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Abstract
Crystalline materials are a fundamental compo-
nent in next-generation technologies, yet model-
ing their distribution presents unique computa-
tional challenges. Of the plausible arrangements
of atoms in a periodic lattice only a vanishingly
small percentage are thermodynamically stable,
which is a key indicator of the materials that can
be experimentally realized. Two fundamental
tasks in this area are to (a) predict the stable crys-
tal structure of a known composition of elements
and (b) propose novel compositions along with
their stable structures. We present FlowMM, a
pair of generative models that achieve state-of-the-
art performance on both tasks while being more
efficient and more flexible than competing meth-
ods. We generalize Riemannian Flow Matching
to suit the symmetries inherent to crystals: transla-
tion, rotation, permutation, and periodic boundary
conditions. Our framework enables the freedom
to choose the flow base distributions, drastically
simplifying the problem of learning crystal struc-
tures compared with diffusion models. In addition
to standard benchmarks, we validate FlowMM’s
generated structures with quantum chemistry cal-
culations, demonstrating that it is ∼3x more effi-
cient, in terms of integration steps, at finding sta-
ble materials compared to previous open methods.

1. Introduction
Materials discovery has played a critical role in key techno-
logical developments across history (Appl, 1982). The huge
number of plausible materials offers the potential to advance
key areas such as energy storage (Ling, 2022), carbon cap-
ture (Hu et al., 2023), and microprocessing (Choubisa et al.,
2023). With the promise comes a challenge: The search
space of crystal structures is combinatorial in the number
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Figure 1. A conceptual representation of the evolution from base
distribution to target distribution, according the vector field learned
by our model. We model a joint distribution over lattice parameters,
periodic fractional coordinates, and a binary representation of atom
type. The highlights include symmetry-aware geodesic paths and a
base distribution that directly produces plausible lattices. Note that
coordinates and atom types are merely depicted in 2d for clarity.

of atoms and elements under consideration, resulting in an
intractable number of potential structures. Of these, only a
vanishing small percentage will be experimentally realizable.
These factors have motivated computational exploration of
the materials design space, which has accelerated discovery
campaigns, but typically relies on random structure search
(Potyrailo et al., 2011) and expensive quantum mechanical
computations. Generative modeling has shown promise for
navigating large design spaces for scientific research, but
the application to materials is still relatively novel.

The specific task we will focus on in this paper is the gen-
eration of periodic crystals. We’re interested in two cases:
Crystal Structure Prediction (CSP), which we define as the
setting where the user provides the number of constituent
atoms and their elemental types, i.e. their composition, and
De Novo Generation (DNG) when the generative model
is tasked to produce the composition alongside its crystal
structure. An additional complexity is that we want to gen-
erate crystals that are stable. Naively, stability is determined
by a thermodynamic competition between a structure and
competing alternatives. The known stable structures define
a convex hull of stable compositions over the energy land-
scape. We use the heuristic that the stability of a material
is determined by its energetic distance to the convex hull,
denoted Ehull. Structures with Ehull ≤ 0.0 eV/atom are
considered stable. Otherwise, the structure is unfavorable
and will decompose into a stable neighboring composition.
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Modeling crystals is challenging because it requires fitting
distributions jointly over several variables, each with differ-
ent and interdependent structure. The atom types are dis-
crete, while the unit cell, i.e. the repeating fundamental vol-
ume element, and the atomic positions are continuous. Side
lengths of the unit cell are strictly positive, the angles are
bounded, and the atomic coordinates are periodic. The num-
ber of atoms varies, but the unit cell dimensionality is fixed.

While diffusion models found some success in generating
stable materials they have fundamental limitations, making
them suboptimal for the problem. In graph neural network
implementations, each variable has required a different dif-
fusion framework to fit its structure (Jiao et al., 2023; Zeni
et al., 2023). Atomic coordinates are modeled using score
matching (Song et al., 2020), enabling a wrapped normal
transition distribution and a uniform asymptotic distribution,
atomic types utilize discrete diffusion (Austin et al., 2021),
and the unit cell is modeled with denoising diffusion (Sohl-
Dickstein et al., 2015; Ho et al., 2020). Both of these ap-
proaches must choose a complex representation for the lat-
tice in order to fit within the diffusion framework since their
limiting distribution must be normal, yet still represent a
“realistic material” while doing diffusion. Furthermore Jiao
et al. (2023), must perform an ad hoc Monte Carlo estimate
of a time evolution scaling factor (top of page 6 in their pa-
per), and they do not simulate the forward trajectory in train-
ing. This simulation is a slow, but necessary step, in rigor-
ous diffusion models on manifolds (Huang et al., 2022).

Our contribution We introduce FlowMM, a pair of gen-
erative models for CSP and DNG that each jointly estimate
symmetric distributions over fractional atomic coordinates
and the unit cell (along with atomic types for DNG) in a sin-
gle framework based on Riemannian Flow Matching (Lip-
man et al., 2022; Chen & Lipman, 2024). We train a Con-
tinuous Normalizing Flow (Chen et al., 2018) with a finite
time evolution and produce high-quality samples, as mea-
sured by standard metrics and thermodynamic stability, with
significantly fewer integration steps than diffusion models.

First, we generalize the Riemannian flow matching frame-
work to estimate a point cloud density that is invariant
to translation with periodic boundary conditions, a novel
achievement for continuous normalizing flows, by propos-
ing a new objective in Section 3. With this step, it becomes
possible to enforce isometric invariances inherent to the ge-
ometry of crystals as an inductive bias in the generative
model. Second, after selecting a rotation invariant repre-
sentation, we choose a natural base distribution that sam-
ples plausible unit cells by design. We find that this drasti-
cally simplifies fitting the lattice compared with diffusion
models, which are forced to take an unnatural base distribu-
tion due to inherent limitations in their framework. Third,
for DNG, we choose a binary representation (Chen et al.,

2022) for the atom types that drastically reduces the dimen-
sionality compared with the simplex (one-hot). Our repre-
sentation is ⌈log2(100)⌉ = 7 dimensions per atom, while
the simplex requires 100 dimensions per atom. (Note that
⌈·⌉ denotes the ceiling function.) We attribute the accuracy
of FlowMM in predicting the number of unique elements
per unit cell to this design choice, something other models
struggle with. Finally, we compare our method to diffusion
model baselines with extensive experiments on two realistic
datasets and two simplified unit tests. In addition to com-
petitive or state-of-the-art performance on standard metrics,
we take the additional step to estimate thermodynamic sta-
bility of generated structures by performing expensive quan-
tum chemistry calculations. We find that FlowMM is able to
generate materials with comparable stability to these other
methods, while being significantly faster at inference time.

We made our code publicly available on GitHub1.

Related work The earliest approaches for both CSP and
DNG new materials rely on proposing a large number of
possible candidate materials and screening them with high-
throughput quantum mechanical (Kohn & Sham, 1965) cal-
culations to estimate the energy and find stable materials.
Those candidate materials are proposed using simple re-
placement rules (Wang et al., 2021) or accelerated by genetic
algorithms (Glass et al., 2006; Pickard & Needs, 2011). This
search can be accelerated using machine learned models to
predict energy (Schmidt et al., 2022; Merchant et al., 2023).

Various generative models have been designed to accel-
erate material discovery by directly generating materials,
avoiding expensive brute force search (Court et al., 2020;
Yang et al., 2021; Nouira et al., 2018). Diffusion models
have been widely used for this task. Initially without dif-
fusing the lattice but predicting it with a variational autoen-
coder (Xie et al., 2021); later by jointly diffusing the po-
sitions, lattice structure and atom types (Jiao et al., 2023;
Yang et al., 2023; Zeni et al., 2023). We only compare to
open models with verifiable results at the time of submis-
sion of this paper to ICML 2024 in January. More recently,
other models have used space groups as additional inductive
bias (AI4Science et al., 2023; Jiao et al., 2024; Cao et al.,
2024). Other approaches include using large language mod-
els (Flam-Shepherd & Aspuru-Guzik, 2023; Gruver et al.,
2024), and with normalizing flows Wirnsberger et al. (2022).

2. Preliminaries
We are concerned with fitting probability distributions over
crystal lattices, which are collections of atoms periodically
arranged to fill space in a repeated pattern. One way to
construct a three-dimensional crystal is by tiling a paral-

1https://github.com/facebookresearch/flowmm
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lelepiped, or unit cell, such that the entirety of space is cov-
ered. The unit cell contains an arrangement of atoms, i.e., a
labeled point cloud, which produces the crystal lattice un-
der the tiling. The following is the exposition towards our
generative model. As background, we recommend a primer
on the symmetries of crystals (Adams & Orbanz, 2023).

2.1. Representing crystals and their symmetries

Representation of a crystal We label the particles in a
crystal c̃ ∈ C̃ with n ∈ N sites (atoms) by column in matrix
a :=

[
a1, . . . , an

]
∈ A where each atomic number maps

to a unique h-dimensional categorical vector. The unit cell
is a matrix of Cartesian column vectors l̃ :=

[
l̃1, l̃2, l̃3

]
∈

L̃ = R3×3. The position of each particle can be represented
using a matrix x :=

[
x1, . . . , xn

]
∈ X = R3×n with Carte-

sian coordinates in the rows and particles in the columns, but
we will choose an alternative fractional representation that
leverages the periodic boundary of l̃. Positions are equiv-
alently x = l̃f where f := l̃

−1
x =

[
f1, . . . , fn

]
∈ F =

[0, 1)3×n. The volume of a unit cell Vol(̃l) := |det l̃| must
be nonzero, implying that l̃ is invertible. Then, the crystal is{(

a′,f ′) ∣∣∣a′ = a,f ′ = f + l̃k1,∀k ∈ Z3×1
}

where elements of k denote integer translations of the lattice
and 1 is a 1× n matrix of ones to emulate “broadcasting.”

