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Abstract

In federated learning (FL), clients typically access data from just one distribution. Ideally,
the learned models would generalize to out-of-distribution (OOD) data, i.e., domain gener-
alization (DG). However, centralized DG methods cannot easily be adapted in the domain
separation context and prior federated DG methods perform poorly when the number of
clients is large. To address these challenges, we revisit the classic mixture-of-experts (MoE)
idea by viewing each client as an expert on its own dataset. From this perspective, simple
federated averaging can be seen as a type of iterative MoE, where the amount of local train-
ing determines the strength of each expert. Contrast to the FL communication-performance
trade-off, we theoretically demonstrate that in linear cases and empirically validate in deep
models that reducing communication frequency can effectively enhance DG performance,
surpassing their centralized counterparts (e.g., +4.34% on PACS). Building on this, we fur-
ther propose an additional MoE strategy to combine the client-specific classifier heads via
standard DG objectives. Our proposed FedLOE method can be viewed as an intermedi-
ate approach between FedAVG and one-time ensembling. It demonstrates both theoretical
soundness and empirical effectiveness. Moreover, FedLOE requires fewer communication
rounds, highlighting its practical efficiency and scalability.

1 Introduction

In federated learning (FL), each client owns a portion of the data. For example, in a medical network,
each hospital may possess its own set of chest x-rays or tissue sample images, collected using different
imaging devices. Similarly, regional datasets capturing economic, crime, or demographic information are
often compiled with varying methodologies. As a result, each client’s dataset may originate from a distinct
domain, leading to what is commonly referred to as domain separation (Bai et al., 2023). This setup violates
the typical i.i.d. assumption and presents challenges for model training in FL. Additionally, it raises the
question: Can models trained in this setting generalize to clients from previously unseen domains? This is
the central concern of domain generalization (DG), which we consider in the federated setting where domain
separation is pronounced and the number of clients is large.

A straightforward approach might be to adapt centralized DG objectives to each client. However, many
popular DG methods assume access to multiple domains during training (Arjovsky et al., 2019; Shi et al.,
2021; Sun and Saenko, 2016; Li et al., 2018b; Sagawa et al., 2019; Ajakan et al., 2014; Zhou et al., 2021; Li
et al., 2018a), which does not hold in the domain separation setting of FL. Existing methods that address DG
in FL either do not scale well with many clients (Zhang et al., 2021; Nguyen et al., 2022) or may compromise
privacy by sharing frequency spectra of images (Liu et al., 2021).

To address these challenges, we revisit the mixture-of-experts perspective, treating each client as an expert
on its local domain. Rather than being a drawback, domain-specific data may enable clients to specialize,
potentially offering complementary information across the network. The key challenge then becomes: How
can these expert models be effectively combined to support out-of-domain generalization?

We consider two combination strategies. First, we explore an implicit combination through the standard
FedAvg algorithm and find that communication frequency plays an important role in DG performance (see
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Section 3). Surprisingly, in some cases, FedAvg with infrequent communication achieves more stable and
improved DG performance compared to centralized ERM (which corresponds to communication at every
epoch). We hypothesize that frequent communication may lead models to overfit to common spurious
correlations, while infrequent communication allows them to retain diverse representations. Our theoretical
analysis supports this behavior in a simplified linear setup (Section 3).

Second, we propose an explicit ensembling step for combining locally trained classifier heads. This step
is motivated by observations in the DG literature: while DG methods can be effective in simple linear
settings (Arjovsky et al., 2019; Sun and Saenko, 2016), they often underperform on overparameterized deep
models (Gulrajani and Lopez-Paz, 2020; Koh et al., 2021). Moreover, recent studies suggest that the deep
feature extractor may already encode useful invariances, but the classifier head can emphasize spurious
features (Wald et al., 2022; Rosenfeld et al., 2022). Drawing on these insights, we adopt a two-stage training
process that overfits client-specific classifiers and then combines them using a standard DG objective. Our
contributions are as follows:

1. We explore a mixture-of-experts interpretation of federated DG and observe that FedAvg with reduced
communication frequency can lead to improved out-of-domain generalization under domain separation.

2. We provide a theoretical analysis in a simplified linear setting that sheds light on the conditions under
which our approach may outperform centralized ERM.

3. We introduce a two-stage algorithm, FedLOE, that first performs local overfitting followed by aggregation
using parameter averaging and a DG objective, respectively.

4. We present empirical results on several real-world datasets, providing evidence that our approach performs
comparably or favorably to existing baselines and is robust to varying numbers of clients.

2 Background

Consider a featurizer gθ(x) : RD → Rd with parameters θ and a linear classifier head denoted as hψ(z) :
Rd → Rm with parameters ψ, where z = gθ(x). Let ℓ(·, ·) and L(θ, ψ) := Ep(x,y)[ℓ(hψ(gθ(x)), y)] be the
per-sample and expected loss respectively. Let [A] represent the set of integers up to A: [A] ≜ {1, 2, · · · , A}.
C denotes the number of clients, K denotes the number of training domains.

2.1 Domain Generalization (DG)

In domain generalization, we will assume there are set of K domain-specific training distributions where
the k-th joint distribution is denoted as p(x, y|k) and the marginal probability of each domain is p(k).
Additionally, there are one or more domain-specific unseen test distributions denoted by p(x, y|k̃), where
k̃ > K. The goal of DG is to perform well on these unseen test distributions, which can be formalized as
minimizing the expected loss over the set of unseen test distributions, i.e.,

min
θ,ψ

∑
k̃>K

p(k̃)Lk̃(θ, ψ) , (1)

where Lk̃(θ, ψ) ≜ Ep(x,y|k̃)[ℓ(hψ(gθ(x)), y)]. Clearly, because the test domains are unknown, a practical proxy
objective is simply to use standard empirical risk minimization (ERM) by minimizing the expected loss (i.e.,
risk) of the training domain distributions:

min
θ,ψ

K∑
k=1

p(k)Lk(θ, ψ) , (2)

where Lk are the expected losses of the training distributions. Despite its simplicity, using simple ERM
for the DG task has been difficult to beat (Gulrajani and Lopez-Paz, 2020), particularly for training deep
non-linear models. Several common approaches add a type of DG regularization term to the ERM objective.

