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ABSTRACT

Decision Transformers (DT) are a Return-Conditioned Supervised Learning
(RCSL) technique. A DT policy predicts actions by attending to a limited history
of tokens that encodes states, actions and returns-to-go. Two existing extensions
of DT, namely Online Decision Transformers (ODT), and Critic Guided Decision
Transformers (CGDT), are re-implemented and applied to the Gym-µRTS envi-
ronment. In CGDT, a critic learns to predict reward distributions conditioned on
sequences of interwoven states and actions to overcome DT’s issues with stochas-
ticity. In ODT, an additional entropy term and hindsight reward relabeling en-
able online fine-tuning. A dataset is generated from games between CoacAI and
Mayari, two previous µRTS competition winners, on procedurally generated 8x8
maps. We further explore the combination of both CGDT and ODT methods to
create an Online Critic-Guided Decision Transformer (OCGDT). Training pro-
ceeds in three phases: (1) supervised learning of the critic using a fixed dataset of
3,000 trajectories, (2) supervised learning of the policy from the same dataset, and
(3) online fine-tuning of the policy, using the dataset as a starting point for a replay
buffer. The critic and offline networks are validated against 500 held-out trajecto-
ries, while the final policy’s performance is measured by its win rate against four
benchmark rule-based bots (CoacAI, Mayari, lightRushAI, and workerRushAI).
The agent obtains a win rate of 26.2% ± 4.3% against CoacAI and a win rate of
40.1%± 4.8% against Mayari over 4 seeds per match-up and 100 games per seed
for a total of 400 games per match-up on held-out procedurally generated 8x8
maps. This matches the performance of Implicit Q-Learning (IQL). The agent
also obtains a win-rate of 51.6%± 4.9% when matched up directly against IQL.

1 INTRODUCTION

Real-time Strategy (RTS) games feature large action spaces, partial observability, and require both
short- and long-term decision-making (Ontañón et al., 2018; Huang et al., 2021; Vinyals et al.,
2019). This posits a strong challenge for reinforcement learning (RL) agents Vinyals et al. (2019).
Traditionally, RL relies on online interactions with the environment to gradually improve a behavior
policy based on the feedback returned by the environment. An agent’s performance is measured
based on this feedback. However, this feedback can be sparse, with long periods of exploration until
a reward is finally encountered. This can be mitigated with offline training data and offline training,
which is preferred when online interactions are costly or risky (Levine et al., 2020).

1.1 RESEARCH MOTIVATION

Our work focuses on handling sparse rewards over long horizons in Gym-µRTS. Online RL needs
extensive bootstrapping for long-term credit assignment (Nair et al., 2020), while offline RL, though
data-hungry, circumvents this issue (Levine et al., 2020). Decision Transformers (DT) perform
better than offline RL in low-data regimes with low-quality demonstrations and handle long-term
dependencies well (Bhargava et al., 2024). Sparse rewards can also be alleviated by adding synthetic
ones—a technique known as reward shaping (Ng et al., 1999). Effective shaping demands domain
expertise and risks biasing the agent, while a clear win/lose/draw signal sets unambiguous goals.
There are approaches to mitigate this bias. Potential-based shaping methods are equivalent to Q-
value initialization (Wiewiora, 2003; Ng et al., 1999), and Hu et al. Hu et al. (2020) adaptively
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refine rewards through a bi-level optimization procedure. Rather than shaping an extrinsic reward
directly, an agent can also generate an intrinsic reward to explore the state space more effectively
through a metric such as surprise, novelty, or skill learning (Pathak et al., 2017; Burda et al., 2018b;a;
Aubret et al., 2023).

Chen et al. Chen et al. (2021) claim that DT stitches together sub-trajectories in a minority of cases
when finding the shortest path in a graph. This stitching behaviour does not hold true when there is
an abundance of sub-optimal data in the dataset (Wang et al., 2024; Paster et al., 2022). In addition,
uncertainty and approximation errors within the behavior policy introduce a form of stochasticity
that resembles environmental stochasticity. Critic-Guided Decision Transformers (CGDT) (Wang
et al., 2024) tackle this by pre-training a critic on an offline dataset to output a reward distribution
that guides policy updates via an asymmetric expectile loss. Online Decision Transformers (ODT)
(Zheng et al., 2022) modify the DT architecture by adding online fine-tuning, entropy regularization
for exploration, hindsight relabeling, and stochastic outputs. We set out to explore the effectiveness
of DT-based methods in Gym-µRTS and whether these two methods can be combined to produce a
stronger model.

