
Toward Real-world Text Image Forgery Localization:
Structured and Interpretable Data Synthesis

Zeqin Yu1 Haotao Xie2 Jian Zhang3∗Jiangqun Ni1,4∗Wenkan Su3 Jiwu Huang5

1Sun Yat-sen University 2Beihang University 3Guangzhou University
4Peng Cheng Laboratory 5Shenzhen MSU-BIT University

Abstract

Existing Text Image Forgery Localization (T-IFL) methods often suffer from poor
generalization due to the limited scale of real-world datasets and the distribution gap
caused by synthetic data that fails to capture the complexity of real-world tampering.
To tackle this issue, we propose Fourier Series-based Tampering Synthesis (FSTS),
a structured and interpretable framework for synthesizing tampered text images.
FSTS first collects 16,750 real-world tampering instances from five representative
tampering types, using a structured pipeline that records human-performed editing
traces via multi-format logs (e.g., video, PSD, and editing logs). By analyzing
these collected parameters and identifying recurring behavioral patterns at both
individual and population levels, we formulate a hierarchical modeling framework.
Specifically, each individual tampering parameter is represented as a compact com-
bination of basis operation–parameter configurations, while the population-level
distribution is constructed by aggregating these behaviors. Since this formulation
draws inspiration from the Fourier series, it enables an interpretable approximation
using basis functions and their learned weights. By sampling from this modeled
distribution, FSTS synthesizes diverse and realistic training data that better reflect
real-world forgery traces. Extensive experiments across four evaluation protocols
demonstrate that models trained with FSTS data achieve significantly improved
generalization on real-world datasets. Dataset is available at Project Page.

1 Introduction

In the digital era, text images have become increasingly prevalent in domains such as finance, insur-
ance, and certification audits, serving as essential digital records. As critical credentials containing
rich textual and numerical information, they have become prominent targets for forgery. From
falsified documents to manipulated news screenshots, such fraudulent alterations pose a serious threat
to the authenticity and credibility of digital information.

To address such an issue, researchers have proposed various text image forgery localization (T-
IFL) methods [5, 6, 13, 39, 21, 32, 45, 48] that aim to identify the manipulated regions within
tampered text images. Early approaches primarily relied on handcrafted features to capture forgery
artifacts in text images, such as character misalignment [5, 21], font inconsistencies [6], or layout
irregularities [13, 39]. However, with the advancement of tampering techniques, the effectiveness
of traditional methods has significantly declined. In response, recent research has increasingly
focused on deep learning-based T-IFL methods [32, 45, 48]. Despite their promising performance,
the development of efficient and highly generalizable deep learning models often depends on access
to large-scale, high-quality datasets containing tampered text images. Unfortunately, creating such
datasets remains a significant challenge, as pixel-level manipulation and annotation require time-
consuming and labor-intensive efforts by experts. Consequently, the scale of existing real-world

∗Corresponding authors.

39th Conference on Neural Information Processing Systems (NeurIPS 2025) Track on Datasets and Benchmarks.

https://github.com/ZeqinYu/FSTS

(a) Scenarios (b) Scales (c) Language (d) Devices

Invisible Distribution

(e) Real Image (g) Forged Image
Tampering Type Main & Post-processing

(f) Tampering Parameters

RM

Visible Distribution

Figure 1: Visible vs. invisible distributions in synthetic tampered text image datasets. Existing
datasets mainly focus on visible attributes (a–d), while our FSTS strategy models invisible tampering
parameters (e–g) derived from real-world tampering scenarios.

manually tampered datasets [2, 45, 48, 49] remains relatively limited, hindering the training of
generalizable models.

To overcome the data scarcity bottleneck, recent studies [32, 48, 42, 41] have explored synthetic
approaches to automatically generate tampered text image datasets. Some approaches, such as
DocTamper [32], follow rule-based pipelines that apply predefined tampering types to text images,
aiming to generate large-scale datasets. Other methods [41, 42] leverage deep generative models,
such as GANs [22] and Diffusion Models [34], to synthesize or modify text regions in scene images,
focusing on visual realism. However, these synthetic methods primarily focus on visible attributes in
tampered text image datasets, such as scene variety, dataset scale, language diversity, and imaging
device differences. These characteristics, largely inherited from general visual analysis tasks (e.g.,
image classification, segmentation, and object detection), are easily perceptible to human observers,
as illustrated in Fig. 1(a–d). We refer to these explicitly visible attributes as the Visible Distribution.
In contrast, real-world text image tampering often involves complex and invisible combinations of
tampering parameters. Forgers tend to select different tampering types [45, 49] (e.g., copy-move,
splicing, removal, insertion, replacement) based on the specific scenario and then apply a series of
specific main processing (e.g., region selection, text insertion, and other geometric transformations),
followed by multiple post-processing operations (e.g., blurring, filtering, color adjustment, JPEG
recompression, among others), as shown in Fig. 1(e-g). The resulting high-dimensional tampering
parameter vectors extracted from the above tampered images, shaped by multi-step decision-making
processes, are visually imperceptible yet critically influence the diversity and subtlety of forgery
traces in synthetic samples, thereby limiting model generalization in real-world scenarios. We refer
to such complex and invisible combinations of tampering parameters as the Invisible Distribution.
Therefore, accurately modeling the high-dimensional and concealed Invisible Distribution during
data synthesis to generate more representative and diverse training samples and improve model
generalization under complex tampering scenarios remains a critical challenge.

To address this challenge, we propose a novel structured and interpretable framework, termed Fourier
Series-based Tampering Synthesis (FSTS), which models the Invisible Distribution to simulate
complex real-world tampering parameters and enhance the generalization of T-IFL models. Our
approach comprises three key steps: (1) we design a structured pipeline to collect tampering param-
eters from human-performed editing traces, recruiting 67 experts and volunteers to create 16,750
real-world instances across five representative tampering types, averaging 250 samples per participant.
Operation histories are automatically recorded through multi-format logs (e.g., video, PSD, and edit-
ing logs). (2) We analyze the collected parameters and observe recurring behavioral patterns at both
the individual and population levels. Based on this, we formulate a hierarchical distribution modeling
framework, where each individual-level distribution is represented as a compact combination of
representative basis operation–parameter configurations, and the population-level distribution is con-
structed by aggregating these individual behaviors. This formulation draws inspiration from Fourier
series, enabling a compact and interpretable approximation using basis functions and their learned
weights. (3) We then synthesize tampered images by sampling operation–parameter configurations
and their frequencies from the modeled distribution, generating diverse and realistic training data that
better align with real-world forgery traces. Extensive experiments conducted across four evaluation
protocols demonstrate the superior generalization of FSTS-trained models in real-world scenarios.

2 Related Work

In recent years, the general image forgery localization (IFL) task has gained widespread attention, with
several research teams constructing and releasing publicly available tampered image datasets [2, 10–

2

12, 23, 20, 30, 24, 45–49] for training and evaluation. Most of these datasets [10, 12, 23, 20, 30,
11, 24] are designed for natural image forgery localization (N-IFL), primarily focusing on natural
image scenes such as portrait images, landscape photographs, or general object images. Meanwhile,
another ubiquitous form, i.e., text images [2, 45, 48, 49], encountered in documents, invoices, and
news screenshots, contain extensive sensitive textual and numerical information, making them highly
susceptible to counterfeiting and fraud. However, natural images and text images exhibit significant
differences in content structure, semantic density, the spatial distribution of forgery regions, and other
aspects. Consequently, models trained on natural-image datasets often struggle to generalize well to
T-IFL tasks in real-world scenarios [45, 48].

To tackle the above issue, several studies [2, 45, 48, 49] have developed specialized tampered text
image datasets for T-IFL. For example, FindIt [2] constructed a tampered receipt dataset covering
essential fields such as amounts, dates, and receipt numbers, consisting of 240 samples. STFD [45]
focused on smartphone screenshot images, assembling 4,094 tampered instances derived from
genuine text content (e.g., social chat records, e-commerce transactions, and web news screenshots),
and modified by dozens of experts using five representative tampering types (e.g., copy-move,
splicing, removal, insertion, and replacement) specifically designed for text images. Additionally,
CertificatePS [49] released a tampered certificate dataset comprising 4,840 images, captured under
indoor and outdoor settings using 77 different mobile phones. The tampered images were created by
25 experts, primarily targeting high-sensitivity areas such as signatures and seals. Moreover, some
commercial organizations have organized T-IFL challenges [1, 3, 38], with datasets partly derived
from the aforementioned sources [2, 45] or covering similar application scenarios [1]. Although these
datasets have significantly improved model adaptability in specific text image tampering scenarios,
their construction still heavily relies on expert manual annotation and is constrained by data collection
costs, privacy concerns, and the limited scale and diversity of real-world text image scenarios.

To overcome the limitations of current real-world datasets, recent efforts [48, 32, 14, 27, 40–42] turned
to the automatic generation of large-scale synthetic tampered text image datasets. PS-scripted [48]
proposed a synthetic tampered dataset constructed from book cover images, where random splicing
followed by blurring and smoothing was applied to mimic realistic forgery traces. However, the
dataset lacks textual and structural semantics and supports only a single tampering type, limiting its
representativeness. DocTamper [32] introduced a large-scale synthetic tampered dataset consisting of
170,000 document images. It employs a structured process to separate the foreground and background
and applies common tampering types (e.g., copy-move, splicing, and replacement) to the foreground
text areas. Despite its scale, this approach relies on predefined, single-rule procedures and fails to
capture the diversity of tampering strategies, operation sequences, and post-processing techniques
observed in real-world scenarios. Additionally, other works [14, 27, 40–42] have explored deep
generative models, such as GANs [22] and Diffusion Models [34], to synthesize or repair localized
text regions in scene images. While some of these methods are designed for non-forensic applications
like poster design [14, 27, 40], and others involve forgery-related tasks [41, 42] but still emphasize
surface-level visual realism over the underlying behaviors and trace diversity of genuine tampering.
As a result, existing synthetic datasets often suffer from pronounced distribution gaps compared to
real-world tampered text image datasets, primarily due to their failure to adequately model complex
tampering strategies and parameter configurations that characterize real-world forgeries. This gap
severely limits the generalization ability of current models in practical T-IFL settings and highlights
the urgent need for a more principled synthesis framework that captures the invisible distributions
underlying real-world tampering.

3 The Proposed Synthesis Dataset

3.1 Preliminary

Motivation. Although existing synthetic datasets have advanced the development of T-IFL by
emphasizing observable visual attributes, they often overlook the latent, behavior-level aspects of
tampering. These aspects are associated with different tampering types, each comprising specific
main processing and post-processing operations parameterized by implementation details, which we
term the invisible distribution. This gap between synthetic and real-world data in this latent space
leads to limited model generalization. To address this, we attempt to explicitly model and simulate
such invisible distributions in a structured and interpretable manner.

3

Content-Aware Font Properties Scaling Gaussian Blur Noise Outer Glow Effect Sharpen Compression
0

20

40

60

80

Fr
eq

ue
nc

y
(%

)

67.0

50.1 47.5
41.4

35.2

45.3 42.6
49.2

60.1

48.4 45.6
54.5

32.6

56.0

44.0

31.1

58.2

37.5

47.7

32.6

46.9

33.1
40.2

47.3

61.7

43.5 42.8 39.7
34.9

45.6 42.3 40.4

Tamperer 1 Tamperer 2 Tamperer 3 Overall Average

Figure 2: Parameter usage frequencies in “Replacement” tampering samples across three tamperers
and the overall average.

Problem Definition. Let t denote the tampering parameters, including those associated with the
main processing and post-processing operations across different tampering types, as introduced in
Motivation. We define the real-world tampering distribution as PR(t), and the synthesized tampering
distribution as PS(t). Our goal is to minimize the discrepancy between PS(t) and PR(t) by modeling
the underlying t:

minD(PS(t), PR(t)), (1)

where D(·) denotes a distribution distance metric.

Challenges. An intuitive approach to the above objective is to collect a sufficient number of t from
real-world scenarios, analyze their statistical properties (e.g., distribution patterns and frequencies),
and leverage these characteristics to construct a model for PS(t). However, this approach faces two
key challenges in practical applications:

• How to effectively collect t? Most tampered text images retain only the final output, without
operation history, making it difficult to recover the underlying t. Therefore, a mechanism is
required to infer or extract these t based on the tamperer’s operation process.

• How much t is sufficient to ensure the adequacy of distribution modeling? Given the
diversity and complexity of tampering operations, a small number of parameter samples is
unrepresentative and prone to biased modeling. However, exhaustively collecting t to fully
characterize PR(t) is impractical, due to high annotation costs and privacy constraints. A
principled strategy is needed to generalize from a limited yet representative subset while
preserving the diversity of real-world tampering behaviors.