A common approach to DG is through representation learning, including domain-invariant representation
learning via kernel methods (Muandet et al., 2013; Ghifary et al., 2016), invariant risk minimization (Arjovsky
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et al., 2019; Krueger et al., 2020), domain adversarial neural networks (Sun and Saenko, 2016; Li et al., 2018b).
Besides domain-invariant learning, several methods add regularizations to the gradient computations (Shi
et al., 2021; Rame et al., 2022). Other approaches include distributionally robust optimization (Sagawa et al.,
2019), which learns the worst-case distribution scenario of training domains; and meta-learning (Finn et al.,
2017; Li et al., 2018a), which is based on the learning-to-learn mechanism to learn general knowledge by
constructing meta-learning tasks to simulate domain shift. Most of these methods can be viewed as adding
a regularization penalty r(θ, ψ) with tuning parameter λ to the simple ERM objective:

min
θ,ψ

K∑
k=1

p(k)Lk(θ, ψ) + λr(θ, ψ) . (3)

We select three representative examples that we will use in our experiments. In the IRMv1 method from
Arjovsky et al. (2019), the regularization term encourages gradients to be zero:

rirm(θ, ψ) ≜
∑
k

Epk
∥∇θ,ψLk(θ, ψ)∥2

.

Another popular choice is to align the gradients as Fish (Shi et al., 2021) by computing the inner product
of the domain-specific loss functions:

rfish(θ, ψ) ≜ −
∑
k ̸=k′

Epk,pk′ ⟨∇θ,ψLk(θ, ψ),∇θ,ψLk′(θ, ψ)⟩ .

The regularization in REx Krueger et al. (2020) seeks to reduce the loss variance across domains:

rREx(θ, ψ) ≜ Var [L1(θ, ψ),L2(θ, ψ), . . . ,LK(θ, ψ)] .

2.2 Federated Domain Generalization

In the federated DG setup, we assume C clients, each possessing data from only a single training domain—a
specific form of client heterogeneity known as domain separation in Bai et al. (2023).. Formally, client c will
have samples from one domain distribution, i.e., p(x, y|c) ≡ p(x, y|k) for some domain k. In our experiments,
we will always assume that the number of clients is always larger or equal to the number of training domains
C ≥ K, specifically where C is fairly large in contrast to K, which may only be 4 domains (e.g., in PACS).
Importantly, this type of client heterogeneity is distinct from label imbalance, i.e., ∃k ̸= k′, p(y|k) ̸= p(y|k′),
which is the most common heterogeneity considered in the FL literature. Rather, we assume that the joint
distribution could be different, i.e., ∃k ̸= k′, p(x, y|k) ̸= p(x, y|k′), but do not assume any particular type
of shift between distributions. This is a more general case of client heterogeneity than class imbalance.
Like ERM in the centralized case, the standard FL learning algorithm is the FedAvg learning algorithm
(McMahan et al., 2017) that minimizes the expected loss on each client and then averages the parameters
from all clients.

Using our notation, FedAvg can be compactly formalized as performing a sequence of computational steps
denoted by t ∈ [T ] where T is the maximum number of computational epochs, and in each computational
step, FedAvg updates the model and sometimes also synchronize and average all parameters across clients:
for all c ∈ [C], (

ψ
t+ 1

2
c , θ

t+ 1
2

c

)
=
(
ψtc, θ

t
c

)
− α∇Lc(ψtc, θtc).

(
ψt+1
c , θt+1

c

)
=


(
ψ
t+ 1

2
c , θ

t+ 1
2

c

)
if t /∈ T ,∑

c′

[(
ψ
t+ 1

2
c′ , θ

t+ 1
2

c′

)]
otherwise,

(4)

where α is the step size, T ⊆ [T ] denote a set of synchronization indices. If T = [T ] then the synchronization
of the sequences is performed every epoch, which corresponds to using mini-batch SGD with mini-batch
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size C to solve ERM and If T = {T}, then (4) amounts to one-shot averaging. A proper choice of the
synchronization set T allows us to obtain an expressive model while keeping the signals of common spurious
features relatively low. T depends on each task and can be determined experimentally. Further, the averaging
weights p(c′) are chosen based on the training size. Formulated in this way, we notice that FedAvg can be
interpreted as a type of local SGD (Stich, 2018), which was originally aimed at solving standard supervised
learning (i.e., in-domain accuracy). In Section 3, we show that unlike standard supervised learning tasks—
where Stich (2018) show more frequent communication improves the in-domain accuracy—the federated DG
accuracy is not monotonic w.r.t. communication frequency.

To the best of our knowledge, only a few works seek to solve federated DG. In particular, Nguyen et al. (2022)
proposed FedSR where they enable domain generalization while still respect the distributed and privacy-
preserving natures of FL context by enforcing ℓ2 norm regularizer and a conditional mutual information
regularizer on the representation. Liu et al. (2021) propose FedDG, a federated learning paradigm specifically
designed for medical image classification. The proposed method requires sharing the amplitude spectrum
of images among local clients, which violates the privacy protocol. Zhang et al. (2021) applies generative
adversarial network (GAN) (Goodfellow et al., 2020) in the FL context, where it first trains the featurizer
and classifier by minimizing the empirical loss, then trains the generator and the discriminator using a
GAN-based (Goodfellow et al., 2020) approach, and FedGMA (Tenison et al., 2022) proposes a mask on the
gradient on the server side to align the updates among domains.

3 Unraveling the Benefits of Expert Parameter Ensembling for Domain
Generalization

In this section, we motivate by a simple experiment showing the frequent communication can lead to out-
of-distribution (i.e., DG) overfitting. We then show theoretically that infrequent communication leads to
better DG accuracy on a linear structural causal model.

Motivating observation: infrequent communication leads to better DG accuracy We start with a
surprising phenomenon related to the effect of communication frequency on DG accuracy when using FedAvg.
To demonstrate the phenomena, we conducted an experiment on the PACS dataset using 20 clients with the
same model and a fixed computational budget of 256 epochs while allowing the number of communications to
vary, i.e., how many times the model parameters are averaged. As seen in Figure 1a, while in-domain accuracy
steadily increases and stays nearly constant, the optimal communication frequency for DG is actually a very
small number of communications. In terms of DG performance, FedAvg with 4 communications attains the
best performance and stability as seen by the low variance. In contrast, its centralized counterpart mini-batch
SGD with total communications 256 performs poorly. These results indicate that increasing communication
frequency in federated learning can potentially hinder DG performance.

Theoretic analysis of expert parameter ensemble for linear structural equation model We now
theoretically validate our empirical finding by analyzing a linear DG problem to provide further theoretic
insight into the expert parameter ensembling. Our analysis sheds light on the potential for parameter
averaging of locally overfit models (i.e., experts) to indeed improve DG performance. We expect that this
result could be extended to more complex linear settings (and possibly non-linear) but focus on a simple
clear example here. Concretely, we extend the linear model example from Arjovsky et al. (2019) to multiple
invariant and spurious features. Consider the following structural equation model:

xI = ξ1, y = x⊤
I αI + ξ2, xS = yαS + ξ3, (5)

where ξi, i ∈ {1, 2, 3} are exogenous noise variables, y ∈ R is the regression target, xI ∈ R|I| is the invariant
feature vector, xS ∈ R|S| is the spurious feature vector, and αI ∈ R|I| and αS ∈ R|S| are the invariant and
spurious parameters, respectively. Note that y is causally generated by xI while xS are spurious features
because they are generated from y, i.e., they are causal descendants.

