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Abstract

Large Language Models (LLMs) are revolutionizing data science workflows through au-
tomation and enhanced analytical capabilities, yet the effectiveness of these LLM-based
agents varies significantly across different dataset structures and domain contexts. In this
dataset-centric survey, we systematically examine how LLM-based data agents adapt to
structured, semi-structured, and unstructured data, emphasizing their design considerations
and operational capabilities. We introduce a hierarchical taxonomy linking agent func-
tionality—ranging from data collection, storage, and preprocessing to analytical tasks like
modeling, evaluation, interpretation, decision-making, and visualization—to specific dataset
modalities and application domains. By conducting a detailed comparative analysis of over
50 recent LLM-based data agents, we reveal critical insights into how dataset characteristics
influence agent architectures, planning strategies, multi-agent interactions, self-correction
mechanisms, and specialized tool integration. Furthermore, we identify prominent gaps in
current benchmark frameworks, highlighting the need for more comprehensive, standard-
ized evaluation methods to assess robustness and generalizability. Finally, we outline future
research directions that stress adaptive dataset-aware agent design, advanced multi-agent
collaboration, domain-specific customization, and enhanced interpretability and real-time
responsiveness, aiming to build more robust, adaptable, and transparent data science au-
tomation tools.

1 Introduction

The rapid advancements in Large Language Models (LLMs) have led to the emergence of LLM-based data
agents, which promise to transform data analysis workflows by automating complex and time-consuming
tasks. These agents have demonstrated capabilities in data exploration, preprocessing, visualization, model
training, and even full pipeline orchestration. As a result, they are increasingly used to support analysts and
domain experts across diverse fields, including finance, healthcare, education, and engineering. However,
despite growing adoption and continuous innovation, there remains a critical gap in our understanding of
how the design and performance of these agents vary depending on the characteristics of the datasets they
interact with.

While a number of surveys have explored the design and functionality of LLM-based systems (Sun et al.,
2024b; Lu et al., 2025), most center their analysis on internal mechanisms, such as prompting strategies, tool
integration, reasoning capabilities, and interaction modes—without systematically considering how agents
are shaped by the structure or domain of the data they are meant to analyze. Yet, dataset characteristics such
as structure (e.g., tabular vs. document-based), domain specificity, noise levels, and scale can significantly
impact the requirements and success of LLM agents. For instance, agents designed for relational databases
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may require schema reasoning and SQL generation, while agents built for financial forecasting or medical
research must accommodate domain-specific terminology, regulatory constraints, and temporal patterns.
These distinctions are rarely made explicit in the literature, making it difficult to assess how well current
agents generalize across use cases.

This survey addresses this overlooked dimension by adopting a dataset-centric perspective. Rather than
grouping LLM agents solely by architectural or functional traits, we categorize them based on the datasets
they are evaluated on and the types of data they are designed to handle. We construct a taxonomy that
reflects both the data modality (structured, semi-structured, unstructured) and the domain context (e.g.,
scientific computing, enterprise analytics, healthcare), drawing on publicly available benchmarks and self-
collected datasets cited in recent literature. This allows us to analyze the interplay between dataset properties
and key agent design decisions, such as whether an agent adopts end-to-end automation versus modular
planning, supports multi-agent collaboration, or integrates specialized tools for code generation, visualization,
or database querying.

To guide this analysis, we introduce a two-layer framework. The first layer distinguishes between types of
input data—structured (e.g., CSV, relational databases), semi-structured (e.g., JSON, spreadsheets), and
unstructured (e.g., free-form documents or mixed text-visual inputs). The second layer maps agents to the
domain-specific contexts in which they are evaluated, providing insight into how task requirements in areas
like finance, biomedical analytics, or software engineering influence agent behavior. This structured view
reveals both the strengths and blind spots of existing LLM-based agents when applied to real-world data
workflows.

The scope of this survey is intentionally defined to enable a focused yet comprehensive analysis. We limit our
coverage to LLM-based agents explicitly designed for data science tasks, such as data wrangling, analysis,
and modeling, and that have been evaluated on identifiable datasets. This includes agents that operate in
natural language environments (e.g., system prompts or conversational interfaces), as well as those embedded
in programming notebooks, spreadsheets, or orchestration platforms. We exclude general-purpose LLM
applications, such as open-domain dialogue systems or instruction-tuned models not tied to specific data
analysis objectives. This scope ensures a grounded review that reflects both the practical utility and technical
limitations of existing systems. By centering the survey on datasets and their associated demands, we aim
to expose underexplored design considerations, inform benchmark development, and ultimately improve the
generalizability and reliability of LLM-based data agents.

Contributions. This survey presents a structured synthesis of recent LLM-based data agents, emphasizing
how they support end-to-end data science workflows across diverse dataset types and domains. Our main
contributions are as follows:

• We organize agents using a hierarchical taxonomy (Figure 2) that reflects their roles across data man-
agement (collection, storage, preprocessing) and data analysis (modeling, evaluation, interpretation,
decision making).

• We analyze four core analytical capabilities—data modeling, model evaluation, data interpretation,
and decision making—with case studies highlighting how agents adapt to structured and unstruc-
tured data in different application contexts.

• We review upstream data management processes, showing how agents automate data collection,
construct task-specific storage, and perform semantic preprocessing to support downstream tasks.

• We identify how dataset structure and domain specificity shape design choices, evaluation strategies,
and agent behavior, and outline challenges in benchmarking and generalization.

• We provide a comprehensive comparison of over 25 recent agents (Table 1), covering planning, tool
use, self-correction, interaction style, and evaluation datasets.