3.2 Our Insights

To address the challenges outlined in Sec. 3.1, we introduce two key insights: one for collecting
real-world tampering parameters t, and another for modeling their distribution in a structured and
interpretable manner.

Insight 1: Collecting t from Real-World Scenarios. To address Challenge 1, we design a struc-
tured pipeline to collect t from realistic tampering processes. Inspired by previous work [45], we
consider five representative tampering types for text image forgery, i.e., copy-move, splicing, removal,
insertion, and replacement. We recruit 67 experts and volunteers to perform text image tampering
tasks using Photoshop across diverse visible distribution scenarios (e.g., photographic, screenshot,
and scanned images). During the editing process, the corresponding tampering parameters t were
automatically recorded, resulting in 16,750 tampering instances, with an average of 250 samples
per tamperer. The recorded parameters were saved in multiple formats, including video recordings,
Photoshop-exported history logs, and project files (.psd). These records provide fine-grained informa-
tion about the tampering process, capturing operation sequences, parameter values, and layer-level
edits, thereby enabling the detailed reconstruction of each tampering instance.

Insight 2: Hierarchical modeling of t. Based on Insight 1, we address Challenge 2 by conducting
a comprehensive analysis of tampered samples across all five tampering types to characterize the
distribution of t. Among them, we highlight the “Replacement” type as a representative case (Fig. 2),
presenting the eight most frequently used parameters aggregated across all tamperers, along with

4

(4) Population-level (𝑷𝑺(𝒕))

(1) Tampering Types (𝝓𝒌(𝒕))

(3) Individual-level (𝑷𝑺(𝒊)(𝒕))

(2) Tampering Sample × J

𝑷𝑺(𝒕) = ෍

𝒊=𝟏

𝑰

𝑷𝑺(𝒊)(𝒕)

(c) Synthetic Tampered Image Generation

(1) Target Image 𝑰𝒐

0

N=5

𝑇1−𝑇1

0

N=35

𝑇1−𝑇10

N=15

𝑇1−𝑇1

(a) Fourier-series Inspiration

0

N=1

𝑇1−𝑇1
(1) 𝒔𝑵(x) = 4/sin(1x)

(3) 𝒔𝑵(x) = 4/sin(x) +…

 +4/15sin(15x)

(2) 𝒔𝑵(x) = 4/sin(x) +…

 +4/5sin(5x)

(4) 𝒔𝑵(x) = 4/sin(x) +…

 +4/35sin(35x)

(2) Text Region Manipulation

(3) Tampered Image 𝑰𝒔 (4) Ground Truth M

Copy-move Splicing

InsertionRemoval

Replacement

Main processing

Post-processing

(b) Fourier Series-based Tampering Synthesis

Figure 3: Overview of the proposed FSTS framework. (a) Inspiration: A rectangular signal s(x) is ap-
proximated by a weighted sum of sinusoidal basis functions, i.e., sN (x) =

∑N
k=1

4
(2k−1)π sin((2k −

1)x), where sin
(
(2k − 1)x

)
is a basis function and

∑N
k=1

4
(2k−1)π is its weight. Larger N yields

higher-fidelity reconstruction, illustrating the idea of decomposition and recombination over a quasi-
periodic domain. (b) Modeling: Each individual distribution P

(i)
S (t) is modeled as a weighted

combination of basis tampering configurations (individual-level reconstruction), and their aggregation
PS(t) approximates PR(t) (population-level reconstruction). (c) Generation: Based on the learned
basis functions and weights from (b), parameter configurations are sampled and applied to text images,
yielding synthetic tampered images that more accurately reflect real-world forgery traces.

the individual configurations from three randomly selected tamperers. From this analysis, two key
patterns were observed:

• Observation 1 – Individual-level recurrence: Despite differences in visible distribution
scenarios, individual tamperers tended to repeatedly adopt similar parameter configurations,
reflecting habitual preferences. For example, across all of Tamperer 1’s Replacement
samples, Content-Aware Fill was used to erase text in 67.0% of the cases, followed by
insertion and the application of Gaussian blur (41.4%) and Noise (35.2%) to conceal
modifications.

• Observation 2 – Population-level recurrence: Certain parameter choices consistently
emerged across tamperers. As revealed by the aggregated averages, 61.7% of tamperers
applied Content-Aware Fill, while Gaussian blur and Noise addition appeared in 39.7% and
34.9% of samples, respectively, indicating shared tendencies in tampering practices.

These observations reveal that, despite their apparent diversity, tampering behaviors follow recurring
patterns at both the individual and population levels. Such structured recurrence suggests that
the underlying tampering distribution PR(t) can be effectively approximated by a compact set
of representative operation–parameter configurations and their associated weights. Inspired by
this, we introduce a hierarchical modeling framework termed Fourier Series-based Tampering
Synthesis (FSTS), which approximates PR(t) using interpretable basis configurations and their
learned weights. As illustrated in Fig. 3(a), just as a waveform can be decomposed into a weighted
sum of basis functions, FSTS represents each tampering parameter t as a weighted combination of
basis components, where each basis corresponds to a distinct operation–parameter configuration.
At the individual level, we model each tamperer’s behavior as a sparse combination of these basis
components. At the population level, aggregating individual patterns enables us to yield a compact,
interpretable approximation of PR(t). This formulation offers a principled foundation for synthesizing
diverse and realistic tampered samples that more accurately reflect real-world forgery traces.

3.3 Fourier Series-based Tampering Synthesis

Building upon the empirical observations in Insight 1 and 2, we now instantiate our proposed FSTS
framework (Fig. 3(b)). FSTS hierarchically models t using a set of interpretable basis functions and
their associated weights. We describe the individual- and population-level formulations below.

Individual-Level Tampering Distribution. The tampering parameter of each individual is modeled
as a combination of K predefined tampering types ϕk (k = 1, . . . ,K), each associated with concrete
operation–parameter configurations t

(i)
j,k. Here, t(i)j,k denotes the tampering parameter of the j-th

5

instance of type ϕk performed by individual i, where i = 1, . . . , I and j = 1, . . . , J , and a
(i)
j,k is the

corresponding frequency coefficient. Formally, the individual-level tampering distribution P
(i)
S (t) is

expressed as:

P
(i)
S (t) =

K∑
k=1

J∑
j=1

a
(i)
j,k ϕk(t

(i)
j,k). (2)

In practice, as revealed in Insight 2 (Observation 1), individual tamperers tend to reuse similar
configurations. As the number of samples (i.e., J) grows, the configuration statistics for each
tampering type converge to stable values, allowing us to approximate each type with a representative
setting. Thus, we simplify P

(i)
S (t) as:

P
(i)
S (t) ≈ lim

J→∞

K∑
k=1

 J∑
j=1

a
(i)
j,k

ϕk(t
(i)
j,k) =

K∑
k=1

a
(i)
k ϕk(t

(i)
k), (3)

where a
(i)
k =

∑J
j=1 a

(i)
j,k denotes the expected weight of type ϕk for individual i, and t

(i)
k is the

representative operation–parameter configuration of that type. We select the representative configura-
tion t

(i)
k for each tampering type as the instance most frequently observed across all samples of that

type, subject to a minimum usage threshold (e.g., ≥2%), ensuring that only recurrent behaviors are
incorporated into our basis set.

Population-Level Tampering Distribution. We construct the population-level distribution PS(t)

by aggregating the individual distributions P (i)
S (t) across all tamperers:

PS(t) =

I∑
i=1

P
(i)
S (t) =

I∑
i=1

(
K∑

k=1

a
(i)
k ϕk(t

(i)
k)

)
. (4)

Given that tamperers often share common configuration preferences (see Insight 2, Observation 2),
accurately approximating population-level behavior does not require an excessively large number
of participants. Assuming that our collected samples capture sufficient diversity, we simplify the
distribution by taking the limit as I → ∞. As K is predefined and finite, we interchange the
summation order to aggregate each type’s contribution across all individuals before combining them
into the final distribution:

PS(t) ≈ lim
I→∞

K∑
k=1

(
I∑

i=1

a
(i)
k ϕk(t

(i)
k)

)
=

K∑
k=1

akϕk(tk), (5)

where ak =
∑I

i=1 a
(i)
k denotes the aggregated frequency coefficient for tampering type ϕk. Likewise,

tk is selected from {t(i)k } as the configuration shared by at least 5% of the individuals, ensuring that
only broadly recurring patterns are retained at the population level.

Real-World Tampering Distribution. We define the real-world tampering distribution PR(t) as a
weighted combination of predefined tampering types ϕk, consistent with the modeling basis in Eq. 5.
Here, t̂k denotes the complete set of operation–parameter configurations of type ϕk assumed to exist
in real-world scenarios. Formally, PR(t) can be written as follows:

PR(t) =

K∑
k=1

âkϕk(t̂k), (6)

where âk denotes the frequency of tampering type ϕk in real-world data.

Minimizing Distribution Difference. As outlined in Eq. 1, our goal is to minimize the discrepancy
between PS(t) and PR(t). However, directly minimizing the difference between these two complex
distributions can be particularly challenging. To simplify the task, we express both as weighted
combinations over the same set of basis configurations. Since the synthesized configurations tk are

6

Table 1: Overview of the four experimental protocols, summarizing the training and testing settings.
No. Protocol Training Testing

1 Synthetic → Synthetic DocT-T, FSTS-T DocT-S, FSTS-S

2 Synthetic → Real DocT-T, FSTS-T FSTS-1.5k, AFAC, CertificatePS, STFD, FindIt

3 Real → Real CertificatePS FSTS-1.5k, AFAC, CertificatePS, STFD, FindIt

4 Synthetic Pretraining
+ Real Fine-Tuning

Pretrained model from Protocol 1 or 2
+ Fine-tune on CertificatePS FSTS-1.5k, AFAC, CertificatePS, STFD, FindIt

derived from recurring patterns observed in real-world data, we assume tk ≈ t̂k, and simplify the
problem by focusing on aligning the coefficients:

min
{ak,tk}

D (PS(t), PR(t)) = min
{ak,tk}

D

(
K∑

k=1

akϕk(tk),

K∑
k=1

âkϕk(t̂k)

)
=⇒ min

{ak}
D ({ak}, {âk}) (assuming tk ≈ t̂k).

(7)

By reformulating the objective in coefficient space, we sidestep the difficulty of directly matching
complex tampering distributions and instead concentrate on aligning the synthesized weights {ak}
with their real-world counterparts {âk}, assuming the basis configurations tk ≈ t̂k. Details of the
representative operation–parameter configurations and their empirical frequencies are summarized in
the Appendix.

Synthetic Image Generation. Once the population-level tampering parameters {ak, tk}Kk=1 are
obtained, we synthesize tampered images by applying corresponding tampering operations on the
original image Io, as illustrated in Fig. 3(c). Formally, the generation process is formulated as:

Is = Generator
(
Io | {ak, tk, ϕk}Kk=1

)
, (8)

where Generator(· | ·) denotes the tampering synthesis pipeline (e.g., implemented using Photoshop).
Each tampering type ϕk is executed with its corresponding configuration tk and synthesized weight
ak to the original image Io. The resulting image Is embodies tampering patterns consistent with
the learned distribution PS(t), thereby yielding realistic and diverse samples for model training.
Implementation details and the full synthesis pipeline are described in the Appendix.

4 Experiments

4.1 Dataset and Experimental Protocols

To validate the effectiveness of our proposed FSTS strategy, we conduct experiments on both synthetic
and real-world datasets. As one of the largest public synthetic datasets for T-IFL, DocTamper [32]
serves as our baseline for constructing comparable training and testing protocols. For the synthetic
setting, we follow the DocTamper-Train (DocT-T) protocol [32] and sample 50,000 text images to
construct the training set. We then apply our proposed FSTS strategy to the same set [8, 17, 26, 37]
to generate FSTS-Train (FSTS-T). Similarly, we use dataset [18], consistent with the second cross-
domain setting in DocTamper (DocT-S), to construct FSTS-S for cross-domain testing. In addition,
we evaluate generalization on five real-world datasets: FSTS-1.5k (a held-out subset of 1,488 real
images excluded from parameter modeling in FSTS), AFAC [1], CertificatePS [49], STFD [45], and
FindIt [2]. Further details on these datasets are provided in the Appendix. To systematically assess
the impact of synthetic data and evaluate model performance under different training and testing
settings, we define four evaluation protocols, as summarized in Table 1.

• Protocol 1: Synthetic Data Training with Synthetic Data Testing. Following the evalua-
tion protocol of DocTamper [32], we train the models on DocT-T and FSTS-T and evaluate
them on DocT-S and FSTS-S. This setting provides a controlled benchmark for training and
evaluating models on synthetic tampering patterns.