1.2 CONTRIBUTIONS

CGDT, ODT, and IQL are reproduced and adapted to the Gym-µRTS environment. The Online
Critic-Guided Decision Transformer (OCGDT) is created by combining the critic component of
CGDT with ODT’s fine-tune-enabling components. OCGDT, CGDT, ODT, and IQL are tested
against CoacAI, Mayari, WorkerRushAI, and LightRushAI—four benchmark bots provided with
the Gym-µRTS package—as well as against each other. Additional to the four implementations of
the AI agents is a Gym-µRTS dataset containing 3,000 trajectories of CoacAI and Mayari sampling
maps from a set of 1,000 procedurally generated 8x8 scenarios.

2 BACKGROUND

This section reviews the foundational concepts of our work. We begin with an overview of the
µRTS and Gym-µRTS environments, justifying the choice of environment and describing the state
and action space. Then, preliminaries are introduced for Return-Conditioned Supervised Learning
(RCSL), Critic-Guided Decision Transformers (CGDT), and Online Decision Transformers (ODT),
with the extensions addressing short-comings in standard Decision Transformers (DT). The math-
ematical notation used here differs slightly from the original papers to keep definitions consistent
between both methods.

2.1 µRTS & GYM-µRTS

Agents like AlphaStar have demonstrated superhuman capabilities in StarCraft II. However, such
an agent relies on vast computational resources (Vinyals et al., 2019) which are often unavailable
to academics. µRTS is a minimalist, open-source RTS engine that reduces resource overhead and
lowers the barrier of entry into RTS AI research (Ontañón et al., 2018; Huang et al., 2021). While
a highly detailed simulation represents a challenge in itself, it is also a computational hurdle for
conventional hardware. µRTS retains the core elements of the RTS genre while still being a com-
putationally feasible environment. It is used in the IEEE Conference on Games (CoG) competition
which, until the winner of the 2024 edition (Goodfriend, 2024), was dominated by rule-based bots.

Gym-µRTS (Huang et al., 2021) is a python interface for the µRTS (Ontañón et al., 2018) simu-
lator, providing a fixed low-level action space where each unit must be controlled with primitive
commands, decomposing the huge action space into smaller components. Invalid action masking
prevents invalid actions, reducing the effective action space. Gym-µRTS expects a multi-discrete
action set at every step. The policy outputs an action for each cell in the grid (Han et al., 2019). This
approach is used by the authors of the Gym-µRTS environment to produce a benchmark RL agent
(Huang et al., 2021).

The Gym-µRTS state space consists of 29 feature planes representing hit points (5), resources (5),
unit ownership (3), unit type (8), current action (6), and terrain type (2) in every grid cell. The
action space is represented by a vector whose length depends on the range of the ranged unit. With
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a default range ar = 7, the action vector has 29 + a2r = 78 feature planes representing the action
type (6), move direction (4), harvesting direction (4), return resource direction (4), production spawn
direction (4), production type (7), and relative attack position (a2r) in every grid cell.

2.2 RETURN-CONDITIONED SUPERVISED LEARNING

In offline RL, a behaviour policy πβ samples transitions from an existing dataset D containing
trajectories τ = (s0, a0, r0, ..., st, at, rt, ..., sT , aT , rT ) where st ∈ S, at ∈ A, and rt ∈ R are
the states, actions, and rewards returned at time-step t, and T is the finite horizon of a Markov
Decision Process. The goal of RL is to maximise the expected cumulative return E [R(τ)], where
R (τ) =

∑T
t=0 rt and represents the cumulative return of the trajectory τ (Levine et al., 2020).

Return-conditioned supervised learning (RCSL) reinterprets the offline RL setup as a sequence-
modeling problem (Chen et al., 2021). Rewards are replaced with returns-to-go R̂t =

∑T
t′=t rt′ .