To frame the DG problem, we assume that each domain or environment shares the above causal model
(including the same αI and αS) but has domain-specific noise distributions for ξ1 and ξ2. Additionally, for
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(a) While more communication improves in-domain
test accuracy, more communication may harm out-of-
distribution domain generalization accuracy. The left-
most points represent one-shot averaging (i.e., only one
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to ERM (i.e., communicate every batch).
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(b) This figure illustrates how the infrequent communica-
tion of FedLOE’s first stage (green) may implicitly regu-
larizes the solution away from the ERM solution θ̂erm but
closer to the robust invariant solution θ̂inv, and FedLOE’s
second stage (red) explicitly moves toward the invariant
solution via DG objectives while standard FedAvg with
frequent communication (blue) converges to the ERM so-
lution.

the FL context, we assume that each client has access to data from a single domain. We formalize these
assumptions next.
Assumption 3.1 (Independent domain-specific sub-Gaussian exogenous noises). Noise satisfies

1. Each element of the exogenous noises are independent and sub-Gaussian.
2. ξ1 and ξ2 are zero mean with domain-specific variances, i.e., E[ξ1] = 0, E[ξ1ξ⊤

1 ] = σ2
1(k)I, E[ξ2] = 0, and

E[ξ2
2 ] = σ2(k).

3. ξ3 is zero mean with a shared variance across domains, i.e., E[ξ3] = 0, and E[ξ3ξ⊤
3 ] = σ3I.

Assumption 3.2 (Domain separation). Each client c ∈ [C] has data from a unique non-overlapping domains
k ∈ [K] where C ≡ K in this example.

Given this problem context, we consider the OLS estimator of the coefficient α := [αI ,αS ]⊤ for predicting
y from the concatenated features x = [xI ,xS ]⊤ ∈ Rd:

α̂ ∈ arg min
α∈Rd

E(x,y)
[
y − x⊤α

]2
. (6)

The domain-invariant, i.e., robust solution is to simply ignore the spurious features xS and only use the
linear coefficients of the invariant features, i.e., α∗ := [αI ,0]⊤. This solution also corresponds to finding
the true causal mechanism that generates y. We compare two distinct cases in this context: (1) the clients
communicate every epoch so that the solution converges to the ERM solution (Stich, 2018) or (2) the clients
solve their local problems and only communicate once, i.e., one-shot averaging of the model parameters.
Theorem 3.3. Given the least squares problem (6) under Assumption 3.1 and Assumption 3.2, one-shot
averaging will put relatively more weight on the invariant features, i.e.,

∥α̂ERM
I ∥

∥α̂ERM
S ∥

<
∥α̂OSA

I ∥
∥α̂OSA

S ∥
, (7)

and OSA will be closer than ERM to the invariant solution α∗ ≜ [αI ,0]⊤, i.e.,

∥α̂ERM − α∗∥ > ∥α̂OSA − α∗∥. (8)
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Corollary 3.4. Under the above assumption, the DG risk of ERM is higher than that of OSA. i.e.,

E
[
(y − x⊤α̂ERM)2] > E

[
(y − x⊤α̂OSA)2] , (9)

where (x, y) ∼ Dtest.

While the full proofs are Appendix A and Appendix B respectively, the key to the proof relies on the fact the
harmonic mean (the ERM solution) is less than the arithmetic mean (the OSA solution). Theorem 3.3 shows
that simple one shot ensemble of local estimators can be more robust than ERM. Furthermore, Appendix B
shows that OSA could achieve lower DG risk. This validates our empirical findings and suggests that
frequent communication may over-emphasize spurious features. Further theoretic analysis would be required
to analyze cases in between these two extremes that are more likely to have better DG performance than
either extreme as seen empirically in Figure 1a. Given our empirical results, we expect this type of behavior
to hold beyond this specific example.

4 FedLOE: Locally Overfit Ensemble Algorithm for Federated DG

In this section, we establish a framework of new algorithms by creating experts via client-specific training
followed by expert ensembling via linear parameter combination. Our method aims to reduce overfitting to
common spurious features, induce robust features, and control data privacy loss. Our algorithm is designed
in two stages that both have the same structure: (1) construct expert models by overfitting locally and (2)
combine experts via linear combination as outlined in Table 1 and illustrated in Figure 1b.

Table 1: FedLOE: An iterative two stage framework for federated DG that locally overfits and ensembles
first all model parameters (θ, ψ) and then only the linear classifier head parameters ψ.

Stage 1: Learning shared features Stage 2: Robustifying classifier head
Step 1: Locally overfit SGD on θ and ψ SGD on ψ
Step 2: Ensemble parameters Simple average of parameters Linearly combine via DG objective

In stage one, we draw from the key observation in Section 3 and reinterpret FedAvg with infrequent communi-
cation as locally overfitting and then averaging the local expert parameters. Infrequent communication helps
to avoid common spurious features while still learning an expressive model. Additionally, infrequent com-
munication is better for communication constrained FL on edge devices. Even by itself, stage one increases
DG robustness compared to synchronizing every mini-batch (which is equivalent to centralized SGD), which
would require the most frequent communications. In stage two, we freeze the feature extractor parameters
but allow each client to become an expert by training its own linear classifier head locally on its own dataset
(note this requires no communication). Then we ensemble the expert classifier heads using standard DG
objectives to make the final ensemble classifier more robust.

4.1 Stage 1: Learning Shared Features via FedAvg with Infrequent Communication

Motivated by Section 3 that frequent averaging may amplify the common spurious features in exploitative
experiments, we use FedAvg with infrequent communication schedule (4) with T = T1. This can be viewed
as overfitting each client model on its own data and ensembling these models via parameter averaging where
the communication frequency determines how specialized each expert becomes. T1 is tuned experimentally
and generally is a much smaller set than all possible time points. For example, in Figure 1a, the best |T1| = 4.
By the end of this stage, all clients share a common featurizer g

θ̂
and a linear classifier ψT1 . An ablation

study in Section 5.1 also confirms that if we replace stage 1 with the most frequent communications, i.e., mini
batch SGD, the DG accuracy would decrease significantly. This verifies our explanation in the exploratory
experiments in Figure 1a that frequent communication induces common spurious features. At the end of the
first stage, the featurizer parameters are fixed and we will focus on the last linear layer because prior work
has shown that the deep featurizer may be good enough and only the last classifier layer needs to be made
robust (Wald et al., 2022).
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4.2 Stage 2: Robustifying the Linear Classifier Head

In Stage 2, we follow a similar overfitting and ensembling strategy as in stage 1 but freeze the featurizer and
update only the linear classifier head. The key difference is that we compute a specialized linear combination
of the classifier heads via DG objectives rather than computing a simple average as in FedAvg.

