
Zero-Shot Generalization of GNNs over Distinct Attribute Domains

Yangyi Shen 1 Beatrice Bevilacqua 2 Joshua Robinson 1 Charilaos Kanatsoulis 1 Jure Leskovec 1

Bruno Ribeiro 2

Abstract

There are no known graph machine learning meth-
ods that can zero-shot generalize across attributed
graphs with very different node attribute domains
and consistently outperform methods that ignore
node attributes. For instance, no method can sig-
nificantly outperform structure-only predictions
in zero-shot link prediction by pretraining on on-
line appliance store datasets (with node attributes
such as brand, model, capacity, dimension, has
ice maker, energy rating for refrigerators) and
zero-shot at test on an electronics store dataset
for smartphones (with attributes such as processor
type, display type, storage, and battery capacity).
In this work, we leverage concepts in statistical
theory to design STAGE, a universally applica-
ble approach for encoding node attributes in any
GNN that facilitates such generalization. Empiri-
cally, we show that STAGE outperforms its natu-
ral baselines and can accurately make predictions
when presented with completely new feature do-
mains.

1. Introduction
Zero-shot generalization refers to a model’s ability to handle
new, unseen data without additional training (Larochelle
et al., 2008; Xian et al., 2017; Wang et al., 2022). Achieving
this requires the model to learn prediction rules that can be
used across entirely different sets of features at test time.

In the context of attributed graph data, zero-shot general-
ization presents unique challenges. First, node features can
vary widely between graphs in different domains. Unlike
text data, where tokenization (Samuel & Øvrelid, 2023)
standardizes text into a fixed format enabling zero-shot gen-
eralization, processing graph data requires methods that

1Department of Computer Science, Stanford University, Stan-
ford, USA 2Department of Computer Science, Purdue Univer-
sity, West Lafayette, USA. Correspondence to: Yangyi Shen
<pyyshen@stanford.edu>.

Work presented at TF2M workshop at ICML 2024, Vienna, Austria.
PMLR 235, 2024. Copyright 2024 by the author(s).

can handle heterogeneous and high-dimensional node fea-
tures. Second, the relational dependencies between nodes,
encoded in the edges, can be rather complex and context-
dependent, requiring graph learning methods that can cap-
ture both the topology and node attributes. These challenges
make it harder to define a unified input space that can be
leveraged for zero-shot generalization in attributed graphs.

For these reasons, it has proven very challenging to pretrain
general purpose graph models. This is reflected in the fact
that, in graph ML, generalizing to new data formats is rarely
tackled by directly applying popular pretrained models with-
out altering model weights. Initial steps in this direction
include ISDEA+ and ULTRA (Gao et al., 2023; Galkin
et al., 2024), models that can generalize across different
relation types, without however including node features, or
PRODIGY (Huang et al., 2023), which can perform differ-
ent tasks on text-attributed graphs, but does not consider
generalization to new data with different features.

Contributions. (a) Our first contribution is the develop-
ment of STAGE (Statistical Transfer for Attributed Graph
Embeddings), a method for feature encoding on attributed
graphs that can be trained on a set of attributed graphs
and applied to a completely different graph with a com-
pletely different feature domain. STAGE embeds input
node features belonging to arbitrary continuous or discrete
spaces into a single embedding space common to all fea-
ture domains. The main insight of STAGE is to capture
distributional features within the node endpoints of graph
edges. Since this encoding works in the space of probability
functions, it is a common space across any feature domains.
Intuitively, for each edge, we construct a fully connected
weighted graph that encodes the probability distributions
of the node features of its endpoints. This graph is then
processed to obtain an edge embedding, which can be used
by subsequent layers in place of node features.

(b) The second contribution of our work is a set of graph
datasets with rich and distinct node features in different
domains, which are used to evaluate our approach. This
is essential since existing datasets are often homogenized
to have the same feature spaces or are stripped down to bi-
nary features, capturing mostly the topological information.
To bridge this gap, we leverage LLMs to reverse-engineer
detailed features across various product categories in a set

1

Zero-Shot Generalization of GNNs over Distinct Attribute Domains

bed desktop

ra
nd
om

refrigerators smartphone shoes
0.0

0.1

0.2

0.3

0.4

0.5

0.6

hi
ts
@
1

Model
NBFNet-raw
NBFNet-gaussian
NBFNet-structural
NBFNet-llm
NBFNet-normalized
NBFNet-STAGE

ra
w

ra
nd
om

ra
nd
om

ra
nd
om

ra
nd
om

ra
w

ra
w

ra
w

ra
w

Test Graph Domain

Figure 1. Zero-shot Hits@1 (higher is better) of STAGE and its baselines. Given different product categories, each with its own set of
features, we choose a test graph domain (x-axis) and pre-train the models on all the remaining domains. The error bars corresponds to
training with different seeds. On average, the zero-shot performance of our model is better than any other baselines.

