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Abstract
Mathematical Equation Intent Recogni-001
tion(MEIR) is a novel task aimed at identi-002
fying the intentions behind mathematical equa-003
tions that people produce while solving math004
world problems(MWPs). We observe that,005
in previous research, researchers have often006
focused on how to let large language mod-007
els(LLMs) correctly solve an MWP. However,008
focusing solely on the reasoning behind each009
step of a correct inference process is insuffi-010
cient. We prefer that LLMs can provide guid-011
ance on the process of solving MWPs for stu-012
dents in educational settings. Therefore, they013
need to adjust the strategy based on the stu-014
dent’s responses. We notice that, unlike exist-015
ing mathematical datasets, students typically016
do not provide overly detailed descriptions of017
their steps in the real world. As a result, it018
is crucial for LLMs to possess the capability019
to understand the intention they produce those020
equations. We treat MEIR as a generation task,021
requiring models to summarize the intent in a022
single sentence. We also propose a data aug-023
mentation framework and utilized this frame-024
work to generate a benchmark called Grade025
School Math Intention(GSMI). To evaluate026
MEIR task, we benchmark serveral LLMs on027
GSMI dataset. The results indicate that there028
is still significant room for improvement in the029
performance of general-purpose LLMs on the030
MEIR task. Conversely, capabilities acquired031
during pre-training and fine-tuning specifically032
in the field of mathematics significantly con-033
tribute to the model’s ability to tackle those034
problems. Codes and datasets are available on035
https://github.com/ch-666-six/MEIR036

1 Introduction037

Recently, the capabilities of large language mod-038

els(LLMs) (Minaee et al., 2024) have been exten-039

sively applied to tasks in the field of mathematics.040

Numerous researchers (Liu et al., 2023c; Wei et al.,041

2022; Kojima et al., 2022) have employed prompt-042

based methods or fine-tuning methods to further043

Question:The price of a laptop is $1000. If you get a 20% discount, how
much do you have to pay?
Complete Answer(From GSM8k)：
You will get a discount of 20/100 * $1000 = $<<20/100*1000=200>>200.
Therefore, you will have to pay $1000 - $200 = $<<1000-200=800>>800.
So the answer is: 800.
Brief Answer(From Student):
According to the question, the solution process of this problem is as follows:
1000-20/100*100=800.
As a result, we should pay 800 dollars.

Figure 1: An example of complete answer and brief an-
swer. The standard answer is sourced from the GSM8K
dataset(Cobbe et al., 2021), reflecting the ideal scenario
of solving mathematical problems. However, in real-
time scenarios, answers from students may resemble
what is shown in the "brief answer".This answer may
primarily consists of a series of mathematical equations.

enhance the ability of large language models to 044

comprehend mathematical texts and solve mathe- 045

matical problems. 046

However, we do not want LLMs simply become 047

problem solvers. We hope to integrate the LLMs’ 048

mathematical capabilities closely with real-world 049

educational scenarios. We find that, in real-time ed- 050

ucational scenarios, particularly during homework 051

or exams, students often arrive at their answers 052

through a series of equations rather than a detailed 053

step-by-step reasoning process. We show an exam- 054

ple in Figure 1, citing a math question from GSM8k 055

dataset(Cobbe et al., 2021). 056

As a result, to determine the correctness of the 057

problem-solving process, we need to fully under- 058

stand the intent behind these equations. Therefore, 059

it is important to study the ability of LLMs to un- 060

derstand the intent behind the arithmetic equations. 061

We consider the task of Mathematical Equa- 062

tion Intent Recognition(MEIR) as a generation 063

task. Specifically, we aim for the language model 064

to produce concise descriptions for the equations 065

within the solution steps of mathematical problems. 066

To address this issue, relevant data is of necessity. 067
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We use two different modules: Imitation-based068