This representation is not unique since there is freedom to
choose an alternative unit cell and corresponding fractional
coordinates producing the same crystal lattice, e.g. by dou-
bling the volume or skewing the unit cell. Among minimum
volume unit cells, we choose l̃ to be the unique one deter-
mined by Niggli reduction (Grosse-Kunstleve et al., 2004).

Equivariance A function f : S → S ′ is G-equivariant
when for any s ∈ S and any g ∈ G we have f(g · s) =
g · f(s) where · indicates group action in the relevant space.
G-invariant functions have instead f(g · s) = f(s). We
will apply graph neural networks (Satorras et al., 2021) with
these properties (Thomas et al., 2018; Kondor & Trivedi,
2018; Miller et al., 2020; Weiler et al., 2021; Geiger &
Smidt, 2022; Liao et al., 2023; Passaro & Zitnick, 2023).

Invariant density A density p : S → R+ is G-invariant
when p is G-invariant. When a G-invariant density p is
transformed by an invertible, G-equivariant function f the
resulting density is G-invariant (Köhler et al., 2020).

Symmetries of crystals We will now introduce relevant
symmetry groups and their action on our crystal representa-
tion c̃ := (a,f , l̃) ∈ A×F×L̃ =: C̃. The symmetric group
Sn on n atoms has n! elements corresponding to all permu-
tations of atomic index. The element σ ∈ Sn acts on a crys-

tal by σ · c̃ =
([
aσ(1), . . . , aσ(n)

]
,
[
fσ(1), . . . , fσ(n)

]
, l̃
)

.
The special Euclidean group SE(3) consists of orienta-
tion preserving rigid rotations and translations in Euclidean
space. The elements (Q, τ) ∈ SE(3) can be decomposed
into rotation Q ∈ SO(3), represented by a 3 × 3 rota-
tion matrix, and translation τ ∈ [− 1

2 ,
1
2 ]

3×1. Considering
the periodic unit cell, the action on our crystal represen-
tation is τ · c̃ = (a,f + τ1− ⌊f + τ1⌋, l̃), where ⌊·⌋ de-
notes the element wise floor function, i.e., f coordinates
“wrap around.” The rotation action is Q · c := (a,f , Ql̃).

The true distribution q(c̃) has invariances to group opera-
tions that we would like our estimated density to inherit:

q(σ · c̃) = q(σ · a, σ · f , l̃) = q(c̃), ∀σ ∈ Sn (1)

q(τ · c̃) = q(a,f + τ1− ⌊f + τ1⌋, l̃)
= q(c̃), ∀τ ∈ [− 1

2 ,
1
2 ]

3 (2)

q(Q · c̃) = q(a,f , Ql̃) = q(c̃), Q ∈ SO(3) (3)

permutation, translation, and rotation invariance, respec-
tively. We address (1) and (2) in Section 3, but (3) here.

Probability distributions over a G-invariant representation
are necessarily G-invariant. Lattice parameters l ∈ L are
a rotation invariant representation of the unit cell as a 6-
tuple of three side lengths a, b, c ∈ R+ with units of Å and
three internal angles α, β, γ ∈ [60◦, 120◦] in degrees. (This
range for the lattice angles is due to the Niggli reduction.)
We therefore propose a rotation invariant alternative crystal
representation c ∈ C := A × F × L and thereby any
distribution p(c) is rotation invariant:

Q · c = (a,f , Q · l) = (a,f , l) = c, p(Q · c) = q(c).

l carries all non-orientation information about the unit cell.
By composing functions U : l̃ → l and U† : l → l̃, imple-
mented by Ong et al. (2013), we can reconstruct l̃ from l up
to rotation, i.e. U†(U(̃l)) = Ql̃ for some Q ∈ SO(3). Fur-
ther symmetry information is in Appendix A.

Representing atomic types The representation of a ∈ A
depends on whether the generative model is doing CSP or
DNG. For CSP, the atomic types are only conditional infor-
mation and may be considered a tuple of n, h-dimensional
one-hot vectors. For DNG, the generative model treats a as
a random variable and learns a distribution over its represen-
tation. We choose to apply the binarization method proposed
by Chen et al. (2022) where categorical vector a is mapped
to a {−1, 1}-bit representation of length ⌈log2 h⌉. The flow
then learns to transform a ⌈log2 h⌉-dimensional normal dis-
tribution to the corresponding bit representation and, at in-
ference time, is discretized by the sign: R → {−1, 1} func-
tion. When ⌈log2 h⌉ ≠ log2 h, we end up with “unused
bits”, i.e. we can represent more than h classes. We find
that the model is able to learn to ignore these extra atom
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types in practice. Note that Chen et al. (2022) suggest using
a self-conditioning scheme, but we did not find it necessary.

2.2. Learning distributions with Flow Matching

Riemannian Manifolds (Abridged) In order to learn
probability distributions over spaces that “wrap around,” we
must introduce smooth, connected Riemannian manifolds
M. They relax the notion of a global coordinate system in
lieu of a collection of local coordinate systems that transi-
tion seamlessly between one another. Every point m ∈ M
has an associated tangent space TmM with an inner product
⟨u, v⟩ for u, v ∈ TmM, enabling the definition of distances,
volumes, angles, and minimum length curves (geodesics). A
fundamental building block for our generative model is the
space of time-dependent, smooth vector fields U living on
the manifold. Elements ut ∈ U are maps ut : [0, 1]×M →
T M where the first argument t denotes time and T M :=
∪m∈M{m}×TmM denotes the tangent bundle, i.e., the dis-
joint union of each tangent space at every point on the man-
ifold. We learn distributions by estimating functions in U .

The geodesics for any M that we consider can be written
in closed form using the exponential and logarithmic maps.
The geodesic connecting m0,m1 ∈ M at time t ∈ [0, 1] is

mt := expm0
(t logm0

(m1)), (4)

where exp□ and log□ depend on the manifold M.

Probability paths on flat manifolds Probability densi-
ties on M 2 are continuous functions p : M → R+ where∫
M p(m) dm = 1 and p ∈ P , the space of probability

densities on M. A probability path pt : [0, 1] → P is a
continuous time-dependent curve in probability space link-
ing two densities p0, p1 ∈ P at endpoints t = 0, t = 1.
A flow ψt : [0, 1] × M → M is a time-dependent diffeo-
morphism defined to be the solution to the ordinary dif-
ferential equation: d

dtψt(m) = ut(ψt(m)), subject to ini-
tial conditions ψ0(m) = m0 with ut ∈ U . A flow ψt is
said to generate pt if it pushes p0 forward to p1 following
the time-dependent vector field ut. The path is denoted
pt = [ψt]#p0 := p0(ψ

−1
t (m)) det

∣∣∣∂ψ−1
t (m)
∂m (m)

∣∣∣ for our
choice of flat M (Mathieu & Nickel, 2020; Gemici et al.,
2016; Falorsi & Forré, 2020). Chen et al. (2018) proposed
to model ψt implicitly by parameterizing ut to produce pt in
a method known as a Continuous Normalizing Flow (CNF).

Flow Matching Fitting a CNF using maximum likeli-
hood, as in the style of (Chen et al., 2018), can be expensive
and unstable. A more effective alternative, fitting a vector
field vθt ∈ U with parameters θ, may be accomplished by

2We consider flat tori and Euclidean space, restricting ourselves
to manifolds with flat metrics, i.e. the metric is the identity matrix.

doing regression on vector fields ut that are known a pri-
ori to generate pt. The method is known as Flow Match-
ing (Lipman et al., 2022) and was extended to M by Chen
& Lipman (2024). Lipman et al. (2022) note that ut is
generally intractable and formulate an alternative objective
based on tractable, conditional vector fields ut(m | m1)
that generate conditional probability paths pt(m | m1), the
push-forward of the conditional flow ψt(m | m1), start-
ing at any p and concentrating around m = m1 ∈ M
at t = 1. Marginalizing over target distribution q recov-
ers the unconditional probability path pt(m) =

∫
M pt(m |

m1)q(m1) dm1 and the unconditional vector field ut(m) =∫
M ut(m | m1)

pt(m|m1)q(m1)
pt(m) dm1. This construction re-

sults in an unconditional path pt where p0 = p, the chosen
base distribution, and p1 = q, the target distribution. Their
proposed objective, simplified for flat manifolds M, is:

L(θ) = Et,q(m1),pt(m|m1)∥v
θ
t (m)− ut(m | m1)∥2, (5)

where the ∥·∥ norm is induced by inner product ⟨·, ·⟩ on
TmM and t ∼ Uniform(0, 1). At optimum, vθt generates
pθt = pt with endpoints pθ0 = p, pθ1 = q. At inference, we
sample p and propagate t from 0 to 1 using our estimated vθt .

2.3. Crystalline Solids

Stability and the convex hull One of the most important
properties of a material is its stability, a heuristic that gives
a strong indication of its synthesizability. A crystal is stable
when it is energetically favorable compared with competing
phases, structures built from the same atomic constituents,
but in different proportion or spacial arrangement. The en-
ergy can be computed using a first-principles quantum me-
chanical method called density functional theory, which es-
timates the energy based on the electronic structure (Kohn
& Sham, 1965). The lowest energy materials form a con-
vex hull over composition. Stable structures lie directly on
the convex hull or below it, while meta-stable structures are
restricted to Ehull < 0.08 eV/atom. Note that, this defini-
tion has inherent epistemic uncertainty since many materials
are unknown and not represented on the convex hull. Our
specific convex hull is in reference to the Materials Project
database, as recorded by Riebesell (2024) in February 2023.