In the following sections, we summarize existing LLM-based agents designed for data analysis, highlighting
their evaluation datasets, methodologies, and frameworks. While these agents have demonstrated success
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Figure 1: This figure presents a structured taxonomy of the data ecosystem, segmented into three core
modules: Data Management, Data Analysis, and Data Visualization. Each module comprises semantically
aligned sub-processes, illustrated with distinct, color-coded icons. Data Management includes foundational
tasks like collection, storage, and pre-processing. Data Analysis captures the computational core, spanning
modeling, evaluation, and interpretability. Data Visualization focuses on insight communication through
charts, dashboards, and narratives. The taxonomy serves as both a conceptual framework and a practical
workflow guide for building intelligent, data-centric systems.

in automating data science workflows, their effectiveness is often dataset-dependent, and no standardized
framework exists for evaluating them across diverse datasets. Our survey addresses this by analyzing LLM-
based data agents from a dataset-aware perspective, exposing key limitations in current benchmarks and
methodologies.

2 Data Management

Data management consists of several critical stages that together form the foundation of modern data-centric
systems. These stages include data collection, data storage, and data preprocessing, where preprocessing
further encompasses data labeling and data cleaning. Each stage plays a vital role in transforming raw,
unstructured inputs into high-quality, structured data that can support downstream analytics and decision-
making. With the growing complexity and scale of real-world tasks, AI agents have increasingly been
employed to automate, accelerate, and enhance each stage of this pipeline.

2.1 Data Collection

Automating the collection of data has been widely studied and applied across various domains. These systems
range from simple web crawlers and scrapers to advanced AI-powered agents capable of navigating complex
web interfaces, formulating search queries, and extracting task-specific information.

Numerous models for open web information retrieval have been proposed (Etzioni et al., 2004; 2011; Kamp
et al., 2023), enabling systems to identify and retrieve relevant information in response to natural language
queries. These models are foundational for applications such as question answering, fact verification, and
report generation, where up-to-date and context-specific data is essential. As web content continues to grow
rapidly in both scale and diversity, developing effective retrieval methods that can locate accurate, timely,
and domain-relevant information remains a central focus in the field.
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Agent Name Type UI Planning Self-
Correcting

Multi-
Agent

Tool Integration Dataset(s)

Data-
Copilot Zhang
et al. (2023)

End-to-End System Linear
✓ ✗

Python, C++, Matlab Own(financial)

Spider2-V Cao
et al. (2024)

End-to-End OS-Based -
✓ ✗

BigQuery, dbt, Air-
byte, etc

494 tasks from data warehousing
to orchestration

Data Inter-
preter Hong et al.
(2024)

End-to-End CLI Hierarchical
✓ ✗

Python InfiAgent-DABench, MATH,
ML-Benchmark, own(Open-
ended task benchmark)

LAMBDA Sun
et al. (2024a)

Conversational System Basic I/O
✓ ✓

Python AIDS Clinical Trials Group
Study 175, NHANES, Breast
Cancer Wisconsin, Wine, Con-
crete Compressive Strength,
Combined Cycle Power Plant,
Abalone, Airfoil Self-Noise

Data Formulator
2 Wang et al.
(2024a)

Conversational System Basic I/O
✓ ✗

Vega-Lite CO2 and electricity

Jupybara Wang
et al. (2025)

Conversational IDE-based Linear
✓ ✓

Jupyter Notebook gender pay gap in Ireland

TableLLM Zhang
et al. (2024b)

Conversational Web-based Linear
✓ ✗

Python, SQL WikiTableQuestion (WikiTQ),
TAT-QA, FeTaQA and OTTQA

DS-Agent Guo
et al. (2024)

End-to-end CLI Linear
✓ ✓

30 representative data science
tasks

AutoKaggle Li
et al. (2024)

End-to-end CLI Linear
✓ ✓

Python eight Kaggle competitions, simi-
lar to DS-agent

CoddLLM Zhang
et al. (2025)

Conversational System Linear
✗ ✗

SQL AnalyticsMMLU, Table Selec-
tion, Text-to-SQL

GPT4-As-Data-
Analyst Cheng
et al. (2023b)

End-to-End System Basic I/O
✗ ✗

Python, SQL NvBench (Natural Language to
Visualization Tasks)

LEAP Hu et al.
(2025)

Conversational CLI Linear
✓ ✓

Python, SQL QUIET-ML (self-collected social
science research questions)

StructGPT Jiang
et al. (2023)

End-to-End System Linear
✗ ✗

SQL WebQuestionsSP, MetaQA,
WikiSQL, WTQ, TabFact

TAP4LLM Sui
et al. (2024)

End-to-End System Hierarchical
✗ ✗

SQL SQA, HybridQA, TabFact,
ToTTo, Spider

SheetCopilot Li
et al. (2023)

End-to-End IDE-based Hierarchical
✓ ✗

Web APIs Adapted tasks from https://
superuser.com/

Binder Cheng et al.
(2023c)

End-to-End System Hierarchical
✗ ✗

SQL, Web APIs WIKITQ, TABFACT

TroVE Wang et al.
(2024b)

End-to-End System Hierarchical
✗ ✗

SQL, Python TabMWP, WTQ, HiTab, GQA

TAG Biswal et al.
(2024)

End-to-End CLI Basic I/O
✗ ✗

SQL BIRD

Dater Ye et al.
(2023)

End-to-End System Hierarchical
✗ ✗

SQL TabFact, WikiTableQuestion,
FetaQA

WaitGPT Xie et al.
(2024)

