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ABSTRACT

The effectiveness of most graph neural networks is largely attributed to the message-
passing mechanism. Despite the significant success in homophilic graphs (i.e.,
similar nodes are connected by edges), message-passing mechanism in heterophilic
graphs (i.e., dissimilar nodes are connected by edges) is still challenging. Due
to the existence of low-order but dissimilar neighbor nodes in a path, messages
from similar but high-order neighbor nodes are often weakened. In this paper,
firstly, we conduct both theoretical and empirical analysis of the layer-by-layer
local nature of the message-passing mechanism. Then, we propose a novel GloMP-
GNN for heterophilic graphs by comprehensively introducing global insights into
the message-passing mechanism. 1) During the message propagation phase, the
global insight is introduced from the perspective of graph structure. We design
a structure-based global propagation strategy, where messages can be effectively
propagated with the bridge of virtual edges between a global virtual node and
graph nodes. Moreover, a global edge adaption approach is included to aggregate
messages with adaptive edge weight adjustment. 2) During the feature updating
phase, the global insight is introduced with a feature-augmented compensatory
updating method. Through a multi-view feature updating mechanism, the node
feature representation can be effectively augmented by compensating the weak-
ened message from different views. Finally, we conduct extensive experimental
evaluations on eight datasets, which demonstrate the superiority of our proposed
GloMP-GNN. As broader impacts, GloMP-GNN consistently performs well across
multiple layers and also effectively prevents the over-smoothing problem. Codes
are available on Githu

1 INTRODUCTION

Graph Neural Network (GNN) has emerged as an important method for graph representation learning,
which have been widely used across various fields, such as social network analysis [Huang et al.
(2024); Yang et al.|(2022), bioinformatics |[Zhang et al.| (2024); Liu et al.| (2024)), and financial risk
assessment Wang et al.| (2023); |Qian et al.| (2024). The effectiveness of most GNNs is largely
attributed to the message-passing mechanism |Gilmer et al.| (2017a), a prevalent paradigm that
aggregates information from neighbor nodes to update the representation of nodes. Despite the
significant success in homophilic graphs (i.e., similar nodes are connected by edges), message-
passing mechanism in heterophilic graphs (i.e., dissimilar nodes are connected by edges) is still
challenging. Due to the existence of low-order but dissimilar neighbor nodes in a path, messages
from similar but high-order neighbor nodes are often weakened.

To tackle the challenges posed by heterophilic graphs, several advanced methods have been developed
to enhance the message-passing mechanism [Zheng et al.[(2022); Luan et al.| (2024). Approaches
like blending high-order neighbors|Zhu et al.| (2020); |Song et al.|(2023)); [Wang & Derr (2021)) and
identifying potential neighbor nodes [Pei et al.|(2019); |Suresh et al.| (2021) aim to expand the effective
neighborhood, but they may also amplify intermediate layers, introducing noise and over-reliance on
irrelevant information. Other strategies focus on optimizing message aggregation, such as adaptive
message aggregation |Yan et al.|(2022), layer-specific weight learning (Chien et al.| (2020), and diverse
aggregation schemes [Luan et al.| (2022); Maurya et al.| (2022); [Du et al.| (2022). Additionally,
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Figure 1: Illustration of different GNN methods in heterophilic graphs.

spectral methods differentiate between distinct-class neighbors using signed messages to capture high-
frequency signals|Yang et al.[(2021));|Bo et al.|(2021). With continuous efforts, previous methods have
alleviated the problem of the message-passing mechanism from different perspectives and achieved
remarkable progress on heterophilic graphs.

However, few studies have fundamentally pointed out and solved the underlying problem, which
is largely caused by the layer-by-layer localized nature of the current message-passing framework.
Unlike these methods, we first theoretically and empirically analyze the localized layer-by-layer
nature of the message-passing mechanism. Along this line, we propose to address the problem by
introducing global insights into the message-passing mechanism. As illustrated in Figure [} on
heterophilic graphs, the message from similar but high-order neighbor nodes is often weakened by
low-order dissimilar neighbor nodes in conventional GNN. Graph Transformer Shi et al.| (2021)
alleviates the issue by establishing global dependencies between nodes with fully-connected edges,
but this will also greatly increase the extra quadratic computational complexity. Moreover, recent
studies also reveal the over-globalizing problem Xing et al.| (2024) in Graph Transformers with
fully-connected edges. Unlike Graph Transformer, inspired by the concept of virtual node |Gilmer
et al. (2017b)), we introduce global insights on heterophilic graphs by establishing virtual edges
through a global virtual node, with only linear extra complexity.

