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Exploiting Spatial-Temporal Data in Knowledge Graphs for
Enhanced Prediction

Anonymous Author(s)

ABSTRACT
Knowledge graphs (KGs) have been increasingly employed for link
prediction and recommendation using real-world datasets. How-
ever, the majority of current methods rely on static data, neglect-
ing the dynamic nature and the hidden spatial-temporal attributes
of real-world scenarios. This often results in suboptimal predic-
tions and recommendations. Although there are effective spatial-
temporal inference methods, they face challenges such as scalability
with large datasets and inadequate semantic understanding, which
impede their performance. To address these limitations, this pa-
per introduces a novel framework for constructing and exploring
spatial-temporal KGs. Our approach seamlessly integrates spatial
and temporal data to form KGs. These KGs are further exploited
through a new 3-step embedding method. Output embeddings can
be used for future temporal sequence prediction and spatial infor-
mation recommendation, providing valuable insights for various
applications such as retail sales forecasting and traffic volume pre-
diction. By integrating spatial-temporal data into KGs, our frame-
work offers a more comprehensive understanding of the underlying
patterns and trends, thereby enhancing the accuracy of predictions
and the relevance of recommendations. This work paves the way
for more effective utilization of spatial-temporal data in KGs, with
potential impacts across a wide range of sectors.
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1 INTRODUCTION
Knowledge graphs (KGs) are directed graphs comprising entities
(nodes), their attributes, and the relationships between them. They
represent information as facts using a node-edge-node structure.
For instance, the triplet (Macdonald-compete-Burger King) repre-
sents a competitive relationship between Macdonald and Burger
King. KGs adeptly capture intricate relationships between enti-
ties, enabling more contextually rich and accurate predictions. By
encoding millions of real-world events or facts into graphs, KGs

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
WWW ’24, MAY 13 - 17, 2024, Singapore
© 2023 Association for Computing Machinery.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/XXXXXXX.XXXXXXX

facilitate various downstream tasks such as recommendation sys-
tem [23], information retrieval [9], and question answering [14].
Although sometimes KG construction suffers from incompleteness
due to insufficient construction criteria or data scarcity, knowledge
graph completion (KGC) methods fill this gap. These methods infer
missing facts based on existing ones in KGs. They learn the em-
bedding of entities and relations on known facts and apply score
functions on all possible facts to compute the possibility the fact
exists, KG embedding models, like transE [2], to help enhance the
comprehensiveness and utility of the KG.

Relying solely on static knowledge graphs for every real-world
dataset proves insufficient. In practical scenarios, such as retail
sales and traffic, historical facts influence potential future relations.
Spatial-temporal data, inherently dynamic and complex, exhibits
dependencies and relationships that evolve across time and space.
The dynamic features of the data complicate the construction and
maintenance of KGs that represent data comprehensively and factor
in geographical relationships between entities. Static KGC meth-
ods treat facts as time-independent, leading to relation and entity
embeddings stagnant, which is unrealistic [5]. Many methods are
raised towards temporal KG construction and completion [18, 1, 12,
19], but training them on benchmark datasets like Wikidata [17,
16] or YAGO15K [10] proves time-consuming [3]. The time cost is
magnified when applied to extensive real-world datasets.

Without using KGs, a myriad of spatial-temporal prediction and
recommendation methods have been proposed, yielding promising
outcomes across various tasks [25]. Traditional approaches, the
statistical and machine learning methods like ARIMA [28], have
been complemented by more recent deep learning methods, notably
graph convolutional networks [32], have emerged. Despite their ef-
fectiveness in specific scenarios, these methods still harbor notable
limitations. For instance, they often struggle when capturing the
intricate, non-linear relationships endemic to spatial-temporal data,
and may fall short of incorporating broader contextual information.
Data sparsity posed another challenge, constraining the improve-
ment of their recommendation performance [4]. In contrast, KGs
can alleviate this issue, courtesy of their rich semantics information.

Given the outlined challenges, building and exploiting Spatial
Temporal Knowledge Graphs (STKGs) presents a promising av-
enue. For clarity, Fig 1 showcases an STKG tailored for the physical
store sales within a city. While various retail outlets like Walmarts,
IKEA, are depicted alongside entities from different sectors, such as
McDonald. Their sales records, inherently temporal, are typically
tabulated over a time interval Δ𝑇 , including records in several time
intervals Δ𝑡1,2,... . In a static KG, entities might be linked through
relations like competing, collaborating, etc. However, in a temporal
KG, these relations might evolve over time based on sales data or
other practical considerations. Beyond temporal aspects, entities
also exhibit geographical relations, heavily influenced by locations
and distances separating them.
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Figure 1: An example of KG containing spatial-temporal in-
formation

Entities within STKGs can be expressed using triplets, (𝑆ℎ𝑜𝑝, 𝑡𝑖 , 𝑙𝑜𝑐),
signifying an entity’s state at a specific time. Meanwhile, relations
are represented as (𝑒𝑖 , 𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛, 𝑒 𝑗 ) under a given 𝑡𝑖𝑚𝑒, 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛(𝑖, 𝑗)
highlighting the spatial-temporal connection between two entities.
By integrating these triplets, a semantic path is constructed, eluci-
dating the evolution of relationships grounded in spatial-temporal
data.