During training, the return-to-go represents the rewards yet to be collected in a trajectory. During
inference, it denotes the target reward to be obtained by a generated action sequence (Chen et al.,
2021). This changes the trajectory representation to the following:

τ =
(
R̂1, s1, a1, . . . , R̂t, st, at, . . . , R̂T , sT , aT

)
(1)

The goal is now to minimize some distance measure between the policy distribution and the sampled
trajectory of length K, where K is a hyperparameter referred to as the context length (Zheng et al.,
2022). The standard DT formulation is presented with both l2 loss (Chen et al., 2021; Zheng et al.,
2022; Wang et al., 2024) and negative log-likelihood (NLL) (Zheng et al., 2022; Wang et al., 2024).
Online Decision Transformers use a scaled NLL loss, as below:

LRCSL(θ) =
1

K
EτK∼D

[
−

K∑
k=1

log πθ (ak|τ−K,k)

]
(2)

where πθ is the learning policy parameterized by θ. ak is the action sampled from πθ at time k. τK
is a sub-trajectory of length K. τ−K,t := τmax(1,t−K+1):t is the latest K time-steps until time t

containing the past K tokens for each R̂t, st, and at.

The Decision Transformer (DT) is one such RCSL method, bypassing traditional RL’s reliance on
value function approximation or policy gradients (Chen et al., 2021). While DT has performed well
in specific offline RL tasks, its reliance on per-trajectory returns-to-go limits its effectiveness in
stochastic environments, as a high return may be due to a lucky sequence of transitions, skewing
the policy towards unlikely outcomes (Paster et al., 2022; Brandfonbrener et al., 2022). In addition,
DT struggles to stitch suboptimal trajectories. In deterministic settings, its success hinges on having
optimal trajectories in the training set. Consequently, the learned policy may mimic environmental
stochasticity because of uncertainty and approximation errors. These issues underscore the impor-
tance of integrating probabilistic methods to better capture expected returns (Paster et al., 2022;
Brandfonbrener et al., 2022).

2.3 CRITIC-GUIDED DECISION TRANSFORMER

The Critic-Guided Decision Transformer (CGDT) addresses stochasticity by using a critic to es-
timate the return-to-go distribution for a trajectory conditioned on sequences of state-action pairs.
CGDT bridges the gap between deterministic trajectory modeling and probabilistic RL strategies
(Wang et al., 2024) with an approach that has shown superior performance in stochastic settings
(Paster et al., 2022; Brandfonbrener et al., 2022).

First recall that by Bayes’ rule, p(at|R̂t, st) ∝ p(at|st)p(R̂t|st, at). (Wang et al., 2024), suggest
modeling the unknown distribution p(R̂t|st, at) as a Gaussian distribution with learnable mean and
variance (µ, σ) sampled from a critic Qϕ(R̂t|τ−K,t). The critic is trained using an offline dataset D
with NLL loss as the objective:

LCGDT
Q (ϕ) = − logQϕ(R̂t | τ−K,t) (3)
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The NLL objective is revised as an asymmetric loss that biases the critic towards fitting optimal or
suboptimal trajectories depending on the composition of the dataset D:

LCGDT
Q (ϕ) = −

∣∣τc − I(u > 0)
∣∣ logQϕ(R̂t | τ−K,t) (4)

where I (·) is the indicator function (1 if the condition is true, 0 otherwise), and u = (R̂t − µt)/σt.
The asymmetry coefficient τc ∈ [0, 1] penalizes over- or underestimates by scaling the log-
likelihood. If τc < 0.5, the model is penalized more heavily for over-estimating the returns-to-go
(i.e. if u < 0) and vice-versa.

The critic guides the policy with the following objective:

LCGDT
τp (u) =

∣∣τp − I(u < 0)
∣∣u2 (5)

Where τp is the expectile asymmetry parameter that biases the critic’s estimation towards over- or
under-estimating the true returns-to-go. The vanilla RCSL learning objective is used as a constraint
to keep the resulting policy close to the data distribution:

LCGDT
π (θ;α) = LRCSL(θ) + α · LCGDT

τp (u) (6)

where α is a coefficient controlling the critic guidance contribution.