of e-commerce datasets (Kechinov, 2020). This enables
us to construct more realistic and diverse datasets, where
each dataset corresponds to a different set of product cate-
gories in distinct e-commerce stores, each with its own set
of node features. As shown in Figure 1, STAGE consis-
tently outperforms all baseline models in zero-shot testing
scenarios, where the test graph domain is entirely unseen
during training.

2. Our approach: STAGE
GNNs typically assume features have the same semantics
across different nodes. This limits the applicability of GNNs
to new graphs at test time, which do not necessarily conform
to the same feature domains seen in the training data. To
address this, our goal is to design an architecture capable of
processing graphs with distinct node feature spaces.

2.1. Method

We are given an attributed graph G = (V,E,X) where
X = (Xv)v∈V and describes a set of features for each node
in the graph with Xv belonging to any measurable space of
dimension d ≥ 1.

To design a model capable of generalizing to test graphs that
may have node features living in a different space than X ,
we design a projection map that transforms the node features
(Xu, Xv) of an edge (u, v) ∈ E into a fixed dimensional
pairwise embedding

P : (Xu, Xv) 7→ ruv ∈ Rk, k ≥ 1. (1)

In order to obtain the mapping P , we start with building
a graph based on the following pairwise pdf feature de-
scriptors. First, we define the random variable X̃i as the i-th
feature of a randomly chosen node in G, i ∈ {1, . . . , d}. We
will use X̃i to define a conditional probability P(Xu

i |Xv
j),

i, j ∈ {1, . . . , d}, that accounts for mix of discrete and

continuous features:

• P(Xu
i |Xv

j) := P (X̃i ≤ Xu
i |X̃j ≤ Xv

j , (u, v) ∈ E), if
X̃i and X̃j are continuous.

• P(Xu
i |Xv

j) := P (X̃i = Xu
i |X̃j ≤ Xv

j , (u, v) ∈ E), if
X̃i is discrete and X̃j is continuous.

• P(Xu
i |Xv

j) := P (X̃i ≤ Xu
i |X̃j = Xv

j , (u, v) ∈ E), if
X̃i is continuous and X̃j is discrete.

• P(Xu
i |Xv

j) := P (X̃i = Xu
i |X̃j = Xv

j , (u, v) ∈ E), if
X̃i and X̃j are discrete.

For i, j ∈ {1, . . . , 2d}, i ̸= j, we define the following
matrix

Xuv
ij =

P(Xu

i | Xu
j) if i ≤ d and j ≤ d,

P(Xv
i−d | Xv

j−d) if d ≤ i ≤ 2d and d ≤ j ≤ 2d,

P(Xu
i | Xv

j−d) if i ≤ d and d < j ≤ 2d,

P(Xv
i−d | Xu

j) if d < i ≤ 2d and j ≤ d.

and for the diagonal i = j we define,

Xuv
ij =

{
P(Xu

i) if i ≤ d,

P(Xv
i) if i > d,

where P(Xu
i) := P (X̃i = Xu

i) if Xu
i is discrete and

P(Xu
i) := P (X̃i ≤ Xu

i) if Xu
i is continuous.

We now build a fully connected weighted directed graph
denoted G(Xuv) with 2d nodes, where node i has scalar
attribute Xuv

ii and edge (i, j) has scalar attribute Xuv
ij . We

choose to focus on edge-wise relations instead of node-wise
features in order to maximize the expressivity for entity and
link prediction tasks.

For each edge (u, v) ∈ E in the original graph G, we pro-
cess G(Xuv) with a message-passing neural network to

2

Zero-Shot Generalization of GNNs over Distinct Attribute Domains

produce its graph embedding, denoted ruv in Equation (1).
Finally, a GNN (the base model) is trained end-to-end to
solve the task at hand using (V,E, {ruv}(u,v)∈E), i.e., the
original V , E, and these new edge features (which replace
the original node features). For entity prediction tasks our
experiments use NBFNet as our base model (Zhu et al.,
2021), but any GNN that can accommodate edge embed-
dings can be used as the base model.