Generator and Intention Extractor to generate data069

automatically, and propose a novel dataset called070

Math World Problems Intention(MWPI). De-071

tails will be thoroughly explained in section 3.072

MWPI is a benchmark to test whether language073

models can uncover the intention behind those074

equations appeared in the solutions of math world075

problems. The input context consists of a mathe-076

matical problem along with its solution steps ex-077

pressed in the form of equations. The objective078

of the model is to produce, for each equation, a079

concise summary in the form of a sentence that080

encapsulates the intention behind the inclusion of081

that particular equation.082

In our experimental evaluation, we observed that083

mainstream closed-source large language models084

(LLMs), such as GPT-4o, GPT-4 (OpenAI, 2024)085

and others, still exhibit potential for improvement086

in the MEIR task. This suggests that during the087

pre-training process, these models did not system-088

atically acquire the ability to parse mathematical089

equations. In addition, we selected several open-090

source models and utilized instruction tuning to091

train them in the process of parsing mathematical092

expressions. We demonstrate that through specific093

instruction tuning, models with smaller parameter094

sizes can also achieve good performance. Mean-095

while, through imitation-based generator, language096

model can improve themselves sustainably.097

To conclude, the main contributions of this arti-098

cle are as follows:099

1. To the best of our knowledge, we are the first100

to explore MEIR task.101

2. We introduce a novel dataset called MWPI to102

evaluate the performance of models on MEIR103

task.104

3. We employ an imitation-based generator to105

facilitate the generation of more diverse data106

under limited resources.107

2 Related Work108

2.1 Math World Problems Solving109

Large language model have a strong ability to solve110

math world problems. Chain-of-thought prompt-111

ing(Wei et al., 2022; Zhang et al., 2023b; Ko-112

jima et al., 2022) is a highly effective technique113

for eliciting detailed reasoning processes from114

LLMs to solve mathematical problems. Some re-115

searchers(Liu et al., 2023b; Gou et al., 2023; Imani116

et al., 2023) also utilize external tools, like python 117

executor and mathematical calculator, to enhance 118

the calculate abilities of LLMs to solve mathemat- 119

ical problems. In addition, some researchers(Yu 120

et al., 2023; Luo et al., 2023a; Ho et al., 2023; An 121

et al., 2023) have organized mathematical corpora 122

and fine-tuned open-source models using these cor- 123

pora to enhance the mathematical reasoning capa- 124

bilities. On several benchmark datasets (Cobbe 125

et al., 2021; Hendrycks et al., 2021), LLMs have 126

already demonstrated outstanding performance. 127

2.2 Instruction Tuning 128

Instruction tuning (Zhang et al., 2024) is an es- 129

sential method for improving the capabilities and 130

controllability of LLMs. This approach uses (IN- 131

STRUCTION, OUTPUT) pairs to train LLMs, 132

where INSTRUCTION represents human instruc- 133

tion and OUTPUT denotes the target output that 134

follows the instruction. LLMs like Instruct- 135

GPT(Ouyang et al., 2022), Flan-T5(Chung et al., 136

2022), WizardLM(Xu et al., 2023), LLAVA(Liu 137

et al., 2023a) and so on, are trained through in- 138

struction tuning. In domain-specific settings(Gupta 139

et al., 2022; Zhang et al., 2023a; Luo et al., 2023b; 140

Liu and Low, 2023), instruction tuning can also 141

have a profound impact and contribute significantly 142

to the performance. Compared to standard LLMs, 143

instruction tuning enables more controllable and 144

predictable model behavior. Due to the significant 145

advantages of instruction fine-tuning, we also em- 146

ployed instruction tuning methods in our research. 147

2.3 Intent Understanding 148

Intent understanding(Louvan and Magnini, 2020) 149

is one of the crucial tasks in artificial intelligence. 150

In human-computer interaction(Jaimes and Sebe, 151

2007), accurately recognizing human intent facili- 152

tates machines in taking more appropriate actions 153

to provide feedback. For example, in online shop- 154

ping(Rahman et al., 2024; Yu et al., 2024), mer- 155

chants always want to understand and accurately 156

predict the buyer’s intention to promote consump- 157

tion. Some researchers(Yin et al., 2024; Weld 158

et al., 2022; Hariharan et al., 2022) treat intent 159

understanding as intent classification and slot fill- 160

ing tasks. By contrast, in order to fully understand 161

students’ intentions behind the equations, we view 162

intent understanding as a text generation task(Li 163

et al., 2021). 164
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Question
Liam is 16 years old now. Two years ago, Liam's age 
was twice the age of Vince. How old is Vince now?

Equations

①    16-2=14
②    14/2=7
③    7+2=9

Intentions
① Calculate Liam's age two years 
prior to now, subtracting two from 
sixteen.     
② Calculate Vince's current age 
based on Liam's age being twice that 
of Vince's age from two years ago
③ Calculate Vince's current age by 
adding seven years to two years.

GSMI Dataset

Figure 2: An example of GSMI dataset. Each data
comprises a mathematical problem, a set of equations
solving that problem and intention descriptions corre-
sponding to each equation.

3 Dataset Construction165

3.1 Overview166

We propose a novel dataset called Math World167

Problems Intention(MWPI). Each data in the168

dataset consists of 3 components: Question, Equa-169

tions and Intentions. We provide an example in170

Figure 2 to illustrate the structure of this dataset.171

For clarity in intent representation, we estab-172

lish the rule that each sentence must begin with173

the word "calculate" and contain no more than 30174

words.175

Building on the existing dataset like176

GSM8k(Cobbe et al., 2021) and MATH(Hendrycks177

et al., 2021), we adopt the following two modules178

to generate the GSMI dataset: an imitation-based179

generator and an intention extractor. Figure 3180

shows the following process.181

Through the imitation-based generator the inten-182

tion extractor, we can generate more valid instances183

to evaluate MEIR task. We utilize Chatgpt and184

GPT-4o(OpenAI, 2024) as LLMs to construct this185

two modules. The most labor-intensive step in this186

process is verifying the correctness of the expanded187

mathematical problems generated by LLMs. In188

this version, the GSMI dataset contains 8K training189

samples and 600 testing samples.190

3.2 Imitation-based Generator191

In the MEIR task, we focus on arithmetic problems192

of elementary school difficulty and in text modal-193

ity. To enhance the model’s ability to learn the ex-194

traction of mathematical expression intentions, we195

implement data augmentation techniques(Li et al.,196

2022; Zhou et al., 2024).197

Algorithm 1 Imitation-based Generator
Input: Original Question Dataset S

Large Language Model LLM()
Input Prompt P ()

Output: Expanded Question Dataset S′

1: S’=[]
2: while Normal Execution do
3: Q = Random_sample(S)
4: Q’= LLM(P(Q))
5: if Grammar_Error(Q’) then
6: CONTINUE
7: end if
8: if Answer_Error(Q’) then
9: CONTINUE

10: end if
11: S’ = S’ + [Q’]
12: end while
13: return S’

Motivated by (Wei et al., 2022), we conclude 198

that large language models possess significant in- 199

context learning capabilities(Dong et al., 2023; Li, 200

2023). In the Chain-of-Thought(CoT) prompting 201

method, researchers provide a step-by-step reason- 202

ing example within the input prompt. Guided by 203

this example, LLMs like GPT-4(OpenAI, 2024) 204

can mimic the provided instance from the prompt 205

to perform structured reasoning process on a new 206

mathematical problem. 207

Similarly, we innovatively propose the concept 208

of an imitation-based generator. In our approach, 209

we present a mathematical problem along with its 210

corresponding solution process in the input prompt, 211

instructing the LLMs to imitate the contextual in- 212

formation and generate a new problem that is struc- 213

turally similar and of comparable difficulty. In this 214

process, we utilize text-only ChatGPT to generate 215

problems. The corresponding algorithm is shown 216

in the Algorithm 1. 217

3.3 Intention Extractor 218

The purpose of this module is to extract the in- 219

tent within mathematical equations. Firstly, for 220

each step in the chain of thought, we extracted 221

the mathematical equations representing that step. 222

Next, we used the textual information of each step 223

as the input prompt, allowing the large language 224

model to summarize the intention within each step. 225

The corresponding algorithm is shown in the Algo- 226

rithm 2. 227

In short, after employing the aforementioned 228
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Existing 
Mathematical 

Problems

Imitation-based
Generator

LLMs

Correctness Check

Expanded 
Mathematical 

Problems

Intention
Extractor

LLMs

Emma has 24 apples, and James has 2 more 
apples than Emma. How many apples do they 
have in total? 
Answer: ……

Tony has 13 pens, and Curry has 10 more pens 
than Tony. How many pens do they have in total? 
Answer: ……

GSMI Dataset

Emma has 24 apples, and James has 2 more apples 
than Emma. How many apples do they have in total? 
Equations:[24+2=26, 24+26=50]
Intentions:[1.Calculate the number of apples James 
has based on the number of apples Emma has.    
2.Calculate the total number of apples that James 
and Emma have together.]