To tackle the localized layer-by-layer nature of the message-passing mechanism, in this paper, we
comprehensively introduce global insights into conventional message-passing mechanism and propose
a novel Global Message-Passing Graph Neural Network (GloMP-GNN) for heterophilic graphs. To
be concrete, the global insights of GloMP-GNN are reflected in two aspects. 1) During the message
propagation phase, the global insight is introduced with a structure-based global propagation (SGP)
strategy from the perspective of graph structure. By adding a global virtual node, messages between
similar but high-order neighbor nodes can be effectively propagated with the bridge of virtual edges
between the virtual node and graph nodes. Moreover, for redundant and noisy edges, a global
edge adaption approach is included in SGP to adaptively aggregate messages by adjusting related
edge weights; 2) During the feature updating phase, the global insight is introduced with a feature-
augmented compensatory updating (FCU) method from the perspective of node feature. Through a
multi-view feature updating mechanism, the node feature representation can be effectively augmented
by compensating the weakened message from different views. The main contributions of our work
are summarized as follows:

* We theoretically and empirically analyze the localized layer-by-layer nature of message-
passing mechanisms. By comprehensively introducing global insights from both structure
and feature perspectives, we propose GloMP-GNN with a global message-passing mecha-
nism for heterophilic graphs.

* We propose a structure-based global propagation strategy by establishing virtual edges
between the global virtual node and graph nodes. Moreover, a global edge adaption approach
is included to aggregate messages with adaptive edge weight adjustment. In this way,
messages between similar high-order neighbor nodes can be effectively propagated.

* We propose a feature-augmented compensatory updating method with multi-view feature up-
dating mechanism. In this way, the node feature representation can be effectively augmented
by compensating the weakened message from different views.

 Extensive experimental results on eight datasets demonstrate the superiority of our proposed
GloMP-GNN. As broader impacts, GloMP-GNN consistently performs well across multiple
layers and alleviates the over-smoothing issue.
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2 PRELIMINARIES

2.1 BACKGROUND

Consider a graph G = (V, £), where V represents the set of nodes and £ denotes the set of edges. If
nodes ¢ and j are connected, then (7, j) is an edge in £. The adjacency matrix of G is represented by
A € RVXN ‘where A; ; = 1if (i,j) € € and A; ; = 0 otherwise. N = |V| indicates the number of
nodes. The neighbor set of node 7 is N'(i) = {j : (4,5) € £}. Each node ¢ € V has an associated d
dimensional feature vector x; € R? from the feature matrix X € RV x4,

In the traditional GNN framework, the feature representation of each node is updated by aggregating
information from its local neighbors. The process can be represented as:

m® = AGG ({ng—1> je N(i)}) ., x\ = UPDATE® (x§l‘”,m(”) )

0

respectively. The function AGGY and UPDATEW are the aggregation function and update function.

@

where m;” and x; are the message vector and the feature representation of node ¢ at layer [,

2.2 ANALYSIS ON MESSAGE-PASSING MECHANISM

The classic matrix representation for message-passing GNNs, like GCN and GAT [Kipf & Welling
(2016); | Velickovi¢ et al.| (2018), can be written as X = ¢(AOX-DW®) In GCN, AD) =
(D+I)"'/2(A+D)(D+I)"1/2, where D = diag(A) is a diagonal matrix. In GAT, A®) = AoM®),
where o represents the element-wise multiplication, M) represents the attention coefficient matrix
at layer [. To simplify the mathematical exploration of model properties, following [Eliasof et al.
(2023)); |Azabou et al|[(2023), the o (-) function (i.e., ReLU) is omitted in the following parts. Then,
for traditional GNN models, X = T\, Al=i+DXOW@, Derivation details are listed in
Appendix

In Graph Neural Networks (GNNs), the traditional qualitative descriptors of node relationships, such
as similarity or strength, are insufficient for a detailed analysis of node interactions. We introduce
influence intensity as a quantitative metric to overcome these limitations by measuring the exact
degree of influence between nodes, accommodating both direct and indirect interactions. Specifically,
we define the “Global Influence Intensity” and “Path Influence Intensity” as follows.