The key probabilistic insight behind our design is that ran-
dom variables (node features) are completely characterized
by their Radon–Nikodym derivatives (Kallenberg, 1997)
(i.e., their probability density functions (pdf s)). This allows
variables belonging to different spaces to be reasoned about
in the same space (the space of measurable densities). Us-
ing this insight, STAGE learns a projection map from a pdf
description of the features into a constant-size embedding.

Specifically, consider that the feature vector of a node is a
realization (sample) of a random vector X̃ =

[
X̃1, . . . , X̃d

]
that is drawn from a joint distribution fX̃. Estimating fX̃
would provide complete knowledge of the different features,
however it is usually infeasible as it requires a large number
of samples. Instead we estimate the marginal probabilities of
each feature, i.e., P (X̃i), and the conditional probabilities
for feature pairs, i.e., P (X̃i | X̃j). As we discuss later in the
paper, pairwise probabilities are sufficient to estimate the
joint distribution of the features under certain conditions.

Using the estimated probabilities and the observed feature
values for each node we generate edge features as follows:
In the pdf feature descriptors Xuv , the diagonal encodes the
marginal likelihood of Xu and Xv, and the off-diagonals
encodes conditional likelihood between features of Xu and
itself, and between features of Xu and Xv .

By focusing on the likelihood of observing a feature value
given other features, we remove the need to process the fea-
ture itself by focusing only on pair-wise relations between
features. This allows us to apply a fixed edge-level model to
the weighted graph G(Xuv), dubbed edge-feature graph, in-
dependently of the original feature Xu and Xv . Our model
can generalize to completely unseen feature types by rea-
soning by analogy from its relations to other features.

Higher-order extension. In general, random variables are
fully characterized by higher-order interactions between
variables. Our pairwise formulation can be naturally ex-
tended to triple- and higher-order conditional probabilities
by defining a hypergraph, which has features XS for sub-
sets of nodes S ⊆ V with |S| ≥ 2, and processed with
hypergraph neural networks (Feng et al., 2019). In practice,
accurately estimating higher-order conditional distributions
requires significant amounts of data and we leave further
exploration of this to future work.

Expressivity. A critical decision for the generalization of

our approach is to transform the node-level feature rep-
resentations into feature representations between pairs of
nodes (edge-level feature representations). This enables
our model to be trained and executed on graphs with vary-
ing feature numbers and/or types. To that end, we model
the node features as random variables, characterized en-
tirely by their probability density or mass functions, and
empirically estimate the true marginal and conditional dis-
tributions based on observed data. Note that this is doable,
since the sample complexity for reliable estimation of the
joint probabilities, and thus conditionals and marginals, of
discrete random variables is relatively low. Specifically, to
achieve

∣∣∣P (
X̃i, X̃j

)
− P̂

(
X̃i, X̃j

)∣∣∣ ≤ ϵ with a probabil-

ity greater than 1− δ, O
(
ϵ−2 log

(
1
δ

))
samples are needed.

Using pairwise probabilities allows us to generate powerful
representations for the edges of the graph. Their expressivity
is theoretically grounded since the identification of the joint
probability mass function from pairwise joint probabilities
can be guaranteed under certain conditions (Ibrahim et al.,
2019). It is also notable that GNN models can effectively
generalize when the features are derived from probability
functions. In fact, it can be shown that such features are
invariant across different graphs under certain conditions
on their distributions, but this formalization is left to a full
version of this work.

Choosing pairwise relations. Xuv is only computed for
edges (u, v), and so can only model pairwise relations be-
tween nodes connected by an edge. In some cases, such
as bipartite graphs, we find it beneficial to add extra edges
between nodes of the same type (see Section 3 for details).

3. Experiments
We perform a preliminary set of experiments to answer
two main questions: (Q1) How does STAGE compare to
its natural baselines, which can be obtained, for instance,
by disregarding node features or by employing an LLM to
obtain initial node embeddings? (Q2) How does the number
of training graphs impact the performance? In the following
we present our results and refer to Appendix B for additional
experimental results for different setup variations.