2.4 ONLINE DECISION TRANSFORMER

Zheng, Zhang, and Grover Zheng et al. (2022) note that standard DT does not take into account
online exploration. Online Decision Transformers (ODT) address this limitation in DT architectures
with a number of additions. ODT extends the DT architecture by introducing stochastic policies, an
entropy regularization term for exploration, and hindsight return labeling, where once a new trajec-
tory is collected, the conditioned return-to-go is replaced by the actual return-to-go encountered in
the trajectory. Any newly gathered experiences are stored as entire trajectories rather than individ-
ual transitions. When including online fine-tuning, ODT sees significant gains (Zheng et al., 2022)
relative to Implicit Q-Learning (IQL).

Entropy regularization is calculated as the Shannon entropy of the distribution of the policy πθ. In
addition, Zheng et al. Zheng et al. (2022) scale both the policy objective and the entropy by 1

K to
allow for easy comparisons to Soft Actor-Critic (SAC) (Haarnoja et al., 2018):

HT
θ (a|τK) =

1

K
EτK∼T

[
K∑

k=1

H (πθ (ak|τ−K,k))

]
(7)

Adding this entropy as a constraint to equation 2 produces the following two optimization problems:

min
θ

LRCSL(θ)− λ ·HT
θ (a|τK) (8)

min
λ≥0

λ(HT
θ (a|τK)− β) (9)

where β is the entropy lower bound which ODT sets at − dim(A), where dim(A) is the size of the
action set, and λ serves as a temperature parameter. The ODT policy objective is defined as follows:

LODT (θ;λ) = LRCSL(θ)− λ ·HT
θ (a|τK) (10)

3 ARCHITECTURE

This section first derives the equation obtained from combining ODT and CGDT. Then, the OCGDT
and IQL architectures are explained.

4
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Figure 1: The critic network (right) makes use of the action and state embedding components and
adds their output to a linear time-step embedding. The results are stacked and permuted to form a
state-action sequence. The transformer core consists of a GPT2 transformer with four heads and two
layers. The transformer core output is passed through a fully connected layer, a GELU non-linearity,
and a final fully connected layer with two output heads. The policy network (left) is similar to the
critic network, adding a linear return-to-go embedding. The stacked embeddings are permuted into
a sequence of returns-to-go, states, and actions. Action masks are applied to the final action head,
which outputs likelihoods for an action on each cell on the grid. The action head is composed of
a series of fully connected layers with GELU activation functions, each doubling in output size,
starting from 512 up to 2048. The final layer’s output size is determined by the map dimensions and
the number of channels per action vector.

3.1 OCGDT PRELIMINARIES

The loss functions of both ODT and CGDT can be combined to produce an agent that makes use of
both online fine-tuning and a pre-trained critic. OCGDT uses NLL in its policy objective due to the
multi-discrete action space. ODT and CGDT both use Equation 2 to constrain the actions close to
the training distribution. The critic and entropy constraints are added separately to the loss, resulting
in the following policy objective:

Lπ(θ;α;λ) = LRCSL(θ) + αLCGDT
τp (u)− λHT

θ (a|τk) (11)

ODT calculates the lower entropy bound to be −dim(A). Since Gym-µRTS has invalid action
masking, this lower bound will change depending on the state, as the number of possible actions
changes every step. In the reconstructions of ODT and CGDT, and in OCGDT, A is recalculated at
every step to be the average number of valid actions over the last K steps.

3.2 OCGDT ARCHITECTURE

The agent consists of two models: The critic model and the policy model. The policy model se-
lects an action conditioned on the past K tokens of returns-to-go, states, and actions for a total of
3K tokens, as per DT (Chen et al., 2021). The first action token is a no-op. The critic predicts
an expected reward which is represented as a Gaussian distribution. The critic has two heads: the
standard deviation σ, and the mean µ of the Gaussian distribution. The distribution of rewards is

5
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conditioned on a sequence of K state-action pairs, where the action is either sampled from a training
set or predicted by the policy network, as per CGDT (Wang et al., 2024). Time-steps are linearly
embedded and added separately to the returns-to-go, states, and actions to encode temporal infor-
mation about the token sequence. The critic model and the policy model have separate parameters
for their state representations. Policy logits are scaled by a temperature coefficient before passing
through a softmax. During training, this is set to 1, while during evaluation, it is set to 0.25 for more
decisive actions. Figure 1 depicts the policy and critic networks. Further details for the embeddings
and heads are provided in the Appendix in Figures 3 and 4.

