cy-
bersecurity, effective models must also handle broader instruction-following tasks. We therefore
complement RedSage-Conv with curated post-training SFT data from SmolLM3 (Bakouch et al.,
2025)1, focusing on its non-reasoning subset. This corpus adds coverage of summarization, numer-
acy, data interpretation, temporal and unit reasoning, commonsense knowledge, step-by-step plan-
ning, technical writing, scripting, and general tool use. The combination of cybersecurity-specific
and general instruction data yields a high-quality post-training corpus, enabling a cybersecurity as-
sistant that performs specialized tasks while retaining broad capabilities.

1General SFT datasets: HuggingFaceTB/smoltalk2
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3.3 REDSAGE BENCHMARK

Multiple-choice Q&A generation. We derive MCQs from RedSage-Seed as follows: for each seed
item, a strong open instruction-tuned LLM 2 generates several MCQs under guidelines: items are
self-contained and closed-book, target stable domain facts/procedures, follow a four-option format
with three plausible distractors, and satisfy diversity and formatting constraints.

Open-ended Q&A generation. We extend RedSage-Seed into open-ended Q&A using an agen-
tic augmentation framework with two stages: (1) an Evaluation-Planer analyzes seed artifacts and
proposes realistic evaluation types with instruction templates and answer guidelines; (2) a Question-
Answer Generator instantiates each plan into a self-contained open-ended Q&A with a natural-
language prompt and a reference answer. All open-ended Q&A are grounded in the seed data and
scored with a reference-based LLM-as-judge rubric that evaluates both factual correctness (True/-
False) and answer quality (0–10) across helpfulness, relevance, depth, and level of detail.

Multi-stage verification. For MCQs, we apply a two-stage pipeline: Stage 1 (structural validity)
uses a verifier LLM 2 with a checklist on format, correctness, distractors, topical relevance, and
consistency, filtering items by pass/fail; Stage 2 (quality scoring) then applies the same verifier
LLM 2 to assign each remaining item a score s ∈ [0, 10] for clarity, correctness, and assessment
value. In both stages, we use chain-of-thought prompting so the verifier explicitly reasons through
each checklist criterion before issuing a pass/fail label or score, yielding judgments that more closely
follow our rubric. We then select the pairs where s > 8 and apply quota-aware random sampling
to ensure taxonomic balance, yielding 30,000 MCQ–answer pairs evenly split across knowledge,
skills, and tools. For open-ended Q&A, we directly perform LLM-based quality scoring in Stage 2
followed by human verification, selecting 240 high-quality pairs evenly distributed across categories.

Human quality control. Across all verification stages, we iteratively refined prompts and manu-
ally inspected sampled outputs until the verifier consistently aligned with our criteria. We observe
that chain-of-thought prompting plays a significant role in producing more precise judgments. For
the large-scale MCQ benchmark, random audits confirmed that items passing the final stages met
both Stage 1 and Stage 2 requirements. For open-ended Q&A, we retain only human-verified items.

Data decontamination. We apply an additional filtering and deduplication step to prevent unin-
tended overlap between our benchmark datasets and augmented post-training data, despite their be-
ing generated through different pipelines and output formats. Specifically, we remove any synthetic
post-training instance whose query has a semantic similarity above 0.9 to a benchmark question.
This eliminates 2.96% of data relative to the benchmark size (0.31% of the full training corpus) and
helps ensure that evaluation remains free of training leakage.

Implementation details, intermediate outputs, prompt templates, and qualitative examples are pro-
vided in Appendix A.4, and the full evaluation protocol is described in Appendix C.2.

3.4 REDSAGE TRAINING

We build RedSage using the Axolotl framework (Axolotl, 2023), with continued pretraining of the
open-source base model, Qwen3-8B-Base (Yang et al., 2025), on cybersecurity corpora, followed by
post-training through supervised fine-tuning on augmented conversations and preference alignment.
We illustrate training stages in Fig. 5 with further training details, including exact hyperparameters,
estimated training time, and computational cost analysis in Appendix B.

Training setup. For continued pretraining (CPT), we first train on the CyberFineWeb corpus and
followed by RedSage-Seed (Sec. 3.1). We run a single epoch with distributed optimization on
32×A100-64GB GPUs (global batch size 1024), using DeepSpeed ZeRO Stage 3, the AdamW
optimizer, and a fixed learning rate of 2.5× 10−6 with linear warmup.

After pre-training, we further fine-tune our base model on RedSage-Conv and general SFT data
(Sec. 3.2) with two epochs using a cosine learning rate schedule. We apply direct prefer-
ence optimization (DPO) (Rafailov et al., 2023) with open-source Tulu 3 8B Preference Mixture
dataset (Lambert et al., 2025) using original hyperparameters.

2Teacher and Verifier LLM: meta-llama/Llama-3.3-70B-Instruct, Qwen/Qwen2.5-72B-Instruct
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CFW Base

Base Ins DPO

CyberFineWeb RedSage-Seed & Dump

RedSage-Conv & SmolTalk2 Tulu3 Preference Mixture

Continued Pretraining Stage (CPT)

Supervised Fine-tuning (SFT) Direct Preference Optimization (DPO)

Figure 5: RedSage training pipeline. We first continue pretraining the Qwen3 base model on CyberFineWeb
to obtain RedSage-CFW, followed by RedSage-Seed and RedSage-Dump to produce RedSage-Base. We then
perform supervised fine-tuning using RedSage-Conv and SmolTalk2 (Bakouch et al., 2025) data, and finalize
the model with Direct Preference Optimization using the Tulu3 Preference Mixture (Lambert et al., 2025).

4 EXPERIMENTS AND RESULTS

We evaluate the performance of our cybersecurity-tuned LLM on (1) our own benchmark (Sec. 3.3),
(2) related cybersecurity benchmarks, and (3) general LLM benchmarks.

Evaluation setup. For replicable results, we implement and evaluate RedSage-Bench and prior
cybersecurity benchmarks in HuggingFace lighteval (Habib et al., 2023). MCQ benchmarks
are scored with normalized log-likelihood accuracy over answer options, while instruction-tuned
models and structured output tasks use prefix exact match or regex matching on greedy decoding
outputs (temperature=0). Details for each task are provided in Appendix C.1.

Baseline methods. We evaluate RedSage against both open general-purpose and cybersecurity-
tuned LLMs. General-purpose baselines include Llama-3.1-8B (Grattafiori et al., 2024) and Qwen3-
8B (Yang et al., 2025), while specialized baselines include Llama-Primus (Base, Merged) (Yu et al.,
2025), Foundation-Sec (Base, Ins) (Kassianik et al., 2025b; Weerawardhena et al., 2025), Lily-
Cybersecurity-7B-v0.2 (Sego Lily Labs, 2024), and DeepHat-V1-7B (Deep Hat, 2025). We also
include Qwen3-32B and GPT-5 (OpenAI, 2025) to compare against larger-capacity and proprietary
general-purpose models. Base models are evaluated with text completion, instruction-tuned ones
with official prompt templates, and we ran hybrid-model in non-reasoning mode for fairness.

Our RedSage variants include three base models: RedSage-8B-CFW (CyberFineWeb only),
RedSage-8B-Seed (Seed only), and RedSage-8B-Base (CyberFineWeb followed by Seed). We
further derive instruction-tuned variants: RedSage-8B-Ins (instruction-tuned from Base) and the
final RedSage-8B-DPO, which combines all data and applies DPO alignment (see Fig. 5). An ad-
ditional larger-model scaling experiment is presented in Appendix D.1, where partial RedSage data
improves a Qwen3-32B model via lightweight QLoRA fine-tuning, demonstrating that our curation
pipeline transfers effectively to higher-capacity LLMs.

4.1 EVALUATION RESULTS ON REDSAGE-BENCH

Results on RedSage-Bench. For MCQs, both base and instruction-tuned models are tested in the
0-shot setting, with Tab. 4 showing that all RedSage variants outperform baselines across categories.
For open-ended Q&A, we evaluate instruction-tuned models using an LLM-as-Judge rubric to assess
both factual correctness and answer quality (Sec. 3.3). As shown in Fig. 6, RedSage achieves not
only high accuracy but also the best answer quality across categories. More detailed results and
qualitative examples illustrating model predictions are provided in Appendix C.2.

Open-ended QA Analysis. RedSage-8B-DPO achieves the best performance (Fig. 6), surpassing
the second-best model (Qwen3-8B) by +7% absolute mean correctness and +0.07 in mean quality
score. RedSage-8B-Ins attains similar correctness to Qwen3-8B but lags in answer quality (6.43),
underscoring the role of preference alignment in producing not only accurate but also helpful re-
sponses. The remaining models fall substantially behind, with mean correctness ranging from 51%

7
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Table 4: RedSage-MCQ (0-shot). Values are accuracy (%). Abbrevia-
tions: Gen = General, Frm = Frameworks, Off = Offensive Skills, CLI =
Command-line Tools, Kali = Kali Tools. Bold numbers indicate the best
result of 8B models; underlined numbers indicate the second best.

Model Name Macro Knowledge Skill Tools

Acc Gen Frm Off CLI Kali

Base Model Evaluation (Text Completion)

Llama-3.1-8B 78.02 77.42 75.26 82.78 77.78 72.12
Foundation-Sec-8B 78.51 76.82 79.10 83.68 76.64 71.14
Qwen3-8B-Base 84.24 83.08 81.94 88.23 85.08 78.86

RedSage-8B-CFW 84.86 83.62 83.30 88.81 85.30 79.32
RedSage-8B-Seed 85.21 83.64 84.56 88.82 85.50 79.90
RedSage-8B-Base 85.05 83.12 84.94 88.72 85.44 79.36

Instruct Model Evaluation (w/ Chat Template)

Lily-Cybersecurity-7B-v0.2 71.19 68.78 67.44 76.61 71.44 66.26
Llama-Primus-Merged 74.81 74.34 72.34 79.31 74.74 68.82
Foundation-Sec-8B-Instruct 76.12 74.50 77.10 80.91 74.98 68.30
Llama-Primus-Base 77.02 76.78 74.10 80.87 76.78 72.72
Llama-3.1-8B-Instruct 77.05 76.06 73.30 80.90 78.72 72.40
DeepHat-V1-7B 80.18 77.26 76.90 85.07 81.94 74.82
Qwen3-8B 81.85 80.46 78.82 86.16 83.92 75.56

RedSage-8B-Ins 85.73 84.20 84.98 89.06 86.80 80.30
RedSage-8B-DPO 84.83 82.48 83.80 88.54 86.30 79.30

Larger Instruct & Proprietary Model Evaluation (w/ Chat Template)

Qwen3-32B 85.40 84.08 82.32 89.00 87.60 80.40
GPT-5 88.68 88.74 86.54 91.43 90.80 83.14

MCQs Analysis. Qwen3-8B-
Base, trained on 36T tokens, is
the strongest external 8B baseline
(84.24) and even outperforms
Foundation-Sec-8B. underscoring
the importance of selecting a strong
base model. Building on it with
CPT, RedSage gains up to +0.97
macro-accuracy points, with the
largest improvements in Frame-
works (+3.00) and Kali (+1.04).
RedSage-8B-Seed achieves the best
base result (85.21), demonstrating
better alignment with the curated
Seed data. Among instruction-
tuned models, RedSage avoids
the accuracy drop and exceeds
Qwen3 by +2.98 (DPO) to +3.88
(Ins). DPO on general data slightly
lowers accuracy but stays well
above baselines. Interestingly,
RedSage-Ins surpasses Qwen3-32B
on average despite its smaller
size. These results highlight that
our domain-aware CPT and SFT
enhance robustness across cyberse-
curity knowledge, skills, and tools.

Figure 6: RedSage open-ended QA evaluation. Left: normalized stacked bar charts of mean correctness by
category (0–1), where values inside each segment show the mean and its relative contribution. Models are
ordered along the x-axis by overall mean correctness. Right: faceted violin plots of LLM-as-Judge quality
scores (0–10) per category, showing score distributions across models. Black dots mark means and horizontal
lines mark medians. Best viewed in Zoom.

to 40% and quality scores from 5.84 to 4.28, highlighting a significant gap from the top three. The
faceted violin plots further reveal category difficulty: knowledge tasks exhibit higher and tighter
distributions, skill tasks lie in the middle range, and tool-use tasks show lower medians with heavy
tails, pinpointing tool expertise as the primary challenge. These findings demonstrate the value of
our benchmark for assessing cybersecurity capabilities in free-form answer.

4.2 EVALUATION RESULTS ON CYBERSECURITY BENCHMARKS

Results on Cybersecurity Benchmarks. We assess generalization on multiple established bench-
marks in Tab. 5. For CyberMetric (CyMtc) (Tihanyi et al., 2024), we evaluate all models using
the 500 human-verified MCQs. We select English (En) MCQs from SecBench (ScBen) (Jing et al.,
2024). We also include MCQs related to the Computer Security (CSec) from MMLU (Hendrycks
et al., 2021b). For SECURE (Bhusal et al., 2024), we evaluate models using the MCQs types cov-
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ering MEAT, CWET, and KCV. Further, we evaluate all model on CTI-Bench (Alam et al., 2024)
(MCQ, Root Cause Mapping (RCM)), , and SecEval (ScEva) (Li et al., 2023) (MCQ). We provide
further details about each benchmark and metrics in Appendix C.3. Base models are evaluated with
5-shot prompting, and instruction-tuned models in 0-shot.

Table 5: Benchmark results for Base and Instruct Models. Values are Accuracy (%). Rows are
sorted by mean performance. Best results for 8B models are in bold, second-best are underlined.