Tony has 13 pens, and Curry has 10 more pens than 
Tony. How many pens do they have in total? 
Equations:[13+10=23, 13+23=36]
Intentions:[1.Calculate the number of pens Curry 
has based on the number of pens Tony has.    
2.Calculate the total number of apples that Curry 
and Tony have together.]

Figure 3: The Process of building GSMI dataset. The Imitation-based Generator is used to expand existing
mathematical problems. The Intention Extractor is used to extract the intentions or objectives within each

mathematical step. The figure illustrates a simple example from the GSMI dataset.

Algorithm 2 Intention Extractor

Input: Reasoning Step Set R[ ]
Large Language Model LLM()
Input Prompt P ()

Output: Intention Set I[ ]
1: I = []
2: for each item r in R do
3: i=LLM(P(r))
4: I = I + [i]
5: end for
6: return I

two modules, we can continuously generate data229

in GSMI, facilitating the model’s improved learn-230

ing of the recognition of mathematical expression231

intents.232

4 Experiments233

4.1 Experimental Setup234

We use the GSMI dataset to evaluate the model’s235

capability in recognizing the intent of mathemati-236

cal expressions. For this purpose, we selected the237

following candidate models.238

• GPT-4o(OpenAI, 2024) is a multilingual,239

multimodal generative pre-trained transformer240

designed by OpenAI. It was announced on 13241

May, 2024, and released in the same day.242

• GPT-4 (OpenAI, 2024) is also a generative 243

model designed by OpenAI, and it was an- 244

nounced in March, 2023. 245

• GPT-3.5 (OpenAI, 2024), also known as Chat- 246

Gpt, is a powerful large-scale language model. 247

It was announced by OpenAI in March, 2022. 248

• LLaMA (Touvron et al., 2023) is a family of 249

autoregressive large language models released 250

by Meta AI, and we use the LLaMA-2 and 251

LLaMA-3 models. 252

• MetaMath (Yu et al., 2023) is a fine-tuned 253

model specifically for the field of mathemat- 254

ics. Researchers fine tune LLaMA (Touvron 255

et al., 2023) on MetaMathQA dataset(Yu et al., 256

2023) and obtain MataMath. 257

• WizardMath (Luo et al., 2023a) is a fine- 258

tuned model for mathematics. Researchers 259

train WizardMath model using reinforcement 260

learning methods. 261

For open-source models, we performed instruc- 262

tion fine-tuning using the training dataset and then 263

evaluated the models using the testing dataset. 264

Due to the constraints on computational resources, 265

we adopted the LoRA (Low-Rank Adaptation) 266

parameter-efficient fine-tuning approach(Hu et al., 267

2021). By default, the open-source model is trained 268
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MODEL BLEU-1
ROUGE-L BERT-SCORE

P R F1 P R F1

Prompting Closed-source Models

GPT-4o 0.2278 0.5691 0.4533 0.4944 0.8121 0.7844 0.7971
GPT-4 0.2194 0.5826 0.3879 0.4570 0.8098 0.7601 0.7834

GPT-3.5 0.2304 0.5210 0.4819 0.4910 0.7972 0.7942 0.7949

Tuning Open-source Models

LLAMA-2-7b 0.2335 0.5206 0.4935 0.5001 0.8015 0.7919 0.7961
LLAMA-2-13b 0.2386 0.5450 0.5306 0.5316 0.8129 0.8095 0.8107
LLAMA-3-8b 0.2373 0.5436 0.5202 0.5252 0.8087 0.8061 0.8068

LLAMA-3-8b-instruct 0.2376 0.5416 0.5235 0.5261 0.8097 0.8069 0.8077
MetaMath-7b 0.2377 0.5392 0.5233 0.5255 0.8111 0.8079 0.8089
MetaMath-13b 0.2369 0.5602 0.5308 0.5386 0.8186 0.8105 0.8139
WizardMath-7b 0.2372 0.5549 0.5400 0.5412 0.8152 0.8134 0.8138

Table 1: Results on MEIR task. P means Precision. R means Recall. And F1 means F1 score. In the closed-source
models, the best-performing value in each row is highlighted in yellow. In the open-source models, the

best-performing value in each row is highlighted in green. The best value in each row is highlighted in bold.

on the training set for 3 epochs with a learning rate269

of 2e-4.270

For closed-source models, we directly evaluated271

them using the testing dataset.272

4.2 Evaluation metrics273

We consider MEIR to be a text generation task. For274

the results generated by our candidate models for275

each equation, we need to evaluate their similarity276

to the ground truth. To this end, we selected the277

following evaluation metrics.278

• BLEU (Papineni et al., 2002) is a metric for279

evaluating the quality of machine-generated280

text, which calculates precision for various281

n-gram lengths and combines these using a282

weighted geometric mean.283

• ROUGE (Lin, 2004) is a set of metrics used284

to evaluate the quality machine-generated text.285

We use ROUGE-L, which captures the longest286

sequence of words that appear in both the can-287

didate and reference summaries in the same288

order.289

• BERT-SCORE (Zhang et al., 2020) leverages290

contextual embeddings from pre-trained trans-291

former models, specifically BERT(Devlin292

et al., 2019) or RoBerta(Liu et al., 2019), to293

capture semantic similarity between the can-294

didate and reference texts. We use bert-large-295

uncased as our base model, which contains 24 296

layers. 297

4.3 Experiment Result 298

The experimental results of the MEIR task are 299

shown in the Table 1. We meticulously recorded 300

the performance of all candidate models, retaining 301

four decimal places, and documented the results in 302

the table. 303

We observed that in the closed-source models, 304

GPT-4o(OpenAI, 2024), as the latest proposed 305

model, performs the best on the ROUGE-L and 306

BERT-SCORE metrics. This indicates that GPT- 307

4o surpasses the previously proposed GPT-4 and 308

GPT-3.5 models in executing the MEIR task. 309

However, it is important to note that as a general- 310

purpose large language model, GPT-4o, along with 311

other closed-source models, lacks sufficient pre- 312

training in the field of mathematics. As seen in 313

the table, models with relatively smaller parame- 314

ter sizes can outperform general-purpose large lan- 315

guage models on the MEIR task after undergoing 316

instruction tuning. 317

5 Analysis and Discussion 318

5.1 Mathematical Fine-tuning 319

MetaMath(Yu et al., 2023) and WizardMath(Luo 320

et al., 2023a) are both fine-tuned versions of the 321

LLAMA model. They were fine-tuned using ex- 322

tensive mathematical data, for example, the Meta- 323
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Question Chenny is 10 years old. Alyana is 4 years younger than Chenny. How old is
Anne if she is 2 years older than Alyana?