Gym-µRTS returns an action mask for each state. Policy outputs are masked by subtracting a nega-
tive value with large magnitude from invalid logits. Action masks are stored alongside each transi-
tion of a trajectory to allow masking policy outputs during training as well.

3.3 IQL ARCHITECTURE

The actor, the critic, and the value function have separate parameters for state representation. The
same spatial embedding architecture as OCGDT is used to process states and actions. The policy
network appends four MLP layers with ReLU activation functions. The action head outputs a like-
lihood distribution over actions, with a mask applied before the softmax function to reduce invalid
action likelihood to near zero. An action samples from the softmax output. Two Q functions are
utilized to reduce state-action value over-estimation (Hasselt, 2010; van Hasselt et al., 2016), taking
the minimum of both. A soft update is performed on the Q function, interpolating the target function
towards the new parameters at τ = 0.005. The Q functions have 5 fully connected layers following
the concatenated spatial embeddings of states and actions. The first three layers have an output size
of 512. The last two layers have an output size of 256 and 1, being the output Q-value. A ReLU
activation function is used after each hidden layer. The value function has the same structure as the
critic function, excluding the action embeddings.

4 TRAINING

This section describes the process of dataset synthesis and provides an overview of the training
set-up used to obtain the results for DT-based models and the IQL benchmarks.

4.1 DATASET SYNTHESIS

A training set is synthesised for offline training. It contains 3,000 trajectories collected from games
between CoacAI1 and Mayari2, two previous µRTS AI competition winners. Each game is played
on a randomly selected map from 1,000 procedurally generated maps. The maps are of size 8x8.
Starting conditions are restricted to one base and one worker per player and 4 resource nodes. The
remaining cells in the grid have a small chance to be a wall. An additional 500 trajectories are held
out and used as a validation set. The maps used by the trajectories in the validation set are sampled
from a separate list of 1,000 procedurally generated maps. Another two sets of 1,000 procedurally
generated maps are used separately for online training and evaluation respectively.

4.2 DT TRAINING

The critic is trained on a fixed dataset of 3,000 trajectories. A validation set of 500 trajectories
is used for hyper-parameter optimization. A critic training run is 3,000 training steps. Using a
Weights & Biases3 sweep, Bayesian hyperparameter optimization is used to search among 4 hyper-
parameters over 50 runs. Dropout is sampled from values between 0.1 to 0.3 with increments of 0.1.
Weight decay is sampled uniformly between 1e−5 and 1e−3. The learning rate is sampled uniformly
between 1e−6 and 1e−4. τc is sampled from values between 0.1 and 0.9 with increments of 0.1.

The best performing critic model is used to train the policy model. Offline training and validation
of the policy is performed on the same training and validation sets as the critic. The policy’s perfor-

1https://github.com/Coac/coac-ai-microrts
2https://github.com/barvazkrav/mayariBot
3https://wandb.ai/
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mance throughout training is measured against benchmark bots on a separate procedurally generated
map pool. Each offline run is 5,000 training steps. Hyper-parameters are optimized in the same man-
ner as the critic hyper-parameters. τp samples from values between 0.1 and 0.9 with increments of
0.1. The final hyper-parameter list is provided in the Appendix in Tables 3 and 4.

The training set is treated as a replay buffer during fine-tuning. A new trajectory replaces a trajectory
in the replay buffer With every online episode. 4 online rollouts are performed every 50 steps. The
online training run is 5,000 steps. The policy’s performance throughout the run is measured in the
same way as during the offline portion, by playing against benchmark bots on a separate map pool.

Agents are finally evaluated by playing 400 games, one seed for every 100 games, against the bots
on another set of procedurally generated maps. Wins contribute 1 point, draws contribute 0.5 points,
and losses contribute 0 points. Training is performed on a Windows 10 machine with an NVIDIA
GeForce RTX 4090 GPU, 128GB of DDR4 RAM and an Intel Core i7-5820K CPU. A full training
run, including all three phases and validation, takes 4.25 wall clock hours with K = 100 and a batch
size of 32. In total, there are 13,000 gradient update steps.