Model Name Mean CTI-Bench CyMtc MMLU ScBen ScEva SECURE

MCQ RCM 500 CSec En MCQ CWET KCV MEAT

Base Model Evaluation (5-shot)

Llama-3.1-8B 75.44 61.12 65.80 84.20 83.00 72.80 54.27 86.34 83.73 87.72
Foundation-Sec-8B 76.90 62.40 75.40 86.60 80.00 69.86 55.64 88.01 84.38 89.78
Qwen3-8B-Base 80.81 68.80 63.50 92.00 83.00 82.84 75.60 92.70 75.05 93.81

RedSage-8B-CFW 82.66 68.40 67.60 93.80 86.00 83.62 76.10 93.33 81.34 93.72
RedSage-8B-Seed 84.45 70.80 78.60 92.20 88.00 81.61 75.96 93.12 85.47 94.28
RedSage-8B-Base 84.56 71.04 78.40 92.60 87.00 81.76 75.83 93.22 87.20 94.00

Instruct Model Evaluation (0-shot)

Lily-Cybersecurity-7B-v0.2 55.74 30.04 43.60 65.20 68.00 57.65 39.72 72.99 49.67 74.79
Llama-3.1-8B-Instruct 68.52 58.24 58.30 82.80 72.00 59.66 35.37 84.98 82.86 82.47
Llama-Primus-Merged 71.23 55.92 68.50 83.80 76.00 64.91 39.31 86.13 82.65 83.88
Llama-Primus-Base 71.69 52.32 68.50 83.80 79.00 63.68 61.15 88.01 65.08 83.69
DeepHat-V1-7B 75.44 62.08 68.20 86.00 74.00 70.63 56.65 87.07 86.77 87.54
Foundation-Sec-8B-Instruct 75.44 63.24 69.40 83.00 76.00 68.78 65.46 85.82 82.00 85.29
Qwen3-8B 75.71 62.76 54.00 88.60 76.00 73.26 65.46 88.11 87.42 85.75

RedSage-8B-Ins 81.30 70.56 76.70 89.80 78.00 79.91 72.48 91.45 81.34 91.47
RedSage-8B-DPO 81.10 70.84 70.60 90.00 79.00 80.06 74.22 91.35 82.86 91.00

Larger Instruct and Proprietary Model Evaluation (0-shot)

Qwen3-32B 82.31 70.04 65.60 91.80 84.00 84.23 76.23 89.46 89.37 90.06
GPT-5 86.29 76.48 74.20 95.60 86.00 87.48 83.03 92.70 88.72 92.41

Analysis. Across related cybersecurity benchmarks, RedSage base models improve over Qwen3-
8B-Base (80.81%) by up to +3.75 points. CPT with CFW leads on SecBench (83.62), CyMtc
(93.80), and CWET (93.33), raising the mean by +1.85. CPT with Seed excels on CTI-RCM (78.60),
MMLU-CSec (88.00), and MEAT (94.28), lifting the mean by +3.64. Combining both yields the
best overall mean (84.56) and top scores on CTI-MCQ (71.04) and KCV (87.20). In the 0-shot
instruct setting, RedSage surpasses Qwen3-8B (75.71%) by +5.39 (DPO) to +5.59 (Ins). Except
for Lily-Cybersecurity, all domain-tuned baselines outperform Llama-3.1-8B-Instruct, though still
lag behind RedSage. Despite having far fewer parameters, RedSage comes close to Qwen3-32B
(82.31 mean, only about +1 point higher) and trails GPT-5 (86.29 mean, roughly +5 points higher),
highlighting strong efficiency relative to much larger models. These results show that CyberFineWeb
and Seed provide complementary strengths, while different post-training strategies specialize across
tasks, together setting new state-of-the-art performance in cybersecurity LLM evaluation.

4.3 EVALUATION RESULTS ON GENERAL BENCHMARKS

We use benchmarks from the Open LLM Leaderboard in Lighteval, including ARC-Challenge
(ARC-C) (Clark et al., 2018), HellaSwag (HSwag) (Zellers et al., 2019), TruthfulQA (TQA) (Lin
et al., 2021), MMLU (Hendrycks et al., 2021a), WinoGrande (WinoG) (Sakaguchi et al., 2020),
GSM8K (Cobbe et al., 2021), and IFEval (Zhou et al., 2023). Results in Tab. 6 show our instruction-
tuned models achieves competitive results on general tasks, surpassing baselines by a clear margin.
Benchmark configurations and evaluation metrics are provided in Appendix C.4.

Analysis Among base models, Qwen3-8B-Base is strongest overall (70.86) and leads MMLU
(78.73) and ARC-C (68.09), while Llama-3.1-8B tops HSwag (82.08) and WinoG (75.30). Red-
Sage bases are competitive in mean (69.23–69.58) and achieve task highs, including best GSM8K
(82.34, Seed) and second on MMLU (78.63, CFW) and ARC-C (66.72, CFW), where the slight
drop may stem from our FineWeb-Edu general-knowledge replay strategy. After instruction tun-
ing, RedSage attains the best overall mean with DPO (74.33) and second with Ins (73.34), setting
new highs on ARC-C (71.76, DPO), GSM8K (86.05, Ins), MMLU (77.38, Ins), and leading WinoG
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Table 6: Open LLM Leaderboard Benchmarks. All values are accuracy (%). Bold numbers indicate
the best result for 8B models and underlined numbers indicate the second best.

Model Name Mean MMLU ARC-C GSM8K HSwag TQA WinoG IFEvl
Base Model Evaluation (Mean excludes IFEval)

Llama-3.1-8B 61.15 66.31 58.19 49.05 82.08 35.98 75.30 —
Foundation-Sec-8B 60.24 63.62 58.45 46.17 81.32 38.71 73.16 —
Qwen3-8B-Base 70.86 78.73 68.09 81.73 79.62 43.84 73.16 —

RedSage-8B-CFW 69.31 78.63 66.72 81.12 79.26 38.09 72.06 —
RedSage-8B-Seed 69.58 78.18 65.19 82.34 77.76 42.44 71.59 —
RedSage-8B-Base 69.23 77.80 65.53 82.03 77.96 42.19 69.85 —

Instruct Model Evaluation (Mean includes IFEval)

Lily-Cybersecurity-7B-v0.2 56.98 56.49 58.96 30.86 80.94 48.53 72.06 50.99
Llama-Primus-Base 64.82 65.09 51.19 71.80 79.49 44.62 72.69 68.85
DeepHat-V1-7B 64.89 69.53 57.17 77.94 74.80 33.17 69.06 72.58
Qwen3-8B 65.92 73.59 62.54 75.66 56.70 45.23 62.51 85.21
Llama-Primus-Merged 66.71 66.17 53.07 75.28 79.07 46.52 73.24 73.58
Llama-3.1-8B-Instruct 68.20 67.29 57.51 77.41 78.91 45.93 72.61 77.75
Foundation-Sec-8B-Instruct 69.28 64.11 63.91 77.79 81.35 53.15 68.51 76.17

RedSage-8B-Ins 73.34 77.38 69.62 86.05 79.00 47.75 73.64 79.97
RedSage-8B-DPO 74.33 77.07 71.76 82.71 79.87 52.47 73.01 83.44

Larger Instruct and Proprietary Model Evaluation

Qwen3-32B 73.17 82.11 69.28 87.49 70.93 48.17 65.98 88.26
GPT-5 91.07 91.4 95.31 91.36 94.85 87.10 87.85 89.60

IFEval (Instruction-Following Eval) is excluded from base models as it is designed for instruct-tuned models.

(73.64, Ins). Foundation-Sec-8B-Instruct leads HSwag (81.35) and TQA (53.15), and Qwen3-8B
leads IFEval (85.21), with RedSage-DPO close (83.44). For larger and proprietary models, the per-
formance gap widens: GPT-5 reaches a 91.07 mean accuracy, but RedSage-8B-DPO still surpasses
Qwen3-32B (74.33 vs. 73.17) due to gains on HellaSwag, TQA, and WinoGrande, which empha-
size commonsense reasoning and factuality. These patterns indicate complementary effects: Seed
boosts math reasoning (GSM8K), CFW strengthens general knowledge and reasoning (MMLU and
ARC-C), and DPO improves instruction-following (IFEvl), while RedSage remains competitive on
general tasks despite cybersecurity tuning. Importantly, the 8B-scale RedSage model can be de-
ployed locally on consumer-grade GPUs, enabling privacy-preserving on-premise use.

5 DISCUSSION AND LIMITATIONS

The data pipeline, which leverages LLM-generated content and verification, scales effectively but
may still propagate biases or inaccuracies despite screening. Nevertheless, our benchmark extends
existing cybersecurity evaluations, fills missing dimensions, and offers value to the community.
Finally, as the model incorporates offensive security knowledge, it carries an inherent risk of misuse.
While such dual-use concerns are intrinsic in cybersecurity research, we emphasize the importance
of responsible application and good security practices to promote ethical use.

6 CONCLUSION

We presented REDSAGE, an open cybersecurity assistant that combines a large-scale pretraining cor-
pus (CYBERFINEWEB, 11.7B tokens), a curated seed of authoritative resources (REDSAGE-SEED,
29K items, 150M tokens), and 266K augmented dialogues for supervised fine-tuning, together with
REDSAGE-BENCH, a 30K-question benchmark spanning knowledge, skills, and tool use. At the 8B
scale, REDSAGE achieves state-of-the-art results, surpassing baselines by up to +5.9 points on cy-
bersecurity tasks and +5.0 on general LLM benchmarks, while avoiding the post-tuning degradation
observed in prior models. Because RedSage runs at 8B, it supports privacy-preserving, on-prem de-
ployment on consumer-grade GPUs, enabling practical use without relying on cloud inference. We
will release all models, datasets, and code to support reproducibility and accelerate open research
on practical and domain-specialized AI assistants for cybersecurity.
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7 ETHICS STATEMENT

This work adheres to the ICLR Code of Ethics. All datasets used in this study were derived exclu-
sively from publicly available and internet-accessible sources. Our large-scale pretraining corpus
builds directly on prior work that already applied extensive filtering, deduplication, and removal of
personally identifiable information (PII). We further applied additional quality checks to ensure that
the data contain only non-sensitive and appropriately licensed content.

We note that some components of the curated REDSAGE datasets may include publicly available
but copyrighted resources (e.g., educational portals, online tutorials, or news articles). Such content
was used solely for non-commercial academic research, and we will not redistribute these resources
without obtaining the necessary permissions from the rights holders. Only aggregated statistics are
reported in this paper, and any public release of datasets will exclude copyrighted material unless
explicit approval has been secured.

As part of the writing process, we used large language models responsibly and only for editorial
assistance (e.g., polishing phrasing, improving readability, and checking grammar).

The REDSAGE models are released strictly for research purposes and not intended for deployment
in real-world security operations without additional safeguards. To support responsible use, we will
make models, datasets, and code openly available under research-friendly licenses with clear docu-
mentation and usage guidelines, promoting transparency, reproducibility, and community benefit.

8 REPRODUCIBILITY STATEMENT

We are committed to advancing reproducibility and open research in cybersecurity-oriented LLMs
by releasing our datasets, models, and code. The collection and augmentation of our datasets for
domain-aware pre- and post-training are described in Sec. 3, with detailed descriptions, statistics,
and implementation details (including prompt templates) provided in Appendix A. Model training
procedures are presented in Sec. 3.4, with further implementation details in Appendix B.

Our models are trained using the Axolotl framework (Axolotl, 2023), which facilitates direct repli-
cation through reusable configuration files; users need only replace the base model and dataset. All
hyperparameters are fully specified in Appendix B. For evaluation, we implement all benchmarks
using the HuggingFace LightEval framework (Habib et al., 2023), ensuring reproducible results and
supporting evaluation of arbitrary LLMs by specifying the benchmark configuration. Our evaluation
protocol, compared models, and benchmark details are documented in Sec. 4 and Appendix C. All
datasets, code, and evaluation pipelines will be released as open-source.
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Nathan Habib, Clémentine Fourrier, Hynek Kydlíček, Thomas Wolf, and Lewis Tunstall. Lighteval:
A lightweight framework for llm evaluation, 2023. URL https://github.com/hugging
face/lighteval.

HackTricks. Hacktricks: Hacking techniques and tricks. https://book.hacktricks.wiki
/en/index.html, 2025. Accessed: 2025-09-01.

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Spencer Frazier, Saurav Kadavath, Dawn
Song, and Jacob Steinhardt. Measuring massive multitask language understanding. arXiv preprint
arXiv:2009.03300, 2021a. URL https://arxiv.org/abs/2009.03300.

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and Jacob
Steinhardt. Measuring massive multitask language understanding. Proceedings of the Interna-
tional Conference on Learning Representations (ICLR), 2021b.

12

https://huggingface.co/blog/smollm3
https://huggingface.co/blog/smollm3
https://doi.ieeecomputersociety.org/10.1109/ACSAC63791.2024.00019
https://doi.ieeecomputersociety.org/10.1109/ACSAC63791.2024.00019
https://www.hackingarticles.in/
https://www.hackingarticles.in/
https://arxiv.org/abs/1803.05457
https://arxiv.org/abs/2110.14168
https://www.deephat.ai/
https://www.geeksforgeeks.org/
https://security.googleblog.com/2025/04/google-launches-sec-gemini-v1-new.html
https://security.googleblog.com/2025/04/google-launches-sec-gemini-v1-new.html
https://aclanthology.org/2025.acl-long.1578
https://aclanthology.org/2025.acl-long.1578
https://github.com/huggingface/lighteval
https://github.com/huggingface/lighteval
https://book.hacktricks.wiki/en/index.html
https://book.hacktricks.wiki/en/index.html
https://arxiv.org/abs/2009.03300


648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Adam Ibrahim, Benjamin Thérien, Kshitij Gupta, Mats Leon Richter, Quentin Gregory Anthony,
Eugene Belilovsky, Timothée Lesort, and Irina Rish. Simple and scalable strategies to continually
pre-train large language models. Transactions on Machine Learning Research (TMLR), 2024.
URL https://openreview.net/forum?id=DimPeeCxKO.

IETF. Request for comments (rfc) series. https://www.rfc-editor.org/, 2025. Accessed:
2025-09-24.

(ISC)2. 2022 cybersecurity workforce study. Technical report, (ISC)2, 2022.

Qixuan Jing, Yuhao Chen, Hailin Huang, Lingzhi Wang, Zhiyu Min, Chenhao Lin, Jie Zhang,
Tianwei Zhang, and Xinyu Xing. Secbench: A comprehensive multi-dimensional benchmarking
dataset for llms in cybersecurity, 2024. URL https://arxiv.org/abs/2412.20787.

Kali. Kali tools — official kali linux penetration testing utilities. https://www.kali.org/t
ools/, 2025. Accessed: 2025-09-01.

Paul Kassianik, Baturay Saglam, Alexander Chen, Blaine Nelson, Anu Vellore, Massimo Au-
fiero, Fraser Burch, Dhruv Kedia, Avi Zohary, Sajana Weerawardhena, Aman Priyanshu, Adam
Swanda, Amy Chang, Hyrum Anderson, Kojin Oshiba, Omar Santos, Yaron Singer, and Amin
Karbasi. Foundation-sec-8b: A cybersecurity-focused llm built on llama 3.1. Technical report,
Foundation AI – Cisco Systems Inc., 2025a. URL https://huggingface.co/fdtn-a
i/Foundation-Sec-8B. Technical Report.