Stage 2.1: Local overfitting of classifier heads. In this substage, the clients become experts
on their own local datasets by training only their classifier heads ψc, c ∈ [C] on their local datasets
{(xtrain

i , ytrain
i )}i∈Dtrain

c
while keeping the featurizer g

θ̂
from stage 1 fixed. Specifically, for each c ∈ [C],

we initialize at the current classifier head and use SGD to solve

ψ̂c ≜ arg min
ψc

Lc(θ̂, ψc) (10)

Thus, by the end of substage 2.1, we obtain C distinct linear classifiers ψ̂1, . . . , ψ̂C , where each ψ̂c ∈ Rm×d.

Stage 2.2: Robust ensemble of classifier heads via DG methods. In this stage, we aim to train a
robust linear combination of the expert classifier we get from stage 2.1. We utilize DG objectives such as
IRM (Arjovsky et al., 2019) and Fish (Shi et al., 2021) to promote DG performance. This step is done on
the aggregation server, thus requiring sending a small portion of the predictions to the aggregation server.
Notice that we only send m dimensional prediction which are much less than the original D dimensional
data. We now explain the specifics of this stage in more detail. First, the server will collect and broadcast the

Table 2: PACS: We show that our methods outperform centralized SGD. Our methods as well as FedAvg
without frequent communication are more stable.

DG accuracy (by domain)
Test Domain Photo Art Cartoon Sketch Average

Mini-batch SGD 93.37 ± 0.52 81.98 ± 1.71 77.72 ± 0.67 75.98 ± 2.92 82.26
FedDG 96.67 ± 0.28 84.40 ± 0.92 75.77 ± 0.85 74.97 ± 1.74 82.95
FedSR 92.63 ± 0.81 79.73 ± 1.19 73.90 ± 3.08 69.93 ± 0.10 79.05

FedGMA 97.82 ± 0.75 88.17 ± 1.01 77.40 ± 0.94 79.30 ± 0.32 85.67
Our FedAvg 97.70 ± 0.00 88.98 ± 0.00 78.63 ± 0.01 78.61 ± 0.02 85.98

FedLOE-IRM 97.67 ± 0.77 86.04 ± 0.72 80.01 ± 1.01 79.01 ± 0.98 85.68
FedLOE-Fish 98.25 ± 0.25 88.62 ± 0.59 78.53 ± 0.72 81.01 ± 0.69 86.60
FedLOE-REx 97.75 ± 0.94 86.66 ± 0.71 78.87 ± 0.55 79.44 ± 0.70 85.68

all the linear classifiers ψ̂1, . . . , ψ̂C to each client. Each client will then compute the predictions using each
classifier for a tuning dataset, which is usually 10 times smaller than the training dataset. We will denote the
prediction on the c-th client of a local data point xc using the c′-th client’s classifier as ŷc,c′ ≜ hψ̂c′

(g
θ̂
(xc)).

Each client will then send all its predictions and the true label for its tuning dataset to the server. The
server will then estimate the optimal robust linear combination of these predictions using a regularized DG
objective as follows:

ϕ̂ = arg min
ϕ∈RC

∑
c

p(c)Etune
p(ŷ,y|c)

[
ℓ

(
C∑
c′=1

ϕc′ ŷc′ , y

)]
+ λ · r

(
C∑
c′=1

ϕc′ ŷc′ , y

)
, (11)

where r(·) is a DG regularization term (see Appendix C.1 for detailed expression for each method) and λ is
the regularization parameter. From one perspective, this can be seen as training a last “meta” linear layer
that combines the outputs of the C client classifiers. From another perspective, because both the classifiers
are linear and this meta-combination is linear, the resulting ensemble classifier can be simplified to a single
linear classifier by taking a combination of the client classifiers, i.e., ψensemble =

∑C
c=1 ϕ̂cψ̂c. This second

perspective allows us to write both steps of this stage in a similar manner to FedAvg with the important
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exception that the linear combination weights ϕ̂ are learned via the DG objective in Equation (11), i.e.,

∀c, ψ̂tc =


ψ̂t−1
c − ηt−1

c ∇ψLc(θ̂, ψ̂t−1
c ), if t /∈ T2

C∑
c′=1

ϕ̂tc′ ψ̂
t−1
c′ , if t ∈ T2.

(12)

In summary, our FedLOE provides a general framework for domain generalization methods in the federated
context, which can incorporate newly designed centralized DG methods in the second stage to provide better
DG accuracy (see Section 5 for experiment results). The framework naturally fits into the FL context with
low communication burden. The key idea of the framework is to “free" the clients by letting them overfit in
domain and avoid common spurious features; further personalize their classifiers; and encourage invariant
predictions by solving a linear classification problems with DG regularizations. See Algorithm 1 in the
appendix for more details. Our ablation study in Section 5.1 shows that without stage 2 or training stage 2
with SGD, the DG accuracy would stay the same as FedAvg.

5 Experiments

In this section, we evaluate FedLOE on three real-world datasets PACS (Li et al., 2017), OfficeHome
(Venkateswara et al., 2017) and IWildCam-Wilds (Koh et al., 2021). We choose popular IRM (Arjovsky
et al., 2019), Fish (Shi et al., 2021) and REx (Krueger et al., 2020) as the DG regularizer for stage 2, and
we compare them with FedAvg (McMahan et al., 2017), FedDG (Liu et al., 2021) FedSR (Nguyen et al.,
2022) and FedGMA (Tenison et al., 2022), which were originally designed for solving DG in the FL regime.
In Section 5.1, we explore the impact of the number of clients and the effect of stage 2. For all these ex-
periments except for the ablation study, we report average performance as well as the standard error over 5
different runs. We explain the most important experimental settings the experimental setting here but refer
the reader to more details in Appendix D.

Table 3: OfficeHome: We show that our methods outperform centralized SGD. Our methods as well as
FedAvg without frequent communication are more stable.

DG accuracy (by domain)
Test Domain Art Clipart Product Real-world Average

Mini-batch SGD 60.06 ± 2.01 50.32 ± 1.25 73.20 ± 1.49 75.63 ± 1.85 64.80
FedDG 58.58 ± 0.74 50.92 ± 0.89 75.41 ± 0.43 75.97 ± 0.98 65.22
FedSR 1.54 ± 0.01 1.53 ± 0.01 1.52 ± 0.01 1.53 ± 0.01 1.53

FedGMA 58.19 ± 2.74 42.33 ± 3.65 68.90 ± 1.64 71.70 ± 2.07 60.28
Our FedAvg 63.70 ± 0.01 50.71 ± 0.02 76.74 ± 0.00 78.74 ± 0.01 67.47

FedLOE-IRM 65.55 ± 0.83 51.23 ± 0.45 76.10 ± 0.94 78.95 ± 1.03 67.95
FedLOE-Fish 64.79 ± 0.59 50.79 ± 0.39 76.93 ± 0.44 78.4 ± 0.51 67.72
FedLOE-REx 64.01 ± 0.29 50.52 ± 0.38 77.32 ± 0.34 78.10 ± 0.42 67.49