STKGs are versatile tools suitable for predictive tasks, encompass-
ing forecasting specific store sales or traffic volumes at designated
stations. Their utility also extends to recommendation tasks, facili-
tating predicting the next POI. Despite the potential, the dynamic
nature of data and intricate relationships within the graph present
challenges in harnessing an STKG effectively for downstream ap-
plications, which leads to research questions: How can an STKG
framework be versatile enough to accommodate diverse data types?
How to enable this framework for KG completions while ensuring
its interpretability?

In this paper, a novel framework is raised for constructing and
exploring Spatial-temporal knowledge graphs for prediction and
recommendation. By integrating spatial-temporal data into KGs
and exploiting these KGs through entity and relation embeddings,
the framework aims to leverage the strengths of KGs to enhance the
accuracy and relevance of spatial-temporal predictions. While keep-
ing the embeddings suitable for real-world datasets, the framework
ensures efficiency as well as interpretability. To validate its efficacy,
the framework was applied to two datasets: Safegraph’s Spend-
Ohio dataset and the traffic volume of New South Wales (TFNSW)
dataset to do experiments on temporal sequence prediction.

2 RELATEDWORK
2.1 Spatial-Temporal Data Prediction &

Recommendation
Doing prediction or recommendation on spatial-temporal data has
been a hot topic of research in recent years, addressing challenges
in domains like traffic volume prediction, selling record prediction,
and next point-of-interest recommendation. Early methods are
based on statistical knowledge, or using machine learning. ARIMA
[28] was based on the Wold decomposition theorem, using linear
time-series techniques, however, it is unable to capture enough
spatial-temporal dependencies, this drawback also occurs in early

machine learning methods, like CSVM [21] and SVM [13]. More
recently, researchers have begun to consider more complex meth-
ods, thanks to the emergence of deep learning. Recurrent Neural
Networks(RNNs) like long short-term memory (LSTM) networks,
or Temporal Convolutional Networks(TCNs) can effectively cap-
ture temporal features, while Graph Neural Networks(GNNs) and
Convolutional Neural Networks(CNNs) perform well in spatial data.
The fusion of deep learning models leads to a great fit for spatial-
temporal data. Spatial-temporal GNNs like graph convolutional
neural networks(GCNs) can simultaneously model spatial and tem-
poral information [7], and are widely used in real-world cases like
traffic flow prediction [8, 29, 27] or weather forecasting [15].

2.2 Knowledge Graph for prediction
2.2.1 Static KGs for Prediction. Since KGs have a unified structure,
based on their embeddings or paths, they can be used to predict
potential links hidden in established datasets. For static data, KGs
can assist and accelerate drug discovery [31] in the medical field,
and they also perform well on fake news detection [6] by finding
the shortest path between facts.

2.2.2 Temporal KGs/STKGs for Prediction. Dynamic data, typically
sourced from sensors, can also be transferred into structured enti-
ties and shaped into temporal KGs(TKGs) or STKGs. Embeddings
encompassing distinct spatial or temporal information are com-
pared to determine the entities that would appear in certain time
points under certain locations. Since dynamic KGs capture time
relationships between entities in events, temporal predictions like
the time of natural disasters [11] could be achieved. STKGs also
help in spatial predictions, by modeling trajectories data, users’
mobility patterns or activities can be predicted [24, 4].

2.3 Knowledge Graph for recommendation
KGs can help solve cold start problems as external sources. Also,
by modeling data into KGs, Problems caused by the sparsity or low
popularity bias of data are reduced, which can normally influence
traditional recommendation methods like collaborative filtering.
Normally the recommendation methods on KGs are categorized
into path-based and embedding-based.

2.3.1 Path-based recommendation. Paths in KGs contain relation-
ships between entities, enabling the extraction of features such as
users’ preferences or item characteristics by analyzing paths. KPRN
[26] used the LSTM network to represent path information, like
users and movie interactions, thus can calculate user preferences
towards target movies.

2.3.2 Embedding-based recommendation. Entities and relations
can normally be transferred into embeddings under certain rules,
these embeddings can be applied to recommendation algorithms.
Entity2rec [20] uses property-specific embeddings on KGs to do
recommendation, while HAKG [22] uses subgraph embeddings for
enhanced user preference prediction.

While the aforementioned methodologies have registered good
performances in designated tasks, they are encumbered by certain
limitations: 1) Their inherent complexity or the extensive versatility
of entity types often renders them time-intensive or restricts their
adaptability to diverse domains. 2) They are not explainable enough
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to describe features extracted from spatial-temporal data. The pro-
posed model aspires to bridge these gaps, presenting a solution that
is streamlined and adaptable to diverse data types while ensuring
interpretability.

3 METHODOLOGY
3.1 Preliminaries and method overview
The STKG problem is defined as: An optimal STKG should accom-
modate the dynamic nature of data, adapting to changes in entities’
attributes influenced by time and location. Moreover, it is essential
for the framework to facilitate STKG completions post-construction
and predict forthcoming attributes.

Input representation The objective of the proposed STKG is
to attain universality. To this end, a uniform representation for
diverse types of spatial-temporal data is integrated to generalize
raw entities and relations types.

STKG embedding model The embedding model is designed
to encode entity attributes into vector representations and subse-
quently decode embeddings into numerical representations mirror-
ing the raw data. The embedding model facilitates KG completion
on existing STKG and enables the prediction of underlying or be-
tween entities.

Table 1 summarizes notations used in the paper as well as their
meanings.