Paul Kassianik, Baturay Saglam, Alexander Chen, Blaine Nelson, Anu Vellore, Massimo Au-
fiero, Fraser Burch, Dhruv Kedia, Avi Zohary, Sajana Weerawardhena, Aman Priyanshu, Adam
Swanda, Amy Chang, Hyrum Anderson, Kojin Oshiba, Omar Santos, Yaron Singer, and
Amin Karbasi. Llama-3.1-foundationai-securityllm-base-8b technical report. arXiv preprint
arXiv:2504.21039, 2025b. doi: 10.48550/arXiv.2504.21039. URL https://arxiv.or
g/abs/2504.21039.

Ansam Khraisat, Ammar Alazab, Mamoun Alazab, et al. Comprehensive review on cybersecurity:
modern threats and advanced defense strategies. Journal of Network and Computer Applications,
240:103745, 2024.

Nathan Lambert, Jacob Morrison, Valentina Pyatkin, Shengyi Huang, Hamish Ivison, Faeze Brah-
man, Lester James V. Miranda, Alisa Liu, Nouha Dziri, Shane Lyu, Yuling Gu, Saumya Ma-
lik, Victoria Graf, Jena D. Hwang, Jiangjiang Yang, Ronan Le Bras, Oyvind Tafjord, Chris
Wilhelm, Luca Soldaini, Noah A. Smith, Yizhong Wang, Pradeep Dasigi, and Hannaneh Ha-
jishirzi. Tulu 3: Pushing frontiers in open language model post-training, 2025. URL https:
//arxiv.org/abs/2411.15124.

Guancheng Li, Yifeng Li, Wang Guannan, Haoyu Yang, and Yang Yu. Seceval: A
comprehensive benchmark for evaluating cybersecurity knowledge of foundation models.
https://github.com/XuanwuAI/SecEval, 2023.

Stephanie Lin, Jacob Hilton, and Owain Evans. Truthfulqa: Measuring how models mimic human
falsehoods. arXiv preprint arXiv:2109.07958, 2021. URL https://arxiv.org/abs/21
09.07958.

linux.die.net. Linux man pages — linux.die.net manual repository. https://linux.die.ne
t/man/, 2025. Accessed: 2025-09-01.

Zefang Liu, Jialei Shi, and John F Buford. Cyberbench: A multi-task benchmark for evaluating
large language models in cybersecurity. In AAAI 2024 Workshop on Artificial Intelligence for
Cyber Security, 2024.

Anton Lozhkov, Loubna Ben Allal, Leandro von Werra, and Thomas Wolf. Fineweb-edu: the finest
collection of educational content, 2024. URL https://huggingface.co/datasets/Hu
ggingFaceFW/fineweb-edu.

Arindam Mitra, Luciano Del Corro, Guoqing Zheng, Shweti Mahajan, Dany Rouhana, Andres Co-
das, Yadong Lu, Wei-ge Chen, Olga Vrousgos, Corby Rosset, et al. Agentinstruct: Toward gen-
erative teaching with agentic flows. arXiv preprint arXiv:2407.03502, 2024.

13

https://openreview.net/forum?id=DimPeeCxKO
https://www.rfc-editor.org/
https://arxiv.org/abs/2412.20787
https://www.kali.org/tools/
https://www.kali.org/tools/
https://huggingface.co/fdtn-ai/Foundation-Sec-8B
https://huggingface.co/fdtn-ai/Foundation-Sec-8B
https://arxiv.org/abs/2504.21039
https://arxiv.org/abs/2504.21039
https://arxiv.org/abs/2411.15124
https://arxiv.org/abs/2411.15124
https://arxiv.org/abs/2109.07958
https://arxiv.org/abs/2109.07958
https://linux.die.net/man/
https://linux.die.net/man/
https://huggingface.co/datasets/HuggingFaceFW/fineweb-edu
https://huggingface.co/datasets/HuggingFaceFW/fineweb-edu


702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

MITRE Corporation. MITRE ATT&CK: Adversarial tactics, techniques, and common knowledge.
https://attack.mitre.org/, 2025a. Accessed: 2025-09-01.

MITRE Corporation. CAPEC: Common attack pattern enumeration and classification. https:
//capec.mitre.org/, 2025b. Accessed: 2025-09-01.

MITRE Corporation. CWE: Common weakness enumeration. https://cwe.mitre.org/,
2025c. Accessed: 2025-09-01.

NIST. Nist cybersecurity publications. https://csrc.nist.gov/publications, 2025a.
Accessed: 2025-09-24.

NIST. National vulnerability database (nvd). https://nvd.nist.gov, 2025b. Accessed:
2025-09-24.

Null Byte. Null byte — ethical hacking tutorials and white-hat guides. https://null-byte.
wonderhowto.com/, 2025. Accessed: 2025-09-01.

OpenAI. Gpt-5 system card. Technical report, OpenAI, San Francisco, CA, August 2025. URL
https://cdn.openai.com/gpt-5-system-card.pdf. Version dated August 13,
2025.

Youngja Park and Weiqiu You. A pretrained language model for cyber threat intelligence. In Pro-
ceedings of the 2023 Conference on Empirical Methods in Natural Language Processing: Indus-
try Track, pp. 113–122, 2023.

Elijah Pelofske, Lorie M Liebrock, Vincent Urias, et al. An enhanced machine learning topic clas-
sification methodology for cybersecurity. In CS & IT Conference Proceedings, volume 11. CS &
IT Conference Proceedings, 2021.
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A DATASET DETAILS

This section details the datasets we created and curated for training our LLM. All token counts are
computed with the GPT-2 tokenizer3, following the conventions of FineWeb (Penedo et al., 2024b).

A.1 CYBERFINEWEB

CyberFineWeb is derived from the original FineWeb dataset (Penedo et al., 2024b)4, a large-scale,
cleaned web corpus aggregated from Common Crawl. Although FineWeb is continuously updated,
for our development we used all subsets released between Summer 2013 (CC-MAIN-2013-20) and
December 2024 (CC-MAIN-2024-51). This selection comprises 104 subsets, totaling 46,934 GB of
data and 17.2 trillion tokens.

Text Classification Model To extract the cybersecurity corpus from FineWeb, we trained a text clas-
sification model based on ModernBERT-base (Warner et al., 2024), a state-of-the-art transformer
encoder. The training data came from the Cybersecurity Topic Classification dataset (Pelofske et al.,
2021), which contains 9.27M labeled training samples (cybersecurity vs. non-cybersecurity) col-
lected from Reddit, StackExchange, and arXiv, along with 459K validation samples from web arti-
cles. The labels in this dataset originate from forum categories, tags, and keyword metadata rather
than from LLM-generated annotations. To reduce context ambiguity, we filtered out very short
texts, yielding 4.62M training samples and 2.46K validation samples. The model was trained with
the Adam optimizer for 2 epochs using a learning rate of 2e-5 and a 10% warmup ratio. On the vali-
dation set, the model achieved 93.8% precision, 90.2% recall, 91.4 % F1 score and 97.3% accuracy.

Text Filtering We applied the trained classifier to each subset of FineWeb. Figure 7 shows the
number of identified cybersecurity samples and their relative proportion across all subsets ordered
by crawl date. The results indicate a steady increase in cybersecurity-related content on the web,
underscoring the growing importance of this domain. In total, this filtering process produced approx-
imately 125M documents (∼89.8B tokens), corresponding to about 0.77% of the original FineWeb.

Figure 7: Number of filtered cybersecurity samples and their ratio over time across FineWeb subsets.

General Knowledge Integration Due to compute constraints, we partitioned the dataset into 20
chronological chunks. To mitigate catastrophic forgetting of general-domain knowledge, we first
select a fixed 100B-token subset from FineWeb-Edu (Lozhkov et al., 2024). For each chunk, we
then randomly resampled data from this subset to match 30% of the chunk’s size, ensuring balanced
exposure to general-domain content throughout training.

Deduplication Although FineWeb includes text deduplication in its pipeline, it is applied only
within individual CommonCrawl dumps. We applied global deduplication across our mixed cor-

3GPT-2: openai-community/gpt2
4FineWeb Datasets: HuggingFaceFW/fineweb
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pus using MinHash-LSH implemented in DataTrove (Penedo et al., 2024c), with 64-bit precision,
14 buckets, and 8 hashes per bucket. This reduced the corpus size by 58.4% in documents (to ∼52M)
and by 47.9% in tokens (to ∼46.8B).

Final Corpus To fit our training budget, we selected the latest 5 chunks from the mixed, dedupli-
cated data. This formed our final pretraining corpus, containing ∼13M documents (∼11.7B tokens).
A summary of the dataset filtering and processing steps from FineWeb to the final CyberFineWeb
corpus is provided in Table 7.

Table 7: Summary of dataset filtering and processing stages from FineWeb to the final Cy-
berFineWeb corpus. Retention percentages are relative to the original FineWeb.

Stage Documents Tokens Retention (vs. FineWeb)
FineWeb (2013–2024, 104 subsets) ∼24.5B ∼17.2T 100%
CyberFineWeb (after filtering) ∼125M ∼89.8B 0.51% docs / 0.52% tokens
General-mixing + deduplication (20 chunks) ∼52M ∼46.8B 0.21% docs / 0.27% tokens
Final CyberFineWeb corpus (latest 5 chunks) ∼13M ∼11.7B 0.053% docs / 0.068% tokens

A.2 REDSAGE SEED

RedSage Seed. Our curated collection of publicly available cybersecurity resources is designed to
provide high-quality pretraining data in structured Markdown format. We excluded private resources
such as books to ensure that all data are openly accessible.

Some resources, such as MITRE ATT&CK, CAPEC, and CWE (MITRE Corporation, 2025a;b;c),
are distributed as XML files, which we parsed into structured Markdown while preserving the
original website organization. Other resources, such as tldr-pages (tldr pages, 2025) and
kali-tools (Kali, 2025), were already available in Markdown format. For curated webpages,
we crawled and processed them using Jina ReaderLM-v2 (Wang et al., 2025) to convert the HTML
content into Markdown.

The RedSage-Seed corpus is organized into three main categories: knowledge, skills, and tools.
Within knowledge, we distinguish between (i) General, which includes sources such as Wikipedia
and roadmap.sh (roadmap.sh, 2025), and (ii) Frameworks, which cover structured knowledge bases
from MITRE and the OWASP Foundation (The OWASP Foundation, 2025). For skills, we cur-
rently focus on offensive security, curating resources such as offensive tricks (HackTricks, 2025),
articles (Chandel, 2025), community tutorial (Null Byte, 2025), and CTF write-ups (0xdf, 2025).
Finally, tools are divided into (i) CLI, which includes multi-platform command-line resources such
as tldr-pages (tldr pages, 2025) and Unix man pages, and (ii) Kali Linux Tools (Kali, 2025),
which provide documentation for a curated set of cybersecurity tools. Dataset statistics and detailed
categorization are presented in Table 8. These resources also serve as the foundation for our agentic
augmented cybersecurity conversations and benchmarking.

RedSage Dump. To complement RedSage-Seed and expand the diversity of high-quality data for
cybersecurity pretraining, we curated additional publicly available resources under the RedSage
Dump collection. This corpus aggregates technical documents, standards, and domain-specific re-
ports that are particularly relevant for developing a cybersecurity assistant. Specifically, it includes:
(i) Computer Education Portals (GeeksforGeeks, 2008), which provide structured tutorials and train-
ing materials on computer science and cybersecurity fundamentals; (ii) Cybersecurity News (The-
HackerNews, 2025), capturing timely reports and analyses of emerging threats and incidents; (iii)
RFC Entries (IETF, 2025), representing standardized internet protocols and technical specifications;
(iv) NIST Publications (NIST, 2025a), offering authoritative cybersecurity and compliance guide-
lines; (v) Primus Seed (Yu et al., 2025), a curated collection of cybersecurity resources originally
used to pretrain the Primus model; and (vi) the National Vulnerability Database (NVD) (NIST,
2025b), which provides structured vulnerability advisories.

Statistics for these sources are summarized in Table 9. Overall, the RedSage Dump contains 459K
documents with a total of ∼700M tokens. This collection complements RedSage-Seed by empha-
sizing technical standards, structured vulnerability data, and up-to-date cybersecurity reporting.
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Table 8: RedSage Seed Statistics by Category: Samples and Tokens

Configuration Samples Avg. Tokens Total Tokens Min Tokens Max Tokens
Knowledge – General
Cybersecurity Wikis 6,636 2,304.77 15,294,454 39 36,812
Cybersecurity Roadmaps 288 3,671.35 1,057,349 86 171,839

Knowledge – Frameworks
MITRE ATT&CK 1,655 4,806.38 7,954,559 366 96,808
MITRE CAPEC 589 654.42 385,453 61 2,444
MITRE CWE 1,346 1,222.46 1,645,431 140 10,679
OWASP 125 4,313.63 539,204 436 17,253

Skill – Offensive
Offensive Tricks 1,050 2,924.06 3,070,263 116 29,902
Hacking Articles 1,384 13,919.66 19,264,809 377 190,391
Null Byte Tutorials 1,002 4,402.07 4,410,874 278 79,225
CTF Write-ups 596 18,471.77 11,009,175 185 83,759

Tools – CLI
TLDR Pages (English) 5,335 11,215.81 59,836,346 35 543,349
Unix Man Pages 7,608 2,509.00 19,088,472 45 379,876

Tools – Kali
Kali Documentation 265 1,568.08 415,541 53 17,983
Kali Tools 758 7,722.30 5,853,503 169 709,750

Total (dataset) 28,637 5,231.00 149,825,433 35 709,750

Table 9: RedSage Dump Statistics

Source Samples Avg. Tokens Total Tokens
Computer Education Portals 160,355 1,986 318,503,184
Cybersecurity News 13,959 1,431 19,968,138
RFC Entries 9,674 20,994 203,093,862
NIST Publications 1,015 29,715 30,161,170
Primus Seed (Website, Mitre) 80,336 849 68,233,498
National Vulnerability Database (NVD) 194,134 310 60,173,508

Total 459,473 1,524 700,133,360

A.3 REDSAGE CONVERSATION

Agentic Data Augmentation. Our supervised finetuning (SFT) cybersecurity datasets are generated
using an agentic augmentation pipeline. We first segment the RedSage-Seed corpus into chunks of
up to 32,768 tokens using a Markdown text splitter. These chunks serve as the input to the planner
agent, which determines appropriate augmentation strategies. Within this pipeline, we adopt Llama-
3.3-70B as the teacher model, as it was among the strongest open-source instruction-tuned models
that could be run locally given our available compute during the data creation phase.