Dataset creation. We consider a dataset of e-commerce
users and products (Kechinov, 2020), from which we cre-
ate graphs, where an edge indicates that a user has bought,
carted, uncarted, or seen a certain product. We split the
data into different product categories: shoes, refrigerators,
desktop, smartphone, and bed. These will be our graph
domains. We select a subset of product categories to form
our training graph and use unseen product categories to
form our test graph. To ensure that each product category
has its own set of features describing a product in that cate-
gory, we use GPT-4 (OpenAI, 2023) to retrieve information
about the product as it would have been in 2019 (the year

3

Zero-Shot Generalization of GNNs over Distinct Attribute Domains

1 2 3 4
Number of TrainingGraph Domains

0.48

0.50

0.52

0.54

0.56
M
ea

n
Va

lu
e
of

M
et
ri
c

Mean MRR
Mean Hits@3

Figure 2. Zero-shot performance of STAGE on a fixed test graph
(bed e-commerce domain) with increasing number of graphs in
pre-training. We report results averaged across seeds. Increasing
the number of training graph domains leads to better performance.

of the e-commerce dataset we built upon). This allows us
to retrieve different features for different categories such
as display type for smartphone, and ankle height for shoes.
We refer the reader to Appendix A for additional details.
Once the training and test graphs are constructed, we in-
clude additional product-product edges, representing how
many users have bought both products. Since users do not
have any node feature, we create our edge graphs G(Xuv)
(Section 2.1) only for the product-product edges. Finally,
we consider the entity prediction task, where the goal is to
predict the tail entity given a head entity and a relation type.

Baselines. We compare STAGE to different feature en-
coding methods, which serve as our baselines: (1) RAW,
which projects each node feature into a fixed dimensional
space; (2) GAUSSIAN, which uses a Gaussian random noise
vector instead of the node features (Sato et al., 2021; Ab-
boud et al., 2021; Murphy et al., 2019); (3) STRUCTURAL,
which completely disregards node features; (4) LLM, which
textualizes the node-feature semantics and their values and
pass them through an text-encoding language model, similar
to the approach taken in PRODIGY (Huang et al., 2023);
(5) NORMALIZED, which only keeps the continuous features
and normalizes them into the same feature space. For a fair
comparison, in all the baselines, as well as in our method,
we employ the same NBFNet architecture (Zhu et al., 2021),
changing only the input feature encoding method.

Results. To test the performance of STAGE and com-
pare it with its baselines, we consider each graph domain
(product category) as the test domain, while using all the
remaining four graph domains (product categories) for train-
ing. This approach allows us to evaluate how well STAGE
and its baselines generalize to unseen graph domains in
our zero-shot scenario. As shown in Figure 1, STAGE
significantly outperforms all its baselines, with the largest
margin obtained when testing on the smartphone domain.
In the shoes domain, however, STAGE performs similarly
(slightly better) to some of its baselines. We conjecture that
this is due to the rich features and complex structure of the
shoes graph domain, which are difficult to capture when
training on the remaining graph domains.

We further test the meta-learning capabilities of STAGE

by assessing whether increasing the number of training do-
mains improves inference performance on a fixed new test
graph domain. We set the bed graph domain as the test graph
domain and train the model sequentially with one, two, three,
and four graph domains. This evaluation helps us under-
stand how well STAGE can leverage additional training
data from diverse graph domains to enhance its zero-shot
generalization performance on a new domain. The results
are presented in Figure 2, showing that the performance
increases with the number of domains, demonstrating the
effectiveness of STAGE in utilizing diverse training data.

4. Related Work
Foundation models for graph data aim to create versatile
graph models capable of generalizing across different graphs
and tasks. Despite significant interest, achieving a truly uni-
versal graph foundation model remains challenging due to
the complexities in designing a suitable graph vocabulary
that ensures transferability across datasets and tasks. Cur-
rent research emphasizes the importance of building models
that can adapt to the diverse structural patterns present in
different graph data, often overlooking the handling of dif-
ferent features across graph domains (Mao et al., 2024).

Most current methods convert attributed graphs into texts.
GRAPHTEXT (Zhao et al., 2023) represents graph struc-
tures within a textual space, using advanced language mod-
els to treat graph reasoning as text generation. Unigraph (He
& Hooi, 2024) also merges NLP with graph learning, utiliz-
ing a unified graph tokenizer to generalize across various do-
mains. PRODIGY (Huang et al., 2023) encodes the textual
features with an LLM and focuses on employing a prompt
graph representation to connect examples and queries for
generalization to new tasks.

5. Conclusions
In this work we introduced STAGE, the first method spe-
cially designed to allow GNNs to generalize to graphs with
input features in different feature spaces, including differ-
ent dimensional node features and features with different
semantics. STAGE works by modelling the pairwise proba-
bilities between individual node features of edge endpoints,
and encoding these probabilities with a neural network that
is invariant to the order of the features (a graph neural net-
work of the edge-feature graph). We find that this approach
significantly outperforms other natural approaches to graph
feature encoding such as viewing the raw features as text
and using an LLM to produce node embeddings from node
features. Our future work includes expanding our theoretical
analysis to a theory on the transferability of universal feature
embeddings for graphs in distinct domains. We will also
train and test on more diverse graph domains, and include
other GNN models besides NBFNet along with additional
tasks (e.g. node and graph-level) besides link prediction.