Table 1: Notations and descriptions

Notation Description

e, r An entity and a relation
e, r Vector representation of e and r
𝑟𝑖, 𝑗 directional relation from i to j
E, R Entity set and relation set

𝑑 (𝑒𝑖 , 𝑒 𝑗 ) Distance between two entities
G A STKG
T The set of time

𝑒𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒 The embeddings of certain attribute of entities

Figure 2: The workflow of proposed framework

Figure 2 illustrates the general workflow of the framework. Upon
acquiring spatial-temporal data, pre-established rules are utilized

to extract and compute entities, relationships, and facts, thereby
constructing STKG while ensuring limited entity types and rela-
tionship types. Subsequently, a new embedding model is raised to
vectorize the features of entities, enabling the utilization of the
STKG in downstream tasks. This streamlined process facilitates
a more efficient and effective application of knowledge graphs in
real-world scenarios, able to be used for inference with enhanced
speed. Finally, the underlying patterns and insights captured by
the STKG are interpreted based on its structure, making the whole
model explainable.

3.2 Knowledge Graph Construction
3.2.1 Definition of STKG. The spatial-temporal knowledge graph
is defined as graphs G = (E, R, T, F ), where E, as table 1 shows, is
entities that contains spatial-temporal attributes. R represent the set
of relation between entities. T describes how the temporal records
get divided. F is the set of facts mentioned in section 1. Specifically,
R and T in the knowledge graph define certain relation between
entities under certain time, which denotes facts. Facts under STKG
are seen as a quadruple (𝑒𝑖 , 𝑡, 𝑡 𝑗 , 𝑟 ).

3.2.2 Simplified STKG. Considering when entities like stores are
rigidly classified according to their business establishments, as ex-
emplified by the 6-digit North American Industry Classification Sys-
tem (NAICS) code. The strict categorization can lead to an excessive
fragmentation of entity types. Also, the dynamics of relationships
between entities can vary significantly based on spatial and tem-
poral factors. Two entities, even if their spatial distances are fixed,
might have totally inverted relations at different times. Moreover,
detailed numerical time and location are hard to be transferred as
distinct entities.

In light of these complexities, the simplified STKG aims to pro-
vide a more flexible and realistic representation of entities and their
relationships, establishing rules for the SSTKG as follows:

• Rule 1: Time and location are not treated as independent
entities. Instead, they are integrated as attributes inherent
and between entities, represented as part of entity and
relation embeddings.

• Rule 2. The model prioritizes a reduction in the number of
entity types, embedding classification data directly within
the entity. This not only simplifies the graph structure but
also facilitates more efficient and direct retrievals of classi-
fication information from the entity embeddings.

• Rule 3. Numerical representations are adopted to directly
articulate the relationship between two entities. Under this
paradigm, the association between entities is conceptual-
ized as a continuous variable termed “influence”.Within this
framework, any pair of entities can exhibit a relationship
that is fluid across both temporal and spatial dimensions

• Rule 4: Relationships between entities that are quantita-
tively negligible are omitted, ensuring focus on significant
interactions and reducing noise within the graph.

Leveraging this SSTKG framework, entities are directly extracted
from structured data. The process of relation extraction is thus trans-
formed into “relation computation”, or “influence computation”,
while fact still be seen as the quadruple (𝑒𝑖 , 𝑡, 𝑡 𝑗 , 𝑟 ).
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3.2.3 Algorithm for constructing SSTKG. The detailed process of
constructing the SSTKG is elucidated according to 3.2.2. The tempo-
ral records for an entity are viewed as The result of related entities
applying influence plus itself’s basic record, which is:

𝑝𝑒0 ∗ 𝑅𝑒𝑐𝑜𝑟𝑑𝑒0 (𝑡) = Σ𝑛𝑖=1𝐼 (𝑒𝑖 ,𝑒0 )𝑅𝑒𝑐𝑜𝑟𝑑𝑒𝑖 (𝑡) (1)
Fitting Equation (1) is seen as a regression process, where 1-p

is seen as a parameter quantifying the self-influence of an entity,
providing a measure of how much an entity’s characteristics con-
tribute to its own behavior or status within the knowledge graph.
While temporal variable t represents a time slot, the integration of
temporal data and spatial relationships facilitates the computation
of a relation “weight”:

𝑊(𝑒𝑖 ,𝑒0 ) =
𝑂𝑣𝑒𝑟𝑎𝑙𝑙𝑅𝑒𝑐𝑜𝑟𝑑 (𝑒𝑖 )
𝑂𝑣𝑒𝑟𝑎𝑙𝑙𝑅𝑒𝑐𝑜𝑟𝑑 (𝑒0)

∗ 𝑙𝑜𝑔(1+
Σ𝑛
𝑗=𝑖

𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 (𝑒 𝑗 , 𝑒0)
𝑛 ∗ 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 (𝑒𝑖 , 𝑒0)

) (2)

𝑊(𝑒𝑖 ,𝑒0 ) , using overall record and distance between two entities,
is seen as a ratio of properties of 𝑒𝑖 to 𝑒0 Then the p in Equation (1)
is counted as:

𝑝𝑒0 =
Σ𝑖𝑊(𝑒𝑖 ,𝑒0 )
Σ𝑘,𝑗𝑊(𝑒𝑘 ,𝑒 𝑗 )

(3)

Then the influence that entity 𝑒𝑖 may apply on 𝑒 during time slot
t is seen as:

𝐼 (𝑒𝑖 ,𝑒0 ) = 𝑟𝑒𝑔𝑟𝑒𝑠𝑠𝑖𝑜𝑛𝐹𝑎𝑐𝑡𝑜𝑟 ∗𝑊(𝑒𝑖 ,𝑒0 ) (4)
Algorithm 1 shows the pseudocode for constructing SSTKG,

Algorithm 1 Constructing a SSTKG using time-series records data
Require: Entity 𝐸, Location 𝐿, time-series records 𝑇𝑆 , distance

threshold 𝐷
Ensure: Quadratic relation set 𝑅
1: for 𝑒 ∈ 𝐸 do
2: filtering 𝐸0 ⊆ 𝐸 where
3: for all 𝑒𝑖 ∈ 𝐸0 do
4: if Distance(𝑒, 𝑒𝑖 ) ≤ 𝐷 then
5: end if
6: end for
7: for 𝑒𝑖 ∈ 𝐸0 do
8: 𝑊(𝑒𝑖 ,𝑒 ) ← Compute weight using ((2))
9: end for
10: 𝑝𝑒 ← Compute 𝑝 using ((3))
11: 𝑖𝑛𝑓 𝑙𝑢𝑒𝑛𝑐𝑒 (𝐸0,𝑒 ) ← Compute influence using (1)
12: end for

In determining the “influence”, only the spatial-temporal infor-
mation of entities is considered. Attributes of entities, such as cate-
gories, remain unaddressed. Such an omission in SSTKG construc-
tion arises from potential complexities in the data; for instance, the
prevalence of numerous categories as seen with the NAICS code
shown in Section 3.2. On the other hand, some data is hard to fit
entities in specific categories, like traffic volume data. Hence, these
data are integrated into KG embedding, as elaborated in Section
3.3.

3.3 Embedding Model
One entity’s temporal data record as well as its spatial location is
assumed to influence other entities’ temporal records. While the nu-
merical “influence” is seen as a relation, the embedding model aims
to map attributes of entities and relations into low-dimensional
vectors. Embeddings generated by the model are further imple-
mented into downstream work. Specifically, the embeddings are
categorized into 3 boxes:

3.3.1 Static Embedding. This component encapsulates the static
attributes of an entity, yielding a representation that remains invari-
ant over time. Static attributes are left when calculating “influence”.
However, in the computation of the static embedding, these at-
tributes that were previously set aside are reintegrated. Apart from
categorical attributes, a summary of the entity’s comprehensive
spatial-temporal data is integrated into the static embedding. Met-
rics such as average sales volume or average traffic flow are included
to represent the “magnitude” or “scale” of the entity. Equation (5)
shows the formation of static embedding, where 𝜙 manages to
regularize overall records into a smaller range.

𝑒𝑖_𝑠𝑡𝑎𝑡𝑖𝑐 = 𝑒𝑖_𝑐𝑎𝑡𝑒𝑔𝑜𝑟𝑦 ∗ 𝜙 (𝑜𝑣𝑒𝑟𝑎𝑙𝑙_𝑟𝑒𝑐𝑜𝑟𝑑𝑠) (5)

3.3.2 Dynamic Embedding. Dynamic embedding contains direc-
tions of entity relationships, formed by two subsets: out-embedding
and in-embedding

Out embedding signifies the potential influence an entity may
impart upon its linked entities. It is configured as the dynamic
embedding representing the “influence level” of the entity itself,
disregarding spatial relationships with other entities. The computa-
tion of the out embedding is shown in Equation (6), encompassing
concatenation of the static embedding with its temporal records.

𝑒𝑡𝑖_𝑜𝑢𝑡 = 𝜓 (𝑒𝑖_𝑠𝑡𝑎𝑡𝑖𝑐 , 𝑒𝑡𝑖_𝑟𝑒𝑐𝑜𝑟𝑑𝑠 ) (6)
In Embedding quantifies the influence that an entity receives

from its associated entities, reflecting the cumulative impact of
these relationships on the entity. Analogously, in the formation
of the SSTKG, the embedding is viewed as an aggregate of the
entity’s inherent influence and the influences exerted by its asso-
ciated entities. Shown in Equation (8), p is the weight shown in
Equation (3).

𝑝𝑖 ∗ 𝑒𝑡𝑖_𝑜𝑢𝑡 = 𝑒𝑡𝑖_𝑖𝑛 (7)

eti_in = Σ 𝑗𝐹 (𝐼𝑛𝑓 𝑙𝑢𝑒𝑛𝑐𝑒 𝑗 ∗ etj_out) (8)
On vector space which is:

eti_in = Σ 𝑗 (𝐼𝑛𝑓 𝑙𝑢𝑒𝑛𝑐𝑒 𝑗 ∗ etj_record + ej_static) (9)

3.3.3 Embedding Training Algorithm. The output of Equation (8)
in the embedding model is not directly ascertainable, since after
adding the influence, out-embedding needs to be trained to fit the
equation, which leads to modification in static embedding. The
static embedding and out-embeddings are used as input, optimized
embeddings are obtained after training.