Planner Agent. For each seed data chunk, the planner agent analyzes the content and proposes
multiple skill sets, each associated with one or more augmentation types and descriptive transfor-
mations. This design enables diverse augmentation paths from the same source material, ensuring
broad coverage of cybersecurity skills and tasks. Below is our planner agent’s system prompt.

Planner Agent’s System Prompt

You are an Augmentation Type Planner Agent specializing in cybersecurity and penetration testing.
Your role is to analyze a provided chunk of seed data and produce a structured, comprehensive list of
possible skill sets and augmentation types. The resulting suggestions will be used by a Data Augmen-
tation Agent to generate conversational training data for a chatbot. Keep in mind that the final output
should lend itself well to turn-based dialogues, persona-based Q&A, or scenario simulations typical in
a chatbot environment.
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Objective:
Given a chunk of preprocessed seed data related to cybersecurity and penetration testing, generate
a well-structured list of skill sets and corresponding augmentation types. The suggestions should
improve dataset quality, diversity, and relevance, and be easily adaptable into a conversational format
(e.g., question–answer pairs, scenario-based dialogues, guided reasoning steps). Leverage the seed
data’s domain context to ensure accuracy and practical utility.
Input:
• Seed Data: A chunk of preprocessed markdown-formatted data related to cybersecurity and pene-

tration testing.

Output:
• Structured List of Skill Sets and Augmentation Types (in JSON format):

– Include multiple skill sets, each with several augmentation types.
– For each augmentation type, provide a brief description that clarifies its intended transformation

and explains how it could be adapted into a conversational format for a chatbot.

Guidelines:

1. Relevance and Grounding:

• Ensure all skill sets and augmentation types are relevant to cybersecurity and penetration test-
ing.

• Ground the augmentations in the seed data to maintain accuracy. If the seed data mentions
specific tools, vulnerabilities, or scenarios, align the augmentation suggestions accordingly.

2. Diversity and Coverage:

• Suggest a wide range of augmentation strategies reflecting various penetration testing phases:
reconnaissance, enumeration, exploitation, post-exploitation, mitigation, and so forth.

• Include traditional data transformations (e.g., paraphrasing) and advanced, scenario-based aug-
mentations (e.g., simulating a penetration test conversation between a tester and a security an-
alyst).

3. Conversational Adaptability:

• Consider how each augmentation could be represented in a chatbot-friendly format (e.g., multi-
turn Q&A, narrative scenarios, role-based conversations, or step-by-step reasoning).

• Example: a vulnerability analysis could become a Q&A where the chatbot explains the vulner-
ability to a novice, or a roleplay between red-teamer and blue-teamer discussing mitigation.

4. Creativity and Innovation:

• Introduce new skill sets or augmentation ideas beyond predefined examples.
• Encourage creative transformations that leverage the chatbot setting (persona-based coaching,

guided threat mapping dialogues, multi-turn explorations).

5. Detail and Clarity:

• Each augmentation type should have a short description explaining what it does, how it relates
to the seed data, and how it can be adapted into a conversational format.

6. Format Requirements:

• Return output in JSON format with the following structure:

{
" s k i l l _ s e t s " : [

{
" name " : "< S k i l l S e t Name>" ,
" a u g m e n t a t i o n _ t y p e s " : [

{
" t y p e " : "< D e s c r i p t i v e Augmenta t ion Type Name or T i t l e >" ,
" d e s c r i p t i o n " : "< B r i e f e x p l a n a t i o n >"

} ,
{

" t y p e " : "< Another Augmenta t ion Type >" ,
" d e s c r i p t i o n " : "< E x p l a n a t i o n >"

}
]
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}
]

}

Example Categories for Inspiration (Not Exhaustive):
• Tool Command Generation: Turn tool usage into Q&A or guided instructions.

• Vulnerability Analysis: Conversational explanations (senior engineer teaching junior tester).

• Attack Surface Enumeration: Brainstorming dialogue between red teamers.

• Exploitation Workflows: Multi-turn walkthroughs of exploitation stages.

• Post-Exploitation Techniques: Conversations explaining persistence and mitigation.

• Threat Mapping: Align findings with MITRE ATT&CK in dialogue form.

• Mitigation Recommendations: Remediation advice in Q&A format.

• Scenario Simulation: Role-based pen-test scenarios (e.g., tester vs client rep).

• Step-by-Step Reasoning: Guided reasoning revealed turn by turn.

• Edge-Case Generation: Ambiguity/error handling dialogues.

• Reading Comprehension: Extracting and explaining vulnerability advisories.

Task:
Use the provided seed data to produce a JSON-structured list of skill sets and augmentation types.
Ensure augmentations can be easily converted into conversational formats. Suggest as many diverse
and creative transformations as possible. The output must follow the specified JSON format; otherwise,
it will be rejected.

For example, given the following seed data:

arp-scan

Homepage: https://github.com/royhills/arp-scan
Repository: https://salsa.debian.org/pkg-security-team/arp-scan
Architectures: any
Version: 1.10.0-2
Metapackages: kali-linux-default, kali-linux-everything, kali-linux-headless, kali-linux-large

arp-scan
arp-scan is a command-line tool that uses the ARP protocol to discover and fingerprint IP hosts on the
local network. It is available for Linux and BSD under the GPL licence.
Installed size: 1.53 MB
How to install: sudo apt install arp-scan

Dependencies:
• libc6
• libcap2
• libpcap0.8t64

arp-fingerprint
Fingerprint a system using ARP

r o o t @ k a l i :~# arp − f i n g e r p r i n t −h
Usage : arp − f i n g e r p r i n t [ o p t i o n s ] < t a r g e t >
F i n g e r p r i n t t h e t a r g e t sys tem u s i n g arp − scan .

' o p t i o n s ' i s one o r more o f :
−h D i s p l a y t h i s usage message .
−v Give v e r b o s e p r o g r e s s messages .
−o < o p t i o n − s t r i n g > Pas s s p e c i f i e d o p t i o n s t o arp − scan
− l F i n g e r p r i n t a l l t a r g e t s i n t h e l o c a l n e t .

arp-scan
Send ARP requests to target hosts and display responses
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r o o t @ k a l i :~# arp − scan −h
Usage : arp − scan [ o p t i o n s ] [ h o s t s . . . ]

T a r g e t h o s t s must be s p e c i f i e d on t h e command l i n e u n l e s s t h e
−− f i l e o r

−− l o c a l n e t o p t i o n i s used .

arp − scan u s e s raw s o c k e t s , which r e q u i r e s p r i v i l e g e s on some
s y s t e m s :

Linux wi th POSIX . 1 e c a p a b i l i t i e s s u p p o r t u s i n g l i b c a p :
arp − scan i s c a p a b i l i t i e s aware . I t r e q u i r e s CAP_NET_RAW i n

t h e p e r m i t t e d
s e t and on ly e n a b l e s t h a t c a p a b i l i t y f o r t h e r e q u i r e d

f u n c t i o n s .
BSD and macOS :

You need r e a d / w r i t e a c c e s s t o / dev / bpf *
Any o p e r a t i n g sys tem :

Running as r o o t o r SUID r o o t w i l l work on any OS b u t o t h e r
methods

a r e p r e f e r a b l e where p o s s i b l e .

T a r g e t s can be IPv4 a d d r e s s e s o r hos tnames . You can a l s o use CIDR
n o t a t i o n

( 1 0 . 0 . 0 . 0 / 2 4 ) ( ne twork and b r o a d c a s t i n c l u d e d ) , r a n g e s
( 1 0 . 0 . 0 . 1 − 1 0 . 0 . 0 . 1 0 ) ,

and ne twork : mask ( 1 0 . 0 . 0 . 0 : 2 5 5 . 2 5 5 . 2 5 5 . 0 ) .

O p t i o n s :

The d a t a t y p e f o r o p t i o n a rgumen t s i s shown by a l e t t e r i n a n g l e
b r a c k e t s :

<s > C h a r a c t e r s t r i n g .
< i > Decimal i n t e g e r , o r hex i f p r e c e e d e d by 0x e . g . 2048 or 0 x800 .
<f > F l o a t i n g p o i n t d e c i m a l number .
<m> MAC a d d r e s s , e . g . 0 1 : 2 3 : 4 5 : 6 7 : 8 9 : ab o r 01−23−45−67−89− ab ( c a s e

i n s e n s i t i v e )
<a> IPv4 a d d r e s s e . g . 1 0 . 0 . 0 . 1
<h> Hex encoded b i n a r y d a t a . No l e a d i n g 0x . ( c a s e i n s e n s i t i v e ) .
<x> Something e l s e − s e e o p t i o n d e s c r i p t i o n .

G e n e r a l O p t i o n s :

−− h e l p o r −h D i s p l a y t h i s usage message and e x i t .

−− v e r b o s e o r −v D i s p l a y v e r b o s e p r o g r e s s messages .
Can be used t h a n once t o i n c r e a s e

v e r b o s i t y . Max=3 .

−− v e r s i o n o r −V D i s p l a y program v e r s i o n d e t a i l s and e x i t .
Shows t h e v e r s i o n , l i c e n s e d e t a i l s , l i b p c a p

v e r s i o n ,
and whe the r POSIX . 1 e c a p a b i l i t y s u p p o r t i s

i n c l u d e d .

−− i n t e r f a c e =<s > or − I <s > Use ne twork i n t e r f a c e <s > .
I f t h i s o p t i o n i s n o t s p e c i f i e d , arp − scan

w i l l s e a r c h
t h e sys tem i n t e r f a c e l i s t f o r t h e l o w e s t

numbered ,
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c o n f i g u r e d up i n t e r f a c e ( e x c l u d i n g
l o o p b a c k ) .

Host S e l e c t i o n :

−− f i l e =<s > or − f <s > Read hos tnames o r a d d r e s s e s from t h e
s p e c i f i e d f i l e

One name or a d d r e s s p a t t e r n p e r l i n e . Use
" −" f o r s t d i n .

−− l o c a l n e t o r − l G e n e r a t e a d d r e s s e s from i n t e r f a c e
c o n f i g u r a t i o n .

G e n e r a t e s l i s t from i n t e r f a c e a d d r e s s and
netmask

( ne twork and b r o a d c a s t i n c l u d e d ) . You
c a n n o t use t h e

−− f i l e o p t i o n o r g i v e t a r g e t s on t h e
command l i n e .

Use −− i n t e r f a c e t o s p e c i f y t h e i n t e r f a c e .

[ . . . Data i s t r immed f o r v i s u a l i z a t i o n . . . ]

The Planer Agent will output the following JSON:

Beautified JSON Example

{
"skill_sets": [
{
"name": "Network Discovery",
"augmentation_types": [
{
"type": "ARP Scan Simulation",
"description": "Simulate an ARP scan on a local network,

displaying IP and MAC addresses of responding hosts,
adaptable into a Q&A format where the chatbot explains
the process and results."

},
{
"type": "Host Fingerprinting",
"description": "Transform host fingerprinting data into a

conversational explanation, where a chatbot character
educates another on operating system and device
identification techniques."

}
]

},
{
"name": "Tool Command Generation",
"augmentation_types": [
{
"type": "arp-scan Command Crafting",
"description": "Generate `arp-scan` commands based on user

input (e.g., IP range, interface), and have the chatbot
walk the user through command construction and
execution."

},
{
"type": "Custom Vendor Mapping",
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"description": "Create a conversation where the chatbot
helps a user understand and customize vendor mapping
files for `arp-scan`, including explanations of MAC
addresses and vendors."

}
]

},
{
"name": "Output Analysis",
"augmentation_types": [
{
"type": "Result Interpretation",
"description": "Convert the output of `arp-scan` into a

guided interpretation session, where the chatbot helps
the user understand the results, including MAC
addresses, IP addresses, and potential security
implications."

},
{
"type": "Round-Trip Time Analysis",
"description": "Simulate a scenario where the chatbot

explains and analyzes the round-trip times of ARP
requests and responses, discussing network latency and
potential security considerations."

}
]

},
{
"name": "Configuration and Troubleshooting",
"augmentation_types": [
{
"type": "Interface Selection and Configuration",
"description": "Develop a conversation where the chatbot

assists in selecting and configuring network interfaces
for `arp-scan`, including troubleshooting common issues."

},
{
"type": "Error Handling and Debugging",
"description": "Create a scenario-based dialogue where the

chatbot helps a user debug and resolve common errors
encountered while using `arp-scan`, such as permission
issues or network connectivity problems."

}
]

}
]

}

Augmenter Agent Each plan produced by the Planner Agent will be transformed it into a detailed,
multi-turn conversation grounded in the seed data. Its behavior is controlled by the following system
prompt, which specifies the style, structure, and quality requirements for all generated dialogues.
Below is the system prompt used by the Augmenter Agent:

Data Augmentation Agent’s System Prompt

You are the System System Prompt for Data Augmentation Agent, specializing in cybersecurity
and penetration testing. Your goal is to create enriched synthetic conversation datasets based on
the provided seed data and augmentation types. All generated conversations must be:

• Thorough and in-depth
• Technically accurate and coherent
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• Presented in a fixed chat-like format
1. Preserve and Expand Seed Data
1. Study the seed data carefully to avoid losing any key information (e.g., vulnerability types, mitiga-

tion strategies, references).

2. Enhance the technical depth where possible—include domain-relevant details, best practices, or
real-world examples.

2. Apply Augmentation Types
1. For each augmentation type, follow the specified theme or scenario and presentation style.

2. Maintain consistent domain integrity and factual accuracy throughout.

3. Use Multi-Turn Conversation for Depth
1. Encourage multiple <|user|> prompts and <|assistant|> responses to explore deeper in-

sights.

2. In each <|assistant|> response, provide:

• Enumerated lists or bullet points where appropriate
• Step-by-step explanations (e.g., how an exploit works or how to mitigate it)
• Real-world scenarios or examples
• References to authoritative frameworks (e.g., OWASP, NIST 800-53)
• Actionable best practices (e.g., least privilege, secure coding guidelines)

4. Present Output in Fixed Conversation Format
All final outputs—regardless of the augmentation type—must follow:

---
<|start|>
<|title|>: [Conversation Title]
<|system|>: [System prompt for the custom assistant's persona, if

any; otherwise use "You are a helpful AI assistant."]
<|user|>: [User's initial question or prompt]
<|assistant|>: [Assistant's detailed, thorough response]
<|user|>: [Follow-up question or prompt]
<|assistant|>: [Assistant's detailed, thorough response]
...
<|end|>
---

• If multiple augmentation types are requested, produce a separate block for each, separated by --.