• Protocol 2: Synthetic Data Training with Real-World Data Testing. Using the model
trained in Protocol 1, this protocol evaluates its generalization capability by testing on

7

Table 2: Pixel-level F1 and AUC performance of T-IFL for Protocols 1 and 2, showing models trained
on synthetic datasets (DocT-T and FSTS-T) and tested on both synthetic and real-world datasets.
Each method includes three rows representing different training–testing configurations. The first and
second rows show results for models trained on DocT-T and FSTS-T, respectively. The third row
(Gain ∆) shows the performance difference between FSTS-T and DocT-T (FSTS-T minus DocT-T).
Positive gains are highlighted in red, and negative gains in blue.

Methods Train
Test Synthetic Real-World

DocT-S FSTS-S FSTS-1.5k AFAC CertificatePS STFD FindIt Average

F1 AUC F1 AUC F1 AUC F1 AUC F1 AUC F1 AUC F1 AUC F1 AUC

RRU-Net [7]
DocT-T .501 .968 .253 .864 .215 .696 .088 .798 .383 .782 .099 .772 .211 .776 .199 .765
FSTS-T .214 .828 .401 .881 .541 .933 .307 .874 .433 .863 .177 .855 .252 .793 .342 .864
Gain ∆ -.286 -.140 .149 .017 .327 .237 .219 .076 .050 .082 .078 .084 .041 .018 .143 .099

DFCN [48]
DocT-T .376 .961 .123 .862 .084 .679 .057 .883 .220 .795 .068 .791 .081 .764 .102 .782
FSTS-T .195 .841 .394 .917 .594 .944 .334 .939 .414 .910 .113 .831 .182 .819 .327 .889
Gain ∆ -.181 -.119 .271 .055 .510 .265 .277 .056 .194 .115 .045 .040 .101 .055 .225 .106

PSCC-Net [28]
DocT-T .325 .973 .290 .846 .225 .729 .091 .804 .456 .848 .102 .774 .261 .782 .227 .787
FSTS-T .006 .535 .488 .871 .651 .968 .099 .766 .680 .929 .307 .897 .209 .716 .389 .855
Gain ∆ -.319 -.438 .198 .025 .426 .239 .008 -.038 .224 .081 .205 .123 -.052 -.066 .162 .068

MVSS-Net [10]
DocT-T .307 .721 .241 .698 .196 .662 .082 .728 .255 .701 .104 .696 .203 .698 .168 .697
FSTS-T .185 .742 .491 .818 .559 .878 .382 .845 .445 .804 .187 .755 .357 .780 .386 .812
Gain ∆ -.122 .021 .250 .120 .363 .215 .300 .117 .189 .103 .083 .059 .153 .082 .218 .115

TruFor [15]
DocT-T .516 .982 .400 .901 .211 .708 .185 .811 .289 .811 .091 .787 .214 .811 .198 .785
FSTS-T .270 .868 .775 .980 .683 .952 .638 .984 .487 .892 .190 .865 .386 .866 .477 .912
Gain ∆ -.247 -.114 .374 .079 .471 .244 .453 .174 .198 .082 .099 .078 .172 .057 .279 .127

DTD [32]
DocT-T .449 .906 .129 .787 .104 .658 .024 .631 .164 .685 .066 .670 .125 .666 .097 .662
FSTS-T .121 .656 .355 .822 .607 .934 .115 .749 .717 .934 .062 .635 .225 .724 .345 .795
Gain ∆ -.328 -.250 .226 .034 .503 .276 .091 .118 .553 .249 -.004 -.035 .100 .058 .249 .133

STFL-Net [45]
DocT-T .510 .972 .370 .893 .186 .679 .134 .893 .306 .771 .162 .794 .237 .770 .205 .781
FSTS-T .138 .708 .592 .921 .589 .921 .451 .960 .426 .872 .197 .863 .332 .847 .399 .892
Gain ∆ -.372 -.264 .222 .029 .403 .242 .317 .067 .100 .120 .035 .069 .094 .077 .194 .111

real-world datasets. This assessment determines whether training exclusively on synthetic
data enables the model to perform effectively in practical T-IFL scenarios.

• Protocol 3: Direct Training and Testing on Real-World Data. This protocol establishes a
baseline by training the model on real-world datasets (e.g., CertificatePS) and evaluating
it in both within-dataset and cross-dataset settings. The within-dataset evaluation assesses
performance on the same dataset used for training, while the cross-dataset evaluation
measures generalization to unseen real-world datasets.

• Protocol 4: Synthetic Data Pretraining with Real-World Data Fine-Tuning. The model
is first initialized with weights pretrained on synthetic data (from Protocol 1 or 2) and then
fine-tuned on real-world data, following the same strategy as Protocol 3. This protocol
investigates whether synthetic pretraining improves model performance on real-world T-IFL,
particularly when real data are scarce or expensive to obtain.

4.2 Comparison with the State-of-the-art Methods

We compare the performance of representative state-of-the-art (SOTA) methods from both N-IFL [7,
48, 28, 10, 15] and T-IFL [45, 32] domains under the four evaluation protocols outlined in Sec. 4.1.
All models are trained under identical experimental settings based on the same training and testing
splits, following their official implementations and default hyperparameters, with 50 and 25 training
epochs for Protocols 1–2 and 3–4, respectively, to ensure fair comparison. Specifically, the compared
methods include five N-IFL methods (RRU-Net [7], DFCN [48], PSCC-Net [28], MVSS-Net [10],
and TruFor [15]) and two T-IFL methods (DTD [32], STFL-Net [45]). Notably, several of these
methods were introduced together with corresponding tampered text image datasets, underscoring
their close relevance to our task setting. For example, DFCN introduced a set of synthetic and real-
world book-cover tampering datasets, DTD proposed the DocTamper dataset of synthetic document
forgeries, and STFL-Net released the STFD dataset of real-world screenshot forgeries.

Protocol 1. It can be observed from the left side of Table 2 that models trained on synthetic data
(DocT-T, FSTS-T) and tested on the corresponding synthetic data (DocT-S, FSTS-S) demonstrate

8

Table 3: Pixel-level F1 and AUC performance of T-IFL for Protocols 3 and 4, showing models
trained under different strategies and tested on real-world datasets. Each method includes four rows
corresponding to different training–testing configurations. The first row (Direct) shows results for
models trained and tested directly on real datasets (e.g., CertificatePS) (Protocol 3). The second
and third rows (DocT-T and FSTS-T) report results from models pretrained on synthetic datasets and
fine-tuned on real datasets (Protocol 4). Subscripts denote performance differences relative to the
Direct setting, indicating the impact of synthetic pretraining. The fourth row (Gain ∆) highlights
performance differences (FSTS-T minus DocT-T). Same highlighting conventions as in Table 2 apply.

Methods Train
Test FSTS-1.5k AFAC CertificatePS STFD FindIt Average

F1 AUC F1 AUC F1 AUC F1 AUC F1 AUC F1 AUC

RRU-Net [7]

Direct .680 .929 .075 .718 .790 .971 .163 .773 .250 .669 .392 .812
DocT-T .459 -.221 .857 -.072 .084 .009 .648 -.071 .693 -.096 .932 -.039 .146 -.018 .749 -.024 .240 -.010 .687 .019 .324 -.067 .774 -.037
FSTS-T .687 .007 .946 .018 .131 .056 .815 .097 .819 .029 .973 .002 .177 .014 .798 .025 .261 .011 .714 .045 .415 .023 .849 .037
Gain ∆ .229 .090 .047 .167 .126 .041 .032 .049 .021 .027 .091 .075

DFCN [48]

Direct .547 .901 .065 .693 .699 .953 .156 .756 .153 .663 .324 .793
DocT-T .453 -.094 .849 -.052 .076 .011 .701 .008 .652 -.047 .927 -.026 .134 -.021 .727 -.029 .220 .067 .732 .069 .307 -.017 .787 -.006
FSTS-T .730 .183 .958 .057 .064 -.002 .758 .066 .844 .145 .987 .034 .163 .008 .767 .011 .201 .048 .703 .040 .400 .076 .835 .042
Gain ∆ .277 .110 -.012 .057 .192 .060 .029 .040 -.019 -.028 .093 .048

PSCC-Net [28]

Direct .684 .940 .064 .733 .862 .992 .157 .758 .254 .659 .404 .816
DocT-T .690 .006 .944 .004 .074 .010 .712 -.020 .855 -.007 .992 .000 .184 .027 .750 -.008 .277 .023 .721 .062 .416 .012 .824 .008
FSTS-T .707 .023 .938 -.002 .075 .011 .698 -.034 .865 .003 .993 .001 .191 .034 .784 .026 .251 -.003 .740 .081 .418 .013 .831 .014
Gain ∆ .017 -.006 .001 -.014 .010 .001 .007 .034 -.026 .019 .002 .007

MVSS-Net [10]

Direct .674 .914 .053 .598 .871 .958 .128 .661 .298 .659 .405 .758
DocT-T .651 -.023 .910 -.004 .043 -.010 .516 -.082 .858 -.014 .971 .013 .139 .011 .656 -.005 .339 .041 .734 .076 .406 .001 .758 .000
FSTS-T .710 .036 .939 .025 .082 .029 .662 .064 .876 .005 .973 .016 .143 .015 .715 .055 .362 .064 .745 .086 .434 .030 .807 .049
Gain ∆ .059 .029 .039 .146 .018 .002 .004 .060 .022 .011 .029 .049

TruFor [15]

Direct .758 .961 .137 .825 .844 .985 .172 .803 .386 .850 .459 .885
DocT-T .736 -.023 .952 -.009 .166 .029 .817 -.008 .839 -.005 .982 -.003 .166 -.006 .786 -.017 .358 -.028 .838 -.012 .453 -.007 .875 -.010
FSTS-T .784 .026 .972 .011 .238 .100 .869 .044 .857 .013 .988 .003 .192 .020 .828 .025 .418 .032 .847 -.003 .498 .038 .901 .016
Gain ∆ .049 .020 .072 .052 .018 .006 .026 .041 .060 .009 .045 .026

DTD [32]

Direct .607 .922 .046 .627 .876 .982 .087 .733 .206 .695 .364 .792
DocT-T .617 .010 .926 .004 .037 -.010 .630 .003 .887 .011 .982 .000 .095 .008 .705 -.028 .257 .051 .724 .029 .378 .014 .793 .002
FSTS-T .633 .027 .932 .010 .051 .005 .650 .023 .893 .017 .982 .000 .112 .025 .743 .010 .294 .088 .743 .048 .397 .032 .810 .018
Gain ∆ .017 .006 .015 .020 .005 .000 .017 .038 .037 .019 .018 .017

STFL-Net [45]

Direct .658 .935 .094 .770 .858 .988 .141 .765 .318 .774 .414 .846
DocT-T .665 .007 .942 .008 .110 .016 .837 .068 .848 -.011 .985 -.003 .146 .005 .778 .013 .329 .011 .830 .056 .420 .006 .874 .028
FSTS-T .727 .069 .961 .026 .135 .041 .856 .086 .877 .018 .989 .001 .165 .024 .799 .034 .337 .019 .839 .066 .448 .034 .889 .043
Gain ∆ .062 .019 .025 .019 .029 .004 .019 .021 .008 .009 .029 .014

better performance, validating the effectiveness of synthetic data training. However, similar to the
approach in DocTamper [32], although this setup yields favorable results, it has limited practical
value due to the high similarity in tampering distributions between training and testing data, which
hinders a comprehensive evaluation of both the data quality and the model’s generalization ability.

Protocol 2. It can be observed from the right side of Table 2 that models trained on FSTS-T
consistently outperform those trained on DocT-T when evaluated on real-world datasets, indicating
that FSTS-T provides more effective training data for real-world generalization. The average F1
gain across all methods exceeds 14%, with some models (e.g., DFCN, MVSS-Net, DTD, TruFor)
achieving gains of over 21%. However, some methods still exhibit suboptimal performance on
specific datasets. For example, PSCC-Net performs poorly on AFAC, and DTD underperforms on
STFD, possibly due to their limited ability to extract discriminative features from low-texture text
images. These results demonstrate the effectiveness of our FSTS strategy in generating synthetic data
that enhances cross-domain generalization across diverse real-world T-IFL scenarios.

Protocol 3. As shown in the first row (Direct) of each method in Table 3, models trained on the
real-world dataset (CertificatePS) achieve solid performance in within-dataset testing. However, their
performance drops significantly in cross-dataset scenarios (e.g., AFAC, STFD, FindIt), indicating the
limited generalization ability of models trained solely on real-world data. Furthermore, compared
with the results in Table 2, almost all models trained on real-world data consistently underperform our
proposed FSTS-T counterparts in cross-dataset evaluations on AFAC and STFD. We also observe that
models trained on DocT-T achieve similarly limited results on these datasets, comparable to those
trained on real-world annotations. These findings highlight the crucial role of our proposed high-
quality synthetic datasets, i.e., FSTS-T, which provide more diverse and generalizable supervisory
signals than limited real-world annotations.