Arity for materials A material with N unique atom type
constituents is known as an N -ary material and its stability
is determined by an N -dimensional convex hull. High N -
ary materials occupy convex hulls that not represented in the
realistic datasets under consideration; the curse of dimen-
sionality and chemical complexity limits coverage of these
hulls. We posit that an effective generative model of stable
structures will produce a distribution overN -ary that is close
to the data distribution. This is borne out in our experiments
as seen in Figure 3 and in Appendix B. On another note,
several generative models produced 1-ary structures marked
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stable by the Ehull < 0 criterion. This is not possible as
the one-element phase diagrams are known and there are
no energetically favorable structures to be found. This is a
numerical issue; we did not count those structures as stable.

2.4. Problem statements & Datasets

Crystal Structure Prediction (CSP) We aim to predict
the stable structure for a given composition a, but this is
not well-posed because some compositions have no stable
arrangement. Furthermore, the underlying energy calcula-
tions have uncertainty and some structures are degenerate.
We therefore formulate CSP as a conditional generative task
on metastable structures, distributed like q(f , l;a), rather
than via regression on stable structures. Our dataset consists
of metastable structures, indexed by composition and count:

f ij , lij ∈
{
f ′ ∈ F , l′ ∈ L | E(ai,f

′, l′) < Em
}
. (6)

Em := 0.08 eV/atom is fixed by metastability, E : C → R
is the single point energy prediction of density functional
theory, ai is a composition with index i, and f ′

ij , l
′
ij are the

corresponding metastable structures with index j. The max-
imum values of i and j are the number of metastable com-
positions and structures for that composition, respectively.

In CSP, we fit a generative model p(f , l | a) to the samples
f ij , lij ∼ q(f , l;ai). Given the right a, a good generative
model should generate corresponding metastable structures.

De novo generation (DNG) A major goal of materials
science is to discover stable and novel crystals. In this
effort, we aim to sample directly from a distribution of
metastable materials q(c), generating both the structure
f , l along with the composition a. Our distribution must
include a because it should avoid compositions that have no
(meta)stable structure and because many new and interesting
materials may have novel compositions. Define our dataset:

ak,fk, lk := ck ∈ {c′ ∈ C | E(c′) < Em} , (7)

consisting of max k metastable crystals.

In DNG, we fit a generative model p(c) to samples ck ∼
q(c). A good generative model should generate both novel
and known metastable materials. Determining stability and
novelty requires further computation and a convex hull.

Practical Considerations & Data We consider two real-
istic datasets: MP-20, containing all materials with a max-
imum of 20 atoms per unit cell and within 0.08 eV/atom
of the convex hull in the Materials Project database from
around July 2021 (Jain et al., 2013), and MPTS-52, a chal-
lenging dataset containing structures with up to 52 atoms
per unit cell and separated into “time slices” where the train-
ing, validation, and test sets are organized chronologically
by earliest published year in literature (Baird et al., 2024).

We include two additional datasets Perov-5 (Castelli et al.,
2012) and Carbon-24 (Pickard, 2020) as unit tests. These
do not feature crystals near their energy minima. Perov-5
consists of crystals with varying atomic types, but all struc-
tures have the same fractional coordinates. Carbon-24 struc-
tures take on many arrangements in fractional coordinates,
but only consist of one atom type. Stability analysis is not
applicable to Perov-5 and Carbon-24, but proxy metrics in-
troduced by Xie et al. (2021) are applicable to all datasets.

Standard (proxy) metrics for CSP and DNG Although
computing the stability for generated materials is ideal, it is
extremely expensive and technically challenging. In light
of these difficulties, a number of proxy metrics have been
developed by Xie et al. (2021). The primary advantage of
these metrics is their low cost. We benchmark FlowMM and
alternatives using specialized metrics for CSP and DNG.

In CSP we compute the match rate and the Root-Mean-
Square Error (RMSE). They measure the percentage of re-
constructions from q(f , l;a) that are satisfactorily close to
the ground truth structure and the RMSE between coordi-
nates, respectively. In DNG, we compute a Structural &
Compositional Validity percentage using heuristics about
interatomic distances and charge, respectively. We also
compute Coverage Recall & Precision on chemical finger-
prints and the Wasserstein distance between ground truth
and generated material properties, namely atomic density
ρ and number of unique elements per unit cell Nel. Note
Nel = N -ary. See Appendix A for more details.

Stability metrics for DNG The ultimate goal of materials
discovery is to propose stable, unique, and novel materials
efficiently w.r.t. compute. For flow matching and diffusion
models, the most expensive inference-time cost is integra-
tion steps. We therefore define several metrics to address
these factors on a budget of 10,000 generations.

We compute the percent of generated materials that are
stable (Stability Rate), but that does not address novelty.
Following Zeni et al. (2023), we additionally compute the
percentage of stable, unique, and novel (S.U.N.) materials
(S.U.N. Rate). To address cost, we compute the average
number of integration steps needed to generate a stable
material (Cost) and a S.U.N. material (S.U.N. Cost). We
explain identification of S.U.N. materials in Appendix A.

3. Riemannian Flow Matching for Materials
Our goal is to define a parametric generative model on
the Riemannian manifold C that carries the geometry and
invarinces inherent to crystals. We plan to accommodate
both CSP and DNG with simple changes to our model and
base distribution.
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Concretely, we have a set of samples a1,f1, l1 ∼ q(a,f , l)
where q ∈ P is an unknown probability distribution over C,
and we want to implicitly estimate the probability path pt :
[0, 1]×P → P that transforms our chosen base distribution
p0 = p ∈ P to p1 = q. We achieve this by learning a
parametric time-dependent vector field vθt with parameters
θ that optimizes (5), adapted to C, on samples a1,f1, l1.
Additionally, we enforce that the unconditional probability
path be invariant to symmetries g ∈ (σ,Q, τ) at all times t:

pt(g · c) :=
∫
C
pt(g · c | c1) q(c1) dc1 = pt(c). (8)

We explain the necessary building blocks of our method (a)
the geometry of C, (b) the base distribution p and its invari-
ances, (c) the conditional vector fields and our objective de-
rived from (5), and finally (d) how our construction affirms
that the marginal probability path pt(c) generated by ut(c)
has the invariance properties of q for all t ∈ [0, 1].

Geometry of C Recall C := A × F × L forms a prod-
uct manifold, implying that the inner product ⟨c, c′⟩ decom-
poses with addition, see Appendix A. We now consider the
geometry of each component of C individually.

F is a permutation invariant collection of n×3-dimensional
flat tori. That means it carries the Euclidean inner product lo-
cally, but each side is identified with its opposite. This is rel-
evant for the geodesic and explains why paths “wrap around”
the domain’s edges. The identification is implemented by
the action of the translation operator defined in Section 2.

The space of lattice parameters subject to the Niggli reduc-
tion L := R+3× [60, 120]

3 is Euclidean, but has boundaries.
We can safely ignore these boundaries for the lengths in R+3

since (i) the data does not lie on the boundary (a, b, c > 0)
and (ii) we select a positive base distribution. Meanwhile,
the angles α, β, γ do often lie directly on the boundary, pos-
ing a problem as the target ut is not a smooth vector field.
We address the issue with a diffeomorphism φ : [60, 120] →
R to unconstrained space, applied element wise to α, β, γ:

logit(ξ) := log
ξ

1− ξ
, φ(η) := logit

(
η − 60

120

)
,

S(ξ′) =
exp(ξ′)

1 + exp(ξ′)
, φ−1(η′) = 120S (η′) + 60,

where S is the sigmoid function. Practically, geodesics and
conditional vector field ut are both represented in uncon-
strained space. Base samples and (estimated) target samples
are transformed into unconstrained space for learning and in-
tegration then evaluated in [60, 120], transformed with φ−1.

The details of A depend on whether our task is CSP,
where we estimate q(f , l;a) or DNG, where we estimate
q(a,f , l). In CSP, a is given and the geometry is simple:

A is a h-dimensional one-hot vector. Components of its un-
conditional vector field uAt (a) = vA,θt (a) = 0 everywhere.
Further discussion about A for CSP is unnecessary in this
section and thus omitted! When doing DNG, we take A to
be a ⌈log2 h⌉-dimensional Euclidean space with a flat metric.
Here, A has a simple geometry but the interesting part is that
it represents atomic types more efficiently than a one-hot
vector, in terms of dimension, after discretization with sign.

Base distribution on C Our base distribution on C is a
product of distributions on A, F , and L, see Appendix A.
The base distribution p(a) takes the same base distribution
as Chen et al. (2022), namely p(a) = N (a; 0, 1) where N
denotes the normal distribution. Next, we choose the dis-
tribution over F to be p(f) := Uniform(0, 1), which cov-
ers the torus with equal density everywhere. Finally, we de-
cided to leverage the flexibility afforded by Flow Matching
in choosing an informative base distribution on l. Recall,
l can be split into three length and three angle parameters.
Since length parameters are all positive we set p(a, b, c) :=∏
η∈{α,β,γ} LogNormal(η; locη, scaleη) where locη, scaleη

are fit to training data using maximum likelihood. In the con-
strained space [60, 120], angle parameters α, β, γ get base
distribution p(α, β, γ) := Uniform(60, 120). Samples can
be drawn in unconstrained space by applying φ and the den-
sity can be computed using the change of variables formula.