Let 𝐸0 represent a set of out embeddings of entities that have
potential relations, according to SSTKG, with entity 𝑒0, while set 𝑅
denotes the initial influence of entities in 𝐸0 as (1*n) vector to 𝑒0.
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Table 2: Time cost for training SSTKG on Spend-Ohio dataset

entity number time records (day) average time(s)

1000 30 347.7
30000 30 13087.3

Given a training tuple x = (𝑒0, R, 𝐸0, t), the score function is defined
as:

𝑓𝑝1 (𝑥) = 𝑓1 (𝑒0, 𝑅, 𝐸0, 𝑡) = | |𝑝𝑒0 ∗ 𝑒𝑡0_𝑜𝑢𝑡 − 𝑒
𝑡
0_𝑖𝑛 | |

2
2 (10)

Equation (10) defined a score as how precise one entity is influ-
enced by related entities. Meanwhile, valid relations and embed-
ding sets are used to obtain a lower score of 𝑓𝑆𝑆𝑇𝐾𝐺 , then the first
loss function is defined as:

𝑙𝑒𝑚𝑏 (𝑥) = 𝑙𝑒𝑚𝑏 (𝑒0, 𝑅, 𝐸0, 𝑡) = −Σ𝑖𝑙𝑜𝑔𝜎 (𝑓𝑝1 (𝑒0, 𝑅𝑖 , 𝐸0, 𝑡) − 𝑓𝑝1 (𝑥))
(11)

Embedding 𝑒𝑖𝑜𝑢𝑡 is replaced in 𝑓𝑝2 (𝑒0, 𝑅𝑖 , 𝐸0, 𝑡) with another ran-
dom entity that has similar overall selling records in the whole
dataset and without relations with 𝑒𝑖 , using the same Influence
value.

An alternate score function is defined for the loss of entity influ-
ence values. For an entity 𝑒0, its influence on the SSTKG, which is
related to entities 𝐸0 that connect with 𝑒0, 𝑅 now denotes after opti-
mizing out-embeddings, the influence of 𝑒0 to entities in 𝐸0. Given
a training tuple x = (𝑒0, R, 𝐸0, t), the score function is articulated as:

𝑓𝑝2 (𝑥) = 𝑓𝑝2 (𝑒0, 𝑅, 𝐸0, 𝑡) = | |𝑝𝑒0 ∗ 𝑒𝑡0_𝑜𝑢𝑡 − Σ𝑖𝑅𝑖 ∗ 𝑒
𝑡
𝑖_𝑜𝑢𝑡 | |

2
2 (12)

𝑙𝑖𝑛𝑓 (𝑥) = 𝑙𝑖𝑛𝑓 (𝑒0, 𝑅, 𝐸0, 𝑡) = −Σ𝑖𝑙𝑜𝑔𝜎 (𝑓𝑝2 (𝑒0, 𝑅, 𝐸𝑖0, 𝑡) − 𝑓𝑝2 (𝑥))
(13)

In 𝑓𝑆𝑆𝑇𝐾𝐺 (𝑒0, 𝑅𝑖 , 𝐸0, 𝑡) one related entity’s influence is replaced
to average. The second loss function denotes the loss of specific
“influence” value, which is the relations.

The process of learning improved embeddings and influences
are shown as pseudocode in Algorithm 2.

4 MODEL PROPERTIES
4.1 Effciency and Speed
The proposed model is designed with computational efficiency in
mind. It requires less computational resources compared to tradi-
tional models, thereby enabling faster construction of the STKG.
This feature is particularly beneficial in scenarios where rapid
knowledge graph construction is crucial. Here is the test result
of constructing and optimizing an SSTKG using the Spend-Ohio
dataset mentioned in Section 5.1, with 100 training epochs.

4.2 Inference Patterns
By using the embedding model in Section 3.3, a certain entity’s tem-
poral record is predicted using its related entities’ records. Based on
Equation (8), trained static embedding of related entities and their
current temporal records are used to compute the target entity’s
out-embedding. Therefore, final temporal records are decoded from

Algorithm 2 Training entity embeddings and relations for SSTKG
Require: 𝑁𝑒𝑝𝑜𝑐ℎ𝐼𝑛𝑓 , 𝑁𝑒𝑝𝑜𝑐ℎ𝐸𝑚𝑏 , SSTKG𝐺 with initialized 𝑒𝑠𝑡𝑎𝑡𝑖𝑐 ,

𝑒𝑜𝑢𝑡 , influence
Ensure: SSTKG with trained 𝑒𝑜𝑢𝑡 , influence
1: for 𝑖 = 1 to 𝑁𝑒𝑝𝑜𝑐ℎ𝐼𝑛𝑓 do
2: 𝑆1 ← 𝐺

3: while 𝑆1 ≠ ∅ do
4: Sample batch 𝑆𝑏𝑎𝑡𝑐ℎ ⊂ 𝑆1
5: 𝑆1 ← 𝑆1 \ 𝑆𝑏𝑎𝑡𝑐ℎ
6: 𝐿1 ← 0
7: for 𝑠 ∈ 𝑆𝑏𝑎𝑡𝑐ℎ do
8: 𝑓𝑝1 (𝑠) ← compute score using (10)
9: 𝑙𝑖𝑛𝑓 (𝑠) ← compute loss using (11)
10: 𝐿1 ← 𝐿1 + 𝑙𝑖𝑛𝑓 (𝑠)
11: end for
12: Update out embeddings using ∇𝐿1
13: end while
14: end for
15: for 𝑖 = 1 to 𝑁𝑒𝑝𝑜𝑐ℎ𝐸𝑚𝑏 do
16: 𝑆2 ← 𝐺