9

Protocol 4. As illustrated in the second and third rows in Table 3, almost all methods benefit from
pretraining on FSTS-T followed by fine-tuning on CertificatePS, yielding consistent performance
gains despite the limitations noted in Protocol 2 (e.g., PSCC-Net’s poor performance on AFAC).
In contrast, when methods are pretrained on DocT-T and then fine-tuned on CertificatePS, many
exhibit negative gains on multiple real datasets, indicating that FSTS-T outperforms DocT-T in
improving model generalization, particularly when real data is limited. These results further confirm
the superiority of FSTS-T over conventional synthetic datasets as a pretraining source for enhancing
real-world T-IFL performance.

5 Conclusion

In this paper, we present Fourier Series-based Tampering Synthesis (FSTS), a structured and inter-
pretable framework for generating realistic tampered text images by modeling the invisible distribution
of real-world tampering parameters. To achieve this, we first design a structured pipeline that collects
16,750 real-world tampering instances across five representative tampering types, capturing fine-
grained editing traces from 67 human participants. We then analyze the collected data and identify
recurring behavioral patterns at both the individual and population levels, which serve as the founda-
tion for our hierarchical distribution modeling framework inspired by the Fourier series. By sampling
operation–parameter configurations and their learned frequencies from this model, FSTS synthesizes
diverse and realistic tampered samples that better reflect the complexity of real-world forgeries.
Extensive experiments under four evaluation protocols confirm the superiority of FSTS-synthesized
data in enhancing model generalization across various real-world T-IFL benchmarks.

6 Acknowledgments

This work was primarily supported by a self-funded project led by Zeqin Yu, and partially supported
by the following funding sources: the National Natural Science Foundation of China under Grant
U23B2022 and Grant U22A2030, the Guangdong Major Project of Basic and Applied Basic Research
under Grant 2023B0303000010, the National Natural Science Foundation of China under Grant
62202507, the Natural Science Foundation of Guangdong Province under Grant 2025A1515012830,
and the Guangzhou Municipal Government-University (Institute) Enterprises Jointly Founded Project
under Grant 2025A03J3123.

References
[1] AntFinTechAI. AntFinTechAIChallenge (AFAC). https://tianchi.aliyun.com/competition/

entrance/532096, 2023. Accessed: 2025-04-28.

[2] Chloé Artaud, Antoine Doucet, Jean-Marc Ogier, and Vincent Poulain d’Andecy. Receipt dataset for fraud
detection. In First International Workshop on Computational Document Forensics, 2017.

[3] Chloé Artaud, Nicolas Sidere, Antoine Doucet, Jean-Marc Ogier, and Vincent Poulain D’Andecy. Find it!
fraud detection contest report. In Proceedings of the 24th International Conference on Pattern Recognition
(ICPR), pages 13–18, 2018.

[4] PaddlePaddle Authors. Paddleocr: Awesome multilingual ocr toolkits based on paddlepaddle. https:
//github.com/PaddlePaddle/PaddleOCR, 2025. Accessed: 2025-05-23.

[5] Romain Bertrand, Petra Gomez-Krämer, Oriol Ramos Terrades, Patrick Franco, and Jean-Marc Ogier.
A system based on intrinsic features for fraudulent document detection. In 2013 12th International
Conference on Document Analysis and Recognition (ICDAR), pages 106–110. IEEE, 2013.

[6] Romain Bertrand, Oriol Ramos Terrades, Petra Gomez-Krämer, Patrick Franco, and Jean-Marc Ogier.
A conditional random field model for font forgery detection. In 2015 13th International Conference on
Document Analysis and Recognition (ICDAR), pages 576–580. IEEE, 2015.

[7] Xiuli Bi, Yang Wei, Bin Xiao, and Weisheng Li. RRU-Net: The ringed residual U-Net for image
splicing forgery detection. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition Workshops (CVPRW), 2019.

10

https://tianchi.aliyun.com/competition/entrance/532096
https://tianchi.aliyun.com/competition/entrance/532096
https://github.com/PaddlePaddle/PaddleOCR
https://github.com/PaddlePaddle/PaddleOCR

[8] Maria Jose Castro-Bleda, Salvador España-Boquera, Joan Pastor-Pellicer, and Francisco Zamora-Martínez.
The noisyoffice database: a corpus to train supervised machine learning filters for image processing. The
Computer Journal, 63(11):1658–1667, 2020.

[9] CC1984 et al. Mall receipt extraction dataset on hugging face. https://huggingface.co/datasets/
CC1984/mall_receipt_extraction_dataset, 2021. Accessed: 2025-05-23.

[10] Xinru Chen, Chengbo Dong, Jiaqi Ji, Juan Cao, and Xirong Li. Image manipulation detection by multi-view
multi-scale supervision. In Proceedings of the IEEE/CVF International Conference on Computer Vision
(ICCV), pages 14185–14193, 2021.

[11] Tiago José De Carvalho, Christian Riess, Elli Angelopoulou, Helio Pedrini, and Anderson
de Rezende Rocha. Exposing digital image forgeries by illumination color classification. IEEE Trans. Inf.
Forensics Secur., 8(7):1182–1194, 2013.

[12] Jing Dong, Wei Wang, and Tieniu Tan. Casia image tampering detection evaluation database. In 2013
IEEE China Summit and International Conference on Signal and Information Processing (ChinaSIP),
pages 422–426. IEEE, 2013.

[13] Sara Elkasrawi and Faisal Shafait. Printer identification using supervised learning for document forgery
detection. In 2014 11th IAPR International Workshop on Document Analysis Systems, pages 146–150.
IEEE, 2014.

[14] Yifan Gao, Zihang Lin, Chuanbin Liu, Min Zhou, Tiezheng Ge, Bo Zheng, and Hongtao Xie. Poster-
maker: Towards high-quality product poster generation with accurate text rendering. arXiv preprint
arXiv:2504.06632, 2025.

[15] Fabrizio Guillaro, Davide Cozzolino, Avneesh Sud, Nicholas Dufour, and Luisa Verdoliva. Trufor:
Leveraging all-round clues for trustworthy image forgery detection and localization. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pages 20606–20615, 2023.

[16] Li Hang et al. Cdla: Chinese document layout analysis dataset. https://github.com/buptlihang/
CDLA, 2021. Accessed: 2025-05-23.

[17] Adam W Harley, Alex Ufkes, and Konstantinos G Derpanis. Evaluation of deep convolutional nets for
document image classification and retrieval. In Proceedings of the 13th International Conference on
Document Analysis and Recognition (ICDAR), pages 991–995, 2015.

[18] Huawei Cloud. Huawei cloud visual information extraction competition, 2022.

[19] Ilhamxx et al. Receipt dataset on hugging face. https://huggingface.co/datasets/ilhamxx/
Receipt_dataset/tree/main, 2021. Accessed: 2025-05-23.

[20] Shan Jia, Mingzhen Huang, Zhou Zhou, Yan Ju, Jialing Cai, and Siwei Lyu. Autosplice: A text-prompt
manipulated image dataset for media forensics. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), pages 893–903, 2023.

[21] Hailey Joren, Otkrist Gupta, and Dan Raviv. Ocr graph features for manipulation detection in documents.
arXiv preprint arXiv:2009.05158, 2020.

[22] Tero Karras, Samuli Laine, and Timo Aila. A style-based generator architecture for generative adversarial
networks. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR), pages 4401–4410, 2019.

[23] Vladimir V Kniaz, Vladimir Knyaz, and Fabio Remondino. The point where reality meets fantasy: Mixed
adversarial generators for image splice detection. In Advances in Neural Information Processing Systems
(NeurIPS), volume 32, 2019.

[24] Paweł Korus and Jiwu Huang. Multi-scale analysis strategies in prnu-based tampering localization. IEEE
Trans. Inf. Forensics Secur., 12(4):809–824, 2016.

[25] Anurendra Kumar, Keval Morabia, William Wang, Kevin Chang, and Alex Schwing. Cova: Context-aware
visual attention for webpage information extraction. In Proceedings of The Fifth Workshop on e-Commerce
and NLP (ECNLP 5), page 80–90. Association for Computational Linguistics, 2022.

[26] Xiaoyu Li, Bo Zhang, Jing Liao, and Pedro V Sander. Document rectification and illumination correction
using a patch-based cnn. ACM Transactions on Graphics (TOG), 38(6):1–11, 2019.

11

https://huggingface.co/datasets/CC1984/mall_receipt_extraction_dataset
https://huggingface.co/datasets/CC1984/mall_receipt_extraction_dataset
https://github.com/buptlihang/CDLA
https://github.com/buptlihang/CDLA
https://huggingface.co/datasets/ilhamxx/Receipt_dataset/tree/main
https://huggingface.co/datasets/ilhamxx/Receipt_dataset/tree/main

[27] Jinpeng Lin, Min Zhou, Ye Ma, Yifan Gao, Chenxi Fei, Yangjian Chen, Zhang Yu, and Tiezheng Ge.
Autoposter: A highly automatic and content-aware design system for advertising poster generation. In
Proceedings of the 31st ACM International Conference on Multimedia (ACM MM), pages 1250–1260,
2023.

[28] Xiaohong Liu, Yaojie Liu, Jun Chen, and Xiaoming Liu. PSCC-Net: Progressive spatio-channel correlation
network for image manipulation detection and localization. IEEE TCSVT, 32(11):7505–7517, 2022.

[29] Mahmoud Elsayed Mahmoud et al. Receiptqa: A dataset for receipt document understanding. https:
//github.com/MahmoudElsayedMahmoud/ReceiptQA, 2021. Accessed: 2025-05-23.

[30] Adam Novozamsky, Babak Mahdian, and Stanislav Saic. IMD2020: A large-scale annotated dataset
tailored for detecting manipulated images. In Proceedings of the IEEE/CVF Winter Conference on
Applications of Computer Vision Workshops (WACVW), pages 71–80, 2020.

[31] B Pfitzmann, C Auer, M Dolfi, AS Nassar, and PWJ Staar. Doclaynet: a large human-annotated dataset for
document-layout analysis (2022). URL: https://arxiv. org/abs/2206, 1062:17.

[32] Chenfan Qu, Chongyu Liu, Yuliang Liu, Xinhong Chen, Dezhi Peng, Fengjun Guo, and Lianwen Jin.
Towards robust tampered text detection in document image: New dataset and new solution. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pages 5937–5946,
2023.

[33] Chenfan Qu, Yiwu Zhong, Fengjun Guo, and Lianwen Jin. Revisiting tampered scene text detection in the
era of generative AI. In Proceedings of the AAAI Conference on Artificial Intelligence (AAAI), volume 39,
pages 694–702, 2025.

[34] Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-Resolution
image synthesis with Latent Diffusion Models. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), pages 10684–10695, 2022.

[35] Baidu AI Studio. Ai studio dataset: Document layout analysis. https://aistudio.baidu.com/
datasetdetail/80540, 2021. Accessed: 2025-05-23.

[36] Baidu AI Studio. Ai studio dataset: Receipt dataset. https://aistudio.baidu.com/datasetdetail/
125945, 2021. Accessed: 2025-05-23.

[37] Hongbin Sun, Zhanghui Kuang, Xiaoyu Yue, Chenhao Lin, and Wayne Zhang. Spatial dual-modality graph
reasoning for key information extraction. arXiv preprint arXiv:2103.14470, 2021.

[38] Alibaba Tianchi. Real-world image forgery localization challenge. https://tianchi.aliyun.com/
competition/entrance/531945, 2022. Accessed: 2025-04-28.

[39] Joost van Beusekom, Faisal Shafait, and Thomas Breuel. Automatic line orientation measurement for
questioned document examination. In Computational Forensics: Third International Workshop, IWCF
2009, The Hague, The Netherlands, August 13-14, 2009. Proceedings 3, pages 165–173. Springer, 2009.

[40] Shaodong Wang, Yunyang Ge, Liuhan Chen, Haiyang Zhou, Qian Wang, Xinhua Cheng, and Li Yuan.
Prompt2poster: Automatically artistic chinese poster creation from prompt only. In Proceedings of the
32nd ACM International Conference on Multimedia (ACM MM), pages 10716–10724, 2024.

[41] Yuxin Wang, Hongtao Xie, Mengting Xing, Jing Wang, Shenggao Zhu, and Yongdong Zhang. Detecting
tampered scene text in the wild. In Proceedings of the European Conference on Computer Vision (ECCV),
pages 215–232, 2022.