4.3 IQL TRAINING

To ensure a fair comparison between IQL and OCGDT, three variants of IQL are trained. The
first variant, IQL 800k, is trained over an equivalent number of offline samples as the DT methods.
With K = 100, a batch size of 32, 3,000 critic steps and 5,000 offline training steps, OCGDT sees
25,600,0004 samples. With the same batch size, IQL needs to perform 800,000 steps. This takes 9
wall clock hours. Hyper-parameter optimization is performed on this variant in the same manner as
for OCGDT, over 50 runs. The dropout is sampled from values between 0.1 to 0.3 with increments
of 0.1. The actor, Q-function and value function learning rates are all separately sampled uniformly
between 1e−5 and 1e−3. IQL’s β parameter is sampled from the values between 1 and 5 with
increments of 1. IQL’s τ parameter is sampled from values between 0.1 and 0.9, with increments of
0.1. The hyper-parameters obtained here are re-used for the other variants. The second variant, IQL
400k, is trained for the same wall-clock duration as OCGDT, which is rounded to 400,000 steps.
The final variant, IQL 13k, is trained for the same number of gradient updates as OCGDT. The final
hyper-parameter list is provided in the Appendix in Table 5.

5 RESULTS

This section discusses the results and implications of the ablative models and explores some learned
behaviours. The main models of interest are CGDT, ODT, and OCGDT. Ablations are performed
on components of OCGDT to understand their impact. IQL is used as a baseline state-of-the-art
algorithm to compare results. Table 1 shows win rates against benchmark rule-based bots. CoacAI
proves to be the most challenging bot, with OCGDT and ODT achieving similar win rates. The
DT-based methods match the results obtained by IQL, requiring less update steps (≤ 13, 000 vs
≥ 400, 000) to achieve the same results. The models of interest are pitted against each other to
further understand the performance differences. Table 2 shows that OCGDT matches win-rates with
CGDT, ODT and IQL 800k, the IQL variant trained on 800,000 steps, while getting a positive win-
rate against IQL 400k, which is trained for the same amount of wall-clock time, and handily beating
IQL 13k, which is trained for the same amount of gradient updates.

5.1 ABLATIONS

To evaluate the contribution of each component of the OCGDT model, a series of ablation studies
were conducted. The experiments yielded insights into the dynamics of fine-tuning for DT-based
agents and identified key sensitivities of the training regimen.

OCGDT A uses a trained critic and a policy trained purely on online episodes. As expected, without
offline pre-training, the agent performs poorly. A strong policy foundation is essential for reducing
the training duration. Our primary investigation focused on the impact of the online fine-tuning
phase. We found that extending the fine-tuning duration (OCGDT B) degraded performance against

4100× 32× (3, 000 + 5, 000) = 25, 600, 000
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Table 1: Agent win rates (%) against benchmark AI bots obtained over 4 seeds, 100 games each,
for a total of 400 games on randomly sampled 8x8 maps. OCGDT A is an online-only agent, with
a buffer large enough to hold the latest online trajectories. OCGDT B underwent double the fine-
tuning steps. OCGDT C underwent double the fine-tuning steps but with an extended buffer size
that prevented offline data from being replaced by online data. OCGDT D did not undergo fine-
tuning. OCGDT E underwent double the offline training steps (10,000 instead of 5,000). OCGDT
F is trained with K = 20. OCGDT G is trained with K = 20 for twice the duration. Interval
represents 95% Wilson score interval. Best performance in bold.

Method CoacAI % Mayari % K buffer size online steps
CGDT 22.3± 4.1 40.8± 4.8 100 3,000 0
ODT 25.5± 4.2 46.3 ± 4.9 100 3,000 5,000
OCGDT (Ours) 26.2 ± 4.3 40.1± 4.8 100 3,000 5,000
OCGDT A 3.2± 1.7 4.9± 2.1 100 4 5,000
OCGDT B 15.3± 3.5 29.9± 4.5 100 3,000 10,000
OCGDT C 20.0± 3.9 40.8± 4.8 100 3,800 10,000
OCGDT D 23.0± 4.1 43.3± 4.8 100 3,000 0
OCGDT E 16.7± 3.6 35.0± 4.7 100 3,000 5,000
OCGDT F 22.3± 4.1 42.4± 4.8 20 3,000 5,000
OCGDT G 22.6± 4.1 41.1± 4.8 20 3,000 10,000
IQL 800k 21.5± 4.0 42.6± 4.8 N/A 3,000 0
IQL 400k 20.8± 4.0 35.9± 4.6 N/A 3,000 0
IQL 13k 7.9± 2.6 22.1± 4.0 N/A 3,000 0