5.1 Main Results

We present the experiment results of our methods as well as the baseline methods on PACS in Ta-
ble 2, OfficeHome in Table 3 and IWildCam in Table 4. We observe that FedAvg outperforms cen-
tralized ERM on all three datasets, which validates our theory that frequent communication over differ-
ent domains is overshooting, and our FedLOE method with both stages is comparable or better than
FedAvg on both PACS and OfficeHome datasets. This suggests that in some cases, our second stage
of robust ensembling can improve performance. Furthermore, we achieve the highest performance on
the leaderboard of the Wilds Benchmark using ResNet-50 without targeted augmentation in this client

8
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heterogeneity setting using infrequent-communicate FedAvg. It is also worth noting that our FedLOE-
IRM, FedLOE-Fish, and FedLOE-REx methods exhibit less effectiveness compared to FedAvg. This
could be attributed to the fact that IRM, Fish, and REx did not demonstrate significant effective-
ness in the centralized setting, as indicated by the wilds benchmark leaderboard (Koh et al., 2021).

Table 4: IWildCam: We show that our methods out-
perform centralized SGD. Our FedAvg with infrequent
communication performs better and is more stable.

F1 score
Mini-batch SGD 31.61 ± 1.88

FedDG 31.15 ± 1.72
FedSR 0.01 ± 0.00

FedGMA 26.05 ± 2.24
Our FedAvg 33.02 ± 0.61

FedLOE-IRM 31.02 ± 0.65
FedLOE-Fish 31.14 ± 0.91
FedLOE-REx 31.96 ± 0.76

The influence of number of clients C: In this
study, we investigate the performance of various al-
gorithms in the FL context as the number of clients
C increases on PACS. As shown in Figure 2, OOD
accuracy is plotted against the number of clients,
where each client only contains samples from a sin-
gle domain. The results indicate that: 1) the perfor-
mance of FedSR degrades as the number of clients
increases. 2) In contrast, our proposed method,
FedLOE, not only achieves higher accuracy, but also
exhibits greater robustness to larger client number
settings.

The Effect of Stage 2: In Figure 3, the DG accu-
racy per communication is plotted, illustrating the
performance boost over FedAvg on both PACS and
OfficeHome datasets. Specifically, the results demonstrate that FedAvg achieves the same accuracy with the
same number of communications and computations as our FedLOE-IRM indicating that FedAvg converges.

0 20 40 60 80 100
Number of clients

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

0 20 40 60 80 100
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FedLoe-IRM FedAvg FedDG FedSR FedGMA

Figure 2: OOD accuracy with changing number of clients C. The second figure is the zoom in of the first
figure showing the detail of each methods.

6 Related Work

In this section, we discuss some related approaches.

6.1 Federated Domain Generalization

Federated Domain Generalization (Federated DG) emerges as a natural extension of centralized domain
generalization, especially suited for real-world applications where data is inherently distributed across mul-
tiple domains. In such settings, the need for robust generalization to unseen domains is both intuitive and

9
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Figure 3: DG accuracy per communication on PACS and OfficeHome dataset, the second stage of our method
starts at 12 and 24 respectively (blue).

essential. However, Federated DG introduces two key challenges. First, the presence of non-iid (heteroge-
neous) data distributions across clients complicates model convergence, even before considering discrepancies
between training and testing domains. Second, strict privacy requirements and communication limitations
often preclude direct data sharing across domains, thereby rendering many traditional, centralized domain
generalization approaches infeasible in federated settings.

6.2 Model Ensemble

Model ensemble methods aim to improve generalization by combining predictions from multiple models,
often trained under varying conditions or on different subsets of data. In the context of Federated DG,
ensemble methods have been leveraged to account for domain shifts without requiring centralized data shar-
ing. For instance, FedEM (Marfoq et al., 2021) ensembles personalized models from different clients to form
a more generalizable global predictor. FedCE (Cai et al., 2023) continues this line of work by introduc-
ing a contrastive ensembling framework that encourages consistency across local models while maintaining
domain-specific diversity. These approaches highlight the strength of ensemble-based strategies in mitigating
the effects of domain heterogeneity and enhancing robustness to unseen target domains. However, ensem-
bling can incur increased computational and communication overhead, particularly in resource-constrained
federated environments, making scalability a key concern.

7 Conclusion and Discussion

Our paper starts with a novel mixture-of-experts perspective on FL DG in the domain separation context
where each client is viewed as an expert. Our method, while preserving privacy, still shares model parameters
to the server. We could further perform differential privacy (Dwork et al., 2006) to protect the privacy.

The key observation is that locally overfitting and then refitting can actually avoid collusion among experts
so that they do not find a common set of spurious features—as noted in several recent works. Given
our perspective and these observations, we design a novel federated DG method FedLOE that combines
two stages. The first stage uses the natural and implicit combination strategy of federated averaging to
learn a good deep featurizer. The second stage focuses on making the linear classifier head robust by
iteratively locally overfitting the heads and then optimizing the best linear combination of these heads using
standard DG objectives. Given that the second stage employs standard DG objectives as subroutines, it offers
flexibility that allows us to integrate any future methods aimed at enhancing DG accuracy. More broadly,
this work suggests that client heterogeneity in FL may actually be beneficial for OOD generalization in
contrast to the usual assumption that data heterogeneity impairs FL methods.

10
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A Proof of Theorem 3.3

Proof. At the solution α̂, we have 
∂L

∂α̃I

∣∣∣∣
α̃I=α̂I

= 0,

∂L

∂α̃S

∣∣∣∣
α̃S =α̂S

= 0.

For all invariant features, we have

∂L

∂α̃I

∣∣∣∣
α̃I=α̂I

= 2E
[
xI(x⊤α̂ − y)

]
= 2E

[
xI(x⊤α̂ − x⊤

I αI − ξ2)
]

(a)= 2E
[
xI(x⊤α̂ − x⊤

I αI)
]

= 2E
[
xI(x⊤

I (α̂I − αI) + x⊤
S α̂S)

]
= 0, (13)

therefore, there holds

E
[
xIx⊤

I (αI − α̂I)
]

= E
[
xIx⊤

S α̂S
]
, (14)

which amounts to

E
[
ξ1ξ⊤

1 (αI − α̂I)
]

= E
[
ξ1ξ⊤

1 αIα⊤
S α̂S

]
. (15)

13
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For all spurious features, we have

∂L

∂α̃S

∣∣∣∣
α̃S=α̂S

= 2E
[
xS(x⊤α̂ − y)

]
= 2E

[
xS(x⊤α̂ − x⊤

I αI − ξ2)
]

= 2E
[
xS(x⊤

I (α̂I − αI) + x⊤
S α̂S)