[42] Yuxin Wang, Boqiang Zhang, Hongtao Xie, and Yongdong Zhang. Tampered text detection via RGB and
frequency relationship modeling. Chinese Journal of Network and Information Security, 8(3):29–40, 2022.

[43] Liang Wu, Chengquan Zhang, Jiaming Liu, Junyu Han, Jingtuo Liu, Errui Ding, and Xiang Bai. Editing
text in the wild. In Proceedings of the 27th ACM International Conference on Multimedia (ACM MM),
pages 1500–1508, 2019.

[44] Fan Yang, Lei Hu, Xinwu Liu, Shuangping Huang, and Zhenghui Gu. A large-scale dataset for end-to-end
table recognition in the wild. Scientific Data, 10(1):110, 2023.

[45] Zeqin Yu, Bin Li, Yuzhen Lin, Jinhua Zeng, and Jishen Zeng. Learning to locate the text forgery in
smartphone screenshots. In ICASSP 2023 – IEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP), pages 1–5, 2023.

12

https://github.com/MahmoudElsayedMahmoud/ReceiptQA
https://github.com/MahmoudElsayedMahmoud/ReceiptQA
https://aistudio.baidu.com/datasetdetail/80540
https://aistudio.baidu.com/datasetdetail/80540
https://aistudio.baidu.com/datasetdetail/125945
https://aistudio.baidu.com/datasetdetail/125945
https://tianchi.aliyun.com/competition/entrance/531945
https://tianchi.aliyun.com/competition/entrance/531945

[46] Zeqin Yu, Jiangqun Ni, Yuzhen Lin, Haoyi Deng, and Bin Li. Diffforensics: Leveraging diffusion prior
to image forgery detection and localization. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 12765–12774, 2024.

[47] Zeqin Yu, Jiangqun Ni, Jian Zhang, Haoyi Deng, and Yuzhen Lin. Reinforced multi-teacher knowledge
distillation for efficient general image forgery detection and localization. In Proceedings of the AAAI
Conference on Artificial Intelligence, volume 39, pages 995–1003, 2025.

[48] Peiyu Zhuang, Haodong Li, Shunquan Tan, Bin Li, and Jiwu Huang. Image tampering localization using a
dense fully convolutional network. IEEE Trans. Inf. Forensics Secur., 16:2986–2999, 2021.

[49] Peiyu Zhuang, Haodong Li, Rui Yang, and Jiwu Huang. Reloc: A restoration-assisted framework for
robust image tampering localization. IEEE Trans. Inf. Forensics Secur., 18:5243–5257, 2023.

13

NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: abstract and introduction

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: we discuss the limitations in Appendix.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

14

Justification: the proofs are reported in Sec.3.3.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: all information is in section 4 and Appendix.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

15

Answer: [Yes]

Justification: we provide detailed code in the supplemental material, which can be run
directly after installing the required packages.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: all details are in Section 4 and Appendix.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: all information is in Section 4 and Appendix.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).

16

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: all information is in Section 4 and Appendix.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: full paper.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: Introdution

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

17

https://neurips.cc/public/EthicsGuidelines

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [Yes]
Justification: We manually performed desensitization processing on the image data to
remove or mask any personally identifiable information (PII) and sensitive content. This
includes excluding images containing real identities, sensitive documents, or private user
content. All tampered samples are synthetically generated or edited by trained volunteers
following predefined non-sensitive protocols.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: We use several publicly available datasets in our experiments, and we cite the
original papers and sources in Section 4. For each dataset, we respect the original license
and usage terms. Additionally, we generate a new dataset as part of this work using data
we collected and processed ourselves. All generated assets are original and do not contain
third-party or copyrighted materials.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.

18

• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: We provide our dataset with url and detail in Section 3 and Appendix.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [Yes]
Justification: We recruited 67 participants (including researchers and trained volunteers) to
perform text image tampering tasks under a structured annotation protocol. All participants
signed formal data collection agreements before participating. We provided compensation
in the form of labor fees, ensuring that all payments met or exceeded the local minimum
wage requirements.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [No]
Justification: While we did not obtain formal IRB approval, we followed internal data col-
lection and ethical review protocols consistent with institutional standards. All participants
were informed of the nature of the task, signed consent agreements, and were compensated
fairly. No sensitive personal information was collected, and the task posed no foreseeable
risk to participants.

19

paperswithcode.com/datasets

Guidelines:
• The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.
• Depending on the country in which research is conducted, IRB approval (or equivalent)

may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: No large language model was used in any component of the research method.
The use of LLMs, if any, was limited to grammar checking and formatting during the writing
process and had no impact on the scientific content.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

20

https://neurips.cc/Conferences/2025/LLM

This appendix provides additional details regarding the use of existing datasets, the construction of
the dataset, and extended experimental results discussed in the main paper.

A Overview of Existing Tampered Text Image Datasets

A.1 Summary of Existing Datasets

We provide a comparison of several representative tampered text image datasets for T-IFL, as shown
in Table 4. These datasets differ in terms of their tampering sources, sample count, supported
tampering types, public accessibility, and release year. Real-world datasets, while valuable, are
limited in number and often private or not publicly accessible. As a result, obtaining diverse, real-
world tampered text images for model training and evaluation remains a significant challenge. In
contrast, synthetic datasets offer a larger sample size but are limited in their ability to reflect the
invisible distribution of tampering parameters observed in real-world data (which we analyze in the
next subsection). The following itemized list provides an overview of the datasets used in this paper.
Unless otherwise specified, all datasets follow a consistent preprocessing procedure [45, 32]: images
are cropped into 512×512 patches to standardize the dataset for evaluation purposes.

• DocTamper is a synthetic dataset applied to various scanned documents, such as contracts,
receipts, invoices, and books. It follows rule-based pipelines that apply predefined tampering
types to text images, aiming to generate large-scale datasets. All images in the dataset are
512×512 image patches. The training set consists of 120,000 tampered images, and the
test set is divided into three subsets: DocTamper-Test (30,000), DocTamper-FCD (2,000),
and DocTamper-SCD (18,000). Notably, both the training and test datasets are synthesized
using the same generation process, resulting in similar tampering distributions.

• CertificatePS is a certificate dataset consisting of 4,840 tampered images captured under
both indoor and outdoor settings using multiple devices. The original image resolutions
range from 640×852 to 6,944×9,248 pixels. We randomly select 1,000 images and crop
them into 512×512 patches, resulting in 9,210 patches used for evaluation purposes.

• AFAC is a competition dataset constructed from diverse sources such as photographed
documents, receipts, scanned documents, and street view images. It contains 5,632 tampered
images, created using techniques like copy-move, splicing, and removal, though the tam-
pering types are not explicitly labeled. After cropping, the dataset includes 15,387 patches,
which are used for evaluation purposes.

• STFD is the first dataset dedicated to smartphone screenshot images, encompassing common
scenarios in daily life such as chat records, money transfer receipts, and news pages.
Compared to other types of text images, screenshot images are created by directly capturing
screen pixels, resulting in simpler background textures but posing greater challenges for IFL
tasks. The dataset includes 4,094 images and 30,269 patches after cropping.

• FindIt is a fraud detection dataset featuring receipts from franchises, brand stores, and
independent shops. It includes common fraud types such as price alterations and product
modifications, along with challenges like folds, stains, and faded ink, making it a valuable
benchmark for forgery detection research. The dataset includes 240 tampered images and
968 tampered patches after cropping.

• TIC13 is a synthetic scene text image dataset containing images tampered by the GAN-based
editing model [43]. The dataset includes 986 images and 1,768 patches after cropping.

• T-SROIE is a synthetic dataset similar to TIC13, using the same tampering methods but
applied to small ticket-like images such as receipts. The dataset includes 462 images and
4,343 patches after cropping.

• OSTF is a synthetic scene text image dataset, which contains natural scene texts tampered
with using eight different GAN and Diffusion models-based text editing techniques. The
dataset includes 1,980 images and 6,354 patches after cropping.

A.2 Limitations of Existing Synthetic Datasets

Existing synthetic datasets often employ highly repetitive tampering pipelines, which result in narrow
and less diverse invisible distributions of tampering parameters. As shown in Fig. 5(1-4), even

21

Table 4: Comparison of representative tampered text image datasets for T-IFL. For each dataset, we
report its tampering source (synthetic or real-world), the number of tampered samples available in
image-level and patch-level formats, the supported tampering types, public accessibility, and the year
of release. Tampering type abbreviations are as follows: Com (Copy-move), Spl (Splicing), Rem
(Removal), Ins (Insertion), Rep (Replacement).

Dataset Tampering Source Sample Count Tampering Type Publicly Year
Synthetic Real-world Image Patch

FindIt [2] - ✓ 240 968 Com, Spl, Rep ✓ 2017
PS-arbitrary [48] - ✓ 1,000 - Spl × 2021
PS-boundary [48] - ✓ 1,000 - Spl × 2021
PS-scripted [48] ✓ - 14,581 - Spl × 2021
TIC13 [41] ✓ - 986 1,768 Rep ✓ 2022
T-SROIE [42] ✓ - 462 4,343 Rep ✓ 2022
STFD [45] - ✓ 4,094 30,269 Com, Spl, Rem, Ins, Rep ✓ 2023
CertificatePS [49] - ✓ 4,840 9,210 Com, Spl, Rem, Ins, Rep ✓ 2023
DocTamper [32] ✓ - 170,000 170,000 Com, Spl, Rep ✓ 2023
AFAC [1] - ✓ 5,632 15,387 - ✓ 2023
OSTF [33] ✓ - 1,980 6,354 Rep ✓ 2025
Ours ✓ ✓ 294,182 294,182 Com, Spl, Rem, Ins, Rep ✓ 2025

visually different samples tend to follow similar operation-parameter patterns. In contrast, as shown
in Fig. 5(5-8), our collected real-world replacement examples exhibit rich combinations of operations
such as insertion, stroke, blur, and color manipulation, motivating the need to explicitly model
tampering parameter distributions when synthesizing training data. This motivates our approach to
explicitly model the diversity of tampering parameters, ensuring a more representative synthesis of
tampered data.

B Details of Our Dataset Construction

B.1 Tampering Parameter Collection and Modeling

In this section, we present the tampering parameters modeled in Sec. 3.3 of the main paper for five
representative tampering types ϕk: Copy-move, Splicing, Removal, Insertion, and Replacement.
These parameters are summarized in Tables 7– 11. For each tampering type ϕk, we categorize the op-
erations into two main parts: main processing and post-processing2. These are further organized into
representative steps, such as region sampling, geometric transformation, and visual trace concealment
for the Copy-move tampering type, as detailed in Table 7. In total, I = 67 individuals participated in
the tampering collection process, each performing approximately J ≈ 50 operations per tampering
type (about 250 in total), resulting in 16,750 real-world instances across five representative tampering
types. In each table, the Parameter Type and Parameter Value columns correspond to the tampering
parameters tk and ak, while the Frequency column represents the ak values, indicating the frequency
of each operation variant’s use during the synthesis process, as defined and modeled in Sec. 3.3.

B.2 Synthetic Image Generation

In this section, we describe the synthetic image generation process, which is illustrated in Fig. 4.
The process begins with a target image I0 (Fig. 4(I)(a)) and applies predefined tampering types ϕk,
utilizing the tampering parameters tk and frequency weights ak (Fig. 4(I)(f)). The key steps in the
tampering process are as follows:

• Text Region Manipulation: The coordinates of the text region are first obtained using an
existing OCR tool (e.g., PaddleOCR [4]), and then the text region of the target image is
manipulated according to the tampering type selected, using Photoshop. This manipulation

2For the post-processing operations, we scaled the frequency values by a factor of 0.3 to prevent overly
complex tampered samples that could hinder model training. This scaling was necessary because, while all
parameters in post-processing have a chance of being used, only a subset is selected in practice. Using the
original frequencies could lead to impractically complex tampering samples. This approach is consistent across
all five tampering types.

22

2.Text Insertion

5964.7M Views

5964.7M Views

(4) Insertion (5) Replacement

(a) Target Image 𝑰𝒐 (b) Source Image 𝑰𝒐′ (c) Tampered Image 𝑰𝒔 (d) Ground Truth M

(1) Copy-Move

1.Region Sampling (Copy)

1.Region Sampling (Paste)

2.Geometric Transformation

3.Visual Trace Concealment

(3) Removal

1.Region Sampling

2.Content Removal

1.Region Sampling

3.Geometric Transformation

4. Visual Trace Concealment

1.Region Sampling

2.Content Removal

4.Geometric Transformation

5.Visual Trace Concealment

3.Text Insertion

(2) Splicing

2.Geometric Transformation

3.Visual Trace Concealment

CHINA!!!