Conversational Web-based Linear
✓ ✗

Python, Web APIs Corporate Compensation In-
sights; Flight Price Prediction;
Synthesized dataset

InsightPilot Ma
et al. (2023)

End-to-End System Hierarchical
✗ ✗

LLM, QuickInsight,
MetaInsight, XInsight

Student performance; Car sales

JarviX Liu et al.
(2023)

End-to-End Web-based Hierarchical
✗ ✗

LLM, AutoML, Whis-
per, Postgres, Elastic
Search

Solar cell manufacturing; LCD
factory data; Open-source tabu-
lar datasets

LLMDB Zhou et al.
(2024)

End-to-End System Hierarchical
✓ ✗

LLMs, vector
databases, domain-
specific models, LLM
agent

Query rewrite; database diagno-
sis; data analytics

MatPlotAgent Yang
et al. (2024b)

Conversational Web-based Linear
✓ ✗

Python, Matplotlib,
multi-modal LLMs

MatPlotBench; various scientific
datasets

HuggingGPT Shen
et al. (2024)

Conversational Web-based Hierarchical
✗ ✓

ChatGPT, Hugging
Face expert models

Multi-modal AI tasks (language,
vision, speech)

ChatGPT as Data
Scientist Hassan
et al. (2023)

Conversational System Hierarchical
✗ ✓

ChatGPT, Scikit-
Learn

User-provided datasets

AutoML-Agent Tri-
rat et al. (2024)

End-to-End System Hierarchical
✓ ✓

LLMs, retrieval-
augmented planning,
multi-stage verifica-
tion, plan decomposi-
tion

Seven downstream tasks; four-
teen datasets

UFO Zhang et al.
(2024a)

End-to-End OS-Based Hierarchical
✓ ✓

GPT-Vision, pywin-
auto, Windows UI
Automation

WindowsBench

DocETL Shankar
et al. (2024)

End-to-End CLI Hierarchical
✓ ✗

YAML, LLMs Four unstructured document
analysis tasks (e.g., police
records, legal contracts)

Table 1: Comparison of LLM-based data agents for data science and analysis grouped by evaluation dataset.
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In parallel, a wide range of web search tools (OpenAI, 2024b) and autonomous agents (He et al., 2024; Google,
2024; OpenAI, 2024a; Yang et al., 2023) have emerged to support complex information-seeking tasks. These
tools form the core infrastructure that enables AI systems to interact with and retrieve information from the
open web in a scalable and task-aware manner. Modern web search tools not only interface with APIs or
search engines, but also incorporate capabilities such as dynamic query rewriting, result filtering, multi-hop
reasoning, and evidence consolidation. They serve as the foundation upon which more sophisticated agents
are built, allowing those agents to operate effectively in real-world scenarios where relevant information may
be distributed across multiple sources, hidden behind interaction-heavy interfaces, or continually evolving.

For example, the Gemini Deep Research platform (Google, 2024) is capable of browsing the web to gather in-
formation and generate structured research reports, leveraging deep integration with Google’s search ecosys-
tem. It combines real-time web exploration with summarization and structured organization of content,
allowing users to receive in-depth research briefings with citations and source tracking. Gemini Deep Re-
search is designed to support a wide range of analytical workflows, from policy monitoring and academic
literature reviews to competitive intelligence. It adapts its behavior based on task specifications, retriev-
ing up-to-date content and synthesizing it into a format that resembles professional-grade research output.
The system benefits from Google’s infrastructure for indexing, ranking, and understanding web documents,
giving it access to comprehensive and well-ranked sources while maintaining relevance to the task context.

Similarly, the recently released OpenAI Research Agent (OpenAI, 2024a) demonstrates multi-step planning
and adaptive web search behavior, enabling it to retrieve, synthesize, and write complete reports in response
to user-defined analytical tasks. The agent can decompose high-level objectives into a series of subgoals, each
linked to targeted web searches, followed by content distillation, evidence alignment, and structured output
generation. It supports reasoning over diverse document types, including news articles, blog posts, academic
publications, and government websites. The OpenAI Research Agent can also engage in follow-up querying
based on partial information and reconcile conflicting claims by returning to the source documents. Its
design reflects a growing emphasis on grounded decision-making, as it explicitly cites supporting evidence
and explains how retrieved content relates to the query. This makes it particularly suited for research
support, claim validation, and high-stakes knowledge synthesis.

WebVoyager (He et al., 2024) is another notable example, which takes a more interaction-oriented approach,
navigating through full web interfaces and emulating human-like browsing behaviors to extract task-relevant
content. Unlike systems that rely primarily on API-based search or text retrieval, WebVoyager directly
interacts with HTML-based environments, simulating cursor clicks, text inputs, and page transitions. It
learns exploration policies through reinforcement learning and imitation learning, enabling it to handle
diverse web layouts and dynamic content. This design makes it suitable for tasks that require interacting with
forms, clicking through multi-layered menus, or extracting data from sources that do not expose structured
APIs. WebVoyager also incorporates reward functions aligned with task success metrics, such as accuracy
of extracted information or efficiency of navigation, which guide its training and refinement. Its human-like
interaction capabilities open the door to more flexible and generalizable web agents that can operate across
arbitrary websites without prior customization.

This process of retrieving data from the open web has become a critical foundation for enabling automated
decision making, knowledge discovery, and research assistance in dynamic, real-world contexts.

2.2 Data Storage

Automating the storage of information plays a central role in enabling end-to-end intelligent systems, par-
ticularly in tasks that require multi-step reasoning or long-term context retention. One effective approach
to this is the construction of task-driven databases, where structured storage is dynamically created and
updated based on the specific information needs of a given task.