The base distributions p(a) and p(f) are factorized and have
no dependency on index. Therefore, they are permutation
invariant. Next, p(f) is translation invariant since,

p(τ · f) =
∏

i=1,...,n

U(f i + τ − ⌊f i + τ⌋; 0, 1)

=
∏

i=1,...,n

U(f i; 0, 1) = p(f), (9)

for all translations τ ∈ [− 1
2 ,

1
2 ]

3. Our base distribution is
p(a,f , l) := p(a)p(f)p(l), so it carries these invariances.
It remains to be shown that ψt is equivariant to these groups.

Conditional vector fields on C Recall from Chen & Lip-
man (2024), the conditional vector field on flat M is

ut(m | m1) =
d log κ(t)

dt
d(m,m1)

∇md(m,m1)

∥∇md(m,m1)∥2
(10)

where d : M×M → R is the geodesic distance (4) and
κ(t) = 1 − t is a linear time scheduler. Both A for DNG
and (transformed) L are Euclidean manifolds with standard
norm, recovering the Flow Matching conditional vector
field on their respective tangent bundles, which we denote
uM

′

t (m | m1) =
m1−m
1−t for M′ ∈ {A,L}.

We construct the conditional vector field for a point cloud
living on a n× 3-dimensional flat torus invariant to global
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translations. First, we construct the naive geodesic path,
which may cross the periodic boundary:

expfi(ḟ i) := f i + ḟ i − ⌊f i + ḟ i⌋, (11)

logfi
0
(f i1) :=

1

2π
atan2

[
sin(ωi), cos(ωi)

]
, (12)

ωi := 2π(f i1 − f i0), (13)

where ḟ i ∈ TfiF i for i = 1, . . . , n. These amount to an
atom wise application of logf0

on f1 and expf on ḟ ∈
TfM respectively. Specifically, d(f ,f1) := ∥logf1

(f)∥2
and ∇fd(f ,f1) = −2 logf1

(f). That would imply a tar-

get conditional vector field of
− logf1

(f)

1−t : a function which
is equivariant–not invariant–to translation τ ! We address
this by removing the average torus translation from f1 to f :

uFt (f | f1) := logf1
(f)− 1

n

n∑
i=1

logfi
1
(f i). (14)

Our approach is similar to subtracting the mean of a point
cloud in Euclidean space; however, it occurs in the tangent
space instead of on the manifold. Given the factorization of
the inner product on C (Appendix A), our objective is:

Et,q(a1,f1,l1),p(a0),p(f0),p(l0)

[λa
hn

∥∥∥vA,θt (ct) + a0 − a1

∥∥∥2
+
λf
3n

∥∥∥∥∥vF,θt (ct) + logf1
(f0)−

1

n

n∑
i=1

logfi
1
(f i0)

∥∥∥∥∥
2

(15)

+
λl
6

∥∥∥vL,θt (ct) + l0 − l1

∥∥∥2],
where we’ve normalized by dimension and λa, λf , λl ∈ R+

are hyperparameters and t ∼ Uniform(0, 1). In practice,
since we have a closed form geodesic for all of our mani-
folds, our supervision signals are computed by evaluating
conditional flow ψt(c | c1) on a minibatch determined by
(4) at time t and taking the gradient with automatic differen-
tiation, and in the component on F we subtract the mean.

Symmetries of the marginal path We show the symme-
tries of the conditional probability paths and construct the
marginal path. Conditional probability path pt(c | c1) map-
ping p0 = p(c) to p1(c | c1) is generated by tuple ut(c |
c1) :=

(
uAt (a | a1), u

F
t (f | f1), u

L
t (l | l1)

)
formed by di-

rect sum. Conditional vector fields uAt and uFt are permu-
tation equivariant through relabeling of particles and there-
fore pt(a | a1) and pt(f | f1) are invariant to permuta-
tion by Köhler et al. (2020). The representation of l makes
pt(l | l1) invariant to rotation. Finally, by translating away
the mean tangent fractional coordinate we relaxed the tradi-
tional requirement in Flow Matching that conditional path
p1(f | f1) = δ(f−f1) and instead allow p1 to concentrate
on an equivalence class of f1 where all members in the same

class are related by a translation. Therefore, p1(f | f1) re-
mains translation equivariant but the marginal probability
path ends up translation invariant (Theorem D.2). Our un-
conditional vector field ut, generating unconditional proba-
bility path pt, connecting p0 = p to p1 = q is:

ut(c) :=

∫
C
ut(c | c1)

pt(c | c1)q(c1)
pt(c)

dc1 (16)

pt(c) :=

∫
C
pt(c | c1)q(c1) dc1. (17)

Our construction enforces that pt(c) is invariant to permuta-
tion, translation, and rotation, with proof in Appendix D.

Estimated marginal path We specify our model, the
unconditional probability path pθt (c), generated by vθt (c),

pθt (c) :=

∫
C
pθt (c | c1)q(c1)dc1, (18)

trained by optimizing (15), and when p0 = p then p1 ≈ q.
We let vθt (c) be a graph neural network in the style of (Sator-
ras et al., 2021; Jiao et al., 2023) that enforces equivariance
to permutation for vA,F,θt (a,f) via message passing and
invariance to translation in vF,θt (f) by featurizing graph
edges as displacements between atoms. Invariance to rota-
tion of vL,θt (l) is enforced by the representation of l. After
enforcing these symmetries in our network, we know that
pθt (c) has the invariances desired by design. For more de-
tails about the graph neural network, see Appendix C.

Inference Anti-Annealing A numerical trick which in-
creased the performance of our neural network on the proxy
metrics was to adjust the predicted velocity vθt (c) at infer-
ence time. We write the ordinary differential equation and
initial condition c ∼ p(c) that defines the flow,

d

dt
ψθt = s(t)vθt (ψ

θ
t (c)), ψθ0(c) = c, (19)

but include a time-dependent velocity scaling term s(t) :=
1+s′twhere s′ is a hyperparameter. We typically found best
performance when 0 ≤ s′ ≤ 10. Notably, we also found
that selectively applying the velocity increase to particular
variables had a significant effect. In CSP, it was helpful
for fractional coordinates but hurtful for lattice parameters
l. We increased the fractional coordinate velocity for our
reported results. For DNG, the trend was not as simple.
Further investigation of this effect through ablation study
can be found in Appendix B. This effect has been observed
in multiple other studies (Yim et al., 2023; Bose et al., 2023).

4. Experiments
We evaluate FlowMM on the two tasks we set out at the
beginning of the paper: Crystal Structure Prediction and

7
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De Novo Generation. We apply proxy metrics in all exper-
iments, with a focus on inference-stage efficiency. We ad-
ditionally investigate the stability of DNG samples by per-
forming extensive density functional theory calculations.

4.1. Crystal Structure Prediction

We perform CSP on all datasets (Perov-5, Carbon-24, MP-
20, and MPTS-52) with CDVAE, DiffCSP and FlowMM,
evaluating them with proxy metrics computed using
StructureMatcher (Ong et al., 2013). We present the
Match Rate and the Root-Mean-Square Error (RMSE) in
Table 1. DiffCSP and FlowMM use exactly the same un-
derlying neural network in an apples-to-apples comparison.
FlowMM outperforms competing models on the more chal-
lenging & realistic datasets (MP-20 and MPTS-52) on both
metrics by a considerable margin. Figure 2 investigates sam-
pling efficiency by comparing the match rate of DiffCSP
and FlowMM as a function of number of integration steps.
FlowMM achieves a higher match rate with far fewer inte-
gration steps, which corresponds to more efficient inference.
FlowMM achieves maximum match rate in about 50 steps,
at least an order of magnitude decrease in inference time
cost compared to the 1000 steps used by DiffCSP. We ab-
late both inference anti-annealing and the proposed base dis-
tribution p(l) and confirm that FlowMM is competitive or
outperforms other models in terms of Match Rate without
those enhancements. We additionally report inference-time
uncertainty. Those results are located in Appendix B.

Figure 2. Match rate as a function of number of integration steps
on MP-20. FlowMM achieves a higher maximum match rate than
DiffCSP overall, and does so ∼ 450 steps before DiffCSP. Results
with Inference Anti-Annealing ablated are in Appendix B.

4.2. De novo generation

To evaluate de novo generation we trained models on the
MP-20 dataset and we generated 10,000 structures from
CDVAE and DiffCSP. For FlowMM, we generated 40,000
structures, in batches of 10,000, using a variable number
of integration steps: {250, 500, 750, 1000}. Table 2 shows
the proxy metrics along with the stability metrics computed
using the generated structures. FlowMM is competitive
with the diffusion models on most metrics, but significantly
outperforms them on several Wasserstein distance metrics
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Figure 3. The distribution of number of unique elements per mate-
rial, or N -ary, for the MP-20 distribution and the generative mod-
els. FlowMM matches the MP-20 distribution closest, while CD-
VAE and DiffCSP generate too many materials with N -ary ≥ 5.

between distributions of properties of generated structures
and the test set, specifically: the atomic density ρ and the
number of unique elements per crystal Nel (same as N -ary).