• Make sure that each conversation block is self-contained and coherent.
• Continue <|user|> / <|assistant|> turns if you need more depth or clarification.

5. Guidelines for High-Quality Responses
1. Incorporate Best Practices

• Always reference secure coding, principle of least privilege, and recognized standards (OWASP
Top Ten, PCI-DSS, NIST, etc.).

2. Stay Organized
• The assistant’s responses should be well-structured and easy to follow for the user.
• The responses will be rendered in Markdown, so use appropriate formatting (e.g., new lines
(\n\n), headings, lists, bold, italic, code blocks, etc.).

• Provide examples and analogies to simplify complex cybersecurity topics.

3. Deepen Explanations
• If describing an attack, walk through each step of the process (discovery, exploitation, post-

exploitation).
• If describing mitigations, offer code-level or configuration examples when relevant.

4. Address Common Pitfalls
• Mention typical errors in ACL usage or vulnerability oversight.
• Suggest how to avoid them.
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6. Tips for Better Conversations

1. Start Broad, Then Drill Down
• Answer the initial question thoroughly.
• Use follow-up <|user|> prompts to further clarify or expand (e.g., “Could you give a real-

world example?” or “Please provide a detailed checklist.”).

2. Encourage Summaries
• Summaries at the end of each conversation can help consolidate all key takeaways and recom-

mendations.

Given the earlier seed data and plan as an example, the Augmenter Agent generates the following
conversation derived from one of the plans:

Data Augmenter Output: Conversation Examples

---
<|start|>
<|title|>: Network Discovery with ARP Scan Simulation
<|system|>: You are a cybersecurity expert specializing in network

discovery and penetration testing.
<|user|>: I'm trying to understand how to use ARP scan to discover

hosts on my local network. Can you walk me through the process
and explain the results?

<|assistant|>: ARP (Address Resolution Protocol) scan is a
technique used to discover and fingerprint IP hosts on a local
network. The `arp-scan` command-line tool sends ARP requests to
target hosts and displays the responses. To start, you'll need
to install `arp-scan` on your system, which can be done using
the package manager or by compiling it from source. Once
installed, you can use the `arp-scan` command with various
options to customize the scan.

Here's an example of a basic ARP scan on the local network:
```bash
arp-scan -l

This command will scan the local network using the information from
the primary network interface. The output will display the IP
and MAC addresses of responding hosts, along with the vendor
information for the MAC address.

Lets break down the output:
Interface: eth0, datalink type: EN10MB (Ethernet): This line

indicates the network interface being used for the scan
and the type of data link.

Starting arp-scan 1.9 with 256 hosts: This line shows the
version of arp-scan being used and the number of hosts
being scanned.

172.16.193.1 00:50:56:c0:00:08 VMware, Inc.: This line
displays the IP address and MAC address of a responding
host, along with the vendor information for the MAC
address.

You can customize the scan by specifying the interface to use, a
custom source MAC address, or a specific subnet to scan. For
example:

arp-scan -I eth0 --srcaddr=DE:AD:BE:EF:CA:FE 192.168.86.0/24
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This command scans the subnet 192.168.86.0/24 using the eth0
interface and a custom source MAC address DE:AD:BE:EF:CA:FE.

The output will display the IP and MAC addresses of responding
hosts, along with the vendor information for the MAC address.

Do you have any specific questions about the ARP scan process or
the output?

<|user|>: Thats helpful, but Id like to know more about the options
available for customizing the scan. Can you explain some of the
common options used with arp-scan?

<|assistant|>: Certainly! arp-scan provides a wide range of options
to customize the scan. Here are some common options:

-I or --interface: Specify the network interface to use for
the scan. For example: arp-scan -I eth0

--srcaddr: Specify a custom source MAC address. For example:
arp-scan --srcaddr=DE:AD:BE:EF:CA:FE

--subnet: Specify a subnet to scan. For example: arp-scan
192.168.86.0/24

-r or --retry: Specify the number of retries for each host.
For example: arp-scan -r 3

-t or --timeout: Specify the timeout in milliseconds for
each host. For example: arp-scan -t 500

--resolve: Resolve responding addresses to hostnames. For
example: arp-scan --resolve

--quiet: Display minimal output for each responding host.
For example: arp-scan --quiet

These options can be combined to customize the scan. For example:

arp-scan -I eth0 --srcaddr=DE:AD:BE:EF:CA:FE --subnet
192.168.86.0/24 -r 3 -t 500 --resolve --quiet

This command scans the subnet 192.168.86.0/24 using the eth0
interface, a custom source MAC address DE:AD:BE:EF:CA:FE,
retries each host 3 times, times out after 500 milliseconds,
resolves responding addresses to hostnames, and displays
minimal output.

You can use the --help option to see a full list of available
options:

arp-scan --help

Do you have any specific questions about these options or would you
like to know more about advanced features?

<|user|>: Id like to know more about the vendor information
displayed in the output. How does arp-scan determine the vendor
information, and what can I do with this information?

<|assistant|>: The vendor information displayed in the output is
determined by the MAC address of the responding host. arp-scan
uses a database of MAC address prefixes to determine the vendor
information.

The MAC address is divided into two parts: the Organizationally
Unique Identifier (OUI) and the device identifier. The OUI is
assigned to the manufacturer by the IEEE and is unique to each
manufacturer. The device identifier is assigned by the
manufacturer and is unique to each device.
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arp-scan uses the OUI to determine the vendor information. The OUI
is looked up in a database, which returns the vendor name and
other information.

The vendor information can be useful in several ways:
Device identification: By knowing the vendor of a device,

you can determine the type of device and its potential
capabilities.

Network mapping: By identifying the vendors of devices on
your network, you can create a map of your network and
identify potential vulnerabilities.

Security auditing: By identifying devices from specific
vendors, you can focus your security auditing efforts on
devices that are known to have vulnerabilities.

You can update the vendor database used by arp-scan by running the
get-oui command:

get-oui

This command downloads the latest vendor database from the IEEE and
updates the local database used by arp-scan.

Keep in mind that the vendor information is not always accurate, as
devices can be configured to use custom MAC addresses or spoof
the MAC address of another device.

Do you have any other questions about the vendor information or how
to use it in your network discovery efforts?

<|end|>

<|start|>
<|title|>: Advanced ARP Scan Techniques
<|system|>: You are a cybersecurity expert specializing in network

discovery and penetration testing.
<|user|>: Ive been using arp-scan to discover hosts on my local

network, but Id like to know more about advanced techniques for
using this tool. Can you explain some of the more advanced
options and techniques?

<|assistant|>: Certainly! arp-scan provides several advanced
options and techniques that can be used to customize and
enhance your network discovery efforts.

One advanced technique is to use the --arpsha option to specify a
custom ARP source Ethernet address. This can be useful for
spoofing the MAC address of another device or for testing
network devices that are configured to only respond to specific
MAC addresses.

For example:

arp-scan --arpsha=DE:AD:BE:EF:CA:FE 192.168.86.0/24

This command scans the subnet 192.168.86.0/24 using a custom ARP
source Ethernet address DE:AD:BE:EF:CA:FE.

Another advanced technique is to use the --arptha option to specify
a custom ARP target Ethernet address. This can be useful for
testing network devices that are configured to only respond to
specific MAC addresses.

For example:
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arp-scan --arptha=00:11:22:33:44:55 192.168.86.0/24

This command scans the subnet 192.168.86.0/24 using a custom ARP
target Ethernet address 00:11:22:33:44:55.

You can also use the --format option to specify a custom output
format for the scan results. This can be useful for parsing the
output and integrating it into other tools or scripts.

For example:

arp-scan --format='${ip}\t${mac}\t${vendor}' 192.168.86.0/24

This command scans the subnet 192.168.86.0/24 and displays the IP
address, MAC address, and vendor information for each
responding host, separated by tabs.

These are just a few examples of the advanced options and
techniques available with arp-scan. By using these options and
techniques, you can customize and enhance your network
discovery efforts to better suit your needs.

Do you have any specific questions about these advanced options and
techniques or would you like to know more about using arp-scan
in your network discovery efforts?

<|end|>

Dataset Statistics. The augmented RedSage Conversation corpus comprises 266K multi-turn dia-
logues, totaling ∼353M tokens with an average of 1.3K tokens and 9.7 turns per conversation (Ta-
ble 10). Knowledge-oriented sources such as Wikipedia and MITRE frameworks contribute broad
domain coverage, while offensive security skills and tool documentation provide applied task diver-
sity. Figure 8 illustrates the substantial growth in data volume achieved through augmentation, and
Figure 9 highlights the distribution of augmentation types, showing the variety of transformations
applied to generate conversations.

Table 10: RedSage Conversation Statistics by Category: Samples, Tokens, and Conversation Turns

Configuration Samples Avg. Tokens Total Tokens Min Tokens Max Tokens Avg. Turns
Knowledge – General
Cybersecurity Wikipedia 64,629 1,320.99 85,374,098 194 10,121 9.96
Cybersecurity Roadmaps 3,006 1,409.54 4,237,088 121 5,938 9.85

Knowledge – Frameworks
MITRE ATT&CK 18,479 1,277.96 23,615,397 144 4,648 9.46
MITRE CAPEC 6,859 1,194.77 8,194,954 202 3,494 9.69
MITRE CWE 13,120 1,309.32 17,178,289 161 3,806 9.18
OWASP 1,450 1,387.83 2,012,349 223 5,663 9.48

Skill – Offensive
Offensive Tricks 10,670 1,411.17 15,057,221 158 32,713 9.71
Hacking Articles 11,640 1,313.84 15,293,119 221 9,505 10.94
Null Byte Tutorials 10,439 1,326.56 13,847,919 233 14,902 10.11
CTF Write-ups 6,121 1,323.31 8,099,953 260 10,680 11.94

Tools – CLI
TLDR Pages (English) 41,627 1,293.27 53,835,156 160 8,392 9.73
Unix Man Pages 67,634 1,358.92 91,909,442 119 6,379 9.19

Tools – Kali
Kali Documentation 2,902 1,311.42 3,805,736 171 3,900 9.65
Kali Tools 7,604 1,381.71 10,506,559 171 3,721 9.26

Total (dataset) 266,180 1,326.05 352,967,280 119 32,713 9.70
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Figure 8: Data growth: number of samples from
seed into augmented conversations.

Figure 9: Word cloud of augmentation types
generated by the planner agent, showing the
diversity of conversational transformations ap-
plied to RedSage-Seed.

A.4 REDSAGE BENCHMARKS

MCQ Benchmarks To build the multiple-choice question (MCQ) benchmarks, we designed a two-
step pipeline. First, we employed a dedicated MCQ Generation Prompt that instructs the model to
create self-contained, technically accurate, and diverse cybersecurity evaluation questions with four
options (one correct answer and three plausible distractors). Second, the generated questions were
verified using an Evaluation Data Verifier Prompt, which applies a rigorous checklist to ensure self-
containment, internal consistency, plausibility of distractors, and overall compliance with cyberse-
curity relevance and formatting rules. Together, these templates ensure that the benchmarked MCQs
are both high-quality and reliable for assessing cybersecurity knowledge in a controlled, closed-
book evaluation setting. Qualitative examples of the benchmark items are visualized in Fig. 10, and
the prompt templates used for MCQ creation and verification are presented below:

Cyber Knowledge
What technique does
SHOTPUT use to obscure
its files or information?
A. Cryptography
B. Steganography ✗
C. XOR encoding ✓
D. Compression

Cyber Skills
What is the purpose of using the ORDER
BY clause in SQL injection attacks?
A. To inject malicious SQL code into the
database.
B. To determine the number of columns
in a database table. ✓
C. To sort the extracted data in ascending
or descending order. ✗
D. To create a new database table.

Cyber Tools
What is the command-line
option used to specify the
input dictionary file for
genkeys?
A. -f ✗
B. -h
C. -n
D. -r ✓

Figure 10: Qualitative examples of RedSage MCQs. Correct answers are marked with ✓, while
frequent incorrect model choices are marked with ✗.

MCQ Generation Prompt

You are a cybersecurity training content creator responsible for generating high-quality evaluation
data. Your task is to create multiple-choice questions that assess cybersecurity knowledge based solely
on inherent subject matter. Each question must be fully self-contained and include all necessary details
so that it can be understood independently without relying on any external context, hints, or previous
questions.
Guidelines:

1. Self-Contained and Independent Questions
• The original seed data will not be included in the evaluation, so each question must include

all information required for understanding and answering it without any reference to external
content or other questions.

30



1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2026

• Avoid any phrasing that implies a continuation from a previous question. Each question should
be written as an independent item.

• Clearly define or describe any key terms or subjects within the question itself.
• When referencing any subject, identifier, or concept, always specify its full name or identifier

(e.g., “CWE CATEGORY-10” rather than “categories”).
• Do not assume that the reader has prior knowledge of the subject matter beyond what is pro-

vided in the question.

2. Focus on Inherent and Fixed Details
• Base questions on core cybersecurity concepts such as definitions, technical mechanisms, pre-

requisites, usage guidelines, mitigation strategies, consequences, classification principles, how-
to, etc.

• Avoid dynamic or subjective details that could change over time (e.g., modification time, ver-
sion numbers). Focus on inherent, static properties that remain constant.

3. Closed-Book Evaluation
• Questions should assess the respondent’s existing knowledge without any hints or leaked con-

text from the source material.
• The original source material should not be referenced or alluded to in the question or answer

options.
• Do not include any excerpts or additional hints from the original source; all necessary informa-

tion must be inherent in the question.

4. Multiple-Choice Format
• Each question must include one correct answer and three plausible distractors.
• Ensure distractors are realistic, closely related to the correct answer, and not obviously incor-

rect.
• Provide a concise explanation for the correct answer, clarifying why it is correct and why the

other options are not.

5. Question Volume and Uniqueness
• Generate as many high-quality questions as are warranted by the subject matter.
• Each question should address a unique aspect of the topic without overlapping with or referring

to any other question.

6. Formatting
• Number each question sequentially.
• List answer options as A, B, C, and D.
• Clearly indicate the correct answer.
• Provide an explanation immediately following the answer.
• Follow the Outputs Format exactly.

Outputs Format:

**Question 1**
Question text here.
A. Option A text.
B. Option B text.
C. Option C text.
D. Option D text.
**Correct Answer**: [Correct Option]
**Explanation**: Explanation text here.

...

**Question N**
Question text here.
A. Option A text.
B. Option B text.
C. Option C text.
D. Option D text.
**Correct Answer**: [Correct Option]
**Explanation**: Explanation text here.
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Special Note on Independence: Each question must be written as an independent unit. Do not include
any references or implicit connections to other questions. Ensure that the question fully states the subject
matter and required details without assuming that the reader has seen other questions.

Evaluation Data Verifier Prompt

You are a cybersecurity evaluation data verifier. Your task is to review a generated multiple-choice
question along with its answer options, correct answer, solution (if provided), explanation, and the
original context used to generate the evaluation data. You will be provided with one QnA at a time.
Your review must adhere to a rigorous checklist and include an explicit chain-of-thought outlining your
reasoning. Use the following checklist during your evaluation:
Checklist for Validation:
1. Self-Containment:

• The question must be fully self-contained. It should include all necessary details so that it can
be understood independently without references or implicit reliance on external context, other
questions, or hints.

2. Complete Format:
• The question must include exactly four answer options labeled A, B, C, and D.
• The correct answer must be clearly indicated.

3. Single Correct Answer:
• There must be only one correct answer.

4. Plausible Distractors:
• All incorrect options (distractors) should be realistic and closely related to the correct answer.

5. Consistency:
• The question text, options, correct answer, solution (if provided), and explanation must be

consistent with one another and with the original context.

6. Focus on Inherent and Fixed Details:
• Base questions on core cybersecurity concepts such as definitions, technical mechanisms, pre-

requisites, usage guidelines, mitigation strategies, consequences, classification principles, etc.
• Avoid dynamic or subjective details that could change over time (e.g., the current status or

version of a vulnerability or tool). Focus on inherent, static properties that remain constant.

7. Relevance for Cybersecurity Assessment:
• The question should be important for assessing the model’s knowledge in the cybersecurity

domain.

8. Formatting:
• The content must follow the exact output format provided below.

Process Instructions:
• Step 1: Carefully review the generated question, multiple-choice answers, correct answer, and ex-

planation by referring to both the original context and the generated content.

• Step 2: Evaluate each component using the above checklist.

• Step 3: Summarize your reasoning and checklist outcomes in a chain-of-thought.

• Step 4: Based on your evaluation, output a single JSON object following the structure below:

– "question": The parsed question text.
– "answers": An object with keys A, B, C, and D corresponding to each answer option.
– "solution": The correct option letter (A, B, C, or D).
– "explanation": The explanation text.
– "review_summary": A detailed account of your reasoning process and checklist evalua-

tion.
– "passed": true if the generated content meets all criteria, or false if it fails any check.

Output Format Example:
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---
**Step1: QnA Review**
[WRITE YOUR REVIEW FOR STEP 1]
---

---
**Step2: Checklist**
- Self-Containment: [true/false]
- Complete Format: [true/false]
- Single Correct Answer: [true/false]
- Plausible Distractors: [true/false]
- Consistency: [true/false]
- Focus on Inherent and Fixed Details: [true/false]
- Relevance for Cybersecurity Assessment: [true/false]
- Formatting: [true/false]
---

---
**Step3: Summary**
[Write YOUR SUMMARY FOR STEP 3]
---

---
**Step4: Final Output**
```json
{
"question": "What is the primary purpose of a firewall in a