17: while 𝑆2 ≠ ∅ do
18: Sample batch 𝑆𝑏𝑎𝑡𝑐ℎ ⊂ 𝑆2
19: 𝑆2 ← 𝑆2 \ 𝑆𝑏𝑎𝑡𝑐ℎ
20: 𝐿2 ← 0
21: for 𝑠 ∈ 𝑆𝑏𝑎𝑡𝑐ℎ do
22: 𝑓𝑝2 (𝑠) ← compute score using (12)
23: 𝑙𝑒𝑚𝑏 (𝑠) ← compute loss using (13)
24: 𝐿2 ← 𝐿2 + 𝑙𝑒𝑚𝑏 (𝑠)
25: end for
26: Update influence in relations using ∇𝐿2
27: end while
28: end for

out embedding as well as the static embedding, since for the trained
embeddings, influence∈ 𝑅 are obtained, while having related enti-
ties’ records on time slot 𝑡1, the out/in embeddings for 𝑒0 is inferred
based on Equation (8) and (9). Subsequently, the referred 𝑒𝑡

𝑖_𝑟𝑒𝑐𝑜𝑟𝑑𝑠
is decoded in accordance with Equation (6).

4.3 Interpretability
Another significant advantage of SSTKG is its interpretability. The
simplified structure and the numerical representation of relation-
ships make it easier to understand the underlying patterns and
insights captured by the STKG. This interpretability enhances the
model’s usability, especially in applications where understanding
the reasoning behind predictions is important.

Embedding directly reflects the spatial-temporal properties of
each entity based on backward induction. The whole fitting and
training process, to simply explain, is a process of finding proper
embeddings that incorporate an entity’s spatial-temporal data,
such that the embedding (out-embedding), is viewed as the re-
sult of the combined effects of related entities’ embeddings(out-
embedding), during which the unidirectional relation between two
entities serves as the parameter of fitting the whole equation. First,
an expansion of the Equation (8) is resented:
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𝑝𝑖 ∗ 𝑒𝑡𝑖_𝑖𝑛 = Σ 𝑗𝜓 (𝑒𝑖_𝑠𝑡𝑎𝑡𝑖𝑐 , 𝑒𝑡𝑖_𝑟𝑒𝑐𝑜𝑟𝑑𝑠 ) ∗ 𝐼𝑛𝑓 𝑙𝑢𝑒𝑛𝑐𝑒 𝑗,𝑖 (14)
Which could be transferred as

𝑝𝑖 ∗ 𝑒𝑡𝑖_𝑖𝑛 = Σ 𝑗𝑒 𝑗_𝑠𝑡𝑎𝑡𝑖𝑐 ∗ Ω(𝑒𝑡𝑖_𝑟𝑒𝑐𝑜𝑟𝑑𝑠 , 𝐼𝑛𝑓 𝑙𝑢𝑒𝑛𝑐𝑒 𝑗,𝑖 ) (15)

Clearly, Ω after this transformation, served as connecting pa-
rameters of out-embeddings (the temporal record) to the influence
variables: it’s a temporal relation of entity 𝑗 to 𝑖 , which is further
explained as entity 𝑗 ’s influence to 𝑖 under time 𝑡 , also it can
serve as generating an embedding of temporal relation, which is
simplified as:

𝑝𝑖 · 𝑒𝑡𝑖 =
∑︁
𝑗

𝑒𝑡𝑗 · 𝑖𝑛𝑓 𝑙𝑢𝑒𝑛𝑐𝑒 𝑗,𝑖 =
∑︁
𝑗

𝑒 𝑗_𝑠𝑡𝑎𝑡𝑖𝑐 · 𝑟𝑡𝑗,𝑖 (16)

Thus, from the final result, training the embedding serves to
refine the processes undertaken during SSTKG construction. it
optimizes the whole SSTKG, forming the exact relationship using
both entities’ categorical, spatial, and temporal attributes.

5 EXPERIMENTS
5.1 Datasets
Two datasets are used to evaluate the performance of SSTKG. The
first one is Spend-Ohio data from January 2022 to April 2023, col-
lected by Safegraph, containing many Ohio stores’ geographical
and categorical information, as well as the selling records counted
by day. The second one is Traffic Volume of Transport for New
South Wales (TFNSW) data, which encompasses the traffic volume
from a collection of permanent traffic counters and classifiers in
Sydney, with data collated since 2008 on an hourly basis. Loca-
tions of these counters have been further categorized based on their
respective suburbs. Table 3 presents the size of the two datasets.
Notably, the ’distance’ attribute represents the distance threshold
employed during SSTKG construction as per Algorithm 1."

Table 3: Quantities of data used in datasets

Spend-Ohio dataset

data entities distance relations records

2022-3 39188 2km 2941374 1014976
2022-4 39461 2km 2970417 1055901
2022-5 39654 2km 3028519 1083649
2022-6 39931 2km 3062957 1098972
2023-1 41200 2km 3200018 1277200
2023-2 41138 2km 3194903 1151864
2023-3 42932 2km 3314523 1300893

TFNSW dataset

data entities distance relations records

2015 67 4km 496 1045200
2016 69 4km 511 1212192

Specifically, the attributes used in processed Spend-Ohio and
TFNSW data are shown in Table 4.