Equations ["10-4=6", "6+2=8"]
GPT-4o Results (1) Calculate how much younger Alyana is than Chenny. (2) Calculate

how much older Anne is than Alyana.
MetaMath-13b Results (1) Calculate Alyana’s age by subtracting four from ten. (2) Calculate

Anne’s age by adding two to six.
WizardMath-7b Results (1) Calculate the age of Alyana by subtracting her age from Chenny’s

age.(2) Calculate Anne’s age by adding six and two.

Table 2: An simple example in GSMI testing set. In this example, GPT-4o clearly misunderstood the intent of the
intermediate steps and provided an incorrect answer. MetaMath-13b and WizardMath-7b accurately grasped the

intent of the intermediate steps.

MathQA dataset reached a size of 395K. As shown324

in Table 1, compared to LLAMA, MetaMath and325

WizardMath exhibit a significant advantage in han-326

dling the MEIR task. Notably, on the BERT-327

SCORE metric, which closely aligns with human328

evaluation, both models demonstrate remarkable329

capability.330

Through controlled experiments, we have con-331

cluded that: Mathematical Fine-tuning is highly332

effective and necessary for downstream mathe-333

matical tasks.334

5.2 Model Size335

With LLMs demonstrating powerful capabilities336

across various domains, many people have begun to337

believe that there is a positive correlation between338

the parameter size of a model and its ability to339

handle complex problems.340

However, as shown in the Table 1, on the MEIR341

task, the performance of smaller open-source mod-342

els surpasses that of larger closed-source mod-343

els. This indicates that for the MEIR task, high-344

quality data refinement is more crucial than345

larger model sizes. We require models to acquire346

knowledge and capability within a specific domain.347

Table 2 presents an example from the evaluation348

set. In this instance, GPT-4o made evident errors349

in summarizing the intent, whereas MetaMath and350

WizardMath accurately summarized the intent.351

5.3 Data Augmentation352

In machine learning, richer datasets often yield353

better results, while a lack of data can easily lead354

to overfitting on the training data.355

As shown in Figure 3, through Imitation-based356

Generator and Intention Extractor, we can continu-357

ously generate new data to further train the model358

on the MEIR task. Compared to collecting mathe- 359

matical problems and answers from the real world, 360

the method illustrated in Figure 3 clearly requires 361

significantly less human effort and time. 362

However, we need to investigate the effective- 363

ness of this data augmentation method. We raise 364

a question that does generating more examples 365

through Imitation-based Generator and Intention 366

Extractor on the existing datasets enable the model 367

to perform better on the MEIR task? 368

In this regard, we introduce a variable K. K rep- 369

resents the total number of examples involved in 370

instruction tuning. We select K values of 500, 1000, 371

2000, and 5000 for experimentation on MetaMath 372

and WizardMath models. The experimental results 373

are shown in Table 3. 374

It is evident that as K increases, both ROUGE- 375

L and BERT-SCORE metrics show an overall in- 376

crease trend. When all data generated through 377

Imitation-based Generator and Intention Extractor 378

modules is used in the instruction tuning process, 379

the performance also imporves significantly. These 380

two modules can continuously generate new data. 381

This indicates that we can leverage the imitation 382

generation capability of LLMs to produce richer 383

training data with limited resources. This part of 384

training data truly helps language models better 385

acquire the ability to uncover the intentions behind 386

mathematical equations. 387

In summary, we state that appropriate data aug- 388

mentation strategies contributes to enhancing 389

the language models’ performance on the MEIR 390

task. 391

6 Conclusions 392

In this artical, we introduce the research efforts 393

on unconvering the intention behind equations in 394
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ROUGE-L F1 SCORE
MODEL K=500 K=1000 K=2000 K=5000 All Training Data

MetaMath-7B 0.5036 0.5197 0.5189 0.5246 0.5255
WizardMath-7B 0.5241 0.5322 0.5408 0.5316 0.5412
MetaMath-13B 0.5110 0.5201 0.5337 0.5373 0.5386

BERT-SCORE F1 SCORE
MODEL K=500 K=1000 K=2000 K=5000 All Training Data

MetaMath-7B 0.7979 0.8051 0.8053 0.8084 0.8089
WizardMath-7B 0.8087 0.8117 0.8126 0.8116 0.8138
MetaMath-13B 0.8008 0.8076 0.8129 0.8132 0.8139

Table 3: Results of the impact of generated data. The table records the performance of the model for different
values of K. The maximum value in each row is highlighted with a pink shade, and the maximum value in each

column is indicated in bold.