4

Zero-Shot Generalization of GNNs over Distinct Attribute Domains

References
Abboud, R., Ceylan, İ. İ., Grohe, M., and Lukasiewicz, T.

The surprising power of graph neural networks with ran-
dom node initialization. In Proceedings of the Thirtieth
International Joint Conference on Artifical Intelligence
(IJCAI), 2021.

Feng, Y., You, H., Zhang, Z., Ji, R., and Gao, Y. Hypergraph
neural networks. In Proceedings of the AAAI confer-
ence on artificial intelligence, volume 33, pp. 3558–3565,
2019.

Galkin, M., Yuan, X., Mostafa, H., Tang, J., and Zhu, Z.
Towards foundation models for knowledge graph reason-
ing. In The Twelfth International Conference on Learning
Representations, 2024.

Gao, J., Zhou, Y., Zhou, J., and Ribeiro, B. Double equiv-
ariance for inductive link prediction for both new nodes
and new relation types. arXiv preprint arXiv:2302.01313,
2023.

He, Y. and Hooi, B. Unigraph: Learning a cross-domain
graph foundation model from natural language. ArXiv,
abs/2402.13630, 2024.

Hu, W., Liu, B., Gomes, J., Zitnik, M., Liang, P., Pande, V.,
and Leskovec, J. Strategies for pre-training graph neu-
ral networks. In International Conference on Learning
Representations, 2020.

Huang, Q., Ren, H., Chen, P., Kržmanc, G., Zeng, D., Liang,
P. S., and Leskovec, J. Prodigy: Enabling in-context
learning over graphs. Advances in Neural Information
Processing Systems, 36, 2023.

Ibrahim, S., Fu, X., Kargas, N., and Huang, K. Crowd-
sourcing via pairwise co-occurrences: Identifiability and
algorithms. Advances in neural information processing
systems, 32, 2019.

Kallenberg, O. Foundations of modern probability, vol-
ume 2. Springer, 1997.

Kechinov, M. ecommerce behavior data from multi category
store, 2020. URL www.kaggle.com/datasets/
mkechinov/ecommerce-behavior-data-
from-multi-category-store.

Larochelle, H., Erhan, D., and Bengio, Y. Zero-data learning
of new tasks. In AAAI, volume 1, pp. 3, 2008.

Mao, H., Chen, Z., Tang, W., Zhao, J., Ma, Y., Zhao, T.,
Shah, N., Galkin, M., and Tang, J. Graph foundation
models. In arXiv preprint arXiv:2402.02216, 2024.

Murphy, R., Srinivasan, B., Rao, V., and Ribeiro, B. Rela-
tional pooling for graph representations. In Proceedings
of the 36th International Conference on Machine Learn-
ing, pp. 4663–4673, 2019.

OpenAI. Gpt-4 technical report. https://
openai.com/research/gpt-4, 2023. Accessed:
2023-05-28.

Samuel, D. and Øvrelid, L. Tokenization with factorized
subword encoding. In Findings of the Association for
Computational Linguistics: ACL 2023, Toronto, Canada,
2023. Association for Computational Linguistics.

Sato, R., Yamada, M., and Kashima, H. Random features
strengthen graph neural networks. In Proceedings of the
2021 SIAM International Conference on Data Mining,
SDM, 2021.

Wang, T., Roberts, A., Hesslow, D., Scao, T. L., Chung,
H. W., Beltagy, I., Launay, J., and Raffel, C. What lan-
guage model architecture and pretraining objective works
best for zero-shot generalization? In Proceedings of the
39th International Conference on Machine Learning, vol-
ume 162 of Proceedings of Machine Learning Research,
pp. 22964–22984. PMLR, 17–23 Jul 2022.

Xian, Y., Schiele, B., and Akata, Z. Zero-shot learning-the
good, the bad and the ugly. In Proceedings of the IEEE
conference on computer vision and pattern recognition,
pp. 4582–4591, 2017.

Zhao, J., Zhuo, L., Shen, Y., Qu, M., Liu, K., Bronstein, M.,
Zhu, Z., and Tang, J. Graphtext: Graph reasoning in text
space, 2023.