cybersecurity context?",
"answers": {
"A": "To monitor user activity",
"B": "To filter incoming and outgoing network traffic",
"C": "To encrypt data transmissions",
"D": "To manage passwords"

},
"solution": "B",
"explanation": "The primary function of a firewall is to control

network traffic by filtering data packets. Option A is
incorrect because monitoring user activity is not its primary
function; option C refers to encryption, which is handled by
different systems; and option D is related to account
management rather than traffic filtering.",

"review_summary": "Verified self-containment, complete format,
single correct answer, plausible distractors, consistency,
focus on inherent and fixed details, and relevance for
cybersecurity assessment. No issues detected.",

"passed": true
}

Open-ended QA Benchmarks For the open-ended QA benchmarks, we designed a pipeline that
transforms raw seed_data into diverse evaluation items. The process begins with the Evaluation-
Plan Builder Prompt, which analyzes the seed data and proposes distinct evaluation types with
corresponding instruction templates, answer guidelines, and context excerpts. Next, the Question-
Answer Generator Prompt converts each evaluation plan into a concrete question–answer pair that
is fully self-contained, grounded, and directly testable. We then apply the Open-QA Verifier Prompt,
which evaluates each generated item against a detailed checklist covering format, clarity, grounding,
domain meaningfulness, and overall internal consistency. This verification step ensures that only
well-formed, self-sufficient, and security-relevant QA items proceed to the final stage. We employ
both Llama-3.3-70B and Qwen2.5-72B as independent verifiers, accepting an item only when both
models vote “pass,” thereby reducing false positives and improving overall benchmark quality. To-
gether, these prompt templates ensure systematic coverage of cybersecurity reasoning skills while
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avoiding reliance on external or meta information. A qualitative example of our OpenQA items is
shown in Fig. 11, while the prompt templates used for OpenQA creation are presented below:

Cybersecurity Knowledge

Question: What techniques are used by the SEASHARPEE malware?

Reference Answer:

The SEASHARPEE malware employs several techniques, including:

1. Command and Scripting Interpreter (T1059:003): SEASHARPEE can execute commands on vic-
tim systems using a Windows Command Shell. This allows the malware to run various commands and
scripts to perform malicious activities.

2. Indicator Removal (T1070:006): SEASHARPEE can timestomp files on victim systems using a Web
shell. Timestomping involves altering the timestamps of files.

3. Ingress Tool Transfer (T1105): SEASHARPEE can download remote files onto victim systems. This
technique allows the malware to transfer additional tools.

4. Server Software Component (T1505:003): SEASHARPEE is a Web shell, which means it can be
deployed on a web server to provide a backdoor for the attackers.

These techniques collectively enable SEASHARPEE to maintain persistence and execute commands.

Cybersecurity Skill

Question: Classify the type of cyber attack represented by this code snippet:

```
c o n s t l e a k = async ( c h a r ) => {

f e t c h ( " / ? t r y =" + c h a r )
l e t w = window . open (

c u r r + c h a r + "#" + "A" . r e p e a t (2*1024*1024 − c u r r . l e n g t h − 2)
)

c o n s t check = async ( ) => {
t r y {

w. o r i g i n
} c a t c h {

f e t c h ( " / ? nope =" + c h a r )
r e t u r n

}
s e t T i m e o u t ( check , 100)

}
check ( )

}
```

Reference Answer:

This code snippet represents a browser-specific information leakage attack. The attack uses the following
techniques:

1. URL Length Manipulation: The code constructs a URL with a very long fragment identifier to trigger
specific browser behavior.

2. Cross-Origin Exception Handling: The code attempts to access the origin property of the newly
opened window (w.origin).

3. Character Set Enumeration: The code iterates over a predefined character set to test each character.
4. Timing-Based Brute Force: The setTimeout function is used to repeatedly check the window at

intervals.

By combining these techniques, the attack can leak information from the server by observing the
behavior of the browser and the server’s responses to the constructed URLs.
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Cybersecurity Tool

Question:

Explain how to use btscanner to extract information from a Bluetooth device without pairing.

Reference Answer:

btscanner is a tool designed to extract as much information as possible from a Bluetooth device
without the need to pair. Here’s how to use it:

1. Installation:
• Install btscanner using the command: sudo apt install btscanner

2. Basic Usage:
• Run the tool: btscanner
• Display help: btscanner -help

3. Options:
• -no-reset: Prevents the Bluetooth adapter from being reset before scanning.
• -cfg=<file>: Specifies a configuration file.

4. Interacting with the Tool:
• Once running, scroll through the list of found devices.
• Press Enter to probe a device (RSSI, link quality).
• Use q to quit the screen and Q to quit the application.

5. Saved Data:
• Device info is stored in ~/bts/<BDADDR>/info.
• Timestamps are saved in ~/bts/<BDADDR>/timestamps.

By following these steps, you can effectively use btscanner to gather detailed information about
Bluetooth devices without pairing.

Figure 11: Qualitative examples of RedSage open-ended Q&A. Each benchmark item includes a
question and its reference answer derived from the seed data.

Evaluation-Plan Builder Prompt

You are the Evaluation-Plan Builder for an Open-QA cybersecurity benchmark.
Goal
• Analyse the provided seed_data and propose every realistic way an LLM could be tested on it.

• For each proposed test, output a high-quality ready-to-use instruction template.

• If the test requires a passage, also extract a verbatim context excerpt.

Input
• seed_data: passages, logs, configs, code, write-ups, documentations, frameworks, or other cyber-

security artefacts.
(No external sources allowed.)

Reference list (examples, not exhaustive): Fact Recall · Threat/TTP Classification · Log Anomaly De-
tection · Exploit Plan Synthesis · Next Step Suggestion · Command-Line Construction · Command-Line
Analysis · Log Analysis · Vulnerability Identification · Secure Configuration Check · Patch/Mitigation
Recommendation · Tool Output Interpretation · Threat-Intel Summarisation · Attack Chain Mapping
· Procedure Synthesis · Red-Team Report Drafting · IOC Extraction · Payload De-obfuscation · CVE
Prioritisation · Misconfiguration Reasoning · OSINT Inference · Social-Engineering Detection
Feel free to invent additional types that better fit the data as long as they are meaningful for cybersecurity
assessment.
Rules
1. Use only information that appears in seed_data; invent nothing.

2. Think step-by-step, then output the final JSON at the end.

3. Propose distinct evaluation types.

4. For each type return these fields in this exact order:

• evaluation_name (<= 5 words)
• purpose (one sentence)
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• instruction_template (user prompt) – If the test needs a passage, include the place-
holder

<CONTEXT>

wrapped in triple back-ticks. – Otherwise omit the placeholder entirely.
• answer_guideline (what constitutes a correct answer)
• context_excerpt (verbatim text <= 2048 tokens from seed_data, preserving line

breaks) – Required only when the placeholder appears; otherwise use the empty string "".

5. Avoid questions about references, authorship, version history, or other metadata that may change
over time.

6. Ensure the instruction_template and answer_guideline are fully grounded in the
seed_data. Do not hallucinate.

7. Since seed_data are not given during evaluation, the instruction_template and
answer_guideline must be self-contained. If context is needed, use the placeholder
<CONTEXT> and provide the context accordingly.

8. If no context is needed, omit the placeholder and set context_excerpt to "".

9. Avoid phrasing like “based on the seed data” or “as mentioned in the seed data.”

10. Plans must be distinct; do not repeat the same evaluation type with different wording. If no mean-
ingful grounded evaluation exists, output an empty list [] for evaluation_plan.

11. Strictly follow the output format exactly as specified below.

Output Format:

## Content Analysis and Evaluation Plan

< Your analysis of the seed_data goes here >

## Final Evaluation Plan

```json
{
"evaluation_plan": [
{
"evaluation_name": "<name requiring context>",
"purpose": "<single-sentence purpose>",
"instruction_template": "<prompt with \n```\n<CONTEXT>\n```\n

placeholder>",
"answer_guideline": "<criteria for correctness, depth, and

helpfulness>",
"context_excerpt": "<verbatim excerpt pulled from seed_data>"

},
{
"evaluation_name": "<name without context>",
"purpose": "<single-sentence purpose>",
"instruction_template": "<self-contained prompt with no

placeholder>",
"answer_guideline": "<criteria for correctness, depth, and

helpfulness>",
"context_excerpt": ""

}
]

}
```

Question-Answer Generator Prompt

You are the Question-Answer Generator for an Open-QA benchmark.
Given:
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• evaluation_plan JSON with:

– evaluation_name

– purpose

– instruction_template (may include <CONTEXT> placeholder)
– answer_guideline

– context_excerpt (verbatim text < 2048 tokens, or "" if none needed)

• seed_data: the full source text from which any excerpt was drawn.

Your Job:
Produce one high-quality QA item (one question, one reference answer) that tests the intended
capability in the evaluation plan. The QA must be self-contained and grounded only in the provided
materials.

OUTPUT OVERVIEW
When information is sufficient you must produce, in this order:

1. Analysis section (brief).

2. Sufficient Information flag.

3. Final OpenQA section (Evaluation Name, Question, Reference Answer).

If information is insufficient, see the Insufficient Information section below.

QUESTION CONSTRUCTION

1. Start from evaluation_plan.instruction_template. Rewrite for clarity and natural
flow.

2. If the template contains <CONTEXT>, replace it with the literal contents of context_excerpt,
wrapped in triple backticks. Preserve line breaks.

3. If context_excerpt is empty, write a fully self-contained question. Do not imply hidden or
external text.

4. Include only the minimum context required to test the targeted skill. Avoid leaking large amounts of
seed_data.

5. Ensure question and reference answer together test the intent expressed in purpose and are grad-
able under answer_guideline.

6. The QA must be fully self-sufficient. The tested model and grader will not see seed_data.

NO META REFERENCES (critical)
The user-facing question must NOT mention: document, source, seed data, excerpt, dataset, bench-
mark, grader, rubric, evaluation_plan, or similar meta terms. Rewrite meta phrasing into direct instruc-
tions.
Examples:
• Template: “Refer to the excerpt to identify the vulnerability.” Rewrite: “Identify the vulnerability in

the code below.”

• Template: “Using the provided seed data, explain...” Rewrite: “Explain...”

REFERENCE ANSWER QUALITY REQUIREMENTS

• Must fully satisfy answer_guideline and demonstrate appropriate reasoning and depth.

• Must be grounded only in context_excerpt and broader seed_data; no invention or external
facts.

• Provide as much detail as needed (unless explicitly constrained).

• Reproduce literal phrases exactly when required.

• Include every element required by answer_guideline.

• If multiple acceptable variants exist, list them clearly.

INSUFFICIENT INFORMATION
If evaluation_plan + seed_data do not provide enough to produce a correct, grounded answer:
Output ONLY:

### Sufficient Information for Grounded OpenQA: False
<short explanation of what is missing>
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Do not output the Final OpenQA section.

REQUIRED RESPONSE LAYOUT (when sufficient):

---
### Analysis and Thinking
[Brief notes: how you interpreted purpose, rewrite decisions,

grounding sufficiency, and how the answer meets the guideline.]