Table 2 also shows two different stability metrics based
on energy above hull (Ehull) calculations. To compute
Ehull for the experiments, we ran structure relaxations with
CHGNet (Deng et al., 2023) and density functional theory
and used those to determine the distance to the convex hull
and thereby stability. Further details are in Appendix A.
Conventional methods (Glass et al., 2006; Pickard & Needs,
2011) involve random search and hundreds of expensive
density functional theory evaluations. We aim to reduce
the computational expense of De Novo Generation. There-
fore, S.U.N. Cost is our most important metric as it indicate
the expense of finding a new material in terms of integra-
tion steps at inference time. From Table 2, it is clear that
FlowMM is competitive to DiffCSP on the S.U.N. Rate and
Stablity Rate metrics, but significantly better on Cost and
S.U.N. Cost due to the reduction in integration steps. This
efficiency is typical of flow matching compared to diffu-
sion (Shaul et al., 2023; Yim et al., 2023; Bose et al., 2023).
We note the caveat that integration steps are not the only
source of computational cost. Training, prerelaxation, and
relaxation are all costs worth considering; however, they
are slightly more difficult to benchmark. Furthermore, we
found them to be approximately equal across models so we
focus on the cost of inference, which varies considerably.

We also compare the distribution of the computed Ehull val-
ues for the various methods in Figure 4. Structures gener-
ated by FlowMM are on average much more stable than CD-
VAE, and are comparable to those generated by DiffCSP.

We compare the distribution of materials according to the
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Table 1. Results from crystal structure prediction on unit tests and realistic data sets.
Perov-5 Carbon-24 MP-20 MPTS-52

Match Rate (%) ↑ RMSE ↓ Match Rate (%) ↑ RMSE ↓ Match Rate (%) ↑ RMSE ↓ Match Rate (%) ↑ RMSE ↓
CDVAE 45.31 0.1138 17.09 0.2969 33.90 0.1045 5.34 0.2106
DiffCSP 52.02 0.0760 17.54 0.2759 51.49 0.0631 12.19 0.1786
FlowMM 53.15 0.0992 23.47 0.4122 61.39 0.0566 17.54 0.1726

Table 2. Results from De Novo generation on the MP-20 dataset.
Method Integration Validity (%) ↑ Coverage (%) ↑ Property ↓ Stability Rate† (%) ↑ Cost ↓ S.U.N. Rate ↑ S.U.N. Cost ↓

Steps Structural Composition Recall Precision wdist (ρ) wdist (Nel) MP-2023 Steps/Stable† MP-2023 Steps/S.U.N.

CDVAE 5000 100.00 86.70 99.15 99.49 0.688 0.278 1.57 31.85 1.43 34.97
DiffCSP 1000 100.00 83.25 99.71 99.76 0.350 0.125 5.06 1.98 3.34 2.99

FlowMM

250 96.58 83.47 99.48 99.65 0.261 0.107 4.32 0.58 2.38 1.05
500 96.86 83.24 99.38 99.63 0.075 0.079 4.19 1.19 2.45 2.04
750 96.78 83.08 99.64 99.63 0.281 0.097 4.14 1.81 2.22 3.38

1000 96.85 83.19 99.49 99.58 0.239 0.083 4.65 2.15 2.34 4.27
Stable† implies Ehull < 0.0 & N -ary ≥ 2.

arity of the structure. Figure 3 compares the N -ary distribu-
tion of each of the models to the MP-20 dataset. FlowMM
matches the data distribution significantly better than the
diffusion models, this is confirmed numerically with the
Wasserstein distance metric Nel in table 2. We present a
similar distribution for stable structures in Figure 9b.
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Figure 4. Histogram comparing the distribution of Ehull computed
after relaxation with DFT for generative models DiffCSP and
CDVAE with our proposed FlowMM on the DNG task. After
relaxation on for all models, FlowMM generates lower energy
structures compared to CDVAE and is competitive with DiffCSP.

5. Conclusion
We introduced a novel method for training continuous nor-
malizing flows using a generalization of Riemannian Flow
Matching for generating periodic crystal structures. We
empirically tested our model using both CSP and DNG
tasks and found strong performance on all proxy-metrics.
In CSP, we used exactly the same network as DiffCSP,
thereby performing an apples-to-apples comparison. For
MP-20, FlowMM was able to outperform DiffCSP, in terms
of Match Rate, with as few as 50 integration steps. This rep-
resents at least an order of magnitude improvement.

We rigorously evaluated the DNG structures for stability
using the energy above hull to determine the Stability Rate,

Cost, S.U.N. Rate, and S.U.N. Costs for each model. We
found that FlowMM significantly outperforms both CDVAE
and DiffCSP on Cost and S.U.N. Cost, and is competitive
with DiffCSP on Stability Rate and S.U.N. Rate. This is
enabled by FlowMM’s 3x more efficient generation, in terms
of integration steps, at inference time. The inference time
efficiency can be explained by the kinetically optimal paths
learned using the Flow Matching objective (Shaul et al.,
2023). Resource limitations meant we did not investigate
whether FlowMM could generate a similar number of stable
structures using only a handful of integration steps. Based
on the extremely efficient CSP results in Figure 2, this would
be an interesting direction for future work.

Impact Statement
Our paper presents a generative model for predicting the
composition and structure of stable materials. Our work may
aid in the discovery of novel materials that could catalyze
chemical reactions, enable higher energy density battery
technology, and advance other areas of materials science and
chemistry. The downstream effects are difficult to judge, but
the challenges associated with taking a computational pre-
diction to synthesized structure imply the societal impacts
are likely going to be limited to new research directions.
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A. Preliminaries Continued
A.1. Datasets

We consider two realistic datasets and two unit test datasets. The first two are realistic and the second two are unit tests. All
datasets are divided into 60% training data, 20% validation data, 20% test data. We use the same splits as Xie et al. (2021)
and Jiao et al. (2023).

Materials Project-20 (Xie et al., 2021) Also known as MP-20. Contains 45231 samples. Contains all materials with
a maximum of 20 atoms per unit cell and within 0.08 eV/atom in the Materials Project database (Jain et al., 2013) from
around July 2021. Materials containing radioactive atoms are removed.

Materials Project Time Splits-52 (Baird et al., 2024) Also known as MPTS-52. Contains 40476 samples. Uses similar
criteria as MP-20, but allows materials with atoms up to 52 in a single unit cell and no elemental filtering is applied.
Furthermore, the train, validation, and test splits are organized in chronological order. Therefore, the oldest materials are
in the training set and the newest ones are in the test set. Note: this dataset has fewer samples than MP-20 because some
materials are entered into the Materials Project database without first publication timestamp information. Those materials
are omitted from the dataset.

Perovskite-5 (Castelli et al., 2012) Also known as perov or perov-5. Contains 18928 samples. All materials have five
atoms per unit cell located at the same fractional coordinate values and lattice angles are fixed. Only the lattice lengths and
atomic types change.

Carbon-24 (Pickard, 2020) Also known as carbon. Contains 10153 samples. Each material contains only carbon atoms,
but the other variables are not fixed. This leads to a challenging CSP problem because there are typically multiple geometries
for every n-atom set of carbon atoms. This is reflected in depressed match rate scores.

A.2. Proxy metrics

Crystal Structure Prediction Following Jiao et al. (2023), we sampled the CSP model using held out structures
as conditioning and measured the match rate and Root-Mean-Square Error (RMSE), according to the output of
StructureMatcher Ong et al. (2013) with settings stol = 0.5, angle_tol = 10, ltol = 0.3. Match rate is the number
of generated structures that StructureMatcher find are within tolerances defined above divided by the total number
of held-out structures. RMSE is computed when the held-out and generated structures match (otherwise it does not enter
the reported statistics), then normalized by (V/N)1/3 as is standard. Unlike DiffCSP, we did not compute multi-sample
statistics given the same input composition.

De novo generation A composition is structurally valid when all pairwise distance between atoms are greater than 0.5 Å.
A crystal is compositionally valid when a simple heuristic system, SMACT (Davies et al., 2019), determines that the crystal
would be charge neutral. Coverage for both COV-R (recall) and COV-P (precision) are standard Recall & Precision metrics
computed after on thresholding pairwise distances between 1,000 samples that are both compositionally and structurally
valid, and have been featurized by CrystalNN structural fingerprints (Zimmermann & Jain, 2020) and the normalized Magpie
compositional fingerprints (Ward et al., 2016).

We also compute two Wasserstein distances on computed properties of crystal samples from the test set and our generated
structures. Namely, dρ and dNel

, corresponding to distances between the atomic density: number of atoms divided by unit
cell volume and Nel which is the number of unique elements in the unit cell, aka N -ary.

A.3. Riemannian Manifolds

Since C is a product of Riemannian manifolds, it has a natural metric: For any (a,f , l) ∈ C, the tangent space (A×F ×
L)(a,f ,l) is canonically isomorphic to the direct sum Aa ⊕Ff ⊕ Ll. For vectors ξ, η,∈ Aa; ζ, χ ∈ Ff ; and γ, ω ∈ Ll we
define the inner product of ξ⊕ζ⊕γ and η⊕χ⊕ω by ⟨ξ⊕ζ⊕γ, η⊕χ⊕ω⟩(a,f ,l) := λa⟨ξ, η⟩a+λf ⟨ζ, ξ⟩f+λl⟨γ, ω⟩l, where
the subscripts indicate the tangent space in which the different inner products are calculated and λ := (λa, λf , λl) ∈ R3 is
a hyperparameter. In particular, Aa ⊕ {0} ⊕ {0} is orthogonal to {0} ⊕ Ff ⊕ {0} and {0} ⊕ {0} ⊕ Ll. The associated
Riemannian measure on A × F × L is the product measure determined by dVA, dVF , and dVL where dV□ denotes the
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Lebesgue measure on space □ (Chavel et al., 1984). Since our measure is a product measure, we may define the base
probability measures of each space by densities absolutely continuous with respect to their respective Lebesgue measure.