Zhu, Z., Zhang, Z., Xhonneux, L.-P., and Tang, J. Neural
bellman-ford networks: A general graph neural network
framework for link prediction. Advances in Neural Infor-
mation Processing Systems, 34:29476–29490, 2021.

5

www.kaggle.com/datasets/mkechinov/ecommerce-behavior-data-from-multi-category-store
www.kaggle.com/datasets/mkechinov/ecommerce-behavior-data-from-multi-category-store
www.kaggle.com/datasets/mkechinov/ecommerce-behavior-data-from-multi-category-store
https://openai.com/research/gpt-4
https://openai.com/research/gpt-4

Zero-Shot Generalization of GNNs over Distinct Attribute Domains

A. Dataset Construction
To test the model’s generalization to new input feature spaces, we consider a dataset of e-commerce users and prod-
ucts (Kechinov, 2020). There are 29,228,809 different product categories, such as smartphones, shoes, and computers.
During training, we select a subset of product categories and form an input graph from those products and connected users.
At test time, we create an entirely different graph containing unseen products, from new unseen categories and associated
users and test the zero-shot (i.e., frozen model) performance on the test data. We focus on the single task of predicting links
between users and products, with links indicating a user purchasing a product.

To ensure that the test graph has different feature types than those of the training graph, we use GPT-4 to retrieve information
specific to each category. Specifically, the information retrieval process involves prompting GPT-4 with the following
content:

"According to the following information regarding an e-commerce purchase, give
information about the product in the following asked format."

"First, the product is purchased at time: " + row["event_time"] + "."
"Second, the category of the product is " + row["category_code"] + "."
"Third, the brand of the product is " + row["brand"] + "."
"Last, the price of the product is " + str(row["price"]) + "."
"Please provide information about the product in the following json format."
"{json_prototype}"

The JSON prototype is different for different categories, and contains features that are specific for the category being
prompted. That is, the JSON prototype for smartphones contains, for instance, features like display type, which is not a
feature for shoes, containing instead features such as ankle height. In the following, we report the JSON prototype for all
categories.

smartphone

{
"display_type": <select from [’OLED’, ’LCD’]>,
"display_size": <give float in inches>,
"display_resolution": <give int in pixels>,
"processor_type": <give string>,
"ram": <give int in GB>,
"storage_options": <give int in GB>,
"rear_camera_primary_resolution": <give int in MP>,
"front_camera_resolution": <give int in MP>,
"operating_system": <select from [’Android’, ’iOS’, ’HarmonyOS’, ’KaiOS’, ’Tizen

’, ’Ubuntu Touch’, ’PureOS’, ’Sailfish OS’, ’Plasma Mobile’]>,
"Battery_capacity": <give int in mAh>,
"Has_gps": <select from [’True’, ’False’]>,
"has_nfc": <select from [’True’, ’False’]>
}

shoes

{
"type": <select from [’Running’, ’Casual’, ’Formal’, ’Sports’, ’Boots’, ’Sandals

’, ’Slippers’, ’Hiking’, ’Dress’, ’Work’, ’Safety’]>,
"material": <select from [’Leather’, ’Synthetic’, ’Textile’, ’Rubber’, ’Canvas’,

’Mesh’, ’Suede’, ’Patent Leather’, ’Nubuck’, ’Faux Leather’]>,
"color": <give string>,
"size": <give float in UK sizes>,
"gender": <select from [’Men’, ’Women’, ’Unisex’, ’Children’, ’Infants’]>,
"closure_type": <select from [’Laces’, ’Velcro’, ’Slip-on’, ’Buckle’, ’Zip’, ’

6

Zero-Shot Generalization of GNNs over Distinct Attribute Domains

Hook and Loop’, ’None’]>,
"sole_material": <select from [’Rubber’, ’Synthetic’, ’PVC’, ’EVA’, ’Leather’, ’

TPU (Thermoplastic Polyurethane)’, ’TPR (Thermoplastic Rubber)’]>,
"water_resistant": <select from [’True’, ’False’]>,
"ankle_height": <select from [’Low-top’, ’Mid-top’, ’High-top’, ’Over the ankle

’]>,
"breathability": <select from [’High’, ’Medium’, ’Low’]>,
"weight": <give float in grams>,
"origin_country": <give string>,
"seasonality": <select from [’All-season’, ’Summer’, ’Winter’, ’Rainy’, ’Spring

’, ’Autumn’]>,
"eco_friendly": <select from [’True’, ’False’]>

}

desktop

{
"processor_type": <select from [’Intel Core i3’, ’Intel Core i5’, ’Intel Core i7