### Sufficient Information for Grounded OpenQA:
True

### Final OpenQA:

#### Evaluation Name:
<copy evaluation_name>

#### Question:
<final user-facing question - no meta references>

#### Reference Answer:
<grounded, guideline-compliant answer>

Open-QA Verifier Prompt

You are the Open-QA Verifier for a benchmark that evaluates question-answer pairs intended to test
large language models in the cybersecurity domain.
Inputs
• question: the final user-facing prompt.

• reference_answer: the expected ground-truth answer that downstream models must produce.

• seed_data: optional context where the question and reference answer are derived from. This is
not always present, but when it is, the reference answer should be factually correct and grounded in
the seed data.

Goal
Apply the checklist below to rigorously evaluate this QA pair. For each checkpoint:
• Think step by step, explicitly writing out your reasoning (chain of thought).

• Then decide True if the pair passes that criterion, otherwise False.
Checklist
1. Format & Parsing

• No missing text, stray Markdown markers, or JSON artefacts.
• Neither the question nor the answer contains meaningless, incoherent, or nonsensical text frag-

ments (gibberish).

2. Self-Sufficiency of Question
• The question stands alone; it does not depend on unseen context or data.
• Any excerpt or data it needs is included in the question (e.g. in a code block).
• The evaluated model can answer it fully without hidden additional context.

3. Clarity & Completeness of Question
• Clearly worded and unambiguous.
• Contains all the information needed to produce the expected answer.

4. Meaningfulness for the Domain
• The question tests a meaningful concept, procedure, skill, reasoning step, or knowledge rele-

vant to the benchmark’s domain (not generic trivia).

5. Alignment with Expected Answer Type
• The question obviously requests the type of answer provided (list, explanation, step-by-step,

command, short snippet, etc.).
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6. No Unjustified Assumptions
• The reference answer does not rely on facts, hidden artifacts, or conclusions not present in the

question’s text or generally stable domain knowledge.

7. Reference Answer Quality
• Fully satisfies what the question requires, with no skipped key points.
• Avoids invented or externally hallucinated content.

8. Consistency & Accuracy
• No contradictions between question and answer.
• Technical or factual details are internally consistent.

9. Language & Readability
• Clear, professional English with no profanity or irrelevant comments.

10. No Redundancy
• The question is focused and not unnecessarily repeated or broad.

11. No Answer Overleakage
• The question does not simply give away the solution or embed the reference answer inside the

prompt.

12. Factually Correct and Fully Grounded (if seed_data is present)
• The reference answer must be factually correct and grounded in the provided seed data to avoid

hallucinations or inaccuracies.

Final Decision Logic
• If all checkpoints are True, then verdict = "PASS".

• If any checkpoint is False, then verdict = "FAIL" and you must briefly explain why for each
failed checkpoint.

• Also provide a final OpenQA Quality Score from 0 to 10, where:

– 10 = outstanding benchmark item, exceptionally well-constructed, highly challenging and clear
– 5 = average, acceptable but could be improved
– 0 = entirely unsuitable (incoherent, trivial, off-topic, or otherwise broken)

Output Format:

Checklist Results
1. Format & Parsing:
- Reasoning: <Your thought for this point>
- Result: True / False

2. Self-Sufficiency of Question:
- Reasoning: <Your thought for this point>
- Result: True / False

...

12. Factually Correct and Fully Grounded (if seed_data is present):
- Reasoning: <Your thought for this point>
- Result: True / False

Verdict:
PASS / FAIL

Issues:
- <short explanation for each failed checkpoint>
(If the verdict is PASS, write `Issues:\nNone.`)

OpenQA Quality Score: <integer from 0 to 10>
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B TRAINING DETAILS

Our training pipeline uses the open-source Axolotl framework (Axolotl, 2023) for Continued Pre-
training (CPT), Supervised Finetuning (SFT), and Direct Preference Optimization (DPO). Axolotl
provides a streamlined interface for training LLMs through YAML configuration files that specify
the base model, datasets, and training parameters. This design facilitates reproducibility, as experi-
ments can be replicated simply by sharing and running the corresponding configuration file.

B.1 PRE-TRAINING DETAILS

Our RedSage continued pretraining (CPT) followed a staged curriculum. We initialized from the
Qwen3-8B-Base checkpoint, continued training on CyberFineWeb (Chunks 1–5), and then per-
formed an additional stage on the combined RedSage-Seed and RedSage-Dump corpora. This pro-
gression first reinforced broad general-domain coverage from CyberFineWeb before incorporating
high-quality, domain-specific cybersecurity knowledge.

We conducted training on 8 nodes, each equipped with 4 × 64GB NVIDIA A100 GPUs. We used a
micro-batch size of 32 per GPU, yielding an effective global batch size of 1024.

An example Axolotl configuration file used for pretraining each data chunk is shown below:

RedSage Pretraining Config

base_model: Qwen/Qwen3-8B-Base # or replace with last pretraining
checkpoint

bf16: true
datasets:
- path: [REPLACE-WITH-EXPECTED-PRETRAINING-DATASET]

type: completion
deepspeed: deepspeed_configs/zero3_bf16.json
eval_steps: 3800
gradient_accumulation_steps: 1
gradient_checkpointing: true
learning_rate: 2.5e-06
load_in_8bit: false
log_with:
- wandb
- tensorboard
lr_scheduler: constant_with_warmup # or constant for next-checkpoint
micro_batch_size: 32
max_grad_norm: 1.0
num_epochs: 1
optimizer: adamw_torch
output_dir: [REPLACE-WITH-MODEL-OUTPUT-PATH]
save_strategy: epoch
saves_per_epoch: 1
seed: 2442
sequence_length: 32768
sequence_parallel: true
torch_compile: false
trust_remote_code: true
use_tensorboard: true
val_set_size: 0.01
warmup_steps: 1000 # or remove for next-checkpoint

B.2 POST-TRAINING DETAILS

Following the CPT phase, we performed post-training in two stages. First, we conducted supervised
finetuning (SFT) using our augmented RedSage-Conv dataset together with general instruction data
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from the non-reasoning subset of SmolTalk25. This stage allowed the model to specialize in cyber-
security conversations while retaining general instruction-following capabilities.

Second, we applied preference alignment via Direct Preference Optimization (DPO) using the open-
source Tulu 3 8B Preference Mixture dataset (Lambert et al., 2025). This alignment phase refined
the model’s responses to better reflect human-preferred outputs.

The Axolotl configuration for the post-training stages is shown below:

RedSage Supervised-Finetuning Config

base_model: [REPLACE-WITH-REDSAGE-BASE-MODEL]
trust_remote_code: true
auto_resume_from_checkpoints: true

bf16: true
deepspeed: deepspeed_configs/zero3_bf16.json
gradient_checkpointing: true
sequence_parallel: true

micro_batch_size: 32
gradient_accumulation_steps: 1
num_epochs: 2
sequence_length: 32768

optimizer: adamw_torch
lr_scheduler: cosine
learning_rate: 2.5e-5
weight_decay: 0.05
warmup_ratio: 0.01
cosine_min_lr_ratio: 0.01

chat_template: jinja
chat_template_jinja: [REPLACE-WITH-OUR-CUSTOM-CHAT-TEMPLATE]

datasets:
# Conversation Datasets
- path: [REPLACE-WITH-REDSAGE-CONVERSATION-DATA]
type: chat_template
name: all
field_messages: conversations
message_property_mappings:
role: from
content: value

- path: [REPLACE-WITH-SMOLTALK2-NON-THINKING]
type: chat_template
name: formatted
field_messages: messages
message_property_mappings:
role: from
content: value

output_dir: [REPLACE-WITH-MODEL-OUTPUT-PATH]
save_steps: 0.25
eval_steps: 0.25
val_set_size: 0.01

log_with:
- wandb
- tensorboard

5General SFT datasets: HuggingFaceTB/smoltalk2
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use_tensorboard: true

save_total_limit: 5
load_in_8bit: false
torch_compile: false

special_tokens:
eos_token: <|im_end|>
pad_token: <|endoftext|>

B.3 ESTIMATED TRAINING TIME AND COMPUTATIONAL COST ANALYSIS

Continued pretraining from Qwen3-8B-Base on the CyberFineWeb (CFW) dataset was executed in
24-hour maximum-runtime chunks, with an average of 20 effective training hours per chunk. Five
such chunks required approximately 100 hours to produce the RedSage-8B-CFW checkpoint. Ad-
ditional continued pretraining on RedSage-Seed and RedSage-Dump took roughly 10 hours, yield-
ing RedSage-8B-Base. Supervised fine-tuning on RedSage-Conv and general instruction datasets
(SmolTalk2) required about 16 hours for two epochs, and DPO alignment using 8×A100 GPUs
added another 8 hours. In total, the full training pipeline consumed approximately 134 wall-clock
hours (∼5.5 days), corresponding to more than 4,000 GPU-hours. A detailed breakdown of each
stage is provided in Table 11. Variations may arise from distributed-training overheads, including
communication latency and checkpoint restarts.

Table 11: Estimated training time and computational cost for the RedSage-8B pipeline.

Stage Output Checkpoint Time (h) GPU-hours (approx.)

Continued Pretraining (CPT), 1 epoch, 32×A100

CPT: CyberFineWeb RedSage-8B-CFW ∼100 ∼3,200
CPT: RedSage-Seed & -Dump RedSage-8B-Base ∼10 ∼320

Post-training (SFT: 2 epochs, 32×A100; DPO: 1 epoch, 8×A100)

SFT: RedSage-Conv & SmolTalk2 RedSage-8B-Ins ∼16 ∼512
DPO: Tulu Preference Mixture RedSage-8B-DPO ∼8 ∼64

Total pipeline RedSage-8B-DPO ∼134 (∼5.5 days) ∼4,096

C EVALUATION DETAILS

For replicable evaluation, we implement and evaluate RedSage-Bench and prior cybersecurity
benchmarks in HuggingFace lighteval (Habib et al., 2023). The detail compared model, task,
and metrics for each evaluation is described in the next subsection.

C.1 EVALUATION SETUP

Compared methods. We benchmark RedSage against open general-purpose and cybersecurity-
focused LLMs, summarized in Tab. 12. The general baselines are Llama-3.1-8B and Qwen3-8B;
the specialized baselines are Llama-Primus (Base and Merged), Foundation-Sec (Base and In-
struct), Lily-Cybersecurity-7B-v0.2, and DeepHat-V1-7B. For each model the table reports param-
eter count, backbone, and the Hugging Face card used to obtain configurations and weights, which
supports strict reproducibility. Base models are evaluated in plain completion mode, instruction-
tuned models use their official prompt templates, and Qwen3 is run in non-reasoning mode for
parity. The suite spans 7–8B parameters across Llama, Qwen, and Mistral backbones, enabling a
balanced comparison by capacity and training style.
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Table 12: Evaluated baseline models and their Hugging Face cards.

Model Params (B) Base model Hugging Face

Llama-3.1-8B 8 N/A (base) meta-llama/Llama-3
.1-8B

Qwen3-8B 8 Qwen3-8B-Base Qwen/Qwen3-8B
Llama-Primus-Base 8 Llama-3.1-8B-Instruct trend-cybertron/L

lama-Primus-Base
Llama-Primus-Merged 8 Llama-3.1-8B (merged with

Llama-3.1-8B-Instruct)
trendmicro-ailab/L
lama-Primus-Merged

Foundation-Sec-8B 8 Llama-3.1-8B fdtn-ai/Foundation
-Sec-8B

Foundation-Sec-8B-Instruct 8. Foundation-Sec-8B
(Llama-3.1-8B backbone)

fdtn-ai/Foundation
-Sec-8B-Instruct

Lily-Cybersecurity-7B-v0.2 7 Mistral-7B-Instruct-v0.2 segolilylabs/Lil
y-Cybersecurity-7
B-v0.2

DeepHat-V1-7B 7 Qwen2.5-Coder-7B DeepHat/DeepHat-V
1-7B

C.2 REDSAGE BENCHMARKS

MCQ Evaluation Protocols. Models are prompted to select a single option letter (A–D) given a
question and its choices. We compute the log probabilities of the option tokens for the next-token
prediction and take the highest-probability option as the model’s answer. This approach avoids
parsing errors and ensures the model outputs only the option letter. The MCQ prompt template is
shown below.

RedSage MCQ Prompt Template

You are given multiple choice questions. Answer with the option
letter (A, B, C, D) from the given choices directly.

Question: {question}
A. {option[0]}
B. {option[1]}
C. {option[2]}
D. {option[3]}
Answer:

Open-ended Q&A Evaluation Protocols. We adopt an LLM-as-Judge rubric that assesses both fac-
tual correctness (True/False) and answer quality (0–10), considering helpfulness, relevance, depth,
and level of detail. All judgments are produced using Llama-3.3-70B as the evaluator. The system
prompt and template for the rubric are provided below.

RedSage Open-ended Q&A LLM-as-Judge System Prompt

You are the Judge for an Open-QA cybersecurity benchmark.

## Inputs
- question: the final user-facing prompt
- reference_answer: the ground-truth answer
- model_answer: the response produced by the evaluated model

## Goal
Evaluate model_answer on two aspects:
(1) factual correctness, and
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(2) overall answer quality (0-10).

---

## Checklist

1) Correctness
- Is the answer factually accurate?
- Does it align with the reference_answer and grounded

cybersecurity knowledge?
- Any hallucinations, contradictions, or false claims?

Output rule for correctness:
- True if correct and grounded
- False if factually incorrect, hallucinated, contradicted, or

clearly wrong

2) Answer Quality Score (010)
Rate overall quality only if at least partially correct:
- Helpfulness (does it answer the question?)
- Relevance (focused and on-topic)
- Depth (reasoning or understanding)
- Level of detail (complete and specific enough)

Scoring guide:
- 10: perfect - accurate, complete, deep, fully relevant
- 89: strong - minor omissions or small inaccuracies
- 67: moderate - useful but lacking depth or detail
- 45: weak - vague, shallow, or incomplete
- 13: poor - limited usefulness or clarity
- 0: invalid or gibberish

---

## Instructions
- Use chain-of-thought privately, but present only a final analysis

in <analysis>.
- Be strict on correctness: any factual error -> correctness=False.

If correctness=False, cap score at 3 or lower.
- If correct but shallow, keep correctness=True and assign a lower

score.

---

## Output Format
Return exactly these three blocks in order. Do not add text outside

the tags.

<analysis>
Free-form justification. You may write anything here such as

step-by-step reasoning, comparisons, errors spotted, strengths,
weaknesses, etc. between the model_answer and reference_answe.

Make sure your analysis is detailed and covers all aspects of the
evaluation checklist.