Definition 1 (Global Influence Intensity) In an [-layer GNN, the global influence intensity from
node q to node p, denoted as C,, 4, is calculated by the matrix element (Hizl Al=+D)y

Definition 2 (Path Influence Intensity) The influence intensity of node q on node p along a specific
path P = (p,i1,ia,...,ix_1,q) is denoted as Ozfq’ which is computed based on the weights along
path P.

Obviously, the Global Influence Intensity from node ¢ to node p can be calculated by adding all the
Path Influence Intensity of node ¢ on node p. Under the definition of influence intensity, it’s obvious
that for a specific path P = (i, j), Cf ; = Aij, where edge weight and influence intensity between
node 7 and j are numerically identical.

Considering that there may be multiple paths between two nodes in a graph, the two nodes may be
different order neighbors on different paths. In order to unify the description, we define the neighbor
orders of nodes as follows.

Definition 3 (k-order Neighbors) The k-order neighbors of a node p in a graph encompass all
neighbors that are at a minimum hop of k from the node p, denoted as N'® (p).

Along with the previous introduction, we intend to investigate the propagation of the influence
intensity in the message-passing mechanism. Taking the widely adopted GCN and GAT as illustrative
examples, we perform an in-depth analysis of 10-layer GNNs.

From Figure 2(a)l we observe a consistent trend for both GCN and GAT. As the order of neighbors
increases, the averaged global influence intensity begins to decrease. From Figure [2(b)l we can
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Figure 2: Propagation of node influence intensity for GCN and GAT (10 layers) in the filtered
Chameleon dataset |Platonov et al.| (2023).

observe that in a heterophilic graph, the number of nodes with high-order neighbors (for example,
greater than 3) actually accounts for a very large proportion. However, the trend in Figure 2(a)|implies
that the influence of these high-order neighbors on the central node is extremely low. This tendency
may be detrimental to capturing the broader structure in heterophilic graphs, where insights from
higher-order neighbors are essential |Zhu et al.|(2020); Song et al.| (2023)).

The above illustration uses empirical analysis to show the global influence intensity between nodes in
a graph under the layer-by-layer nature. Building upon these empirical findings, we now proceed
with a theoretical examination to further demonstrate how the path influence intensity between nodes
may be diminished by the inherent nature of the layer-by-layer message-passing mechanism.

Theorem 1 In traditional GNN models, for any given node i and its k-order neighbor ;. along any
path P = (ig, 11,42, 13, . . . , i) within a heterophilic graph G = (V, £), the path influence intensity
of iy, to 19 (i.e., CZE i) approaches zero as k tends towards infinity, i.e.,

lim ¢¥. =o0.

10,1k
k—oc0 0%k

The proof of the theorem is deferred to Appendix [A-T} This theorem highlights the intrinsic limitation
of the layer-by-layer nature of the message-passing mechanism, particularly in heterophilic graphs.
In such graphs, nodes that are close yet dissimilar might receive lower influence weights, potentially
weakening the contribution of distant but similar nodes in the same path. Although recent models like
JKNet |Xu et al.|(2018)), GPRGNN |Chien et al.|(2020) and GCNII |Chen et al.| (2020) have introduced
residual connections to preserve self-information and jumping links or learning weights separately for
each layer, the influence intensities of distant nodes can hardly benefit from this. Since an increase in
the weight of a distant layer can affect the weights of intermediate layers, this may introduce noise
and an overreliance on intermediate layers that may contain irrelevant or even harmful data. As a
result, the influence intensities from high-order neighbors are very small, presenting a challenge in
capturing valuable information from distant nodes for heterophilic graphs.