’, ’Intel Core i9’, ’AMD Ryzen 3’, ’AMD Ryzen 5’, ’AMD Ryzen 7’, ’AMD Ryzen
9’, ’Apple M1’, ’ARM other’]>,

"ram_gb": <give int>,
"storage_type_hdd_size_gb": <give int>,
"storage_type_ssd_size_gb": <give int>,
"storage_type_hybrid_size_gb": <give int>,
"graphics_card": <select from [’NVIDIA GeForce GTX 1660’, ’NVIDIA GeForce RTX

2060’, ’NVIDIA GeForce RTX 2070’, ’NVIDIA GeForce RTX 2080’, ’AMD Radeon RX
570’, ’AMD Radeon RX 580’, ’AMD Radeon RX 590’, ’AMD Radeon RX 5700’, ’AMD
Radeon RX 5700 XT’]>,

"operating_system": <select from [’Windows 10’, ’macOS’, ’Linux Ubuntu’, ’Linux
Fedora’, ’Linux Mint’, ’Debian’, ’FreeBSD’]>,

"power_supply_watts": <give int>,
"cooling_system": <select from [’Air cooling’, ’Liquid cooling’, ’Passive

cooling’]>,
"has_bluetooth": <select from [’True’, ’False’]>

}

refrigerators

{
"energy_rating": <select from [’A+++’, ’A++’, ’A+’, ’A’, ’B’, ’C’]>,
"capacity_liters": <give int>,
"refrigerator_type": <select from [’Top Freezer’, ’Bottom Freezer’, ’Side-by-

Side’, ’French Door’, ’Mini Fridge’, ’Commercial’]>,
"defrost_type": <select from [’Manual’, ’Frost Free’, ’Automatic Defrost’]>,
"has_ice_maker": <select from [’True’, ’False’]>,
"has_water_dispenser": <select from [’True’, ’False’]>,
"has_smart_technology": <select from [’True’, ’False’]>,
"is_energy_efficient": <select from [’True’, ’False’]>,
"height_cm": <give float>,
"width_cm": <give float>,
"depth_cm": <give float>

}

7

Zero-Shot Generalization of GNNs over Distinct Attribute Domains

bed

{
"type": <select from [’Twin’, ’Twin XL’, ’Full’, ’Queen’, ’King’, ’California

King’]>,
"material": <select from [’Wood’, ’Metal’, ’Upholstered’, ’Bamboo’, ’Particle

Board’, ’Composite’]>,
"bed_frame_included": <select from [’True’, ’False’]>,
"headboard_included": <select from [’True’, ’False’]>,
"footboard_included": <select from [’True’, ’False’]>,
"mattress_included": <select from [’True’, ’False’]>,
"box_spring_required": <select from [’True’, ’False’]>,
"weight_capacity_lbs": <give int in lbs>,
"bed_size_length_inches": <give float in inches>,
"bed_size_width_inches": <give float in inches>,
"bed_size_height_inches": <give float in inches>

}

B. Additional Experiments and Details
In this section, we explore variations of the experiments reported in the main text. Specifically, we measure the performance
of STAGE and its baselines using additional metrics within the same experimental setup presented in Section 3, where, for
each product category selected as the test category, we train on all remaining categories. Results for Hits@1, Hits@3, and
Hits@10 are presented in Figures 3 to 5, respectively.

bed desktop refrigerators smartphone shoes

Test Graph Domain

0.0

0.1

0.2

0.3

0.4

0.5

0.6

m
rr

Model
NBFNet-raw
NBFNet-gaussian
NBFNet-structural
NBFNet-llm
NBFNet-normalized
NBFNet-STAGE

ra
nd

om
ra
w

ra
nd

om

ra
nd

om

ra
nd

om

ra
nd

om

ra
w

ra
w

ra
w

ra
w

Figure 3. MRR (higher is better) of STAGE and baseline models.

8

Zero-Shot Generalization of GNNs over Distinct Attribute Domains

bed desktop refrigerators smartphone shoes

Test Graph Domain

0.0

0.1

0.2

0.3

0.4

0.5

0.6

hi
ts
@
3

Model
NBFNet-raw
NBFNet-gaussian
NBFNet-structural
NBFNet-llm
NBFNet-normalized
NBFNet-STAGE

ra
nd
om

ra
w

ra
nd
om

ra
nd
om

ra
nd
om

ra
nd
om

ra
w

ra
w

ra
w

ra
w

Figure 4. Hits@3 (higher is better) of STAGE and baseline models.

bed desktop refrigerators smartphone shoes

Test Graph Domain

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

hi
ts
@
10

Model
NBFNet-raw
NBFNet-gaussian
NBFNet-structural
NBFNet-llm
NBFNet-normalized
NBFNet-STAGE

ra
nd

om
ra
w

ra
nd

om

ra
nd

om

ra
nd

om

ra
nd

om

ra
w

ra
w

ra
w

ra
w

Figure 5. Hits@10 (higher is better) of STAGE and baseline models.