A.4. Specifics for De Novo Generation

Determining number of atoms in the unit cell Above, we describe De Novo Generation via a distribution p(a,f , l);
however, this omits an important variable: n the number of atoms in the unit cell. This distribution carries an implicit
conditional on the number of atoms, namely p(a,f , l | n). In other words, we have assumed that n is known beforehand.
However, we are interested in generating materials with a variable number of atoms. To solve this problem we follow the
method of Hoogeboom et al. (2022) and first sample n ∼ p(n) from the empirical distribution of the training set.

Methodology for identifying Stable, Unique, and Novel (S.U.N.) materials Our goal in DNG is to generate stable,
unique and novel materials. In that effort, we generated samples from FlowMM, prerelaxed them using CHGNet, and finally
relaxed them using density functional theory. Our method for determining whether a material is S.U.N. is as follows:

(S) We determine the stability of our relaxed structures against the Matbench Discovery (Riebesell et al., 2023a;b)
convex hull, compiled from the Materials Project (Jain et al., 2013), marked as 2nd Feburary 2023. (Although our training
data comes from an earlier version of the database, we can still estimate the performance of the models using a later version
of the convex hull. In this situation, it becomes more difficult to generate novel structures since those proposed structures
may have been added to the database between 2021 and 2023.)

(N) We then take our stable generated structures and search the training data for any structure which contains the same set of
elements. We ignore the frequency of the elements during this search, in order to catch similar materials with differently
defined unit cells. We do a pairwise comparison between the generated structure and all “element-matching” examples from
the training set using StructureMatcher (Ong et al., 2013) with default settings. If there is no match, we consider that
structure novel.

(U) Finally, we take all stable and novel structures, then use StructureMatcher to pairwise compare those structures
with themselves. We collect all pairwise matches and group them into “equivalent” structures. This group counts as only
one structure for the purpose of S.U.N. computations, thereby enforcing uniqueness.

We want to emphasize that this is not a perfect system. StructureMatcher may fail to detect a match, or falsely
detect one, due to the default settings of its threshold. Furthermore, without careful application beyond the default settings,
StructureMatcher does not tell us about chemical function and may not yield matches for materials with extremely
similar chemical properties. This could inflate the estimated number of S.U.N. materials (Cheetham & Seshadri, 2024).
Additionally, StructureMatcher does not define an equivalence relation since it does satisfy the reflexivity property.
We treat it like one here anyway since it holds approximately.

Stability metrics explained We are interested in several stability metrics:

Stability Rate :=
Nstable

Ngen
(20)

Cost :=
Nint. steps

Stability Rate
(21)

S.U.N. Rate :=
NS.U.N.

Ngen
(22)

S.U.N. Cost :=
Nint. steps

S.U.N. Rate
(23)

where Ngen is the number of generated samples, Nstable is the number of generated samples which are stable; NS.U.N. are the
number of generated samples which are stable, unique, and novel; and Nint. steps is the number of integration steps to produce
a generated sample. By definition NS.U.N. ≤ Nstable ≤ Ngen.

A.5. Symmetry

We discuss invariances to symmetry groups for crystal structures. We are interested in estimating a density with invariances
to permutation, translation, and rotation as formalized in (1), (2), and (3). We visualize those symmetries in Figure 5.
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Figure 5. Three symmetry actions are shown above; all of these actions would alter only the representation of the crystal, while leaving its
chemical properties intact. (top) Rotation of a lattice formed by a unit cell. (mid) Translation of fractional coordinates within a unit cell.
(bot) Permutation of atomic index. Since these images are two-dimensional, they do not capture the symmetry of a three-dimensional
crystal. Furthermore, there are additional symmetries that are not represented in these pictures.

There are additional symmetries for crystals that we did not explicitly model in FlowMM. Those are periodic cell choice
invariance: where the unit cell is skewed by A with detA = 1 and A ∈ Z3×3 and the fractional coordinates are anti-skewed
by A−1, and supercell invariance where the unit cell is grown to encompass another neighboring “block” and all of the
atoms inside. These are discussed in more detail and visualized in Zeni et al. (2023).

A.6. Riemannian Flow Matching visualization

Since flow matching can be rather formal, and perhaps unintuitive when written symbolically, we draw cartoon represen-
tations of the regression target from the conditional vector field ut(· | ·1) for the fractional coordinates f and lattice pa-
rameters l in Figure 6 and Figure 7, respectively. In both cases, we also represent all necessary components to define the
regression target namely the sample from the base distribution □0, the sample from the target distribution □1, the condi-
tional path connecting them on the correct manifold, the point at time t along the path where the conditional vector field is
evaluated □t, and the conditional vector itself ut(□t | □1) where □ represents the relevant variable. We do not show a
because it occurs in Euclidean space and behaves like typical flow matching during training.

A.7. Details about Density Functional Theory calculations

For the stability metrics, we applied the Vienna ab initio simulation package (VASP) (Kresse & Furthmüller, 1996) to
compute relaxed geometries and ground state energies at a temperature of 0 K and pressure of 0 atm. We used the default
settings from the Materials Project (Jain et al., 2013) known as the MPRelaxSet with the PBE functional (Perdew et al.,
1996) and Hubbard U corrections. These correspond with the settings that our prerelaxation network CHGNet (Deng et al.,
2023) was trained on, so prerelaxation should reduce DFT energy, up to the fitting error in CHGNet.

A.8. Limitations of quantifying a computational approach to materials discovery

There are a number of important limitations when it comes to using and quantifying the performance of generative models
for materials discovery.

Fundamental limitations for all computational methods include, but are not limited to: (a) Energy and stability computations
all occur at nonphysical zero temperature and pressure settings. (b) Our material representation is not realistic since it
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sample

target

path

Figure 6. We visualize the necessary components to express a hypothetical Riemannian Flow Matching regression target on a single data
point for the fractional coordinates. The sample f0 is drawn from the base uniform distribution for both points. The target f1 is from the
database of crystals. The path is drawn between the sample and the target following the geodesic path, i.e. wrapping around the boundary.
The point ft along the path at time t is indicated with a diamond. The conditional vector ut(ft | f1) at time t is indicated as a vector.
This vector is the regression target in Riemannian Flow Matching.
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60 120

dist.
sample target

dist.

path

Figure 7. We visualize the necessary components to express a hypothetical Flow Matching regression target on a single data point for the
lattice parameters. Specifically, the length parameters are shown on the left and the angle parameters are on the right. The sample, target,
path, point-along-path, and vector all follow the description in Figure 6, but are adapted for lattice parameters. Additionally, we display the
base distribution as a blue line on this plot to indicate where samples llen0 and lang

0 can appear. Note: This visualization occurs in so-called
constrained space for lang; however, our proposed method does flow matching in the unconstrained space of lang to avoid the boundaries
of the lang distribution. In this way, this figure visualises the challenges of doing precise flow matching in constrained space and the
corresponding difficulty (and lower performance) of the ablated model. Recall that our transformation sends 60 → −∞ and 120 → ∞.

assumes complete homogeneity and an infinite crystal structure without disorder. (c) There is a fundamental inaccuracy in
density functional theory itself due to the basis set, the energy functional, and computational cost limitations... (etc.)

Generative models learn to fit empirical distributions. We are interested in generating S.U.N. materials which are not in our
empirical distribution. In an imprecise way, we expect that FlowMM will generated materials that exist as “interpolations”
between existing structures; however, the most interesting and new structures are well outside the existing empirical
distribution. We do not expect FlowMM to find these interesting and new structures since it is not trained to do that.

Additionally, one must consider that proposed materials can still be extremely implausible, despite satisfying our definition
of stability, or count a new material according to StructureMatcher, but a domain expert would not agree. Further
discussion of these issues can be found in the work by Cheetham & Seshadri (2024). Furthermore, our tests using
StructureMatcher rely on it defining an equivalence relation between structures; however, it does not due to its rtol
parameter which means the reflexive property does not always hold. (However it does hold approximately.)

Finally, we want to emphasize that although we believe our Cost metrics to be a good faith attempt to compare models,
of course number of integration steps is only one of many dimensions to evaluate the cost of generating a novel material.
We did not include training or relaxation time in these computations, for example. (Training time was approximately the
same across models and relaxation time is independent of the generation method. Although, relaxation can depend on the
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accuracy of a reconstructed/generated structure.)

B. Further Results
B.1. Crystal Structure Prediction (CSP)

To better understand how the components of FlowMM affect the performance on the CSP task, we performed several
ablation studies and included estimates of uncertainty. We focused on three aspects in particular: (a) Ablating velocity
anti-annealing, (b) ablating our proposed base distribution and unconstrained transformation for lattice parameters l, and (c)
estimating uncertainty in the inference stage, not during training, by rerunning reconstruction with varied random seeds.

Velocity anti-annealing is an inference-time hyperparameter that controls how much to scale the velocity prediction from
our learned vector field during integration, see (19). We choose to apply velocity anti-annealing to no variables, fractional
coordinates f , lattice parameters l, or both variables f , l. This amounts to a comprehensive ablation of the method. In CSP,
we found that it was generally beneficial to apply velocity anti-annealing to f , but not l. We note that FlowMM typically
saw improved performance compared to competitors without the need to scale the velocity with anti-annealing. We report
these results in Tables 3 and 4. We also reproduce the match rate as a function of integration steps using FlowMM without
Inference Anti-Annealing in Figure 8.

We describe our bespoke parameterization of l in Section 3 including a custom base distribution and a transformation to
unconstrained space. Our neural network representation (Appendix C) does not depend on “physical” lattice parameters.
Therefore, it is also possible to simply use a typical normal base distribution, without transforming to unconstrained space,
and let flow matching take care of learning the target distributions without inductive bias. Note that the ablation of the
base distribution for lattice parameters requires training another model. During inference, such a model can produce
representations that do not correspond to a real crystal; we will simply consider those generations as having failed. We
jointly ablate these inductive biases along with a velocity anti-annealing ablation. We find that no matter the velocity anti-
annealing scheme, our lattice parameter inductive biases provide a siginifcant performance boost.