CHINA!!!

1.Region Sampling (Paste) 1.Region Sampling (Copy)

Tampering Types 𝝓𝒌

(f) Tampering Parameters 𝒕𝒌
Frequency Weights 𝒂𝒌

(a) Target Image 𝑰𝒐 (d) Tampered Image 𝑰𝒔 (e) Ground Truth M

(b) Source Image 𝑰𝒐′

If Splicing

B(𝑰𝒔 − 𝑰𝒐)Merge

(c) Text Region Manipulation

(II) Main Processing and Post-processing Operations

(I) Synthetic Image Generation Pipeline

Figure 4: Synthetic Tampered Text Image Generation Pipeline with Parameters Modeled by FSTS.
(I) The overall pipeline takes a target image and synthesizes a tampered version along with its
corresponding ground-truth mask, using tampering types, parameter configurations, and frequency
weights modeled by our proposed FSTS framework. (II) This panel zooms into the tampering step in
(I), detailing the main and post-processing operations for five representative tampering types. We use
consistent color coding to distinguish different tampering types in both the ground-truth mask (II)(d)
and the operation detail panels (II)(1-5): (1) Copy-move (copy and move text within the same image),
(2) Splicing (pastes text from a source image to a target image), (3) Removal (erases text followed by
in-painting), (4) Insertion (inserts forged text into blank regions), (5) Replacement (generates forged
text to replace original text).

process is guided by the parameters tk and frequency weights ak, with main processing and
post-processing operations, as defined in the five tables (Tables 7– 11). The manipulation is
carried out on the text region (Fig. 4(I)(c)) and is automated using a JavaScript-based script,
which handles the complex operations on the text regions.

• Layer Merging: Once the text region manipulation is completed, multiple tampered image
layers are merged to form the final tampered image Is, as shown in Fig. 4(I)(d).

• Mask Generation: To create a ground truth mask, the difference between the tampered
image Is and the original image I0 is calculated. This difference is then thresholded using a
binarization function B(Is − I0), resulting in the mask M (Fig. 4(I)(e)), which highlights
the tampered regions of the image. The tampered regions are marked as 1, while the
non-tampered regions are marked as 0.

23

As illustrated in Fig. 4(II), we further provide detailed descriptions of five representative tampering
types, each consisting of both main and post-processing steps. Sub-panels (1)–(5) show concrete
examples, and the tampered regions are highlighted with distinct colors in the ground-truth mask M .

• Copy-move: As shown in Fig. 4(II)(1), a digit “4” is selected from the target image Io

(1. Region Sampling (Copy)) and pasted into a nearby location (1. Region Sampling (Paste)).
The pasted region is then adjusted (2. Geometric Transformation) and refined (3. Visual Trace
Concealment). The resulting tampered image Is contains an additional “4”, highlighted in
light blue in the ground-truth mask M .

• Splicing: As shown in Fig. 4(II)(2), the digit “2025” is sampled from a source image Io
′

(1. Region Sampling (Copy)) and pasted over “2016” in the target image Io (1. Region
Sampling (Paste)). The pasted region is then adjusted (2. Geometric Transformation) and
refined (3. Visual Trace Concealment). The resulting tampered image Is shows “2016”
replaced with “2025”. The tampered area is highlighted in green in the ground-truth mask
M .

• Removal: As shown in Fig. 4(II)(3), a certification mark is selected from the target image Io
(1. Region Sampling) and erased (2. Content Removal). The resulting tampered image Is no
longer contains the mark. The tampered area is highlighted in dark blue in the ground-truth
mask M .

• Insertion: As shown in Fig. 4(II)(4), a blank region in the image Io is selected (1. Region
Sampling), and new text such as “5964.7M Views” is inserted (2. Text Insertion). The text
is then adjusted (3. Geometric Transformation) and refined (4. Visual Trace Concealment).
The resulting tampered image Is contains the newly added text. The tampered region is
highlighted in yellow in the ground-truth mask M .

• Replacement: As shown in Fig. 4(II)(5), the text “AMERICA” is selected from the target
image Io (1. Region Sampling) and erased (2. Content Removal). New text, “CHINA!!!”, is
inserted in the same location (3. Text Insertion), then adjusted (4. Geometric Transforma-
tion) and refined (5. Visual Trace Concealment). The resulting tampered image Is shows
“AMERICA” replaced with “CHINA!!!”. The tampered region is highlighted in red in the
ground-truth mask M .

B.3 Dataset Variants

In this paper, as shown in the last row of Table 4, we present the FSTS dataset, which ultimately
contains 294,182 images, including both real-world and synthetic datasets. To the best of our
knowledge, this is currently the largest tampered text image dataset. The dataset consists of the
following components:

• FSTS-T: The FSTS-T dataset consists of 50,000 synthetic images used for training. These
images are generated using the FSTS strategy, with the original text images [8, 17, 26, 37]
following the DocTamper-Train (DocT-T) protocol [32], ensuring that the visible distribu-
tions in the dataset are similar, thus emphasizing the comparison of the invisible distribution
differences between the two datasets.

• FSTS-S: The FSTS-S dataset consists of 5,705 tampered images, generated using the
proposed FSTS strategy on the Huawei Cloud document dataset [18]. This dataset is
consistent with the second cross-domain setting in DocTamper (DocT-S), serving as a
validation set for synthetic data, although we believe the practical significance of validation
under such protocols is limited.

• FSTS-1.5k: The FSTS-1.5k dataset consists of approximately 1.5k (specifically 1,488)
tampered text images excluded from the parameter modeling in FSTS. These images were
tampered by five independent tamperers who were not involved in the FSTS framework,
ensuring diversity for evaluating generalization performance.

• FSTS-v2: Additionally, we provide the FSTS-v2 dataset, which consists of 236,989 synthetic
samples designed to provide a large number of samples for optional pretraining. These
samples are generated in the same way as FSTS-T, but using different original text images
sourced from [44, 31, 25, 16, 35, 36, 29, 19, 9].

24

Table 5: Pixel-level F1 and AUC performance of T-IFL under Protocol 2, extended to include three
additional synthetic datasets: TIC13 [41], T-SROIE [42], and OSTF [33]. Each method includes
five rows corresponding to different training–testing configurations. The first row reports results
for models trained on FSTS-T (Ours). The next four rows report results for models trained on four
existing synthetic datasets used for comparison: DocT-T, T-SROIE, TIC13, and OSTF. Performance
gains (others minus FSTS-T)are shown as subscripts in each cell. Positive gains are highlighted in
red, and negative gains in blue.

Methods Train
Test FSTS-1.5k AFAC Certificate STFD Findlt Average

F1 AUC F1 AUC F1 AUC F1 AUC F1 AUC F1 AUC

RRU-Net [7]

FSTS-T .541 .933 .307 .874 .433 .863 .177 .855 .252 .793 .342 .864
DocT-T .215 -.327 .696 -.237 .088 -.219 .798 -.076 .383 -.050 .782 -.082 .099 -.078 .772 -.084 .211 -.041 .776 -.018 .199 -.143 .765 -.099
T-SROIE .125 -.417 .610 -.323 .140 -.167 .654 -.220 .015 -.419 .534 -.329 .037 -.139 .502 -.353 .011 -.241 .500 -.293 .066 -.276 .560 -.304
TIC13 .182 -.359 .660 -.273 .129 -.178 .795 -.079 .315 -.118 .723 -.140 .143 -.033 .759 -.097 .167 -.085 .693 -.100 .187 -.155 .726 -.138
OSTF .255 -.287 .682 -.251 .231 -.076 .862 -.011 .327 -.107 .750 -.113 .119 -.058 .736 -.119 .142 -.110 .698 -.096 .215 -.127 .746 -.118

DFCN [48]

FSTS-T .594 .944 .334 .939 .414 .910 .113 .831 .182 .819 .327 .889
DocT-T .084 -.510 .679 -.265 .057 -.277 .883 -.056 .220 -.194 .795 -.115 .068 -.045 .791 -.040 .081 -.101 .764 -.055 .102 -.225 .782 -.106
T-SROIE .065 -.529 .619 -.325 .107 -.227 .781 -.158 .016 -.398 .606 -.305 .023 -.090 .503 -.328 .014 -.168 .566 -.253 .045 -.282 .615 -.274
TIC13 .172 -.422 .631 -.313 .134 -.200 .810 -.129 .281 -.133 .735 -.175 .138 .026 .764 -.068 .171 -.012 .725 -.094 .179 -.148 .733 -.156
OSTF .164 -.430 .674 -.270 .094 -.241 .832 -.107 .276 -.138 .776 -.134 .127 .014 .763 -.068 .146 -.037 .723 -.096 .161 -.166 .754 -.135

PSCC-Net [28]

FSTS-T .651 .968 .099 .766 .680 .929 .307 .897 .209 .716 .389 .855
DocT-T .225 -.426 .729 -.239 .091 -.008 .804 .038 .456 -.224 .848 -.081 .102 -.205 .774 -.123 .261 .052 .782 .066 .227 -.162 .787 -.068
T-SROIE .184 -.467 .664 -.304 .205 .106 .697 -.070 .135 -.545 .658 -.271 .026 -.281 .543 -.354 .063 -.146 .621 -.095 .123 -.266 .637 -.219
TIC13 .186 -.465 .695 -.273 .128 .029 .786 .020 .335 -.346 .757 -.172 .132 -.175 .741 -.156 .189 -.020 .722 .006 .194 -.195 .740 -.115
OSTF .225 -.426 .698 -.270 .166 .067 .857 .091 .380 -.300 .792 -.137 .134 -.173 .754 -.143 .203 -.006 .713 -.003 .222 -.168 .763 -.092

MVSS-Net [10]

FSTS-T .559 .878 .382 .845 .445 .804 .187 .755 .357 .780 .386 .812
DocT-T .196 -.363 .662 -.215 .082 -.300 .728 -.117 .255 -.189 .701 -.103 .104 -.083 .696 -.059 .203 -.153 .698 -.082 .168 -.218 .697 -.115
T-SROIE .079 -.480 .512 -.366 .101 -.281 .644 -.201 .042 -.403 .489 -.315 .052 -.135 .467 -.288 .031 -.325 .537 -.243 .061 -.325 .530 -.283
TIC13 .179 -.380 .647 -.230 .128 -.254 .803 -.042 .323 -.121 .707 -.098 .138 -.049 .726 -.029 .190 -.167 .710 -.071 .192 -.194 .718 -.094
OSTF .232 -.327 .689 -.188 .243 -.139 .835 -.010 .263 -.181 .708 -.096 .093 -.093 .654 -.101 .143 -.214 .656 -.124 .195 -.191 .708 -.104

TruFor [15]

FSTS-T .683 .952 .638 .984 .487 .892 .190 .865 .386 .868 .477 .912
DocT-T .211 -.471 .708 -.244 .185 -.453 .811 -.174 .289 -.198 .811 -.082 .091 -.099 .787 -.078 .214 -.172 .811 -.057 .198 -.279 .785 -.127
T-SROIE .086 -.597 .591 -.361 .227 -.411 .755 -.230 .037 -.450 .566 -.327 .031 -.159 .519 -.346 .024 -.361 .590 -.279 .081 -.396 .604 -.308
TIC13 .192 -.491 .714 -.238 .142 -.497 .846 -.139 .326 -.161 .763 -.129 .156 -.034 .784 -.081 .197 -.189 .768 -.100 .202 -.274 .775 -.137
OSTF .234 -.448 .731 -.220 .424 -.215 .913 -.072 .310 -.177 .769 -.123 .114 -.076 .735 -.130 .213 -.173 .788 -.081 .259 -.218 .787 -.125

DTD [32]

FSTS-T .607 .934 .115 .749 .717 .934 .062 .635 .225 .724 .345 .795
DocT-T .104 -.503 .658 -.276 .024 -.091 .631 -.118 .164 -.553 .685 -.249 .066 .004 .670 .035 .125 -.100 .666 -.058 .097 -.249 .662 -.133
T-SROIE .081 -.527 .661 -.273 .027 -.088 .653 -.096 .003 -.714 .558 -.376 .006 -.056 .562 -.073 .010 -.215 .518 -.206 .025 -.320 .591 -.205
TIC13 .151 -.456 .666 -.268 .120 .005 .794 .045 .251 -.466 .715 -.219 .144 .082 .754 .119 .171 -.054 .723 -.001 .168 -.178 .731 -.065
OSTF .183 -.424 .699 -.235 .098 -.017 .726 -.023 .245 -.472 .760 -.174 .067 .005 .684 .049 .126 -.099 .688 -.036 .144 -.201 .711 -.084

STFL-Net [45]

FSTS-T .589 .921 .451 .960 .426 .872 .197 .863 .332 .847 .399 .892
DocT-T .186 -.403 .679 -.242 .134 -.317 .893 -.067 .306 -.120 .771 -.100 .162 -.035 .794 -.069 .237 -.094 .770 -.077 .205 -.194 .781 -.111
T-SROIE .045 -.545 .715 -.206 .137 -.314 .906 -.054 .014 -.413 .735 -.137 .106 -.091 .483 -.380 .015 -.316 .746 -.101 .063 -.336 .717 -.176
TIC13 .184 -.406 .653 -.268 .142 -.310 .870 -.090 .281 -.145 .695 -.177 .068 -.129 .338 -.525 .199 -.133 .741 -.105 .174 -.224 .659 -.233
OSTF .228 -.362 .680 -.240 .207 -.244 .790 -.170 .253 -.174 .684 -.188 .068 -.129 .338 -.525 .202 -.130 .737 -.110 .191 -.208 .646 -.247

C Additional Experiments

C.1 Extended Protocol 2 Evaluation

To further validate the generalization ability of our proposed FSTS-T across a broader set of synthetic-
to-real domain shifts, we extend Protocol 2 to include three additional synthetic datasets: TIC13 [41],
T-SROIE [42], and OSTF [33]. As shown in Table 5, for each baseline model, we compare the
performance of FSTS-T against four existing synthetic training datasets on five real-world test sets.
Each cell reports the pixel-level F1 and AUC scores, with the relative difference (others minus
FSTS-T) annotated as a subscript. Red subscripts indicate that the compared method outperforms
FSTS-T (i.e., FSTS-T performs worse), while blue subscripts indicate that it underperforms FSTS-T
(i.e., FSTS-T performs better).