A widely adopted framework that supports this capability is Retrieval-Augmented Generation (RAG) (Lewis
et al., 2021), which integrates knowledge retrieval with language generation to improve response quality. A
knowledge base (Wang et al., 2023b; Liška et al., 2022; Kasai et al., 2024) is a critical component of RAG
systems, providing a structured repository for storing and accessing previously retrieved content. While many
RAG models retrieve unstructured text passages from large corpora, the integration of a knowledge base
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offers a mechanism for organizing this information into structured formats that support precise querying.
This approach improves interpretability and supports richer multi-turn interactions by enabling consistent
use of previously retrieved information.

A concrete example of this integration is TAG (Biswal et al., 2024), which extends the RAG framework
by incorporating NL2SQL techniques to enable dynamic construction of sub-structured tables directly from
large relational databases. Given a natural language query, TAG identifies relevant portions of the original
dataset and generates a tailored table that captures the subset of fields and rows most pertinent to the user’s
question. These sub-structured views are not generic summaries but are semantically aligned with the query
intent, providing a precise, declarative interface that bridges human language and machine-readable data.
By translating user intent into SQL-compatible forms, TAG enables systems to interact with databases in
a flexible and interpretable manner, making it possible to execute complex queries without requiring prede-
fined schemas or manual intervention. The resulting tables can be directly used for downstream reasoning,
aggregation, and reporting, streamlining the end-to-end workflow from query to insight. This architecture
supports a wide range of applications, from enterprise analytics to automated report generation, where the
ability to adaptively structure and interpret original data is key to delivering accurate and actionable results.

2.3 Data Pre-processing

This step typically involves converting unstructured data into structured tables by automatically assigning
labels and cleaning the data to ensure its usability for downstream analysis.

For example, in the context of data labeling, LEAP (Hu et al., 2025) is an end-to-end system designed
to support social scientists in answering natural language queries that require semantic understanding of
unstructured data, such as Tweets. It iteratively applies machine learning functions to annotate the data
with relevant semantic labels, such as sentiment or emotion, and transforms it into structured tabular form.
LEAP also addresses key challenges such as selecting the appropriate ML models and handling vague or
underspecified queries. By filtering out ambiguous questions and enabling programmatic integration of both
built-in and user-defined ML functions, it allows domain experts to perform sophisticated semantic analyses
without writing any code, making the data preparation process both efficient and accessible.

In the context of data cleaning, this step focuses on filtering out irrelevant information, resolving incon-
sistencies, and reformatting the data to meet the requirements of subsequent processing stages. The Data
Interpreter (Hong et al., 2024) exemplifies this process by using a combination of hierarchical graph modeling
and programmable node generation to break down complex data workflows into manageable subcomponents.
Through iterative refinement and verification, it ensures the correctness of each intermediate step, which
improves both code robustness and overall workflow reliability. Its design allows the system to dynamically
adapt to changes in task structure and data state, making it particularly effective for real-world data science
problems that involve multiple interconnected and evolving subgoals.

Together, these systems highlight how recent advances in LLM-based agents are enhancing the automation of
early-stage data workflows, particularly in scenarios that demand both semantic understanding and rigorous
preprocessing of real-world data.

3 Data Analysis

LLM-based data agents are increasingly deployed to automate and support core components of the data
analysis workflow. This section examines how agents operate across four key analytical capabilities: data
modeling, model evaluation, data interpretation, and decision making. These categories reflect the major
functional roles that agents assume in real-world data science tasks, from understanding schema relationships
to assessing model performance and communicating insights. Our analysis is grounded in representative
case studies of recent agents, such as AutoKaggle (Li et al., 2024), CoddLLM (Zhang et al., 2025), Data
Interpreter (Hong et al., 2024), GPT4-As-Data-Analyst (Cheng et al., 2023b), and Jupybara (Wang et al.,
2025), and emphasizes how different design choices respond to challenges posed by dataset structure, domain
specificity, and task complexity. Through this lens, we highlight emerging trends, comparative strengths,
and common limitations in current agent designs.
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Data Ecosystem

Data Management

Data Collection

WebVoyager (He et al., 2024), Gemini Deep Re-
search (Google, 2024), OpenAI Research Agent (Ope-
nAI, 2024a), AutoGPT (Yang et al., 2023), OpenAI
Tools (OpenAI, 2024b), OpenIE (Etzioni et al., 2004;
2011), OIE Survey (Kamp et al., 2023)

Data Storage
KnowledgeGPT (Wang et al., 2023b), Stream-
ingQA (Liška et al., 2022), RealTimeQA (Kasai et al.,
2024), RAG (Lewis et al., 2021), TAG (Biswal et al.,
2024)

Data Pre-processing LEAP (Hu et al., 2025), Data Interpreter (Hong et al.,
2024)

Data Analysis

Data Modeling
CoddLLM (Zhang et al., 2025), GPT4-As-Data-
Analyst (Cheng et al., 2023b), TableLLM (Zhang et al.,
2024b), DocETL (Shankar et al., 2024)

Model Evaluation

AutoKaggle (Li et al., 2024), DS-Agent (Guo et al.,
2024), CoddLLM (Zhang et al., 2025), GPT4-As-
Data-Analyst (Cheng et al., 2023b), LAMBDA (Sun
et al., 2024a), TableLLM (Zhang et al., 2024b), Data-
Copilot (Zhang et al., 2023), Data Interpreter (Hong
et al., 2024), DocETL (Shankar et al., 2024)