We also conduct an additional experiment to test the meta learning capabilities of STAGE, complementing the one presented
in Figure 2 in Section 3. In particular, given the total number of categories C, we fix the number of training categories
k (x-axis), and average the performance of STAGE on all test categories (C − k), when training on all combinations
of categories (

(
C
k

)
). Results for different metrics are reported in Figures 6 to 9, showing that increasing the number of

categories generally leads to better performance for STAGE.

9

Zero-Shot Generalization of GNNs over Distinct Attribute Domains

1 2 3 4
Number of Graph Domains

0.2

0.3

0.4

0.5

0.6

m
rr

Model
NBFNet-STAGE
NBFNet-structural

Figure 6. STAGE shows meta-learning: # graphs in pre-training (# Domains) vs. MRR values of zero-shot performance on the remaining
graph domains. We see a clearer trend of increase in the overall MRR span in our method, relative to other baseline models (e.g. structural).

1 2 3 4
Number of Graph Domains

0.2

0.3

0.4

0.5

0.6

hi
ts

@
1

Model
NBFNet-STAGE
NBFNet-structural

Figure 7. STAGE shows meta-learning: # graphs in pre-training (# Domains) vs. Hits@1 values of zero-shot performance on the
remaining graph domains. We see a clearer trend of increase in the overall Hits@1 span in our method, relative to other baseline models
(e.g. structural).

1 2 3 4
Number of Graph Domains

0.3

0.4

0.5

0.6

hi
ts

@
3

Model
NBFNet-STAGE
NBFNet-structural

Figure 8. STAGE shows meta-learning: # graphs in pre-training (# Domains) vs. Hits@3 values of zero-shot performance on the
remaining graph domains. We see a clearer trend of increase in the overall Hits@3 span in our method, relative to other baseline models
(e.g. structural).

10

Zero-Shot Generalization of GNNs over Distinct Attribute Domains

1 2 3 4
Number of Graph Domains

0.3

0.4

0.5

0.6

0.7

hi
ts

@
10

Model
NBFNet-STAGE
NBFNet-structural

Figure 9. STAGE shows meta-learning: # graphs in pre-training (# Domains) vs. Hits@10 values of zero-shot performance on the
remaining graph domains. We see a clearer trend of increase in the overall Hits@10 span in our method, relative to other baseline models
(e.g. structural).

Finally, we report in Table 1 the categories used in training for Figure 2, where we fix the test category (bed) and train with
increasing number of categories (from 1 to 4), by including a new category to the mixture.

Table 1. Graphs in different pre-training mixtures in Figure 2. We fix the test category as Bed.

1 2 3 4

desktop ✓ ✓ ✓ ✓
shoes ✓ ✓ ✓
smartphone ✓ ✓
refrigerators ✓

epochs 30 30 30 30

Experimental Details. We trained all our models on NVIDIA A100 GPUs. For all experiments, we utilized the following
configuration to evaluate the performance of all models, namely our STAGE, llm, structural, normalized, raw, and gaussian.
The input dimension is set to 256, corresponding to the feature dimension (k) as described in Equation (1). We employ
NBFNet (Zhu et al., 2021) as our GNN model, with six layers of GeneralizedRelationalConv (Zhu et al., 2021), each with
hidden dimension equal to 256. For the remaining hyperparameters, we keep the default choices in NBFNet, namely the
message passing function being DistMult, the aggregation function being PNA, with both shortcut connections and layer
normalization.

For the baseline methods, no additional parameters are needed. However, for our STAGE, we specify an edge embedding
dimension of 256 and employ a single layer of GINEConv (Hu et al., 2020), followed by sum pooling to obtain the edge
graph embedding.

The task configuration includes generating 64 negative samples with strict negative sampling and an adversarial temperature
of 1. The evaluation metrics used are mean reciprocal rank (MRR), hits@1, hits@3, and hits@10. The optimizer chosen for
training is Adam with a learning rate of 5.0e-3. During training, the batch size is set to 32, and the model is trained for 30
epochs.

11