Finally, for each case and dataset, we reran the generation from the corresponding trained model with the same hyperparam-
eters three times. This therefore indicates variation at inference time, but not variation during training. (Although these are
newly trained models compared to what is reported in Table 1 for every set of hyperparameter settings.) See Table 3 for the
ablation result on the unit test datasets and see Table 4 for the realistic datasets. Some unit test datasets reported the same
match rate across three reconstructions when n = 20, that’s what leads to ±0.0.
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Figure 8. Match rate as a function of number of integration steps on MP-20. FlowMM achieves a higher maximum match rate than
DiffCSP overall without without Inference Anti-Annealing (on f not l). Even without Inference Anti-Annealing, FlowMM outperforms
DiffCSP at every number of integration steps.
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B.2. De Novo Generation (DNG)

We present the distribution of generated stable crystals from CDVAE, DiffCSP, and FlowMM trained on MP-20 in Figure 9b.
(For context, we include generations without regard to stability in Figure 9a) The number of structures determined to be
stable diminishes quickly as a function of N -ary, implying that models generating high N -ary materials do not relax to
stable structures after density functional theory calculations.
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(a) Materials from MP-20 & generative methods.
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(b) Stable materials from generative methods.

Figure 9. (a) Figure 3 repeated for context. It represents a normalized histogram of the number of unique elements per crystal (N -ary)
for MP-20 and the generative methods. (b) A normalized histogram of the number of unique elements per stable crystal (N -ary) of
structures generated by CDVAE, DiffCSP, and FlowMM. All structures are stable and were relaxed using density functional theory.
Despite generating a large number of high N -ary structures, CDVAE and DiffCSP find relatively few stable ones after relaxation. The
FlowMM columns correspond to generations with 1000 integration steps.
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Table 3. Results from ablation study on unit test datasets

Perov-5 Carbon-24
Match Rate (%) ↑ RMSE ↓ Match Rate (%) ↑ RMSE ↓

# of
Samples

Lattice l
Base Dist.

Anneal
Coords

Anneal
Lattice

1 ablated False False 52.62± 1.06 0.2822± 0.0005 15.70± 0.85 0.4262± 0.0033
True 0.00± 0.00 1.84± 0.24 0.4265± 0.0041

True False 52.07± 1.25 0.2189± 0.0062 17.01± 0.59 0.4213± 0.0024
True 0.00± 0.00 1.71± 0.12 0.4229± 0.0140

proposed False False 57.63± 1.03 0.2556± 0.0039 21.95± 0.51 0.4097± 0.0017
True 56.36± 0.42 0.1945± 0.0020 15.83± 0.51 0.3900± 0.0017

True False 56.49± 1.09 0.1976± 0.0025 20.61± 0.52 0.3984± 0.0027
True 55.39± 0.20 0.1913± 0.0036 15.35± 0.68 0.3923± 0.0055

20 ablated False False 98.60± 0.00 0.0519± 0.0007 76.86± 0.29 0.3941± 0.0008
True 0.00± 0.00 26.88± 1.12 0.4208± 0.0038

True False 98.60± 0.00 0.0372± 0.0006 77.93± 0.23 0.3870± 0.0015
True 0.00± 0.00 26.26± 0.97 0.4211± 0.0026

proposed False False 98.60± 0.00 0.0428± 0.0004 79.85± 0.36 0.3599± 0.0012
True 98.60± 0.00 0.0334± 0.0008 75.85± 1.31 0.3349± 0.0007

True False 98.60± 0.00 0.0328± 0.0007 84.15± 0.54 0.3301± 0.0037
True 98.60± 0.00 0.0331± 0.0007 76.08± 0.16 0.3376± 0.0035

Table 4. Results from ablation study on realistic datasets

MP-20 MPTS-52
Match Rate (%) ↑ RMSE ↓ Match Rate (%) ↑ RMSE ↓

# of
Samples

Lattice l
Base Dist.

Anneal
Coords

Anneal
Lattice

1 ablated False False 43.21± 0.47 0.1812± 0.0012 4.04± 0.21 0.3490± 0.0152
True 0.00± 0.00 0.16± 0.06 0.4276± 0.0306

True False 49.15± 0.01 0.0866± 0.0012 5.27± 0.14 0.2567± 0.0091
True 0.00± 0.00 0.15± 0.03 0.4255± 0.0273

proposed False False 56.82± 0.42 0.1332± 0.0016 12.12± 0.36 0.2843± 0.0056
True 59.23± 0.08 0.0562± 0.0018 14.72± 0.45 0.1734± 0.0020

True False 61.26± 0.14 0.0572± 0.0014 16.11± 0.17 0.1831± 0.0021
True 59.19± 0.34 0.0577± 0.0008 14.71± 0.23 0.1724± 0.0012

20 ablated False False 73.59± 0.10 0.1449± 0.0006 15.81± 0.36 0.3225± 0.0025
True 0.00± 0.00 1.56± 0.03 0.4298± 0.0014

True False 75.68± 0.20 0.0791± 0.0011 20.63± 0.24 0.2581± 0.0006
True 0.00± 0.00 1.51± 0.05 0.4218± 0.0084

proposed False False 76.55± 0.09 0.0834± 0.0005 28.99± 0.04 0.2445± 0.0008
True 70.07± 0.04 0.0472± 0.0003 28.73± 0.25 0.1655± 0.0031

True False 75.81± 0.07 0.0479± 0.0004 34.05± 0.04 0.1813± 0.0012
True 70.00± 0.11 0.0474± 0.0004 28.95± 0.09 0.1666± 0.0028
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C. Neural network
We employ a graph neural network from Jiao et al. (2023) that adapts EGNN (Satorras et al., 2021) to fractional coordinates,

hi(0) = ϕh(0)
(ai) (24)

mij
(s) = φm(hi(s−1),h

j
(s−1), l,SinusoidalEmbedding(f j − f i)), (25)

mi
(s) =

N∑
j=1

mij
(s), (26)

hi(s) = hi(s−1) + φh(h
i
(s−1),m

i
(s)), (27)

ḟ i = φḟ

(
hi(max s)

)
(28)

l̇ = φl̇

(
1

n

n∑
i=1

hi(max s)

)
(29)

where mij
(s),m

i
(s) represent messages at layer s between nodes i and j, hj(s) represents hidden representation of node j at

layer s; φm, φh, ϕh(0)
, φḟ , φl̇ represent parametric functions with all parameters noted together as θ. A symbol □ ∈ △

with a dot above it □̇ represents the corresponding velocity components of the learned vector field, i.e. □̇ := v△,θt (ct).
Finally, we define

SinusoidalEmbedding(x) := (sin(2πkx), cos(2πkx))
T
k=0,...,nfreq

, (30)

where nfreq is a hyperparameter. We standardized the l input to the network with z-scoring. We also standardized the
outputs for predicted tangent vectors ḟ , l̇. Models were trained using the AdamW optimizer (Loshchilov & Hutter, 2018).

We parameterize our loss as an affine combination. That means we enforce the following condition for all experiments:

λl + λf + λa = 1 (31)

enforced by

λ̃l + λ̃f + λ̃a := λ̃; λl = λ̃l/λ̃, λf = λ̃f/λ̃, λa = λ̃a/λ̃. (32)

In DNG, we introduce an additional loss term. When this term is included, we also include it in the affine combination.

We provide general and network hyperparameters in Table 5 and Table 6. Recall, all datasets use a 60 − 20 − 20 split
between training, validation, and test data. We apply the same split as Xie et al. (2021) and Jiao et al. (2023). More specific
details exist in the corresponding experiment sections.

Table 5. General Hyperparameters
Carbon Perov MP-20 MPTS-52

Max Atoms 24 20 20 52
Max Epochs 8000 6000 2000 1000
Total Number of Samples 10153 18928 45231 40476
Batch Size 256 1024 256 64

Table 6. Network Hyperparameters

Value

Hidden Dimension 512
Time Embedding Dimension 256
Number of Layers 6
Activation Function silu
Layer Norm True

Crystal Structure Prediction We employed the network defined above for the CSP experiments. We swept over a grid
and selected the model that maximized the match rate on 2,000 reconstructions from (a subset of) the validation set.

We swept learning rate ∈ {0.001, 0.0003}, weight decay ∈ {0.003, 0.001, 0.0}, gradient clipping = 0.5, λ̃l = 1, λ̃f ∈
{100, 200, 300, 400, 500}.