3 GLOMP-GNN

In this section, we will present our proposed GloMP-GNN with a global message-passing mechanism
for heterophilic graphs in detail. Overall, GloMP-GNN comprehensively introduces global insights
from two aspects. (1) From the perspective of graph structure, a structure-based global propagation
strategy is designed in the message propagation phase. (2) From the perspective of node feature, a
feature-augmented compensatory updating method is developed in the feature updating phase. The
technical details of GloMP-GNN are presented as follows.
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Figure 3: The framework of GloMP-GNN, which consists of a Structure-based Global Propagation
module and a Feature-augmented Compensatory Update module. A toy example of path influence
intensity illustrates that, with GVN and Global Edge Adaptation in SGP, the path influence intensity
from node 4 to node 1 can be increased.

3.1 STRUCTURE-BASED GLOBAL PROPAGATION

Inspired by the concept of virtual node Gilmer et al.|(2017b); Cai et al.|(2023), we add a Global Virtual
Node (GVN) to connect every node in the graph. Then, virtual-connected edges between the GVN
and graph nodes can be established. In this way, messages between similar but high-order neighbor
nodes can be effectively propagated with the bridge of virtual edges. Therefore, the following theorem
can be formulated:

Theorem 2 In graph G, if a global virtual node is added to connect every node on the graph, then
for any node on the graph, its maximum neighbor order is 2.

Based on Theorem 2] messages can be effectively and efficiently propagated between similar but
high-order neighbor nodes in heterophilic graphs.

For technical details, the feature representation of GVN (i.e., Tgyn) is initialized as:

TGVN,s = MAX Ty, ()
uey

where 2gyn ; s the feature representation of the GVN for the it" dimension. V represents all nodes

in the graph, z,, ; is the feature representation of node u for the i*" dimension.

Despite the effectiveness of the virtual node in information propagation, it may also introduce
some redundant and noisy edges, which interfere with the learning process and degrade model
performance |Hu et al.| (2020} [2021}).

Along this line, we further design a Global Edge Adaption (GEA) approach to adaptively adjust the
weights of those edges. Specifically, we firstly leverage the multi-head attention mechanism to learn
different weights of neighbors, which can be calculated as follows:

a;; = Softmax(LeakyReLU (a’ [W 4z;||W az;])). 3)
Here, [- || -] denotes concatenation, a is a learnable weight parameter vector, and W 4 is a learnable
weight parameter matrix.

Next, we introduce a global state matrix M, which leverages the Gram matrix |Sreeram & Agathoklis
(1994) to encapsulate the relationships of all nodes based on their initial feature representations. Here,
the Gram matrix is defined as Gram = X(O)X(O)T, where X () represents the initial feature matrix
of the nodes. Moreover, we incorporate a noise matrix (i.e., Meise) into M, which serves as a proxy
for potential uncertainties and variances inherent in real-world datasets. Thus, the generalization
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ability and robustness of our proposed method could be improved. The formulation is written as
follows:

M¢ = Gram - Wg + € - Mpgige, 4
where W and ¢ are trainable weight parameters. Mie ~ N (0, 1) is sampled from the standard
normal distribution.

Based on the global state matrix M, we calculated the global adaptive coefficient f; ; for connected
nodes ¢ and j based on their global state representations as follows:

fij = o([Mgi||[Mg;] - Wy +by), (5)

where [Mg;||Mg;] denotes the concatenation of the global state vectors of nodes ¢ and j, Wy and
by are learnable weight matrix and bias term. o (-) is the sigmoid activation function that ensures the
global adaptive coefficients are constrained in the range [0, 1].

Then, a new global multi-head attention coefficient é&; ; can be obtained by integrating the global
adaptive coefficient f; ; with the original multi-head attention coefficient c; ;. This process is
formulated as follows:

& j = Softmax(B(fi; - i j) + (1 — B)a 5), (6)

where 8 € [0, 1] is a trainable parameter that balances the influence of the adaptively adjusted
attention coefficient and original attention coefficient. This formulation can enhance our model ability
to capture global dependencies between nodes.