Data Interpretation
Data Interpreter (Hong et al., 2024), GPT4-As-Data-
Analyst (Cheng et al., 2023b), Jupybara (Wang et al.,
2025), LAMBDA (Sun et al., 2024a), AutoKaggle (Li
et al., 2024)

Decision Making

AutoKaggle (Li et al., 2024), DS-Agent (Guo et al.,
2024), Data-Copilot (Zhang et al., 2023), Data In-
terpreter (Hong et al., 2024), Jupybara (Wang et al.,
2025), LAMBDA (Sun et al., 2024a), GPT4-As-Data-
Analyst (Cheng et al., 2023b), Spider2-V (Cao et al.,
2024)

Data Visualization

Scientific Charts Chat2VIS (Maddigan & Susnjak, 2023) MatPlotA-
gent (Yang et al., 2024a) VizAgent (Gao et al., 2024)

Dashboards & Info-
graphics

LIDA (Dibia, 2023), PlotGen (Goswami et al., 2025),
Tailor-Mind (Luong-Thi-Minh et al., 2024)

Narration & Expla-
nation

LLM4Vis (Wang et al., 2023a) DataTales (Sultanum &
Srinivasan, 2023), GPT-3 (Caption enrichment) (Dibia,
2023), AcademiaChart / GPT-4V (Zhang et al., 2024c),
GPT-4 (Human-level analysis) (Cheng et al., 2023a),
GPT-4 (Harvard CS171 Evaluation) (Chen et al., 2023)

Figure 2: Taxonomy of tools in the data ecosystem categorized by function. Each functional node has a
child node containing corresponding systems.

3.1 Data Modeling

Among LLM-based agents for data analysis, CoddLLM (Zhang et al., 2025) stands out for its explicit focus
on data modeling capabilities. It addresses a major limitation in prior work—most models operate on single
or pairs of tables—by training on tasks that require understanding inter-table relationships and complex
data schemas. This includes a Text-to-Schema task, where the model must design a database schema from a
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textual scenario, and a table selection benchmark (WikiPage-TS) that demands comprehension of multi-table
structures. The training corpus also includes content centered around database modeling and representation,
supporting the agent’s ability to capture how business entities are represented in complex datasets.

While not designed explicitly for data modeling, GPT4-As-Data-Analyst (Cheng et al., 2023b) requires
GPT-4 to navigate existing database schemas to extract and analyze relevant data. This implicitly reflects
an understanding of relational models, as the agent must identify which tables are relevant, how they
connect, and what fields to extract or join to generate insights. Similarly, TableLLM (Zhang et al., 2024b)
contributes to the field by supporting advanced table manipulation tasks such as querying, updating, merging,
and charting. Each of these operations assumes a coherent understanding of table structure and data
organization, aligning with the principles of data modeling at a tabular level. DocETL (Shankar et al.,
2024) also engages with document-centric data modeling, requiring agents to reason over unstructured sources
such as contracts or policy documents. Through agentic query rewriting and structured output extraction,
it builds implicit models of complex documents to support information retrieval and downstream processing.

3.2 Model Evaluation

Model evaluation is a central capability of LLM-based data agents, serving not only to assess the performance
of trained models but also to inform workflow revisions, agent collaboration, and strategic decisions. While
agents vary in their architectural and procedural designs, their evaluation mechanisms fall broadly into three
categories: (1) dedicated evaluator modules, (2) iterative feedback-based pipelines, and (3) interpretive or
critique-oriented systems.

The most modular evaluation structures are seen in AutoKaggle (Li et al., 2024) and LAMBDA (Sun et al.,
2024a), where evaluation is delegated to specialized agents. In AutoKaggle, the Developer agent performs
model building, validation, and prediction across multiple machine learning tools, selecting the best model
(e.g., a random forest achieving a validation score of 0.8379). Simultaneously, the Reviewer agent aggregates
scores and feedback from multiple agents into a unified report. These mechanisms support both detailed
validation and high-level metrics such as the Average Normalized Performance Score and Comprehensive
Score. LAMBDA adopts a similar architecture in which a Programmer builds and trains models while an
Inspector assesses their correctness and reliability. Ablation studies demonstrate that removing the Inspector
agent reduces execution pass rates, underscoring its role in evaluation.

In contrast, agents such as DS-Agent (Guo et al., 2024) and Data Interpreter (Hong et al., 2024) treat model
evaluation as an integral part of an iterative feedback loop. DS-Agent employs a case-based reasoning frame-
work that builds, evaluates, and refines models using metrics like AUROC, MAE, RMSE, and MCRMSE.
Its Logger module summarizes model performance and progress, guiding further revisions. Data Interpreter,
which automates end-to-end workflows, includes model evaluation as a core step and applies standard metrics
on ML-Benchmark datasets such as Breast Cancer Wisconsin and Wine Recognition. Evaluation feedback
informs subsequent actions within the pipeline, reinforcing an adaptive execution style.

Other agents embed evaluation within interpretive or critique-driven workflows. Jupybara (Wang et al.,
2025), for instance, uses a multi-agent setup where Critics assess generated responses—including model
training and evaluation code—for correctness, clarity, and strategic alignment. These critiques guide a Re-
finer agent in improving results. Similarly, GPT4-As-Data-Analyst (Cheng et al., 2023b) is assessed using
both automatic and human evaluation criteria such as correctness, alignment, and complexity. In compar-
ative studies, its performance is benchmarked against that of junior and senior data analysts, simulating
realistic human-centered evaluation settings.

Spider2-V (Cao et al., 2024) offers a flexible evaluation interface through its evaluator dictionary, allowing
custom metric functions for each task. These may include traditional model performance measures or
domain-specific criteria for assessing generated outputs in interactive workflows.