mathematical problems.395

Firstly, we stated the importance of MEIR task.396

In real life, when handling mathematical problems,397

students might not provide very detailed descrip-398

tions for each step. However, the mathematical399

equations at each step are essential. Therefore,400

understanding the intention behind those listing401

equations at each step means comprehending the402

student’s problem-solving approach. This is highly403

beneficial in the field of education.404

Next, we introduced two modules: Imitation-405

based Generator and Intention Extractor. The406

Imitation-based Generator is used to increase data407

diversity. and the Intention Extractor is used to ex-408

tract the intention behind each step. Through these409

two modules, we constructed the GSMI dataset.410

With minimal human resource consumption, these411

two modules can be used to generate more varied412

data. Experimental evidence has shown that the413

data generated by this structure is highly beneficial414

for improving model performance on MEIR tasks.415

Subsequently, we selected a subset of candi-416

date models and evaluated their ability to solve417

MEIR tasks on the GSMI dataset. The experimen-418

tal results indicate that powerful general LLMs like419

GPT-4o still have shortcomings in understanding420

equations. Conversely, following a series of in-421

struction tuning processes, small-scale open-source422

models demonstrate outstanding performance in un-423

derstanding equations. Those models that have un-424

dergone mathematical fine-tuning, like MetaMath425

and WizardMath, excel in MEIR tasks.426

In conclusion, we pioneered the study of equa-427

tion intention analysis. We are the first to propose428

the MEIR task and have conducted thorough ex-429

periments to explore the capability of LLMs in 430

addressing this task. Exploring equation intention 431

is an interesting and important topic, and needs 432

further attention and in-depth research. 433

7 Limitations and Future Works 434

In this experimental work, we have exposed certain 435

limitations. Due to computational constraints, the 436

maximum model parameter size we used for fine- 437

tuning open-source models was 13 billion. In the 438

future, we will run the MEIR task on larger-scale 439

open-source models to explore their capabilities in 440

understanding mathematical equations. 441

In our experiments, we have demonstrated that 442

the data generated through these Imitation-based 443

Generator and Intention Extractor modules helps 444

improve the model’s ability to understand equation 445

intentions. In future work, we will propose more re- 446

fined data augmentation mechanisms and introduce 447

a larger-scale GSMI dataset. 448

Furthermore, for the generated data from 449

Imitation-based Generator and Intention Extrac- 450

tor modules, we did not conduct comprehensive 451

comparative analyses with existing datasets. In fu- 452

ture work, an thorough comparative analysis is of 453

necessity to make sure that our training data if of 454

high quality. 455

Finally, as we have stated, the MEIR task closely 456

aligns with educational settings. It is not sufficient 457

to merely identify the intended meaning of cor- 458

rect equations. In the future, we aim to intelligently 459

identify errors students make when producing equa- 460

tions in mathematical education scenarios. This 461

places higher demands on language models, that 462

they not only need to recognize and generalize the 463
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intended meaning of correct equations, but also464

need to uncover the underlying reasons for errors465

in incorrect equations.466

References467

Shengnan An, Zexiong Ma, Zeqi Lin, Nanning Zheng,468
Jian-Guang Lou, and Weizhu Chen. 2023. Learning469
from mistakes makes llm better reasoner.470

Hyung Won Chung, Le Hou, Shayne Longpre, Barret471
Zoph, Yi Tay, William Fedus, Yunxuan Li, Xuezhi472
Wang, Mostafa Dehghani, Siddhartha Brahma, Al-473
bert Webson, Shixiang Shane Gu, Zhuyun Dai,474
Mirac Suzgun, Xinyun Chen, Aakanksha Chowdh-475
ery, Alex Castro-Ros, Marie Pellat, Kevin Robinson,476
Dasha Valter, Sharan Narang, Gaurav Mishra, Adams477
Yu, Vincent Zhao, Yanping Huang, Andrew Dai,478
Hongkun Yu, Slav Petrov, Ed H. Chi, Jeff Dean, Ja-479
cob Devlin, Adam Roberts, Denny Zhou, Quoc V. Le,480
and Jason Wei. 2022. Scaling instruction-finetuned481
language models.482

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian,483
Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias484
Plappert, Jerry Tworek, Jacob Hilton, Reiichiro485
Nakano, Christopher Hesse, and John Schulman.486
2021. Training verifiers to solve math word prob-487
lems. CoRR, abs/2110.14168.488

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and489
Kristina Toutanova. 2019. BERT: Pre-training of490
deep bidirectional transformers for language under-491
standing. In Proceedings of the 2019 Conference of492
the North American Chapter of the Association for493
Computational Linguistics: Human Language Tech-494
nologies, Volume 1 (Long and Short Papers), pages495
4171–4186, Minneapolis, Minnesota. Association for496
Computational Linguistics.497

Qingxiu Dong, Lei Li, Damai Dai, Ce Zheng, Zhiyong498
Wu, Baobao Chang, Xu Sun, Jingjing Xu, Lei Li, and499
Zhifang Sui. 2023. A survey on in-context learning.500

Zhibin Gou, Zhihong Shao, Yeyun Gong, Yelong Shen,501
Yujiu Yang, Minlie Huang, Nan Duan, and Weizhu502
Chen. 2023. Tora: A tool-integrated reasoning503
agent for mathematical problem solving. CoRR,504
abs/2309.17452.505

Prakhar Gupta, Cathy Jiao, Yi-Ting Yeh, Shikib Mehri,506
Maxine Eskenazi, and Jeffrey Bigham. 2022. In-507
structDial: Improving zero and few-shot general-508
ization in dialogue through instruction tuning. In509
Proceedings of the 2022 Conference on Empirical510
Methods in Natural Language Processing, pages 505–511
525, Abu Dhabi, United Arab Emirates. Association512
for Computational Linguistics.513

Shruthi Hariharan, Vignesh Kumar Krishnamurthy,514
Utkarsh, and Jayantha Gowda Sarapanahalli. 2022.515
Enhancing slot tagging with intent features for task516
oriented natural language understanding using bert.517

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul 518
Arora, Steven Basart, Eric Tang, Dawn Song, and 519
Jacob Steinhardt. 2021. Measuring mathematical 520
problem solving with the math dataset. 521

Namgyu Ho, Laura Schmid, and Se-Young Yun. 2023. 522
Large language models are reasoning teachers. In 523
Proceedings of the 61st Annual Meeting of the As- 524
sociation for Computational Linguistics (Volume 1: 525
Long Papers), ACL 2023, Toronto, Canada, July 9-14, 526
2023, pages 14852–14882. Association for Computa- 527
tional Linguistics. 528

Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan 529
Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, and 530
Weizhu Chen. 2021. Lora: Low-rank adaptation of 531
large language models. 532

Shima Imani, Liang Du, and Harsh Shrivastava. 2023. 533
Mathprompter: Mathematical reasoning using large 534
language models. In Proceedings of the The 61st An- 535
nual Meeting of the Association for Computational 536
Linguistics: Industry Track, ACL 2023, Toronto, 537
Canada, July 9-14, 2023, pages 37–42. Association 538
for Computational Linguistics. 539