We performed multiple reconstructions using various values for the anti-annealing velocity scheduler with coefficient
s′ ∈ {0, 1, 2, 3.5, 5, 10}. We found that the velocity scheduler to be most effective when applied to f alone. Ablation tests
of this phenomenon can be found in Appendix B.
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Table 7. CSP Hyperparameters

Carbon Perov MP-20 MPTS-52

Learning Rate 0.001 0.0003 0.0001 0.0001
Weight Decay 0.0 0.001 0.001 0.001
λ̃f (Frac Coords) 400 1500 300 300
λ̃l (Lattice) 1.0 1.0 1.0 1.0

s′ (Anti-Anneal Slope) 2.0 1.0 10.0 5.0
Anneal f False False True True
Anneal l False False False False

Table 8. DNG Hyperparameters
Value

Learning Rate 0.0005
Weight Decay 0.005
λ̃a (Atom Type) 300
λ̃f (Frac Coords) 600
λ̃l (Lattice) 1.0
λ̃sce (Cross Entropy) 20

s′ (Anti-Annealing Slope) 5.0
Anneal a False
Anneal f True
Anneal l True

De novo generation For the unconditional experiment, we made some changes to the network above that we found
favorable for the featurization of the crystal. The new network and featurization is:

hi(0) = ϕh(0)
(ai) (33)

mij
(s) = φm

(
hi(s−1),h

j
(s−1), l,SinusoidalEmbedding

(
logfi(f j)

)
, z(n),

l̃
T
l̃f

∥l̃
T
l̃f∥

)
, (34)

mi
(s) =

N∑
j=1

mij
(s), (35)

hi(s) = hi(s−1) + φh(h
i
(s−1),m

i
(s)), (36)

ḟ i = φḟ

(
hi(max s)

)
(37)

l̇ = φl̇

(
1

n

n∑
i=1

hi(max s),

n∑
i=1

hi(max s)

)
(38)

ȧi = φȧ

(
hi(max s)

)
(39)

(40)

where logfi(f j) is defined in (12) as the logmap for the flat torus, z(n) represents a learned embedding of the number of

atoms n in the crystal’s unit cell with parameters concatenated to θ, l̃
T
l̃f

∥l̃T l̃f∥
is the cosine of the angles between the Cartesian

edge between atoms and the three lattice vectors (Zeni et al., 2023), φl̇ takes in both mean and sum pooling across nodes, and
φȧ represents a parametric function with parameters concatenated to θ. A symbol □ ∈ △ with a dot above it □̇ represents
the corresponding velocity components of the learned vector field, i.e. □̇ := v△,θt (ct). The additional edge features in (34)
are invariant to translation and rotation. Recall that at t = 0, ai is drawn randomly from the base distribution.

We included an additional loss term with a Lagrange multiplier in our loss function. Namely a version of what Chen et al.
(2022) call sigmoid cross entropy in Appendix B.2, adapted for atom types represented as analog bits:

Lsce := − log σ (a1 · â1) , (41)
with â1 := (1− t) ȧt + at, (42)

where σ is the logistic sigmoid, a1 ∈ {−1, 1}h is the target analog bit-style atom type vector, t is the time where the loss is
evaluated, at is the point along the path between a0 and a1 at time t, · represents the inner product between vectors, and
ȧt := vA,θt (ct). This represents a one-step numerical estimate of the final predicted position of at at t = 1. We add this
term into the objective (15) in affine combination with unnormalized Lagrange multiplier λ̃sce suitably normalized as λsce .

We performed a sweep over the hyperparameters learning rate ∈ {0.0001, 0.0003, 0.0005, 0.0007, 0.001}, weight decay
∈ {0.0, 0.0001, 0.0005, 0.001, 0.003, 0.005}, gradient clipping = 0.5, λ̃l = 1, λ̃f ∈ {40, 100, 200, 300, 400, 600, 800},
λ̃a ∈ {40, 100, 200, 300, 400, 600, 800, 1200, 1600}, and λ̃sce ∈ {0, 20}, and velocity schedule coefficient s′ ∈ {0, 1, 2, 5}

21



FlowMM: Generating Materials with Riemannian Flow Matching

We performed model selection using generated samples from each model in the sweep. After computing the proxy metrics
on those samples, we collected the ≈ 50 models that were in the top 86th percentile on (both structural & compositional)
validity, Wasserstein distance in density (ρ), and Wasserstein distance in number of unique elements (Nel). From those
models, we prerelaxed the generations using CHGNet (Deng et al., 2023) and took the model which produced the most
metastable structures (CHGNet energy above hull < 0.1 eV/atom). We reported the results from the one which then had the
best performance on Stability Rate computed using the number of metastable structures.

D. Enforcing G-invariance of marginal probability path
We assume the target distribution q is G-invariant, where G is defined as in the "Symmetries of crystals" paragraph, i.e., for
each g ∈ G, where g = (σ,Q, τ) consists of (i) permutation of atoms together with their fractional coordinates, (ii) rotation
of the lattice, and (iii) translation of the fractional coordinates. Firstly, we show that generally for marginal probability
paths where p1 = q as in (8), in order to have pt(x) be G-invariant, it is sufficient to have pt(x|x1) satisfy a simple pairwise
G-invariant condition.

Theorem D.1. For pairwise G-invariant conditional probability path pt(x|x1), meaning pt(g · x|g · x1) = pt(x|x1) ∀g ∈
G, x, x1 ∈ C, the construction in (8) defines a G-invariant marginal distribution pt(x).

Proof.

pt(g · x) =
∫
pt(g · x|x1)q(x1)dx1 defn. from (8)

=

∫
pt(x|g−1 · x1)q(x1)dx1 pairwise G-invariance of pt(x|x1)

=

∫
pt(x|g−1 · x1)q(g−1 · x1)dx1 G-invariance of q

=

∫
pt(x|g−1 · x1)q(g−1 · x1)

∣∣det Jg−1

∣∣︸ ︷︷ ︸
=1

d(g−1 · x1) change of variables

=

∫
pt(x|x̃1)q(x̃1)dx̃1 x̃1 = g−1 · x1

= pt(x)

Constructing conditional flows that imply pairwise G-invariant probability paths In order to construct a pairwise G-
invariant pt(x|x1), we make use of three main approaches. One is to enforce G-equivariant vector fields, which correspond
to G-equivariant flows and thus generate G-invariant probabilities, building on the observation of Köhler et al. (2020) to the
pairwise case. Another is to simply make use of representations that are G-invariant, resulting in G-invariant probabilities.
Finally, we take a novel approach of generalizing the construction of Riemannian Flow Matching to equivalence classes and
constructing flows between equivalence classes.

For the first approach, we require a G-invariant base distribution and that ut(g · x|g · x1) = g · ut(x|x1). This ensures the
flow satisfies ψt(g · x0|g · x1) = g · ψt(x0|x1) and thus resulting in a pairwise G-invariant probability path. This property
is satisfied by the use of regular geodesic paths that we use during the training of Riemannian Flow Matching, because
the shortest paths connecting any x and x1 on the manifolds that we consider here (flat tori and Euclidean) are simply
simultaneously transformed alongside x and x1, for transformations such as permutation and rotation. We use this approach
to enforce invariance to permutation of atoms.

The second approach is to bypass the need to enforce invariance in either ut(x|x1) or vθt (x) by instead using a representation
of that is bijective with its entire equivalence class. We use this approach to enforce invariance to rotation of the lattice, by
directly modeling angles and lengths.

The third approach is enabled by a generalization of the Riemannian Flow Matching framework in the case of a G-invariant
q, relaxing the assumption that the conditional probability paths pt(x|x1) = δ(x − x1) at t = 1. Instead, we allow
pt(x|x1) = δ(x− x̃1) as long as x̃1 ∈ [x1], the equivalence class of x1, i.e., [x] = {g · x|g· ∈ G}.
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Theorem D.2. Allowing the possibility ofG-invariant conditional flow ψt(x0|x1), meaning ψt(x0|g ·x1) = ψt(x0|x1) ∀g ∈
G, x, x1 ∈ C, if ψt(x0|x1) ∈ [x1] ∀x, x1 ∈ C, then the construction of ut(x) in (17) is valid and results in a marginal
distribution that satisfies p1 = q.

Proof. For general flow functions ψt(x0|x1), it follows a Dirac-delta conditional probability pt(x|x0, x1) = δ(x − ψt),
where ψt is short-hand for ψt(x0|x1). Then we have that

pt=1(x) =

∫
pt=1(x|x0, x1)p(x0)q(x1)dx0dx1

=

∫
δ(x− ψt=1)p(x0)q(x1)dx0dx1

=

∫
δ(x− g · x1)p(x0)q(x1)dx0dx1 ψt=1 ∈ [x1]

=

∫
δ(x− g · x1)p(x0)q(g · x1)dx0d(g · x1) G-invariance of q & change of variables

=

∫
δ(x− x̃1)p(x0)q(x̃1)dx0dx̃1

= q(x)

The main implication of only needing to satisfy ψ1 ∈ [x1] is that this allows us to also impose additional the constraints
on our vector fields that were previously not possible. Specifically, we can now allow conditional vector fields that are
entry-wise G-invariant, i.e., ut(x|g · x1) = ut(x|x1) and ut(g · x|x1) = ut(x|x1). Note this results in flows that satisfy
ψt(x0|g · x1) = ψt(x0|x1), and importantly, this implies the flow can no longer distinguish x1 from other elements in its
equivalence class; the flow ψt is purely a function of equivalence classes [x0] and [x1]. However, as per above, this is still
sufficient for satisfying p1 = q. Simultaneously, allowing such conditional vector fields provides the means to satisfy the
pairwise G-invariance condition we need for G-invariance of pt(x), i.e., pt(g · x|g · x1) = pt(x|x1).

Translation invariance with periodic boundary conditions On Euclidean space, one typical method of imposing
translation invariance of a set of points is to remove the mean of the set and using a “mean-free” representation. This
provides the ability to work with a representation that does not contain any information about translation, following
the second approach described above. However, on flat tori (i.e., with periodic boundary conditions), this approach is
not possible because the mean of a set of points is not uniquely defined. Instead, we make use of the third approach
described above and construct ψt(f0|f1) such that it flows to a set of fractional coordinates that is equivalent to f1. Since
for the flat tori, translations in the tangent plane result in translations on the manifold, we propose simply removing the
translation component of the conditional vector field resulting from the geodesic construction. This results in the “mean-free”
conditional vector field in (14).
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