In summary, while model evaluation is universally critical, the strategies employed by LLM agents vary.
AutoKaggle and LAMBDA exemplify modular evaluation through specialized agents. DS-Agent and Data
Interpreter integrate evaluation directly into their execution pipelines for continuous feedback. Jupybara and
GPT4-As-Data-Analyst emphasize interpretation and critique to guide refinement, and Spider2-V highlights
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extensibility in evaluation logic. Together, these systems illustrate the diverse yet foundational role of model
evaluation in enabling reliable, intelligent data agents.

3.3 Data Interpretation

Data interpretation allows LLM-agents not only to process and analyze data but also to translate analytical
outputs into meaningful, human-understandable insights. While all the agents operate within data-centric
workflows, their interpretive strategies can be broadly grouped into three categories: integrated interpreta-
tion within procedural workflows, dedicated interpretive agents in multi-agent systems, and summarization
components for stakeholder communication.

Agents such as Data Interpreter (Hong et al., 2024) and GPT4-As-Data-Analyst (Cheng et al., 2023b)
embed interpretive reasoning throughout the stages of the analysis pipeline. Data Interpreter performs
tasks like outlier detection, correlation analysis, and visualization in an end-to-end setting, requiring the
agent to continuously evaluate intermediate results to guide subsequent decisions. Its 25% performance
boost on InfiAgent-DABench suggests that this interpretive loop is crucial for effective decision-making
across tasks. Similarly, GPT-4 demonstrates interpretive reasoning aligned with human analyst expectations.
It is evaluated not only on output correctness and fluency, but also on its ability to recognize complex
trends, make comparisons, and deliver insights in a concise and structured format. These agents exemplify a
procedural model of interpretation, where understanding emerges from step-by-step engagement with data
transformations.

In contrast, systems like Jupybara (Wang et al., 2025) and LAMBDA (Sun et al., 2024a) emphasize agent-
level interpretability, embedding dedicated roles for critique and summarization. Jupybara’s Interpretation
& Summary Critic reviews outputs from other agents to produce narratives that are semantically precise
and pragmatically relevant. This decentralized interpretive process mimics human review cycles and is
credited with producing more digestible and informative analysis, according to user studies. LAMBDA,
though oriented around code execution, outputs final natural language responses that summarize results
for users. These summaries are informed by the Inspector agent’s assessment of execution correctness
and the Programmer’s encoded logic, together ensuring that final insights are accurate and relevant. Both
systems prioritize clarity and readability in the final presentation of results, supporting interpretation through
dedicated reasoning components.

AutoKaggle (Li et al., 2024) provides a distinct model where interpretation is embedded in its Summarizer
agent, whose role is to distill complex, multi-phase workflows into coherent narratives. This includes se-
lecting relevant images, designing phase-aligned questions, and answering them to form structured reports.
The Summarizer interprets outputs from other agents to bridge the gap between raw analytical results and
stakeholder-facing communication. While AutoKaggle’s Developer and Planner modules focus on task execu-
tion, the Summarizer ensures that the analytical outcomes are contextually framed and readily consumable.

Together, these agent systems reflect a broader evolution in LLM-based data science workflows—from me-
chanical execution to reflective reasoning and communication. Whether integrated within procedural work-
flows, structured as standalone interpretive components, or dedicated to summarization, these systems pri-
oritize the transformation of raw analysis into insights that are intelligible, actionable, and aligned with user
needs.

3.4 Decision-Making

LLM-based data agents demonstrate a wide range of decision-making capabilities, which can be broadly
grouped into three categories: structured planners and evaluators, case-based and feedback-driven systems,
and multi-agent deliberative frameworks. These categories capture how agents analyze situations, select
actions, and adapt over time within complex data science workflows.

Structured planners and evaluators such as AutoKaggle (Li et al., 2024), Data-Copilot (Zhang et al., 2023),
and Data Interpreter (Hong et al., 2024) rely on predefined or dynamically constructed pipelines where
decisions are made about task sequencing, tool invocation, and evaluation. In AutoKaggle, the Planner
structures task roadmaps by organizing actions based on context and past results, while the Reviewer aggre-
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gates performance feedback and recommendations into coherent summaries. Similarly, Data-Copilot makes
decisions by classifying task and operation types, then loading the appropriate modules for further process-
ing. Data Interpreter also engages in sequential decision-making by selecting tools based on dependencies
and choosing when and how to apply techniques like outlier detection or correlation analysis.

In contrast, agents like DS-Agent (Guo et al., 2024) and GPT4-As-Data-Analyst (Cheng et al., 2023b)
embody more adaptive, feedback-oriented decision processes. DS-Agent is grounded in a case-based reasoning
paradigm, retrieving and re-ranking prior cases based on similarity and utility feedback to guide experiment
planning. It iteratively refines its decision-making across retrieval, reuse, and ranking steps informed by past
performance. GPT-4, acting as a data analyst, demonstrates contextual decision-making by synthesizing
variables, proposing new evaluation metrics, and adapting analysis strategies based on implicit reasoning
over the data and background knowledge.

A third class involves multi-agent deliberation and critique, as seen in Jupybara (Wang et al., 2025) and
LAMBDA (Sun et al., 2024a). These systems decentralize decision-making across cooperating agents that
assume specialized roles. In Jupybara, critics evaluate and challenge initial analytical outputs, with the
Refiner agent synthesizing these critiques into improved responses, providing rationales for each accepted
or rejected suggestion. This layered feedback mechanism simulates peer review and iterative refinement.
LAMBDA takes a more procedural view, with a Programmer generating code and an Inspector deciding
how and when to intervene for debugging. Together, they make iterative decisions that align with real-world
coding and analysis workflows.