Alejandro Jaimes and Nicu Sebe. 2007. Multimodal 540
human–computer interaction: A survey. Computer 541
Vision and Image Understanding, 108(1):116–134. 542
Special Issue on Vision for Human-Computer Inter- 543
action. 544

Takeshi Kojima, Shixiang (Shane) Gu, Machel Reid, Yu- 545
taka Matsuo, and Yusuke Iwasawa. 2022. Large lan- 546
guage models are zero-shot reasoners. In Advances in 547
Neural Information Processing Systems, volume 35, 548
pages 22199–22213. Curran Associates, Inc. 549

Bohan Li, Yutai Hou, and Wanxiang Che. 2022. Data 550
augmentation approaches in natural language pro- 551
cessing: A survey. AI Open, 3:71–90. 552

Junyi Li, Tianyi Tang, Wayne Xin Zhao, and Ji-Rong 553
Wen. 2021. Pretrained language model for text gener- 554
ation: A survey. In Proceedings of the Thirtieth Inter- 555
national Joint Conference on Artificial Intelligence, 556
IJCAI-21, pages 4492–4499. International Joint Con- 557
ferences on Artificial Intelligence Organization. Sur- 558
vey Track. 559

Yinheng Li. 2023. A practical survey on zero-shot 560
prompt design for in-context learning. In Proceed- 561
ings of the Conference Recent Advances in Natural 562
Language Processing - Large Language Models for 563
Natural Language Processings, RANLP. INCOMA 564
Ltd., Shoumen, BULGARIA. 565

Chin-Yew Lin. 2004. ROUGE: A package for auto- 566
matic evaluation of summaries. In Text Summariza- 567
tion Branches Out, pages 74–81, Barcelona, Spain. 568
Association for Computational Linguistics. 569

Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae 570
Lee. 2023a. Visual instruction tuning. In Ad- 571
vances in Neural Information Processing Systems, 572
volume 36, pages 34892–34916. Curran Associates, 573
Inc. 574

8

http://arxiv.org/abs/2310.20689
http://arxiv.org/abs/2310.20689
http://arxiv.org/abs/2310.20689
http://arxiv.org/abs/2210.11416
http://arxiv.org/abs/2210.11416
http://arxiv.org/abs/2210.11416
http://arxiv.org/abs/2110.14168
http://arxiv.org/abs/2110.14168
http://arxiv.org/abs/2110.14168
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
http://arxiv.org/abs/2301.00234
https://doi.org/10.48550/ARXIV.2309.17452
https://doi.org/10.48550/ARXIV.2309.17452
https://doi.org/10.48550/ARXIV.2309.17452
https://doi.org/10.18653/v1/2022.emnlp-main.33
https://doi.org/10.18653/v1/2022.emnlp-main.33
https://doi.org/10.18653/v1/2022.emnlp-main.33
https://doi.org/10.18653/v1/2022.emnlp-main.33
https://doi.org/10.18653/v1/2022.emnlp-main.33
http://arxiv.org/abs/2205.09732
http://arxiv.org/abs/2205.09732
http://arxiv.org/abs/2205.09732
http://arxiv.org/abs/2103.03874
http://arxiv.org/abs/2103.03874
http://arxiv.org/abs/2103.03874
https://doi.org/10.18653/V1/2023.ACL-LONG.830
http://arxiv.org/abs/2106.09685
http://arxiv.org/abs/2106.09685
http://arxiv.org/abs/2106.09685
https://doi.org/10.18653/V1/2023.ACL-INDUSTRY.4
https://doi.org/10.18653/V1/2023.ACL-INDUSTRY.4
https://doi.org/10.18653/V1/2023.ACL-INDUSTRY.4
https://doi.org/https://doi.org/10.1016/j.cviu.2006.10.019
https://doi.org/https://doi.org/10.1016/j.cviu.2006.10.019
https://doi.org/https://doi.org/10.1016/j.cviu.2006.10.019
https://proceedings.neurips.cc/paper_files/paper/2022/file/8bb0d291acd4acf06ef112099c16f326-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/8bb0d291acd4acf06ef112099c16f326-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/8bb0d291acd4acf06ef112099c16f326-Paper-Conference.pdf
https://doi.org/https://doi.org/10.1016/j.aiopen.2022.03.001
https://doi.org/https://doi.org/10.1016/j.aiopen.2022.03.001
https://doi.org/https://doi.org/10.1016/j.aiopen.2022.03.001
https://doi.org/https://doi.org/10.1016/j.aiopen.2022.03.001
https://doi.org/https://doi.org/10.1016/j.aiopen.2022.03.001
https://doi.org/10.24963/ijcai.2021/612
https://doi.org/10.24963/ijcai.2021/612
https://doi.org/10.24963/ijcai.2021/612
https://doi.org/10.26615/978-954-452-092-2_069
https://doi.org/10.26615/978-954-452-092-2_069
https://doi.org/10.26615/978-954-452-092-2_069
https://aclanthology.org/W04-1013
https://aclanthology.org/W04-1013
https://aclanthology.org/W04-1013
https://proceedings.neurips.cc/paper_files/paper/2023/file/6dcf277ea32ce3288914faf369fe6de0-Paper-Conference.pdf


Tengxiao Liu, Qipeng Guo, Yuqing Yang, Xiangkun Hu,575
Yue Zhang, Xipeng Qiu, and Zheng Zhang. 2023b.576
Plan, verify and switch: Integrated reasoning with577
diverse x-of-thoughts. In Proceedings of the 2023578
Conference on Empirical Methods in Natural Lan-579
guage Processing, EMNLP 2023, Singapore, Decem-580
ber 6-10, 2023, pages 2807–2822. Association for581
Computational Linguistics.582

Tiedong Liu and Bryan Kian Hsiang Low. 2023. Goat:583
Fine-tuned llama outperforms gpt-4 on arithmetic584
tasks.585

Wentao Liu, Hanglei Hu, Jie Zhou, Yuyang Ding,586
Junsong Li, Jiayi Zeng, Mengliang He, Qin Chen,587
Bo Jiang, Aimin Zhou, and Liang He. 2023c. Mathe-588
matical language models: A survey.589