Across all tested models, FSTS-T consistently achieves the highest average performance on both F1
and AUC metrics. For T-IFL methods, STFL-Net trained on FSTS-T outperforms its counterparts
trained on DocT-T, TIC13, T-SROIE, and OSTF, with average gains of over 24.1% in F1 and 19.2%
in AUC. For N-IFL methods, TruFor also shows substantial improvement when trained on FSTS-T,
achieving an average F1 gain of 29.2% and AUC gain of 17.4% compared with models trained
on other synthetic datasets. Furthermore, for DTD, MVSS-Net, PSCC-Net, DFCN, and RRU-Net,
FSTS-T provides consistent and significant F1 improvements of over 23.7%, 23.2%, 19.8%, 20.5%,
and 17.5%, respectively, further confirming the strong generalization and versatility of our synthetic

25

Table 6: Pixel-level F1 and AUC performance of image forgery localization for Protocols 3 and 4,
showing models trained under different strategies and tested on real-world datasets. Each method
has 4 rows corresponding to the training and testing configurations below. The first row (Direct)
shows results for models trained and tested directly on real datasets (e.g., STFD), corresponding
to Protocol 3. The second and third rows (DocT-T and FSTS-T) show results for models pretrained
on synthetic datasets, then fine-tuned and tested on real datasets, corresponding to Protocol 4. The
subscripts in these rows indicate differences from the first row (Direct), reflecting the impact of
synthetic pre-training. The fourth row (Gain ∆) highlights performance differences (FSTS-T minus
DocT-T). Same highlighting conventions as in Table 5 apply.

Methods Train
Test FSTS-1.5k AFAC CertificatePS STFD Findlt Average

F1 AUC F1 AUC F1 AUC F1 AUC F1 AUC F1 AUC

RRU-Net [7]

Direct .169 .692 .055 .727 .211 .747 .669 .957 .131 .720 .247 .769
DocT-T .109 -.060 .649 -.042 .079 .024 .738 .010 .170 -.040 .710 -.037 .652 -.017 .952 -.005 .137 .006 .697 -.023 .229 -.017 .749 -.019
FSTS-T .320 .151 .824 .133 .110 .055 .788 .060 .262 .052 .812 .065 .712 .043 .966 .009 .131 .001 .733 .013 .307 .060 .825 .056
Gain ∆ .211 .175 .031 .050 .092 .102 .060 .014 -.006 .035 .078 .075

DFCN [48]

Direct .050 .693 .036 .734 .062 .760 .214 .898 .050 .733 .082 .764
DocT-T .063 .013 .669 -.024 .053 .017 .752 .018 .119 .058 .744 -.016 .485 .271 .954 .056 .115 .064 .780 .047 .167 .085 .780 .016
FSTS-T .371 .321 .867 .173 .053 .017 .733 -.001 .299 .238 .880 .120 .576 .362 .968 .070 .139 .089 .770 .037 .288 .205 .844 .080
Gain ∆ .309 .197 .000 -.019 .180 .136 .091 .014 .024 -.010 .121 .064

PSCC-Net [28]

Direct .175 .726 .063 .684 .281 .789 .351 .937 .184 .764 .211 .780
DocT-T .203 .028 .763 .037 .072 .009 .683 -.001 .343 .062 .820 .031 .209 -.142 .904 -.033 .195 .010 .780 .016 .205 -.006 .790 .010
FSTS-T .219 .044 .790 .064 .061 -.002 .684 .000 .360 .079 .835 .046 .354 .003 .944 .007 .209 .024 .780 .016 .241 .030 .807 .026
Gain ∆ .016 .026 -.011 .001 .017 .015 .145 .040 .014 .000 .036 .017

MVSS-Net [10]

Direct .186 .623 .090 .515 .326 .668 .660 .898 .212 .653 .295 .671
DocT-T .179 -.007 .668 .046 .094 .005 .641 .126 .347 .021 .758 .090 .629 -.031 .900 .002 .271 .059 .736 .083 .304 .009 .740 .069
FSTS-T .329 .143 .746 .123 .126 .037 .666 .152 .421 .095 .753 .086 .661 .001 .906 .008 .288 .076 .742 .089 .365 .070 .763 .091
Gain ∆ .149 .077 .032 .026 .074 -.004 .032 .006 .017 .006 .061 .022

TruFor [15]

Direct .321 .786 .146 .821 .412 .862 .620 .968 .273 .804 .355 .848
DocT-T .278 -.044 .750 -.036 .138 -.008 .814 -.008 .375 -.037 .852 -.010 .614 -.006 .959 -.009 .259 -.015 .805 .001 .333 -.022 .836 -.012
FSTS-T .415 .094 .855 .069 .191 .045 .810 -.012 .417 .005 .881 .019 .671 .051 .973 .005 .263 -.010 .823 .019 .391 .036 .868 .020
Gain ∆ .137 .105 .052 -.004 .042 .029 .057 .014 .004 .018 .059 .032

DTD [32]

Direct .279 .807 .012 .530 .349 .825 .461 .902 .145 .716 .249 .756
DocT-T .234 -.045 .761 -.046 .007 -.005 .496 -.034 .234 -.116 .761 -.064 .558 .097 .916 .014 .102 -.043 .694 -.022 .227 -.022 .726 -.030
FSTS-T .291 .012 .815 .008 .011 -.001 .524 -.006 .353 .004 .824 -.001 .600 .139 .932 .030 .162 .017 .734 .017 .284 .034 .766 .010
Gain ∆ .057 .054 .004 .028 .119 .063 .042 .016 .061 .039 .057 .040

STFL-Net [45]

Direct .205 .738 .122 .799 .341 .818 .683 .972 .247 .808 .320 .827
DocT-T .226 .021 .736 -.002 .120 -.002 .785 -.014 .346 .004 .814 -.004 .689 .006 .972 .000 .248 .001 .805 -.002 .326 .006 .822 -.004
FSTS-T .367 .161 .834 .096 .132 .010 .802 .003 .445 .103 .866 .048 .715 .032 .975 .003 .307 .060 .841 .034 .393 .073 .864 .037
Gain ∆ .140 .098 .012 .017 .099 .052 .026 .003 .059 .036 .067 .041

data. However, some methods trained on FSTS-T still exhibit suboptimal performance on specific
real-world datasets compared to models trained on other synthetic datasets. For example, PSCC-Net
performs poorly on AFAC, and DTD underperforms on STFD. This could be attributed to the models’
inherent limitations in extracting discriminative features from low-texture text images, as discussed
in the main paper. On the other hand, models trained on synthetic datasets such as TIC13, T-SROIE,
and OSTF show better performance on these specific test sets. This is because TIC13, T-SROIE, and
OSTF contain some images with textures and content that are more similar to those found in AFAC
and STFD, which enables models trained on these datasets to handle these scenarios more effectively.

C.2 Extended Protocol 3 Evaluation

As shown in Table 6, models trained on real-world data (e.g., STFD) in the "Direct" row exhibit solid
performance within their respective dataset. However, their performance suffers significantly when
tested on cross-dataset real-world scenarios, showing limited generalization across almost all real-
world test sets. This highlights the inability of models trained solely on a specific real-world dataset
to generalize effectively to others, as they fail to capture the diversity of tampering distributions in
unseen datasets. In fact, when compared with models trained on other real-world datasets, such as
CertificatePS (from Protocol 3 in the main paper), the models trained on STFD demonstrate even
poorer generalization across cross-dataset tests. This suggests that even though STFD is a real-world
dataset, its inability to cover a wider variety of tampered images limits the generalization capability
of the trained models.It further emphasizes that training data must incorporate a more diverse set of
tampering scenarios to enhance model generalization. Without sufficient variety in the training data,
the model is less equipped to generalize well to new, unseen datasets.

26

C.3 Extended Protocol 4 Evaluation

As shown in Table 6, models pretrained on FSTS-T and then fine-tuned on the STFD dataset
consistently outperform their DocT-T counterparts. Specifically, for each tested model, FSTS-T
pretraining yields significant gains in both F1 and AUC metrics across the majority of real-world
datasets. These improvements emphasize the generalizability of the synthetic data in enhancing the
model’s ability to perform on unseen, real-world data, particularly when the real-world dataset is
limited in size and diversity. In contrast, models pretrained on DocT-T and fine-tuned on STFD show
more modest performance, and in some cases (e.g., RRU-Net, PSCC-Net, DTD, TruFor, STFL-Net),
they even exhibit negative gains in the average performance when compared to the Direct models
trained directly on STFD. This further highlights the advantage of our proposed FSTS-T dataset over
conventional synthetic datasets for improving real-world image forgery localization performance.

D Limitations

While our approach to modeling synthetic tampering distributions to approximate real-world distri-
butions has demonstrated promising results, there are limitations to the scope of the current model.
Specifically, the tampered samples we model are based on a finite set of real-world scenarios. Collect-
ing and analyzing video and historical records for such data is time-consuming and resource-intensive,
highlighting the need for more efficient data collection methods. Although we have made efforts
to approximate the real-world tampering distribution, there remains a possibility that additional
variations in tampering types or methods, which are less represented in our current dataset, could
further enhance the model’s performance. Expanding the range of tampering behaviors and samples
to more comprehensively cover real-world tampering patterns would likely improve the model’s
generalization capabilities across unseen data.

27

Table 7: Tampering parameter configurations for the Copy-move tampering type, including both
main processing and post-processing operations. The first two columns represent the step index and
step name (e.g., Region Sampling, Geometric Transformation, Visual Trace Concealment), which
organize related tampering operations for clarity. The third and fourth columns list the specific
operation ID and its corresponding description under each step. The remaining columns specify
the parameter type, value range, and usage frequency. All processing steps follow a parent-to-child
index structure (e.g., 1.1 → 1.2 → 2.1 → 2.2). At each hierarchy level, multiple sub-operations with
the same index (e.g., several 2.1 entries) represent mutually exclusive options. In such cases, the
frequency values indicate the preferred variants to be selected during synthesis.