Agents like Spider2-V (Cao et al., 2024) further expand the space by embedding decision-making into real-
time interactive environments. In this setup, decisions correspond to fine-grained physical actions (e.g.,
clicking, typing) guided by observation and goal-directed reasoning. While this is distinct from structured
planning or high-level critique, it still reflects dynamic, context-sensitive decision-making.

Across these systems, we observe shared goals but differing mechanisms. Structured planners tend to optimize
execution efficiency, feedback-driven systems adapt over time to improve performance, and deliberative multi-
agent architectures emphasize interpretability and flexibility. These contrasting approaches highlight the
growing sophistication of LLM-based agents in navigating and managing decision-making within end-to-end
data workflows.

4 Data Visualization

Large-language-model agents are beginning to own the entire visual-analytics loop—from raw tables to
polished stories. We survey recent work (2022-2024) by grouping it according to the type of visualization
output the agent targets.

4.1 Exploratory & Scientific Chart

The most active line of research equips code-synthesis LLMs with agentic scaffolds that translate
natural-language analytics intents into single-view plots. Early prompt-only systems such as Chat2VIS show
that a few carefully crafted exemplars let GPT-3, Codex, or ChatGPT emit correct Vega-Lite or Matplotlib
scripts for underspecified queries, outperforming bespoke NL2Vis models while slashing engineering cost
(Maddigan & Susnjak, 2023). Building on this, MatPlotAgent introduces an execution–inspection–repair
loop: a code LLM drafts Python, renders the figure, and a vision-enabled GPT-4V judges the bitmap;
any mismatch triggers automatic debugging. On the new MatPlotBench corpus of 100 scientific tasks, the
self-correcting agent raises success rates of several base LLMs by up to 30 percentage points (Yang et al.,
2024a). VizAgent generalizes the pattern—interpreting a dataset, eliciting user intent, generating alternative
charts in Matplotlib, Seaborn, or Plotly, and ranking them by LLM-based heuristics—thereby demonstrating
cross-library versatility and pinpointing library-specific failure modes (Gao et al., 2024). Complementary
evaluation work confirms that even zero-/few-shot GPT-3.5 already surpasses purpose-built NL2Vis baselines
on NVBench, though schema grounding and multi-table queries remain brittle .
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4.2 Dashboards, Infographics & Multi-View Composition

When the goal is a compound visualization—dashboards, multi-panel reports, or stylized infograph-
ics—researchers orchestrate several LLM calls into modular pipelines.

LIDA exemplifies this trend. Its four-stage workflow (data Summarizer → Goal Explorer → VisGenerator
→ Infographer) lets GPT-4 alternate between reasoning over data semantics, emitting grammar-agnostic
code, and post-processing with image-generation models to yield publication-ready infographics, a hybrid
GUI / chat UI supports iterative refinement (Dibia, 2023). In the scientific domain, PlotGen extends
the concept with multiple collaborating agents—planner, coder, and critic—each prompting the next to
converge on high-fidelity plots for research datasets (Goswami et al., 2025). Domain-specific dashboards are
also emerging: Tailor-Mind fine-tunes an LLM on educational Q-&-A data, couples it with a knowledge-map
visualization, and acts as a personalized tutor inside the dashboard; user studies reveal significant gains in
self-regulated learning engagement (Luong-Thi-Minh et al., 2024). Together, these systems hint at a future
where LLM agents dynamically compose multi-view, interactive artefacts rather than isolated charts.

4.3 Narrative, Explanation & Visual Storytelling

LLMs excel at language; recent work leverages this strength to augment visuals with prose and to evaluate
visualization choices. LLM4Vis reframes chart-type recommendation as a two-step ChatGPT dialogue that
not only selects an optimal chart but also produces a human-like rationale; few-shot bootstrapping improves
rationale coherence while achieving state-of-the-art accuracy on VizML (Wang et al., 2023a). DataTales
goes further, attaching an LLM to Tableau dashboards to draft full paragraphs that weave insights into a
cohesive story; professionals in an IEEE VIS study valued the reduced “blank-page” effort, yet demanded
better tone control (Sultanum & Srinivasan, 2023). Caption-level support is feasible too—GPT-3 can rewrite
terse figure captions into engaging narratives when prompted with context, illustrating post-hoc enrichment
of static visuals (Dibia, 2023).

On the evaluative side, AcademiaChart probes vision-language models’ ability to read charts: GPT-4V can
reproduce underlying Python code from 2500 scientific figures, especially when guided by chain-of-thought
prompts, whereas open-source VLMs lag markedly (Zhang et al., 2024c). Broader assessments show GPT-4
approaching human analysts in end-to-end tasks—including SQL, plotting, and insight narration (Cheng
et al., 2023a)—and even scoring a “B” on Harvard’s CS171 coursework (Chen et al., 2023). These studies
signal that LLMs are maturing from code generators into communicative partners that both craft and critique
visual stories.

Across charting, dashboard composition, and storytelling, LLM agents increasingly interleave
natural-language reasoning with code execution and visual feedback. While closed-source models like
GPT-4/4V set the bar, emerging agentic scaffolds (iterative debugging, multi-agent collaboration, fine-tuned
domain tutors) suggest pathways to reliable, transparent visualization assistance—even with less capable
models. Open challenges remain in robust schema linkage, perceptual fidelity checks for complex layouts,
and human-in-the-loop control of narrative tone, marking fertile ground for future research in LLM-centric
data science.