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-590
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,591
Luke Zettlemoyer, and Veselin Stoyanov. 2019.592
Roberta: A robustly optimized bert pretraining ap-593
proach.594

Samuel Louvan and Bernardo Magnini. 2020. Recent595
neural methods on slot filling and intent classifica-596
tion for task-oriented dialogue systems: A survey.597
In Proceedings of the 28th International Confer-598
ence on Computational Linguistics, pages 480–496,599
Barcelona, Spain (Online). International Committee600
on Computational Linguistics.601

Haipeng Luo, Qingfeng Sun, Can Xu, Pu Zhao, Jian-602
guang Lou, Chongyang Tao, Xiubo Geng, Qingwei603
Lin, Shifeng Chen, and Dongmei Zhang. 2023a. Wiz-604
ardmath: Empowering mathematical reasoning for605
large language models via reinforced evol-instruct.606
CoRR, abs/2308.09583.607

Ziyang Luo, Can Xu, Pu Zhao, Qingfeng Sun, Xiubo608
Geng, Wenxiang Hu, Chongyang Tao, Jing Ma, Qing-609
wei Lin, and Daxin Jiang. 2023b. Wizardcoder:610
Empowering code large language models with evol-611
instruct.612

Shervin Minaee, Tomas Mikolov, Narjes Nikzad,613
Meysam Chenaghlu, Richard Socher, Xavier Am-614
atriain, and Jianfeng Gao. 2024. Large language615
models: A survey.616

OpenAI. 2024. Gpt-4 technical report.617

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida,618
Carroll Wainwright, Pamela Mishkin, Chong Zhang,619
Sandhini Agarwal, Katarina Slama, Alex Ray, John620
Schulman, Jacob Hilton, Fraser Kelton, Luke Miller,621
Maddie Simens, Amanda Askell, Peter Welinder,622
Paul F Christiano, Jan Leike, and Ryan Lowe. 2022.623
Training language models to follow instructions with624
human feedback. In Advances in Neural Information625
Processing Systems, volume 35, pages 27730–27744.626
Curran Associates, Inc.627

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-628
Jing Zhu. 2002. Bleu: a method for automatic evalu-629
ation of machine translation. In Proceedings of the630

40th Annual Meeting of the Association for Compu- 631
tational Linguistics, pages 311–318, Philadelphia, 632
Pennsylvania, USA. Association for Computational 633
Linguistics. 634

Muhammad Sabbir Rahman, Surajit Bag, 635
Farhana Habib Zinnia, Nripendra P. Rana, and 636
Mohammad Osman Gani. 2024. Understanding and 637
predicting customers’ intentions to use smartphone- 638
based online games: A deep-learning-based 639
dual-stage modelling analysis. Computers in Human 640
Behavior, 152:108083. 641

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al- 642
bert, Amjad Almahairi, Yasmine Babaei, Nikolay 643
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti 644
Bhosale, Dan Bikel, Lukas Blecher, Cristian Canton 645
Ferrer, Moya Chen, Guillem Cucurull, David Esiobu, 646
Jude Fernandes, Jeremy Fu, Wenyin Fu, Brian Fuller, 647
Cynthia Gao, Vedanuj Goswami, Naman Goyal, An- 648
thony Hartshorn, Saghar Hosseini, Rui Hou, Hakan 649
Inan, Marcin Kardas, Viktor Kerkez, Madian Khabsa, 650
Isabel Kloumann, Artem Korenev, Punit Singh Koura, 651
Marie-Anne Lachaux, Thibaut Lavril, Jenya Lee, Di- 652
ana Liskovich, Yinghai Lu, Yuning Mao, Xavier Mar- 653
tinet, Todor Mihaylov, Pushkar Mishra, Igor Moly- 654
bog, Yixin Nie, Andrew Poulton, Jeremy Reizen- 655
stein, Rashi Rungta, Kalyan Saladi, Alan Schelten, 656
Ruan Silva, Eric Michael Smith, Ranjan Subrama- 657
nian, Xiaoqing Ellen Tan, Binh Tang, Ross Tay- 658
lor, Adina Williams, Jian Xiang Kuan, Puxin Xu, 659
Zheng Yan, Iliyan Zarov, Yuchen Zhang, Angela Fan, 660
Melanie Kambadur, Sharan Narang, Aurelien Ro- 661
driguez, Robert Stojnic, Sergey Edunov, and Thomas 662
Scialom. 2023. Llama 2: Open foundation and fine- 663
tuned chat models. 664

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten 665
Bosma, brian ichter, Fei Xia, Ed Chi, Quoc V Le, 666
and Denny Zhou. 2022. Chain-of-thought prompt- 667
ing elicits reasoning in large language models. In 668
Advances in Neural Information Processing Systems, 669
volume 35, pages 24824–24837. Curran Associates, 670
Inc. 671

Henry Weld, Xiaoqi Huang, Siqu Long, Josiah Poon, 672
and Soyeon Caren Han. 2022. A survey of joint intent 673
detection and slot filling models in natural language 674
understanding. ACM Comput. Surv., 55(8). 675

Can Xu, Qingfeng Sun, Kai Zheng, Xiubo Geng, 676
Pu Zhao, Jiazhan Feng, Chongyang Tao, and Daxin 677
Jiang. 2023. Wizardlm: Empowering large language 678
models to follow complex instructions. 679

Shangjian Yin, Peijie Huang, and Yuhong Xu. 2024. 680
Uni-mis: United multiple intent spoken language 681
understanding via multi-view intent-slot interaction. 682
Proceedings of the AAAI Conference on Artificial 683
Intelligence, 38(17):19395–19403. 684

Longhui Yu, Weisen Jiang, Han Shi, Jincheng Yu, 685
Zhengying Liu, Yu Zhang, James T. Kwok, Zhenguo 686
Li, Adrian Weller, and Weiyang Liu. 2023. Meta- 687
math: Bootstrap your own mathematical questions 688
for large language models. CoRR, abs/2309.12284. 689