Finally, based on the global attention coefficients é;, the message is propagated and aggregated.

m'® — & Z dl(f]fl)wz(z—mmj(z_l) : )
JEN (i)

where m’i(l) is the aggregated message at [** layer for node 7 after aggregating information from its
neighbors at (I — 1)t layer, W/(:=1) is a learnable weight matrix. Additionally, M/() = {m/"} V|
represent the global adaptive message matrix at [* layer .

3.2 FEATURE-AUGMENTED COMPENSATORY UPDATE

As stated before, in heterophilic graphs, messages from similar but high-order neighbor nodes are
often weakened due to the local nature of the layer-by-layer message-passing mechanism. To this end,
during the message propagation phase, as presented before, we design the SGP strategy to introduce
global insight from the perspective of graph structure. In addition, during the feature updating phase,
we also develop a feature-augmented compensatory updating method to introduce global insight from
the perspective of node feature. Specifically, we comprehensively utilize three different message
aggregation mechanisms for multi-view feature updating. In this way, messages weakened in a single
view can be mutually compensated by messages from other views.

The first is the aggregation mechanism from GEA, which provides an attention-based global adaptive
view. The second is the average aggregation mechanism, which provides an edge-balanced view. It is

formulated as follows:
" 3. NG 20D
" — (3
(1) _ n(l—1) £=3€ J . ]
m, o (W —|N(Z)| (8)

N

Thus, the average aggregated message matrix at I*" layer can be written as M”() = {m}""} N .

The third is the normalized aggregation mechanism, which provides a node degree-based view. It can
be represented as follows:

L0

ml) m(i—1) ;
e\t j N ©))
je%(i) \/degree(i) x degree(j)
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Then, the normalized aggregated message matrix at /" layer can be written as M"() = {m;”(l) No
By bringing multi-view messages all together, the representation of node ¢ will be updated with a
fusion of its own features and aggregated messages using a multi-layer perceptron (MLP) with two
hidden layers and Gelu activation. It is represented as follows:

/

mz(_l) _ MLP([:EElil) ||m;(l) Hmi/(l) ||m;//(l)])> (10)

where [-||-] denotes the concatenation opration.

In this way, our proposed FCU method comprehensively utilizes messages in different views and
augments the node feature updating process. Thus, FCU is capable of overcoming the local nature of
current message-passing mechanisms from the perspective of node features.

4 EXPERIMENTS

4.1 DATASETS

To investigate the performance of our model across various datasets, we conduct experiments on
five heterophilic datasets (Actor Pei et al.[(2019), Roman-empire |[Lhoest et al.[(2021); [Platonov et al.
(2023)), Amazon-ratings Leskovec & Krevl (2014)); Platonov et al|(2023), Minesweeper Platonov
et al.| (2023)), and Tolokers [Platonov et al.|(2023)), and three commonly used homophilic datasets
(Cora, CiteSeer, PubMed |Sen et al.| (2008)). For a more comprehensive measurement of dataset
heterophily, we use two metrics: heqq [Pel et al.[(2019) and label informativeness (LI) |Platonov et al.
(2024). More descriptions of these datasets and heterophily metrics are listed in the Appendix[A.2]

4.2 BASELINES

To verify the effectiveness of the proposed GloMP-GNN on the node classification task, 18 methods
are employed as baselines, which can be divided into five groups: (1) deep learning method ResNet/He
et al.|(2016); (2) classic GNN models, such as GCN [Kipf & Welling|(2016)), GraphSage Hamilton
et al.| (2017), GAT |Velickovic et al.|(2018)) and GATv2 |Brody et al.|(2022); (3) selective information
propagation method , such as HoGCN Zhu et al.|(2020), GBK-GNN Du et al.| (2022), GCNII |Chen
et al.|(2020), FSGNN Maurya et al.|(2022)), and OrderedGNN |Song et al.[(2023)); (4) graph signal-
based methods, such as GPR-GNN |Chien et al.| (2020), FAGCN Bo et al.| (2021)), JacobiConv [Wang
& Zhang|(2022) and ALT-APPNP Xu et al.|(2023); (5) global information-based method, such as
Graph Transformer (GT)|Shi et al.|(2021), GraphGPS Rampasek et al.| (2022), GloGNN++ L1 et al.
(2022) LRGNN [Liang et al.| (2024). More descriptions and analysis of these baselines are listed in

the Appendix [A.2]