Step Main Processing Parameter Type Parameter Value Frequency

1 Region Sampling

1.1 Text Region Selection Region Quantity 1–12 zones 100.00%

1.2 Copy Region from Source
Image (Within Image) Text Region Randomly Select

Text Region 100.00%

1.3 Number of Characters
Retained in Source Region Text Length 1–20 characters 100.00%

1.4 Paste Target
Region Selection Target Region

Text Region in
Target Image 100.00%
Copy Area Nearby
(9-Grid Positions)

2 Geometric
Transformation

2.1 Magic Wand Tool for
Text Shape Extraction

Tolerance 1-50
18.53%Contiguous Yes/No

Anti-alias Yes/No

2.1
Adjust channels and levels
to remove background
and extract text shape

Channel Red
23.74%Input Levels 130-237

Output Levels 0-255

2.2 Region Scaling Scaling Factor Adaptive Scaling
to Match Paste Region 73.50%

2.3 Region Rotation Rotation Angle 0°-5° 13.33%

Step Post-processing Parameter Type Parameter Value Frequency

3 Visual Trace
Concealment

3.1 Sharpen
Amount 100-200%

8.90%Radius 1-4 pixels
Threshold 7-12 levels

3.2 Blur Filter Default Parameters Default Parameters 5.71%
3.2 Blur More Filter Default Parameters Default Parameters 3.74%
3.2 Mean Filter Default Parameters Default Parameters 5.50%
3.2 Gaussian Blur Radius 0.1–3 pixels 12.70%

3.2 Motion Blur Angle -15°–15° 7.10%Radius 1–9 px

3.2 Radial Blur Method Spin/Zoom 3.09%Quality Best/Draft/Good

3.2 Smart Blur

Radius 0.1–10 pixels

8.78%Threshold 0.1–10 levels
Blur Quality High/Medium/Low

Blur Mode Edge Preservation/Normal
/Stroke Enhancement

3.2 Custom Convolution Filter
Kernel -10–10

8.70%Scale 1–20
Offset -5–5

3.3 Color Balance Tonal Range Midtones 4.18%Color Sliders -100–100

3.4 Color Curves Curve Raise Highlights
/Lower Shadows 8.53%

28

Table 8: Tampering parameter configurations for the Splicing tampering type. The tampering
process is organized into three steps: Region Sampling, Geometric Transformation, and Visual Trace
Concealment. The structural layout and notation follow Table 7.

Step Main Processing Parameter Type Parameter Value Frequency

1 Region Sampling

1.1 Text Region Selection Region Quantity 1–12 zones 100.00%

1.2 Copy Region from Source
Image (Cross-Image) Text Region Randomly Select

Text Region 100.00%

1.3 Number of Characters
Retained in Source Region Text Length 1–20 characters 100.00%

1.4 Paste Target
Region Selection Target Region Text Region in

Target Image 100.00%

2 Geometric
Transformation

2.1 Magic Wand Tool for
Text Shape Extraction

Tolerance 1-50
12.69%Contiguous Yes/No

Anti-alias Yes/No

2.1
Adjust channels and levels
to remove background
and extract text shape

Channel Red
17.94%Input Levels 130-237

Output Levels 0-255

2.2 Region Scaling Scaling Factor Adaptive Scaling
to Match Paste Region 78.00%

2.3 Region Rotation Rotation Angle 0°-5° 19.30%

Step Post-processing Parameter Type Parameter Value Frequency

3 Visual Trace
Concealment

3.1 Sharpen
Amount 100-200%

10.04%Radius 1-4 pixels
Threshold 7-12 levels

3.2 Gaussian Blur Radius 0.1–3 pixels 18.70%

3.2 Lens Blur

Depth Map Mode None

7.03%

Invert Disabled

Aperture Shape
Hexagon/Heptagon
/Octagon/Pentagon
/Quadrilateral/Triangle

Aperture Radius 0–1
Blade Curvature 0–1
Rotation Angle 0°– 6°
Brightness 100%
Threshold 0–100%
Amount 0–25%
Distribution Gaussian/Uniform

3.2 Motion Blur Angle -15°–15° 5.40%Radius 1–9 px

3.2 Radial Blur Method Spin/Zoom 3.11%Quality Best/Draft/Good

3.2 Smart Blur

Radius 0.1–10 pixels

3.90%Threshold 0.1–10 levels
Blur Quality High/Medium/Low

Blur Mode Edge Preservation
/Stroke Enhancement/Normal

3.2 Custom Convolution Filter
Kernel -10–10

2.70%Scale 1–20
Offset -5–5

3.3 Color Curves Curve Raise Highlights
/Lower Shadows 17.45%

3.4 Stroke

Size 1-5 pixels

8.75%

Position Inside/Center/Outside
Blend Mode Normal/Multiply
Opacity 50%-100%
Fill Type color
Color RGB(0-255, 0-255, 0-255)

3.5 Drop Shadow

Blend Mode Normal/Multiply/Darken

6.99%

Color RGB(0-255, 0-255, 0-255)
Opacity 5%-23%
Angle -30°-30°
Distance 1-7 pixels
Spread 3%-12%
Size 1-17 pixels
Noise 1%-10%

3.6 Hue/Saturation
Hue -30-–30

10.49%Saturation -20–20
Lightness -30-–30

29

Table 9: Tampering parameter configurations for the Removal tampering type. The tampering process
is organized into three steps: Region Sampling, Content Removal, and Geometric Transformation.
The structural layout and notation follow Table 7.

Step Main Processing Parameter Type Parameter Value Frequency

1 Region Sampling 1.1 Text Region Selection Region Quantity 1–12 zones 100.00%
1.2 Text Forgery Control Text Length 1–20 characters 100.00%

2 Content Removal

2.1 Content Aware Fill Iterations 1-5 times 55.82%
2.1 Solid Color Fill Color RGB(0-255, 0-255, 0-255) 9.76%

2.1 Pure Background
Cloning Blending Modes Normal 11.52%

2.1 Clone Stamp Tool
Mode Normal

10.45%Opacity 100%
Flow 100%

2.1 Healing Brush Tool Mode Normal/Replace 12.45%Source Sampled

3 Geometric
Transformation

3.1 Region Scaling Scaling Factor Adaptive to text region ±5% 88.00%
3.2 Region Rotation Rotation Angle -5°-5° 0.68%

Table 10: Tampering parameter configurations for the Insertion tampering type. The tampering
process is organized into four steps: Region Sampling, Text Insertion, Geometric Transformation,
and Visual Trace Concealment. The structural layout and notation follow Table 7.

Step Main Processing Parameter Type Parameter Value Frequency

1 Region Sampling 1.1 Non-text Region
Selection Region Quantity 1-12 zones 100.00%

1.2 Text Forgery Control Text Length 1-20 characters 100.00%

2 Text Insertion
2.1 Font Properties Fonts Times New Roman/SimSun

/KaiTi/Microsoft YaHei/SimHei 100.00%

Anti-aliasing None/Sharp/Crisp
/Smooth/Strong

2.2 Color Adaptation Color Sampling Same as the original text color 86.90%

2.2 Color Selection Safety Color
Generation

Light Background:
RGB(0-64, 0-64, 0-64)
Dark Background:
RGB(192-255, 192-255, 192-255)

13.10%

3 Geometric
Transformation

3.1 Region Scaling Scaling Factor Adaptive to text region ±5% 77.00%
3.2 Region Rotation Rotation Angle -5°-5° 12.03%

Step Post-processing Parameter Type Parameter Value Frequency

4 Visual Trace
Concealment

4.1 Sharpen

Iterations 1-5 times

12.73%Strength 400-500%
Radius 50-60 pixels
Threshold 2-3 levels

4.2 Gaussian Blur Blur Radius 0.5-1.2 pixels 16.80%

4.3 Outer Glow Effect

Color RGB(83,79,79)

7.51%Opacity 17%
Noise 35-45%
Spread 5-8px

4.4 Noise
Amount 0.10%-35%

16.54%Distribution Gaussian/Uniform
Monochromatic Yes/No

4.5 Stroke

Size 1-5 pixels

15.33%Position Inside/Center/Outside
Blend Mode Normal/Multiply
Color RGB(0-255, 0-255, 0-255)

4.6 Drop Shadow

Blend Mode Normal/Multiply/Darken

5.26%

Color RGB(0-255, 0-255, 0-255)
Opacity 5%-23%
Angle -30°-30°
Distance 1-7 pixels
Spread 3%-12%
Size 1-17 pixels
Noise 1%-10%

30

Table 11: Tampering parameter configurations for the Replacement tampering type. The tampering
process is organized into five steps: Region Sampling, Content Removal, Text Insertion, Geometric
Transformation, and Visual Trace Concealment. The structural layout and annotations follow Table 7.

Step Main Processing Parameter Type Parameter Value Frequency

1 Region Sampling 1.1 Text Region Selection Region Quantity 1–12 zones 100.00%
1.2 Text Forgery Control Text Length 1–20 characters 100.00%

2 Content Removal

2.1 Content Aware Fill Iterations 1-5 times 61.70%
2.1 Solid Color Fill Color RGB(0-255, 0-255, 0-255) 9.60%

2.1 Pure Background
Cloning Blending Modes Normal 9.50%

2.1 Clone Stamp Tool
Mode Normal

10.40%Opacity 100%
Flow 100%

2.1 Healing Brush Tool Mode Normal/Replace 8.80%Source Sampled

3 Text Insertion
3.1 Font Properties Fonts Times New Roman/SimSun

/KaiTi/Microsoft YaHei/SimHei 100.00%

Anti-aliasing None/Sharp/Crisp/Smooth/Strong 100.00%
3.3 Color Adaptation Color Sampling Same as the original text color 88.40%

3.4 Color Selection Safety Color
Generation

Light Background:
RGB(0-64, 0-64, 0-64)
Dark Background:
RGB(192-255, 192-255, 192-255)

11.60%

4 Geometric
Transformation

4.1 Region Scaling Scaling Factor Adaptive to text region ±5% 43.50%
4.1 Region Rotation Rotation Angle -5°-5° 33.33%

Step Post-processing Parameter Type Parameter Value Frequency

5 Visual Trace
Concealment

5.1 Sharpen

Iterations 1-5 times

12.69%Strength 400-500%
Radius 50-60 pixels
Threshold 2-3 levels

5.2 Gaussian Blur Blur Radius 0.5-1.2 pixels 11.91%

5.2 Surface Blur Radius 1-15 pixels 7.60%Threshold 5-25 levels

5.2 Motion Blur Angle -30°-30° 7.63%Distance 1-20 pixels

5.3 Outer Glow Effect
Color RGB(83,79,79)

13.68%opacity 17%
Noise 35-45%

5.4 Noise
Amount 0.10%-35%

10.47%Distribution Gaussian/Uniform
Monochromatic Yes/No

5.5 Stroke

Size 1-5 pixels

10.20%

Position Inside/Center/Outside
Blend Mode Normal/Multiply
Opacity 50%-100%
Fill Type color
Color RGB(0-255, 0-255, 0-255)

5.6 Drop Shadow

Blend Mode Normal/Multiply/Darken
Color RGB(0-255, 0-255, 0-255)

8.81%

Opacity 5%-23%
Angle -30°-30°
Distance 1-7 pixels
Spread 3%-12%
Size 1-17 pixels
Noise 1%-10%

31

Real
Healing

Brush

Insert

Text
Noise

Gaussian

Blur
Mask

Real
Content

Aware
Mask

Motion

Blur
Sharpen

Insert

Text

Drop

Shadow

Gaussian

Blur

Insert

Text
Real

Real
Solid

Color

Mask

Sharpen
Region

Scaling

Insert

Text
Mask

Content

Aware

(5) Real-word Tampered Sample 1

(7) Real-word Tampered Sample 3 (8) Real-word Tampered Sample 4

(6) Real-word Tampered Sample 2

Tampered Image 1 Tampered Image 2 Tampered Image 3

Tampered Image 1 Tampered Image 2 Tampered Image 3

(2) DocTamper

(3) TIC13

Tampered Image 1 Tampered Image 2 Tampered Image 3

(4) T-SROIE

Tampered Image 1 Tampered Image 2 Tampered Image 3

(1) PS-scripted

Figure 5: Comparison of tampering operation diversity between existing synthetic datasets and
real-world forgery samples. (1)–(4) show examples from four synthetic datasets: PS-scripted [48],
DocTamper [32], TIC13 [41], and T-SROIE [42]. In each sample, the forged region is highlighted
in red. PS-scripted uses real-world tampering parameters but randomly assigns tampering targets,
lacking representative coverage of tampering types. The others are generated using deep generative
methods, which often apply similar operations and parameters across samples, reflecting limited
diversity in invisible distributions. In contrast, (5)–(8) visualize four replacement samples collected
from real-world tampered data. Each case reflects a distinct combination of tampering operation-
parameters (e.g., region sampling, insertion, shadow, blur), illustrating the diversity and complexity
inherent in real-world tampering behaviors. This comparison highlights the importance of modeling
invisible parameter distributions to improve the diversity and realism of synthetic data.

32

	Introduction
	Related Work
	The Proposed Synthesis Dataset
	Preliminary
	Our Insights
	Fourier Series-based Tampering Synthesis

	Experiments
	Dataset and Experimental Protocols
	Comparison with the State-of-the-art Methods

	Conclusion
	Acknowledgments
	Overview of Existing Tampered Text Image Datasets
	Summary of Existing Datasets
	Limitations of Existing Synthetic Datasets

	Details of Our Dataset Construction
	Tampering Parameter Collection and Modeling
	Synthetic Image Generation
	Dataset Variants

	Additional Experiments
	Extended Protocol 2 Evaluation
	Extended Protocol 3 Evaluation
	Extended Protocol 4 Evaluation

	Limitations