9

https://aclanthology.org/2023.emnlp-main.169
https://aclanthology.org/2023.emnlp-main.169
https://aclanthology.org/2023.emnlp-main.169
http://arxiv.org/abs/2305.14201
http://arxiv.org/abs/2305.14201
http://arxiv.org/abs/2305.14201
http://arxiv.org/abs/2305.14201
http://arxiv.org/abs/2305.14201
http://arxiv.org/abs/2312.07622
http://arxiv.org/abs/2312.07622
http://arxiv.org/abs/2312.07622
http://arxiv.org/abs/1907.11692
http://arxiv.org/abs/1907.11692
http://arxiv.org/abs/1907.11692
https://doi.org/10.18653/v1/2020.coling-main.42
https://doi.org/10.18653/v1/2020.coling-main.42
https://doi.org/10.18653/v1/2020.coling-main.42
https://doi.org/10.18653/v1/2020.coling-main.42
https://doi.org/10.18653/v1/2020.coling-main.42
https://doi.org/10.48550/ARXIV.2308.09583
https://doi.org/10.48550/ARXIV.2308.09583
https://doi.org/10.48550/ARXIV.2308.09583
https://doi.org/10.48550/ARXIV.2308.09583
https://doi.org/10.48550/ARXIV.2308.09583
http://arxiv.org/abs/2306.08568
http://arxiv.org/abs/2306.08568
http://arxiv.org/abs/2306.08568
http://arxiv.org/abs/2306.08568
http://arxiv.org/abs/2306.08568
http://arxiv.org/abs/2402.06196
http://arxiv.org/abs/2402.06196
http://arxiv.org/abs/2402.06196
http://arxiv.org/abs/2303.08774
https://proceedings.neurips.cc/paper_files/paper/2022/file/b1efde53be364a73914f58805a001731-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/b1efde53be364a73914f58805a001731-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/b1efde53be364a73914f58805a001731-Paper-Conference.pdf
https://doi.org/10.3115/1073083.1073135
https://doi.org/10.3115/1073083.1073135
https://doi.org/10.3115/1073083.1073135
https://doi.org/https://doi.org/10.1016/j.chb.2023.108083
https://doi.org/https://doi.org/10.1016/j.chb.2023.108083
https://doi.org/https://doi.org/10.1016/j.chb.2023.108083
https://doi.org/https://doi.org/10.1016/j.chb.2023.108083
https://doi.org/https://doi.org/10.1016/j.chb.2023.108083
https://doi.org/https://doi.org/10.1016/j.chb.2023.108083
https://doi.org/https://doi.org/10.1016/j.chb.2023.108083
http://arxiv.org/abs/2307.09288
http://arxiv.org/abs/2307.09288
http://arxiv.org/abs/2307.09288
https://proceedings.neurips.cc/paper_files/paper/2022/file/9d5609613524ecf4f15af0f7b31abca4-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/9d5609613524ecf4f15af0f7b31abca4-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/9d5609613524ecf4f15af0f7b31abca4-Paper-Conference.pdf
https://doi.org/10.1145/3547138
https://doi.org/10.1145/3547138
https://doi.org/10.1145/3547138
https://doi.org/10.1145/3547138
https://doi.org/10.1145/3547138
http://arxiv.org/abs/2304.12244
http://arxiv.org/abs/2304.12244
http://arxiv.org/abs/2304.12244
https://doi.org/10.1609/aaai.v38i17.29910
https://doi.org/10.1609/aaai.v38i17.29910
https://doi.org/10.1609/aaai.v38i17.29910
https://doi.org/10.48550/ARXIV.2309.12284
https://doi.org/10.48550/ARXIV.2309.12284
https://doi.org/10.48550/ARXIV.2309.12284
https://doi.org/10.48550/ARXIV.2309.12284
https://doi.org/10.48550/ARXIV.2309.12284


Wen-Ju Yu, Shin-Yuan Hung, Annie Pei-I Yu, and Yu-Li690
Hung. 2024. Understanding consumers’ continuance691
intention of social shopping and social media partic-692
ipation: The perspective of friends on social media.693
Information & Management, 61(4):103808.694

Shengyu Zhang, Linfeng Dong, Xiaoya Li, Sen Zhang,695
Xiaofei Sun, Shuhe Wang, Jiwei Li, Runyi Hu, Tian-696
wei Zhang, Fei Wu, and Guoyin Wang. 2024. Instruc-697
tion tuning for large language models: A survey.698

Tianyi Zhang, Varsha Kishore, Felix Wu, Kilian Q.699
Weinberger, and Yoav Artzi. 2020. Bertscore: Evalu-700
ating text generation with bert.701

Yue Zhang, Leyang Cui, Deng Cai, Xinting Huang,702
Tao Fang, and Wei Bi. 2023a. Multi-task instruction703
tuning of llama for specific scenarios: A preliminary704
study on writing assistance.705

Zhuosheng Zhang, Aston Zhang, Mu Li, and Alex706
Smola. 2023b. Automatic chain of thought prompt-707
ing in large language models. In The Eleventh In-708
ternational Conference on Learning Representations,709
ICLR 2023, Kigali, Rwanda, May 1-5, 2023. Open-710
Review.net.711

Yue Zhou, Chenlu Guo, Xu Wang, Yi Chang, and Yuan712
Wu. 2024. A survey on data augmentation in large713
model era.714

10

https://doi.org/https://doi.org/10.1016/j.im.2023.103808
https://doi.org/https://doi.org/10.1016/j.im.2023.103808
https://doi.org/https://doi.org/10.1016/j.im.2023.103808
https://doi.org/https://doi.org/10.1016/j.im.2023.103808
https://doi.org/https://doi.org/10.1016/j.im.2023.103808
http://arxiv.org/abs/2308.10792
http://arxiv.org/abs/2308.10792
http://arxiv.org/abs/2308.10792
http://arxiv.org/abs/1904.09675
http://arxiv.org/abs/1904.09675
http://arxiv.org/abs/1904.09675
http://arxiv.org/abs/2305.13225
http://arxiv.org/abs/2305.13225
http://arxiv.org/abs/2305.13225
http://arxiv.org/abs/2305.13225
http://arxiv.org/abs/2305.13225
https://openreview.net/pdf?id=5NTt8GFjUHkr
https://openreview.net/pdf?id=5NTt8GFjUHkr
https://openreview.net/pdf?id=5NTt8GFjUHkr
http://arxiv.org/abs/2401.15422
http://arxiv.org/abs/2401.15422
http://arxiv.org/abs/2401.15422