Table 4: Attributes for constructing SSTKG in datasets

Spend-Ohio dataset

attribute detail explanation

placekey a tuple representing entity location
NAICE code 6-digit code reflecting category

temporal records selling records collected day by day
overall records overall records calculated by past results

TFNSW dataset

attribute detail explanation

location counters’ locations
suburb the suburb where counters are located

temporal records traffic volume collected by hour
overall records overall traffic volume aggregated to

days/weeks

Figure 3: Part of checkpoints chosen in TFNSW dataset

5.2 Evaluation
The accuracy rate for a prediction ACCn is defined as, if the pre-
dicted value is judged as correct, then:

𝑟𝑝𝑟𝑒𝑑𝑖𝑐𝑡 ∈ (𝑟𝑟𝑒𝑎𝑙 (1 − 𝑛%), 𝑟𝑟𝑒𝑎𝑙 (1 + 𝑛%)) (17)

When evaluating, apart from accuracy, RMS and RSD are also used
for evaluation and defined as:

𝑅𝑀𝑆 =

√︄
Σ𝑛
𝑖=1 (𝑜𝑖 − 𝑝𝑖 )2

Σ𝑛
𝑖=1 (𝑜𝑖 )2

(18)

𝑅𝑆𝐷 =

√︄
Σ𝑛
𝑖=1 (𝑜𝑖 − 𝑝𝑖 )2

𝑁
(19)

Apart from our model (SSTKG), other models are used for com-
parison: (1) Support Vector Regression Machine(SVR), which is
based on support vector machine. (2)Long Short Term Memory
(LSTM) network that models the sequence of temporal records. (3)
TGCN, the combination of graph convolutional network(GCN) and
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Table 5: Test results for Spend-Ohio datasets

Spend-Ohio dataset: 2022.3 - 2022.6
method acc@10 acc@15 RMS RSD

SVR 0.5621 0.6528 0.9872 158.9
LSTM 0.5984 0.7025 0.9031 135.7
GRU 0.7057 0.8544 0.607 97.3
T-GCN 0.7489 0.8386 0.651 103.5
ST-GCN 0.7902 0.8945 0.463 87.9
SSTKG 0.8016 0.8922 0.452 86.1

Spend-Ohio dataset: 2023.1 - 2023.3
method acc@10 acc@15 RMS RSD

SVR 0.6015 0.7325 0.9751 144.3
LSTM 0.6394 0.7672 0.8865 127.2
GRU 0.7359 0.8897 0.528 88.3
T-GCN 0.7826 0.8597 0.562 91.3
ST-GCN 0.8435 0.9291 0.399 76.8
SSTKG 0.8374 0.9289 0.396 71.7

Table 6: Test results for TFNSW datasets

TFNSW dataset: hourly prediction
method acc@10 acc@15 RMS RSD

SVR 0.701 0.7583 0.6737 129.8
LSTM 0.7639 0.8072 0.5615 113.4
GRU 0.7825 0.8404 0.475 107.8
T-GCN 0.7973 0.8345 0.497 105.2
ST-GCN 0.8137 0.8641 0.429 96.9
SSTKG 0.8095 0.8692 0.4245 95.7

TFNSW dataset: daily prediction
method acc@10 acc@15 RMS RSD

SVR 0.7914 0.8215 0.5047 90.1
LSTM 0.8145 0.8374 0.459 87.2
GRU 0.8609 0.9285 0.3867 63.7
T-GCN 0.8745 0.948 0.3641 67.5
ST-GCN 0.8991 0.9625 0.3583 52.8
SSTKG 0.9051 0.9571 0.3488 54.3

gated recurrent unit(GRU), while GCN can learn spatial charac-
teristics of nodes, and GRU learns temporal features of historical
temporal records. (4) STGCN [30] which uses 2 TCNs and 1 GCN
and could serially capture spatial-temporal dependencies in the
data.

5.3 Case study
In order to validate the interpretability of the proposed model,
a case study was conducted using the Spend-Ohio data in 2023-
1. Specific stores served as exemplars. Following the knowledge
graph construction and training of the influences and embeddings,
the distance thresholds were adjusted to modify the quantity of
entities deemed related in the knowledge graph. By repeating the
construction process with these variations, differences in outcomes
aim to elucidate the model’s explainability.

6 RESULT
6.1 Experiment Results
6.1.1 Safegraph: Spend-Ohio dataset. In Spend-Ohio dataset, the
first 25 days are used to construct and train the SSTKG for monthly
data, while the rest data is used for testing(which is 6 days, 3 days,
and 6 days in the three subsets). To help compare and reduce the
effect of null values, when calculating the RMS and RSD, the score’s
selling records is normalized to a range of (0,20). The results are
shown in Table 5.

6.1.2 TFNSW dataset. In TFNSW data, two separate experiments
were done. The first one used the hourly data collected 24/7. 40
weeks’ data were used to train, and then a 24-hour prediction in the
following days was generated. In the second experiment, hourly
records were added to daily ones, then the daily records were used
to train. It is similar to the scale in the Spend-Ohio dataset. Similarly,
the traffic volumewas also normalized to (0,20). The accuracy result
(acc10 and acc15) and the RMS and RSD for normalized data are
shown in Table 6:

6.2 Result analysis
From the results, the prediction of T-GCN, ST-GCN, and SSTKG
are much better than SVR and LSTM. This is because SVR and
LSTM only focus on temporal record correlations while failing
to consider spatial relations. SSTKG, as well as T-GCN and ST-
GCN, model both spatial and temporal characteristics to ensure the
data effectiveness. SSTKG is better than T-GCN. Compared with
ST-GCN, SSTKG performs better on acc15 and RSD on the Spend-
Ohio dataset, while being better in acc15, RMS, and RSD for hourly
prediction, in acc10 and RMS for daily prediction in the TFNSW
dataset.