Table 2: Cross-agent win rates (%). Player 1 in row label and Player 2 in column header. A game
is counted as a loss for both players if they kill each other’s last unit simultaneously, thus resulting
in win rates that do not add up to 100%. Win rates obtained over 400 games on randomly sampled
8x8 maps. Interval represents 95% Wilson score interval. Best performance in bold.
vs % CGDT ODT OCGDT IQL 800k IQL 400k IQL 13k
CGDT / 47.0± 4.9 46.4± 4.9 50.5± 4.9 49.1± 4.9 60.7± 4.8
ODT 50.7± 4.9 / 47.5± 4.9 49.5± 4.9 50.6± 4.9 64.5± 4.7
OCGDT 51.0 ± 4.9 49.8 ± 4.9 / 51.6 ± 4.9 53.7 ± 4.9 69.1 ± 4.5
IQL 800k 47.5± 4.9 49.0± 4.9 47.9 ± 4.9 / / /
IQL 400k 49.4± 4.9 47.4± 4.9 43.8± 4.9 / / /
IQL 13k 36.4± 4.7 33.8± 4.7 30.2± 4.5 / / /

more difficult opponents. We hypothesized that this was due to the replay buffer being polluted
by sub-optimal trajectories generated during early online exploration. To test this, OCGDT C was
trained with a larger buffer to preserve the original offline trajectories. While this prevented the
degradation seen in OCGDT B, it did not yield an improvement over the base model. OCGDT D
skips the fine-tuning portion. Most surprisingly, the result is on par with the base OCGDT model.
With the current dataset, the online fine-tuning mechanism does not provide a significant benefit
over the offline model and can be detrimental if not scheduled carefully. The combined results from
OCGDT B, C, and D indicate that the agent’s self-generated online data may not be of sufficient
quality to improve upon the initial policy. This highlights a challenge in ensuring productive ex-
ploration for DT-based agents. We also explored the offline training phase itself. In OCGDT E, we
extended its duration but observed that the agent began to overfit our dataset. This suggests that a
larger and more diverse dataset would be required to benefit from a longer offline training schedule.

Finally, we assessed the model’s sensitivity to context length. OCGDT F and OCGDT G, are trained
with a shorter context (K = 20), with OCGDT G trained for twice the duration. These agents match
the base agent against bots. This indicates that a long-range context is not a critical requirement
for this specific environment configuration, in line with recent findings (Bhargava et al., 2024),
suggesting that an agent trained on a longer context is more prone to overfitting with a limited dataset
or a Markovian environment. OCGDT G empirically demonstrates this compared to OCGDT E as
the agent’s performance did not degrade when trained for longer. Context lengths of 200+ resulted
in significantly increased training times and overfitting and are therefore excluded.
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Figure 2: The agent (blue outline) abuses pockets to survive, exploiting the opponent’s behaviour.

5.2 LEARNED BEHAVIORS

The agent’s general strategy was to overwhelm the opponent with workers. Workers evaded enemy
units until friendly reinforcements. In losing positions, the agent placed its final worker in a pocket
(see Figure 2) exploiting CoacAI and Mayari’s behaviors. The bots preferred building a barracks to
create stronger units instead of sacrificing a worker. This tactic allowed the agent to play for a draw.

The agent learned to gather resources from squares that are not directly adjacent to the main base,
financing its strategy even after the closest resource node is exhausted. However, this behavior was
unreliable beyond four grid squares.

6 CONCLUSION

To explore the effectiveness of DT in Gym-µRTS, we reconstructed and applied two DT-based
agents: CGDT and ODT. OCGDT is constructed to explore whether the strengths of the two agents
can be combined to produce an agent that can both make use of a critic and can perform online
fine-tuning. The agents were evaluated against past IEEE CoG µRTS competition winners CoacAI
and Mayari, which are rule-based agents. In addition, an IQL agent was reconstructed and modified
to fit the state and action space of Gym-µRTS for further evaluation. A dataset was synthesized from
3,000 games between CoacAI and Mayari on procedurally generated maps.