]
− 2E

[
ξ⊤

1 αIαSξ2 + ξ2
2αS + ξ3ξ2

]
(b)= 2E

[
xS(x⊤

I (α̂I − αI) + x⊤
S α̂S)

]
− 2E

[
ξ2

2αS
]

= 2E
[
(yαS + ξ3))(ξ⊤

1 (α̂I − αI) + (yαS + ξ3))⊤α̂S)
]

− 2E
[
ξ2

2αS
]

= 2E
[
ξ⊤

1 αIαS
{

ξ⊤
1 (α̂I − αI)

}
] + 2E

[[
(ξ⊤

1 αI + ξ2)2αSα⊤
S + ξ3ξ⊤

3
]

α̂S
}]

− 2E
[
ξ2

2αS
]

= 0,

where (b) results from the independence of ξ1, ξ2 and ξ3. Therefore, there holds

E
[
ξ⊤

1 αIαS
{

ξ⊤
1 (α̂I − αI)

}
] + E

[[
(ξ⊤

1 αI + ξ2)2αSα⊤
S + ξ3ξ⊤

3
]

α̂S
}]

= E
[
ξ2

2αS
]
. (16)

Chaining (15) and (16), we have{
E
[
ξ1ξ⊤

1
(
αI − α̂I − αIα⊤

S α̂S
)]

= 0,
E
[{

ξ⊤
1 αI

[
ξ⊤

1 (α̂I − αI)
]

− ξ2
2
}

αS
]

+ E
[[

(ξ⊤
1 αI + ξ2)2αSα⊤

S + ξ3ξ⊤
3
]

α̂S
]

= 0. (17)

Solving this, we have{
αI = α̂I + αIα⊤

S α̂S ,

E
[{(

ξ⊤
1 αI

)2
α⊤

S α̂S + ξ2
2

}
αS

]
= E

[[
(ξ⊤

1 αI)2 + ξ2
2)αSα⊤

S + ξ3ξ⊤
3
]

α̂S
]
.

(18)

Using the assumption E[ξiξ⊤
i ] = Σi, {

αI = α̂I + αIα⊤
S α̂S ,(

σ2
2 − α⊤

S α̂Sσ
2
2
)

αS = Σ3α̂S ,
(19)

(19) suggests our assumption on the noises are mild, as long as one of the noise ξ2, ξ3 depends on the
environment, the regressed spurious feature α̂S will depend on the environment. In particular, given that
the noise ξ3 are centered i.i.d sub-Gaussian noise, we have{

αI = α̂I + αIα⊤
S α̂S ,(

σ2
2 − α⊤

S α̂Sσ
2
2
)

αS = σ2
3α̂S ,

(20)

then we have

α⊤
S α̂S = σ2

2∥αS∥2

σ2
2∥αS∥2 + σ2

3
. (21)

Combining (21) with (20), we have  α̂I = σ2
3

σ2
2∥αS ∥2+σ2

3
· αI ,

α̂S = σ2
2

σ2
2∥αS ∥2+σ2

3
· αS ,

(22)

Therefore, we have
∥α̂I∥
∥α̂S∥

= σ2
3
σ2

2
· ∥αI∥

∥αS∥
.

Consider regressing solely on the invariant correlations ŷ =
∑
i∈I

xiα̂i yields

α̂ ∈ arg min
αi∈R,i∈I

E
∥∥y − x⊤

I α
∥∥2
, (23)
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∂L

∂α
= E

[
xI(x⊤

I α − y)
]

= E
[
xI(x⊤

I α − x⊤
I αI − ξ2)

]
(a)= E

[
xIx⊤

I (α − αI)
]

= 0. (24)

where in (a), we used the independence of ξ1 and ξ2, and the fact ξ1, ξ2 are centered. Therefore, α̂ = [αI ,0]⊤.

Consider using ERM to solve (6), i.e., using all the data (xi, yi)i∈[dK , we have

σ2
2 =E[ξ2

2 ] = Eη
{
E(x,y)

[
ξ2

2(η)
∣∣∣∣ η = i

]}
= 1
K

K∑
i=1

σ2
2(i). (25)

where we assume η satisfying for all i ∈ [K], there holds

P(η = i) = 1
K
.

Notice that this is a fair assumption given the data from different distribution is the same. If training data
sizes are different, then the distribution of η can be adjusted accordingly. Similarly, there holds

σ2
3 = 1

K

K∑
i=1

σ2
3(i). (26)

Therefore, we have for ERM, 
α̂ERM

I =
∑K

i=1
σ2

3(i)∑K

i=1
σ2

2(i)∥αS∥2+
∑K

i=1
σ2

3(i)
· αI ,

α̂ERM
S =

∑K

i=1
σ2

2(i)∑K

i=1
σ2

2(i)∥αS∥2+
∑K

i=1
σ2

3(i)
· αS .

(27)

Consider each client locally use their own domain data to solve (6), and then one shot averaging the solutions,
we have 

α̂OSA
I = 1

K

K∑
i=1

σ2
3(i)

σ2
2(i)∥αS ∥2+σ2

3(i) · αI ,

α̂OSA
S = 1

K

K∑
i=1

σ2
2(i)

σ2
2(i)∥αS ∥2+σ2

3(i) · αS ,

(28)

Comparing the solutions of ERM and one-shot averaging, when σ3(i) = σ3, we have

∑K
i=1 σ

2
3∑K

i=1 σ
2
2(i)∥αS∥2 +

∑K
i=1 σ

2
3

= K∑K
i=1 (σ2

2(i)∥αS∥2/σ2
3 + 1)

≤ 1
K

K∑
i=1

1
(σ2

2(i)∥αS∥2/σ2
3 + 1)

= 1
K

K∑
i=1

σ2
3

σ2
2(i)∥αS∥2 + σ2

3
, (29)

where the inequality follows from the fact that harmonic mean is less than the arithmetic mean. Therefore,
there holds,

α̂ERM
I ≤ α̂OSA

I . (30)
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Further, we have ∑K
i=1 σ

2
2(i)∑K

i=1 σ
2
2(i)∥αS∥2 +

∑K
i=1 σ

2
3

=
(

1 −
∑K
i=1 σ

2
3∑K

i=1 σ
2
2(i)∥αS∥2 +

∑K
i=1 σ

2
3

)
· 1

∥αS∥2

≥

(
1 − 1

K

K∑
i=1

σ2
3

σ2
2(i)∥αS∥2 + σ2

3

)
· 1

∥αS∥2

= 1
K

K∑
i=1

σ2
2(i)

σ2
2(i)∥αS∥2 + σ2

3
, (31)

which suggests
α̂ERM

S ≥ α̂OSA
S . (32)

Given that σ2(i), i ∈ [K] are different, we conclude the above inequality is strict, i.e.,

α̂ERM
I < α̂OSA

I and α̂ERM
S > α̂OSA

S . (33)

Recall that α∗ := [αI ,0]⊤, then (33) implies

∥α̂ERM
I − αI∥2 > ∥α̂OSA

I − αI∥2 and ∥α̂ERM
S − 0S∥2 > ∥α̂OSA

S − 0S∥2. (34)

Therefore, we have

∥α̂ERM − α∗∥2

= ∥α̂ERM
I − αI∥2 + ∥α̂ERM

S − 0S∥2

> ∥α̂OSA
I − αI∥2 + ∥α̂OSA

S − 0S∥2

= ∥α̂OSA − α∗∥. (35)

In addition, we have
K∑
i=1

1
K

σ2
2(i)
σ2

3
≥

K∑
i=1

σ2
2(i)
σ2

3
qi

where qi, i ∈ [K] are defined as

qi ≜
Ai

1
K

∑K
k=1 Ak

, where Ai ≜
1

σ2
2(i)/σ2

3∥αS∥2 + 1 .