6.3 Interpretability: case study
This section presents the predicted result for a single entity in the
Spend-Ohio dataset, in order to demonstrate the interpretability of
SSTKG. The selected sample entity possesses attributes outlined in
Table 7, with certain values masked to maintain privacy.

Table 7: Attributes of sample entities

attribute value

placekey 225-222@63j-xxx-xxx
NAICS 722511
Type Full type service restaurant

For this entity, distances of nearby entities are shown in Figure
4. There are 36 entities in SSTKG that have influence with this
shop. Figure 5 shows the influence values that are calculated and
extracted from SSTKG.

From the above results, generally, entities close to the sample are
more likely to have larger influence values, whereas those entities
far away from samples have nearly no influence.

By integrating the above influences with trained embeddings,
the sample’s selling is predicted based on Equation (6), (8) and (9)

7



813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

WWW ’24, MAY 13 - 17, 2024, Singapore Anon.

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

Table 8: Comparison of Real values with Predicted and Adjusted Data

Day Real values Former Predicted data(𝑅0) Remove entity A(𝑅𝑎) Remove entity B(𝑅𝑏 ) Remove entities C(𝑅𝑐 )
Day 1 263.95 277.47 257.44 289.69 281.82
Day 2 495.81 530.09 517.74 539.26 528.27
Day 3 257.85 239.37 228.33 245.70 242.62
Day 4 352.82 372.83 352.14 381.54 373.38
Day 5 196.54 188.06 172.63 191.41 190.35
Day 6 409.67 435.99 413.76 443.57 434.63
Day 7 200.7 189.11 180.15 198.97 185.34

(first calculate embeddings then decode records). However, if some
related entities were masked, the predicted result would change,
like entities A, B, and group C shown in Figure 5, while entity A
has a positive influence, B has a negative influence, and group C
has barely non-influence. Table 8 shows the change of prediction
after masking entities A, B, and group C.

Figure 4: Related entities’ distances with sample shop

Figure 5: Related entities’ influence to sample shop

A hypothesis test is set to show the difference between predicted
data. While the former predicted data is 𝑅0, predicted data after
removing A, B and C are 𝑅𝑎, 𝑅𝑏 and 𝑅𝑐 , the null hypothesis are:
𝐻0𝑎 : 𝑅0 < 𝑅𝑎 ; 𝐻0𝑏 : 𝑅0 > 𝑅𝑏 ; 𝐻0𝑐 : 𝑅0! = 𝑅𝑐 , while alternative
hypothesis are 𝐻1𝑎 : 𝑅0 > 𝑅𝑎 ; 𝐻1𝑏 : 𝑅0 < 𝑅𝑏 ; 𝐻1𝑐 : 𝑅0 = 𝑅𝑐 . Table
9 shows the p-value after t-test under 95% confidence level:

For all three null hypotheses, the p-value of t-test is greater than
0.05, thus are all rejected, drawing the conclusion that, by masking
entity A, the predicted value for sample’s selling decreased(𝑅0 >

𝑅𝑎), while by masking B the predicted value increased (𝑅0 > 𝑅𝑏 )

– those who have positive influence on SSTKG would increase
prediction, which means “prosperity in one shop leads to prosperity
to another”, and vice versa. On the other hand, in group C, where
entities have small influence values, the prediction value changed
a little after masking them (more than 95% confidence to confirm
that 𝑅0 = 𝑅𝑐 ).

Table 9: Result for t-test

hypothesis p-value result

𝐻0𝑎 : 𝑅0 < 𝑅𝑎 0.9998975 reject 𝐻0𝑎 , accept 𝐻1𝑎
𝐻0𝑏 : 𝑅0 > 𝑅𝑏 0.999873 reject 𝐻0𝑏 , accept 𝐻1𝑏
𝐻0𝑐 : 𝑅0! = 𝑅𝑐 0.6717662 reject 𝐻0𝑐 , accept 𝐻1𝑐

7 CONCLUSIONS AND FUTUREWORK
In this paper, a new knowledge graph framework is proposed, i.e.,
simple spatial-temporal knowledge graph (SSTKG), which lever-
ages 3 kinds of embeddings (static, temporal in and out embeddings)
to model entities, as well as using “influence” to model the spatial-
temporal relations between entities. A comprehensive evaluation
using real-world data has underscored the efficacy of the proposed
SSTKG in prediction tasks and highlighted its interpretability. Fu-
ture endeavors will focus on refining the SSTKG construction algo-
rithm, moving beyond distance thresholds to embrace node similar-
ity without spatial constraints. Moreover, the potential application
of SSTKG in recommendation tasks will also be explored.

8 ETHICAL USE OF DATA
The Spend-Ohio dataset from SafeGraph was utilized for this study.
While it provides granular transaction data, all transactions and
associated credit or debit card details have undergone rigorous
anonymization to safeguard consumer privacy. Specific details
about the merchants (like location and brand) within the Spend-
Ohio dataset weremasked from the study. All information regarding
merchants and consumers was handled with strict confidentiality,
ensuring that no privacy boundaries were breached. No credit in-
formation of merchants and consumers is involved in this paper.

Additionally, the TFNSW dataset used in the experiment is a
publicly available dataset that contains neither personal nor private
details. The dataset only incorporates generic traffic flow with-
out identifiable details, without specific identifiable details such as
license plate numbers or exact timestamps of certain car passes.
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