5 Future directions

To further enhance the capabilities and generalizability of LLM-based data agents, several promising research
directions merit attention. One key avenue involves dataset-aware adaptation, where agents dynamically
adjust their internal strategies in response to the specific structure, complexity, and domain of a dataset.
This calls for the integration of meta-learning, adaptive prompting mechanisms, and dataset-conditioned
modeling techniques, allowing agents to better generalize and effectively tackle a wide range of previously
unseen data types. Alongside this, the establishment of standardized and comprehensive benchmarking
frameworks is crucial. These benchmarks should systematically evaluate performance across datasets of
varying complexities and domains using well-defined metrics, thereby improving reproducibility and enabling
rigorous comparisons between agent architectures.
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Model Structured Semi-structured Unstructured Domain Specific Domains
Data-Copilot ✓ ✗ ✓ Single Finance
Spider2-V ✓ ✗ ✓ Multiple Economics, Education, Engineering
Data Interpreter ✓ ✗ ✓ Multiple Mathematics, Machine Learning, Open-ended Tasks
LAMBDA ✓ ✓ ✗ Multiple Healthcare, Biology/Agriculture, Engineering/Materials Science, Education
Data Formulator 2 ✓ ✓ ✗ Multiple Environmental Science, Energy, Finance
Jupybara ✓ ✗ ✓ Multiple Social Sciences, Finance, Healthcare
TableLLM ✓ ✓ ✓ Multiple Question Answering, General Knowledge, SQL
DS-Agent ✓ ✓ ✓ Multiple Agriculture, Machine Learning, Time Series, Finance, Healthcare, Question Answering
AutoKaggle ✓ ✓ ✗ Multiple House Prices, Education, Healthcare, Manufacturing
CoddLLM ✓ ✗ ✓ Multiple Database Management, Sports, Web Data, General Knowledge
GPT4-As-Data-Analyst ✓ ✓ ✓ Multiple Hospitality, Education, E-commerce, Politics
LEAP ✓ ✗ ✓ Multiple Social Sciences, Psychology, Legal Services, Misinformation
StructGPT ✓ ✓ ✗ Multiple Question Answering, Database Management, Semantic Parsing
TAP4LLM ✓ ✓ ✓ Multiple Question Answering, General Knowledge, SQL
SheetCopilot ✗ ✓ ✗ Single Finance
Binder ✓ ✗ ✗ Single Question Answering
TroVE ✓ ✓ ✓ Multiple Math, Question Answering
TAG ✓ ✗ ✗ Multiple Database Management, Semantic Reasoning
Dater ✓ ✗ ✗ Single Question Answering
WaitGPT ✓ ✗ ✗ Multiple Finance, Economics, Education
InsightPilot ✓ ✗ ✗ Multiple Finance, Education
JarviX ✓ ✗ ✗ Single Material Science
MatPlotAgent ✓ ✗ ✗ Multiple Scientific data from Matplotlib Gallery and OriginLab GraphGallery
HuggingGPT ✗ ✗ ✓ Multiple NLP, CV, Audio, Video
ChatGPT as Data Scientist ✓ ✗ ✗ Single Education
AutoML-Agent ✓ ✓ ✓ Multiple Biology, Economics, Education, Weather, Electricity, Academics
UFO ✓ ✓ ✓ Single Software Applications
DocETL ✗ ✓ ✓ General Police records, legal contracts, medical reports, financial disclosures

Table 2: Model Capabilities and Domain Applicability

Another important direction lies in advancing multi-agent collaboration. Future systems should mimic
human-like team workflows, incorporating structured coordination strategies, intelligent task division, and
feedback mechanisms among agents. Such enhancements can simulate the dynamics of collaborative data
science teams, leading to more efficient and contextually aware problem-solving. Additionally, domain-
specific customization is essential for deploying LLM-based agents in specialized fields such as healthcare,
finance, or scientific research. Customization can be achieved through fine-tuning with domain-specific
corpora, injecting structured knowledge, and integrating specialized tools that align with the particular
challenges and terminology of the domain.

Finally, as these agents become increasingly sophisticated, interpretability and real-time interactivity be-
come vital. It is critical to ensure transparency in decision-making by incorporating methods for rationale
generation, intermediate reasoning steps, and outputs that are easily understandable by end-users, particu-
larly in sensitive or high-stakes settings. Moreover, agents must evolve to support interactive and real-time
decision-making, improving their responsiveness and allowing them to adapt fluidly to user inputs and live
data streams. Such real-time capabilities will significantly broaden their applicability and bring them closer
to the performance and adaptability of human analysts.

6 Conclusion

This survey has presented a comprehensive dataset-centric perspective on LLM-based data agents, critically
analyzing their capabilities and limitations across various stages of data science workflows. We introduced
a hierarchical taxonomy categorizing these agents based on their proficiency in managing structured, semi-
structured, and unstructured datasets, and their adaptability across diverse domain contexts. By reviewing
key design strategies—such as modular planning, multi-agent collaboration, self-correction mechanisms, and
specialized tool integrations—we have highlighted how dataset-specific characteristics shape agent design,
performance, and evaluation.

Despite significant advances, our analysis identifies clear gaps in benchmark diversity, robustness in gener-
alization, and adaptability to complex dataset characteristics. Addressing these challenges through stan-
dardized evaluation frameworks, dynamic dataset-aware agent designs, domain-specific customization, and
enhanced interpretability will be essential for future development. As LLM-based data agents continue to
mature, pursuing these directions will ensure that they become increasingly reliable, flexible, and valuable
tools in real-world data science workflows, capable of effectively supporting analysts and domain experts
across varied and complex analytical tasks.
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