Therefore, the robust to spurious ratio reads

∥α̂ERM
I ∥

∥α̂ERM
S ∥

= σ2
3

1
K

∑K
i=1 σ

2
2(i)

· ∥αI∥
∥αS∥

= 1
1
K

∑K
i=1

σ2
2(i)
σ2

3

· ∥αI∥
∥αS∥

≤ 1∑K
i=1

σ2
2(i)
σ2

3
qi

· ∥αI∥
∥αS∥

=
1
K

∑K
i=1 Ai

1
K

∑K
i=1

σ2
2(i)
σ2

3
Ai

· ∥αI∥
∥αS∥

= 1
1
K

∑K
i=1

σ2
2(i)
σ2

3

Ai
1
K

∑K

k=1
Ak

· ∥αI∥
∥αS∥

=∥α̂OSA
I ∥

∥α̂OSA
S ∥

. (36)
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f

B Additional proof that OSA will have better DG accuracy than ERM from linear
example

Corollary B.1. Under the assumptions of Theorem 3.3, then the DG risk of ERM is higher than for OSA:

E(x,y)∼Dtest

[
(y − x⊤α̂ERM)2] > E(x,y)∼Dtest

[
(y − x⊤α̂OSA)2] . (37)

Proof. We first derive the covariances for a single domain:

ΣI,I = σ2
1I (38)

ΣS,S = E[((αT
I ξ1 + ξ2)αS + ξ3)((αT

I ξ1 + ξ2)αS + ξ3)T ] (39)
= αT

I E[ξ1ξ
T
1 ]αIαSαT

S + E[ξ2
2 ]αSαT

S + E[ξ3ξ
T
3 ] (40)

= (∥αI∥2
2σ

2
1 + σ2

2)αSαT
S + σ2

3I (41)
ΣI,S = E[xIx

T
S ] = E[ξ1((αT

I ξ1 + ξ2)αS + ξ3)T ] (42)
= E[ξ1ξ

T
1 αIαT

S + ξ1ξ2αT
S + ξ1ξ

T
3 ] (43)

= σ2
1αIαT

S . (44)

We now decompose the test-domain risk where the domain index is not in the training dataset, i.e., i ̸∈ [C],
as follows:

E(x,y)∼Dtest

[
(y − x⊤α̂)2]

= E(x,y)∼Dtest

[
(x⊤

I αI + ξ2(i) − x⊤α̂)2]
= E(x,y)∼Dtest

[
(x⊤α∗ + ξ2(i) − x⊤α̂)2]

= E(x,y)∼Dtest

[
(x⊤ (α∗ − α̂))2]+ σ2

2(i)

= E(x,y)∼Dtest

[
(α∗ − α̂)⊤

xx⊤ (α∗ − α̂)
]

+ σ2
2(i)

= (α∗ − α̂)⊤ E(x,y)∼Dtest

[
xx⊤] (α∗ − α̂) + σ2

2(i) (45)

= (α∗ − α̂)⊤ Σx,x(i) (α∗ − α̂) + σ2
2(i) (46)

=
[
(1 − ŵI)αI
ŵSαS

]⊤ [ΣI,I(i) ΣI,S(i)
ΣS,I(i) ΣS,S(i)

] [
(1 − ŵI)αI
ŵSαS

]
+ σ2

2(i) (47)

=
[
(1 − ŵI)αI
ŵSαS

]⊤ [
σ2

1(i)II σ2
1(i)αIαS

⊤

σ2
1(i)αSαI

⊤ (
∥αI∥2σ2

1(i) + σ2
2(i)

)
αSα⊤

S + σ2
3IS

] [
(1 − ŵI)αI
ŵSαS

]
+ σ2

2(i) (48)

= (1 − ŵI)2∥αI∥2
2σ

2
1(i) + 2ŵS(1 − ŵI)∥αI∥2

2∥αS∥2
2σ

2
1(i)

+ ŵ2
I((∥αI∥2σ2

1(i) + σ2
2(i))∥αS∥4

2 + σ2
3∥αS∥2

2) + σ2
2(i)

(49)

Note that the algorithm specific terms are only via ŵI and ŵS , because all other terms are constant w.r.t.
to the learned parameters α̂. Finally, from the previous theorem proof ((33)), we know that

0 ≤ (1 − ŵOSA
I ) < (1 − ŵERM

I ) ≤ 1 (50)
0 ≤ ŵOSA

S < ŵERM
S ≤ 1 . (51)
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Combining these facts with Eqn. 49, we can easily arrive at the result:

E(x,y)∼Dtest

[
(y − x⊤α̂OSA)2] (52)

= (1 − ŵOSA
I )2∥αI∥2

2σ
2
1(i) + 2ŵOSA

S (1 − ŵOSA
I )∥αI∥2

2∥αS∥2
2σ

2
1(i)

+ (ŵOSA
I )2((∥αI∥2σ2

1(i) + σ2
2(i))∥αS∥4

2 + σ2
3∥αS∥2

2) + σ2
2(i)

(53)

< (1 − ŵERM
I )2∥αI∥2

2σ
2
1(i) + 2ŵERM

S (1 − ŵERM
I )∥αI∥2

2∥αS∥2
2σ

2
1(i)

+ (ŵERM
I )2((∥αI∥2σ2

1(i) + σ2
2(i))∥αS∥4

2 + σ2
3∥αS∥2

2) + σ2
2(i)

(54)

= E(x,y)∼Dtest

[
(y − x⊤α̂ERM)2] . (55)

C FedLOE Algorithm Pseudo-Code

We present our training method FedLOE in Algorithm 1.