### Correctness
Analysis and justification for the correctness evaluation.

### Answer Quality Score
Analysis and justification for the answer quality score.

#### Helpfulness
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Justification for the helpfulness aspect.

#### Relevance
Justification for the relevance aspect.

#### Depth
Justification for the depth aspect.

#### Level of Detail
Justification for the level of detail aspect.
</analysis>

<correctness>
True or False
</correctness>

<score>
0-10 (integer only)
</score>

RedSage Open-ended Q&A LLM as Judge Prompt Template

[System Prompt]
Question:
```
{question}
```

Reference Answer:
```
{reference_answer}
```

Model Answer:
```
{model_answer}
```

Qualitative Results of RedSage OpenQA. We present three RedSage OpenQA examples that span
cybersecurity frameworks, offensive skills, and tool usage. In the Olympic Destroyer attribution case
shown in Fig. 12, RedSage 8B DPO correctly identifies the Sandworm team, while baseline models
misattribute the malware to other Russian APT groups. For the CSP bypass example in Fig. 13
and the Koadic tool-usage example in Fig. 14, RedSage 8B DPO accurately recognizes iframe-
based CSP evasion and generates the exact Koadic command line. In contrast, the baselines omit
key details or produce malformed commands. These cases illustrate that RedSage exhibits stronger
grounding in authoritative cybersecurity sources and improved precision in operational reasoning.

Qualitative Results of LLM-as-Judge. To further illustrate the differences captured by our LLM-
as-Judge pipeline, we include qualitative evaluations comparing RedSage with the baseline model
using the tool-based question shown in Fig. 14. As shown in Fig. 15, the judge marks RedSage’s
answer as fully correct, assigns a perfect score, and highlights the precise command construction
and clear supporting explanations. In contrast, the baseline model receives a failing correctness
label and a substantially lower score because it uses an incorrect command-line flag, even though its
surrounding explanation is detailed. These paired results emphasize the sensitivity of our evaluation
framework to fine-grained correctness, particularly in cybersecurity scenarios where small syntactic
deviations can lead to incorrect or unsafe tool behavior.
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Figure 12: Knowledge framework example from RedSage OpenQA. For the Olympic Destroyer
question, RedSage 8B DPO matches the reference attribution to the Sandworm team, while baseline
models misattribute it to different APT groups. Best viewed in Zoom.

Figure 13: Offensive skill example analyzing JavaScript that bypasses Content Security Policy.
RedSage 8B DPO correctly identifies iframe injection as the evasion technique and explains how
each step circumvents the configured script-src directive. Best viewed in Zoom.

RedSage: LLM-as-Judge Output

<analysis>
The model answer provided is not only factually correct but also
offers additional helpful information and context. It accurately
constructs the command line to start Koadic with the specified
autorun file and restore option. The command line provided in the
model answer matches the reference answer exactly, which is
`koadic --autorun autorun_commands.txt --restore
restore_data.json`. This indicates that the model has correctly
understood the requirements and has provided the precise command
needed to achieve the desired outcome.

### Correctness
The model answer is correct because it accurately reflects the
command line needed to start Koadic with the specified parameters.
There are no factual errors, hallucinations, or contradictions in
the provided command line. The additional information about the
command assuming `koadic` is in the system's PATH and the
explanation of the flags (`--autorun` and `--restore`) are accurate
and useful but do not affect the correctness of the command itself.

46



2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537

Under review as a conference paper at ICLR 2026

Figure 14: Tool-usage example for the Koadic framework. RedSage 8B DPO provides the exact
command, while the baseline model produces a non-matching command. Best viewed in Zoom.

### Answer Quality Score
The answer quality score should be high because the model answer
is not only correct but also provides additional useful
information that could help a user understand how to use the
command and troubleshoot potential issues (like the executable not
being in the PATH).

#### Helpfulness
The model answer is very helpful because it directly answers the
question with the correct command line and provides supplementary
information that could aid in successfully executing the command.

#### Relevance
The answer is highly relevant as it directly addresses the
question asked without including unnecessary information. The
command line and the explanations provided are focused on the task
of starting Koadic with an autorun file and enabling the restore
option.

#### Depth
The answer shows a good depth of understanding of the command and
its parameters. It not only provides the command but also explains
the purpose of the flags used, which indicates a level of
comprehension beyond mere recall of command syntax.

#### Level of Detail
The level of detail is appropriate for the question asked. The
model provides enough detail for someone to understand how to use
the command and what each part of the command does, without
overwhelming them with unnecessary information.

</analysis>

<correctness>
True
</correctness>

<score>
10
</score>
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Baseline Model: LLM-as-Judge Output

<analysis>
The model answer provides a detailed explanation of how to start
Koadic with an autorun file and enable the restore option. It
breaks down the command into its components and explains the
purpose of each part. However, the command provided in the model
answer is slightly different from the reference answer. The model
answer uses the short option `-a` for autorun, whereas the
reference answer uses the long option `--autorun`.

### Correctness
The model answer is almost correct, but it uses a different option
for specifying the autorun file. The correct option, as per the
reference answer, is `--autorun`, not `-a`. This discrepancy makes
the model answer factually incorrect.

### Answer Quality Score
Despite the factual error, the model answer provides a clear and
detailed explanation of the command and its components. It also
includes important notes about the ethical use of Koadic and the
importance of proper permissions and access.

#### Helpfulness
The model answer is helpful in explaining the purpose of each part
of the command and providing context for its use.

#### Relevance
The model answer is highly relevant to the question, as it
directly addresses the task of starting Koadic with an autorun
file and enabling the restore option.

#### Depth
The model answer provides a good depth of explanation, breaking
down the command into its components and explaining the purpose of
each part.

#### Level of Detail
The model answer provides a sufficient level of detail, including
explanations of the command options and important notes about
ethical use and permissions.
</analysis>

<correctness>
False
</correctness>

<score>
3
</score>

Figure 15: Qualitative LLM-as-Judge outputs comparing RedSage and the baseline model.
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C.3 CYBERSECURITY BENCHMARKS

CyberMetric (CyMtc). CyberMetric evaluates general cybersecurity knowledge via multiple-
choice questions with four options, curated from authoritative sources such as NIST publications,
RFCs, books, and research papers using a retrieval-augmented generation pipeline. The collection
is released in several sizes, and we use the 500-item split that was fully verified by human experts.
Items span nine topical areas that include cryptography, reverse engineering, and risk assessment.
Models are scored with standard MCQ accuracy. (Tihanyi et al., 2024)

SecBench (ScBen). SecBench is a large multi-dimensional benchmark for cybersecurity that in-
cludes both MCQs and short-answer questions, covers two capability levels (knowledge retention
and logical reasoning), and is available in Chinese and English. Questions were sourced from open
materials and a curated contest, and short-answer evaluation is supported by an LLM-based grader.
In our study we use the English MCQ subset and report accuracy. (Jing et al., 2024)

MMLU Computer Security (MMLU-CSec). MMLU is a 57-subject multiple-choice test that
measures broad academic and professional knowledge. We evaluate on the Computer Security
subject, which contains MCQs covering practical and theoretical topics such as network security
and cryptography. Following common practice for MMLU-style evaluation, we report accuracy.
(Hendrycks et al., 2021b)

SECURE. SECURE targets applied cybersecurity with datasets built from MITRE ATT&CK,
CWE, CVE, and related ICS advisories, organized into three knowledge types: extraction, under-
standing, and reasoning. We use the MCQ-style subsets MAET (MITRE ATT&CK Extraction),
CWET (Common Weakness Extraction), and KCV (Knowledge test on Common Vulnerabilities).
The authors manually refined the pools by removing or fixing flawed questions. We evaluate with
MCQ accuracy. (Bhusal et al., 2024)

CTI-Bench. CTI-Bench focuses on cyber threat intelligence and provides four tasks: CTI-MCQ
for knowledge of CTI standards and practices; CTI-RCM for mapping CVE descriptions to one or
more CWE root causes; CTI-VSP for predicting CVSS v3 base vectors and scores; and CTI-ATE for
extracting MITRE ATT&CK attack techniques from natural language incident descriptions. While
VSP and ATE are typically evaluated with regression and F1 metrics, respectively, in our study we
only use accuracy across all subsets for consistent aggregation. (Alam et al., 2024)

SecEval (ScEva). SecEval is a domain-focused benchmark of more than two thousand MCQs
spanning nine areas that include software, application, system, web, cryptography, memory safety,
network security, and penetration testing. Questions were constructed from textbooks, official docu-
mentation, and standards using GPT-4 prompting, with quality control to remove invalid items. We
evaluate with MCQ accuracy on the full set. (Li et al., 2023)

C.4 GENERAL LLM BENCHMARKS

ARC-Challenge (ARC-C). ARC-C is the challenge split of the AI2 Reasoning Challenge, a set
of grade-school science multiple-choice questions curated to require nontrivial reasoning and back-
ground knowledge. The challenge subset specifically contains items that defeat simple retrieval and
co-occurrence baselines, making it a strong discriminator of reasoning beyond surface cues. We
evaluate with standard MCQ accuracy as used by leaderboard implementations. (Clark et al., 2018)

HellaSwag (HSwag). HellaSwag tests grounded commonsense inference via sentence comple-
tion. Each example presents a short context and four candidate endings that describe plausible next
events in physical or social scenarios. The dataset was adversarially filtered to foil strong language
models while remaining trivial for humans, which sharpens its discriminative power. Performance
is reported as multiple-choice accuracy. (Zellers et al., 2019)

TruthfulQA (TQA). TruthfulQA measures whether models avoid widespread misconceptions and
misleading patterns by answering with factually truthful content across 38 categories such as health,
law, and finance. It provides both generative prompts and multiple-choice variants. Following
common leaderboard practice, we use the multiple-choice setting and report accuracy to ensure
comparability across models. (Lin et al., 2021)

MMLU. MMLU evaluates broad knowledge and reasoning across 57 academic and professional
subjects that range from elementary mathematics and U.S. history to computer science and law. Each
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subject consists of four-option multiple-choice items designed to test recall, conceptual understand-
ing, and problem solving. Scores are aggregated as average accuracy across subjects. (Hendrycks
et al., 2021a)

WinoGrande (WinoG). WinoGrande is a large adversarial variant of the Winograd Schema Chal-
lenge that assesses commonsense reasoning through pronoun resolution. Each example requires
selecting which of two candidate nouns a pronoun refers to, with items constructed to reduce an-
notation artifacts and shallow heuristics. Evaluation follows leaderboard protocol using accuracy.
(Sakaguchi et al., 2020)

GSM8K. GSM8K is a collection of 8.5K carefully authored grade-school math word problems
that require multi-step arithmetic reasoning. Problems are linguistically diverse and designed to
encourage chain-of-thought solutions, yet the final target is a short numeric answer. We report
exact-match accuracy on the final answer, consistent with leaderboard settings. (Cobbe et al., 2021)

IFEval. IFEval evaluates instruction following using prompts that contain verifiable constraints
such as minimum length, required keywords, or structural requirements. Each prompt includes one
or more constraints that can be programmatically checked, yielding objective pass/fail signals with-
out human grading. We report the mean compliance rate across all constraints, i.e., the percentage
of constraints satisfied. (Zhou et al., 2023)

D ADDITIONAL EVALUATION RESULTS

D.1 LARGER MODEL SCALING

To assess the scalability of our data curation and augmentation pipeline, we conducted a reduced-
scope experiment using Qwen3-32B. We applied QLoRA fine-tuning (≈1% trainable parameters)
on a partial dataset consisting of the curated RedSage-Seed subset (excluding RedSage-Dump) and
50% of RedSage-Conv. Despite using only a fraction of the full training data and a lightweight
adaptation method, the resulting 32B model achieved consistent gains across both the RedSage-
MCQ benchmark (Table 13) and a suite of cybersecurity evaluations (Table 14). Notably, the training
loss continued to decrease throughout the run, suggesting that full-data, full-parameter fine-tuning
would yield even larger improvements. These findings indicate that the RedSage data curation and
augmentation methodology transfers effectively to larger models, underscoring its scalability and
potential to advance cybersecurity LLM development.

Table 13: RedSage-MCQ (0-shot) scaling experiment. Values are accuracy (%). Abb: Gen = Gen-
eral, Frm = Frameworks, Off = Offensive Skills, CLI = Command-line Tools, Kali = Kali Tools.

Model Name Macro Knowledge Skill Tools

Acc Gen Frm Off CLI Kali

Qwen3-8B 81.85 80.46 78.82 86.16 83.92 75.56
Qwen3-32B 85.40 84.08 82.32 89.00 87.60 80.40
RedSage-8B-Ins 85.73 84.20 84.98 89.06 86.80 80.30
RedSage-32B-LoRA-Ins-0.5 87.53 85.68 85.04 91.46 88.76 82.78

Table 14: Related Cybersecurity Benchmarks (0-shot) scaling experiment. Values are Accuracy (%).
Best results are shown in bold.

Model Name Mean CTI-Bench CyMtc MMLU ScBen ScEva SECURE

MCQ RCM 500 CSec En MCQ CWET KCV MEAT

Qwen3-8B 75.71 62.76 54.00 88.60 76.00 73.26 65.46 88.11 87.42 85.75
Qwen3-32B 82.31 70.04 65.60 91.80 84.00 84.23 76.23 89.46 88.72 90.06
RedSage-8B-Ins 81.30 70.56 76.70 89.80 78.00 79.91 72.48 91.45 81.34 91.47
RedSage-32B-LoRA-Ins-0.5 82.85 71.64 66.10 93.40 84.00 83.77 78.30 92.18 83.29 92.97

50


	Introduction
	Related Works
	Cybersecurity Benchmarks
	Cybersecurity Datasets and Models

	RedSage
	RedSage Pre-training Data
	RedSage Post-training Data
	RedSage Benchmark
	RedSage Training

	Experiments and Results
	Evaluation Results on RedSage-Bench
	Evaluation Results on Cybersecurity Benchmarks
	Evaluation Results on General Benchmarks

	Discussion and Limitations
	Conclusion
	Ethics Statement
	Reproducibility Statement
	Dataset Details
	CyberFineWeb
	RedSage Seed
	RedSage Conversation
	RedSage Benchmarks

	Training Details
	Pre-training Details
	Post-training Details
	BrickRedEstimated Training Time and Computational Cost Analysis

	Evaluation Details
	Evaluation Setup
	RedSage Benchmarks
	Cybersecurity Benchmarks
	General LLM Benchmarks

	BrickRedAdditional Evaluation Results
	BrickRedLarger Model Scaling