OCGDT matched the performance of both its components against the benchmark bots. In addition,
all base DT agents matched the performance of IQL, a state of the art Offline RL agent, against the
bots. OCGDT obtained a win rate of 26.2%± 4.3% and 40.1%± 4.8% against CoacAI and Mayari
respectively, both of which are past IEEE CoG competition winners. IQL obtained a win rate of
21.5%± 4.0% and 42.6%± 4.8% against CoacAI and Mayari. OCGDT alone managed to obtain a
positive win-rate against the three variants of IQL (800k steps, 400k steps, and 13k steps) with win
rates of 51.6± 4.9, 53.7%± 4.9, and 69.1± 4.5 respectively, over 400 games each.

Training consisted of offline critic (3,000 steps) and policy (5,000 steps) training, and online (5,000
steps) fine-tuning. A dataset of 3,000 trajectories is used, generated by games between CoacAI and
Mayari on procedurally generated maps. A single run totaled 4.25 hours of wall-clock time using
consumer hardware. DT-based agents are faster to train and require less gradient updates than IQL
to match its performance against the bots.

While the ablation with a shorter context length (K = 20) showed no performance degradation on
8x8 maps, we hypothesize that longer context lengths will be crucial when tackling larger maps or
environments with partial observability. Additional future work includes a richer and larger dataset
that can make the offline policy more robust to potential degradation in the fine-tuning stage. Alter-
natively, established RL techniques with stronger convergence guarantees can be used for fine-tuning
in combination with a policy pre-trained on a DT-based architecture.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

7 REPRODUCIBILITY STATEMENT

The following steps were taken to ensure reproducibility: A link to code and data, including the
seeds and hyper-parameter yaml files used to run and train the agents, is provided in Appendix A.1.
Relevant architecture details are provided in Section 3 and in Appendix A.2. The hyper-parameter
optimization method and the hyper-parameter ranges are provided in Section 4.
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A APPENDIX

A.1 CODE AND DATA

Files for code and data can be found in the following link:

https://osf.io/g4jb6/files/osfstorage?view_only=
bed71727d8c34d8d9f1234be1de1fd26

A.2 ADDITIONAL NETWORK DETAILS

Depicted below are hyper-parameter details used to obtain the results. Additionally, further details
show state and action embeddings (Figure 3) and policy and critic heads (Figure 4).
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Table 3: Common OCGDT Hyper-parameters
Hyper-parameter Value
Optimizer AdamW
Scheduler OneCycleLR, Sinusoidal
Replay size 3,000
Context length K 100
Batch size 32
Initial expectile loss weight α 0.01
Initial entropy regularization weight β 0.1
Asymmetric expectile loss weight τc 0.9
Asymmetric expectile loss weight τp 0.1

Table 4: Network-Specific OCGDT Hyper-parameters
Hyper-parameter Critic Value Policy Value
Dropout 0.2 0.1
Base embed dimensions 256 256
Learning rate 2e-5 1e-4
Weight decay 2e-4 1e-3
Warm-up steps 1,500 2,500
Offline steps 3,000 5,000
Online steps N/A 5,000
Transformer heads 4 4
Transformer layers 2 2

Table 5: IQL Hyper-parameters
Hyper-parameter Value
Optimizer AdamW
Scheduler OneCycleLR, Sinusoidal
Batch size 32
Dropout 0.1
IQL τ 0.1
Soft update factor τ 5e-3
Behaviour cloning weight β 4.0
Discount rate γ 0.99
Value function learning rate 1e-3
Q function learning rate 5e-4
Actor Learning rate 5e-4
Reward Scale 1.0
Steps 800,000
Warm-up Steps 360,000
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Figure 3: Both action and state embeddings follow the same architecture, the only difference being
the number of input channels. CNN outputs are passed through a fully connected layer, a GELU
non-linearity, and a final fully connected layer which embeds the inputs into a common shape.
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Figure 4: The action head (left) obtains a grid of action probabilities by first passing the transformer
output through multiple fully connected layers with GELU activation functions, then reshaping and
masking using either an action mask returned from the Gym-µRTS environment or one from the
current timestep in the sampled trajectory. The gaussian parameter heads (right) are the result of
a fully connected layer, a GELU activation function, and a final fully connected layer outputting a
single value for the head. The value is then mapped to [0, ∞) for σ using softplus and to (-1, 1) for
µ using tanh.
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