Algorithm 1 FedLOE: Federated DG via Local Overfitting and Ensembling
Input: Training datasets {xtrain

c , ytrain
c }Cc=1 and fine-tuning datasets {xtune

c , ytune
c }Cc=1 on each of the C

clients; iterations for stage 1 and 2: T1, T2; communication indices T1 and T2 for stage 1 and 2; local
computations E1 and E2.
# Stage 1: Few shot Federated Averaging to Learn θ: (4)
# Stage 2: Robustifying the Linear Classifier Head
for t ∈ {T1 + 1, . . . , T1 + T2} do

If t /∈ T2, # Stage 2.1: Locally overfit classifier heads, distribute to all clients
{Client} ∀c, ψ̂tc = Mini-batch SGD

(
θ̂, ψ̂t−1

c ;E2

)
{Client → Server} ∀c, ψ̂tc {Server → Client}

{
ψ̂tc

}C
c=1

Else if t ∈ T2, # Stage 2.2: Robust training
# Step 1 Server collect predictions on fine tuning dataset

{Client} ∀c,
{
ŷ tc,c′ ≜ g

θ̂
(xtune
c )

(
ψ̂tc′

)⊤
}
c′∈[C]

{Client → Server} ∀c, {ŷ tc,c′}c′∈[C]

# Step 2 Train invariant manager.
{Server} solves Equation (11) to obtain ϕ̂t {Server → Client} ψ̂t =

∑
c ϕ̂

t
cψ̂

t
c

end for
Return: (θ̂, ψ̂) = (θ̂T1 , ψ̂T1+T2)

C.1 Penalty choices in the FL setting

For invariant manager training, in every iteration t ∈ T2, recall here (11) for convenience

ϕ̂t = arg min
ϕ∈RC

∑
c

p(c)Etune
p(ŷt,yt|c)

[
ℓ

(
C∑
c′=1

ϕc′ ŷtc′ , yt

)]
+ λ · r

(
C∑
c′=1

ϕc′ ŷtc′ , yt

)
,

where λ is the penalty parameter and r(·) is a penalty term to induce invariance, and it can be chosen
using different methods as in (3). For example, to encourage

∑C
c=1 ϕj ŷc,j to be simultaneously optimal for

different clients domain c ∈ [C], we choose rdg as rirmv, where it enforces the gradients to be zero Arjovsky
et al. (2019),

rirm(θ, ψ) ≜
∑
c

Epc

∥∥∥∥∥∇w|w=1.0ℓ

(
C∑
c=1

wϕj ŷc,j , y
tune
c

)∥∥∥∥∥
2

.
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We can also choose rdg as rfish, where it align the gradients as Fish Shi et al. (2021),

rfish(θ, ψ) ≜ −
∑
c̸=c′

Epc,pc′

〈
∇ϕℓ

(
C∑
c=1

ϕj ŷc,j , y
tune
c

)
,∇ϕℓ

(
C∑
c=1

ϕj ŷc′,j , y
tune
c′

)〉
.

Further, we can choose rdg as rREx, where it reduces the loss variance to be 0

rREx(θ, ψ) ≜
∑
c

Vpc

ℓ
 C∑
j=1

ϕjYc,j , y
tune
c

 .
D Additional Experimental Details

D.1 Dataset

PACS Gulrajani and Lopez-Paz (2020) is an image dataset designed for domain generalization classification,
comprising a total of 4 distinct domains: Photo (1, 670 images), Art Painting (2, 048 images), Cartoon (2, 344
images), and Sketch (3, 929 images). Within each domain, there are 7 categories present. For this dataset,
we use each domain as test domain in one run, and we care about the average classification accuracy.

OfficeHome Gulrajani and Lopez-Paz (2020) is also an image dataset designed for domain generalization
classification containing 4 domains namely Art (2, 427 images), Clipart (4, 365 images), Product (4, 439
images), and Real-World (4, 357 images) images. Within each domain, there are 65 categories present, which
makes it a harder setting than PACS. Similar to PACS, for this dataset, we use each domain as test domain
in one run, and we care about the average classification accuracy.

IWildCam Koh et al. (2021) consists of a diverse collection of wild animals captured by 343 camera traps
situated across various natural habitats worldwide. This dataset offers a multi-class classification task,
comprising a total of 203, 029 data samples representing 182 distinct animal species. Our primary objective
is to achieve high classification accuracy, particularly for rare animal species. Due to this goal, we employ
the macro-F1 score as our chosen metric.

D.2 Data Partitioning

In our experiments on the PACS and OfficeHome datasets, we adopt a specific approach. We select one
domain as the test domain for each experiment, while the remaining 3 domains serve as the training domains.
Initially, we split 5% of the training dataset to create a validation dataset, and another 5% is allocated as
an in-domain test dataset.

Subsequently, we divide the remaining 90% of the dataset among the clients, ensuring that each client exclu-
sively contains data from a single domain. For each client, we utilize 90% of its training data as (xtrain, ytrain),
while the remaining 10% is designated as (xtune, ytune). This partitioning strategy enables us to train and
evaluate our models on distinct domains while maintaining a balanced and controlled experimental setup.

On the IWildCam dataset, we adhere to the official splits method provided by the wild benchmark Koh et al.
(2021) for consistency and comparability. Furthermore, we partition the training data among the clients to
ensure that each training domain is present in only one client. This deliberate distribution strategy guarantees
maximum domain heterogeneity within the client set.

D.3 Neural Network Structure

In all our experiments, we use ResNet-50 He et al. (2016) as our featurizer, excluding the last fully connected
layer. The featurizer produces an output of size 2048. Subsequently, each client maintains their own linear
classifier. In stage 1 of our approach, the linear classifiers belonging to each client are averaged with default
weight of FedAvg. In stage 2, we take this a step further by averaging the linear classifiers with trained
weights.
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D.4 Model Selection, Early Stopping and Other Hyperparameters

This section, we report the hyperparameters used in the experiments. Please refer to Table 5.

Table 5: Hyperparameters for our infrequent FedAvg and our FedLOE

Dataset PACS OfficeHome IWildCam
Hyperparameter searching Leave-one-domain-out-cross-validation Best performance on held-out validation dataset
Stopping critierion Fix iteration Best performance on held-out validation dataset
Batch size 128 128 128
Num of iteration at stage 1 256 256 5120
Stage 1 total communication 8 8 80
Stage 1 optimizer ADAM ADAM ADAM
Stage 1 learning rate 0.00005 0.00003 0.00005
Stage 2 num of iteration (FedLOE only) 8 8 320
Stage 2 total communication (FedLOE only) 4 4 5
Stage 2 optimizer (FedLOE only) SGD SGD SGD
Stage 2 learning rate (FedLOE only) 0.05 0.05 0.05
Stage 2 weight decay (FedLOE only) 0.0005 0.0005 0.0005
IRM λ (FedLOE-IRM only) 100 100 100
Fish meta lr (FedLOE-Fish only) 0.05 0.05 0.01
REx λ (FedLOE-Rex only) 100 100 100

E Code Repository for Reproducibility

Please see the code here: https://anonymous.4open.science/r/fedloe-542D/.
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