4.3 EXPERIMENTAL SETUP

All experiments are implemented with PyTorch [Paszke et al.| (2019) and DGL Wang et al.| (2019)
on a Linux server equipped with six 2.30GHz Intel (R) Xeon (R) Gold 5218 CPUs and an NVIDIA
Tesla V100-SXM2-32GB GPU. All models are trained with the Adam optimizer |Kingma & Ba
(2015). For GloMP-GNN, we explore a range of hyperparameters: learning rates are chosen from
{le—2,1e—3,1e—4,3e—4,1e—5,3e—5}, hidden dimensions are taken from {64, 128, 256, 512},
the number of attention heads is set to 4 or 8, and the number of hidden layers varies from 1 to 10. For
baselines, the experimental parameter settings are based on the hyperparameters provided in original
papers, datasets, and our computational resources. All the models are tuned to be optimal to ensure
fair comparisons. Models are trained for 1,000 epochs on ten 50%/25%/25% train/validation/test
splits in heterophilic datasets and ten 60%/20%/20% train/validation/test splits in homophilic datasets.
We select models based on the best validation set performance. Following Platonov et al.[(2023);
Miiller et al.|(2024), for a fair comparison, we also adopt Accuracy as evaluation metrics on Actor,
Roman, Amazon, Cora, Citeseer and Pubmed datasets, and adopt AUC as metrics on Minesweeper
and Tolokers datasets.
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Table 1: Performance of GloMP-GNN and other popular GNN models on both heterophily and
homophily graph datasets.

Model Actor Roman Amazon Minesweeper Tolokers Cora Citeseer Pubmed
ResNet 33.47+0.75 65.88+0.38 45.90+0.52 50.89+1.39 72.95+1.06(74.95+£2.09 72.90+1.70 86.78+0.38
GCN 34.96+1.10 73.69+0.74 48.70+0.63 89.75+0.52 83.64+0.67|86.60+£0.95 75.88+1.52 88.18+0.50
GraphSage |35.68+0.72 85.7440.67 53.634+0.39 93.51+0.57 82.4340.44|86.66+1.42 76.29+1.88 88.83+0.50
GAT 34.824+1.17 80.874+0.30 49.09+0.63 92.01+0.68 83.70+0.47|86.80+£1.02 75.93+1.38 87.82+0.43
GATv2 35.66+0.70 85.69+0.57 49.71+0.68 91.53+0.66 82.93+0.62|86.73+1.15 75.86+1.73 87.81+0.52

H2GCN 35.09£1.00 60.11£0.52 36.474+0.23 89.71+£0.31 73.35+0.01(87.12+£0.81 77.04£1.15 88.53+0.42
GBK-GNN  |34.38+0.67 74.57+0.47 45.9840.71 90.85+0.58 81.0140.67|86.74+0.74 76.15+2.02 88.79+0.53
GCNII 34.88+0.85 79.33+0.56 49.70+0.68 89.64+1.18 84.89+0.54|86.12+0.88 76.24+1.83 88.80+0.43
FSGNN 35.21£0.66 79.92+0.56 52.744+0.83 90.08+£0.70 82.76+0.61(85.49+1.15 75.65+1.42 89.31+0.37
OrderedGNN [36.01+1.13 81.92+40.79 52.35+0.55 90.13+1.77 81.85+0.87|86.96+1.44 75.48+1.73 89.07+0.52
GPR-GNN  [34.70+0.86 64.85+0.27 44.88+0.34 86.24+0.61 72.941+0.97|87.63+1.59 77.15+1.67 88.58+0.48
FAGCN 34.95+1.36 65.22+0.56 44.12+0.30 88.17+0.73 77.75+1.05|87.89+0.85 76.35+1.12 89.32+0.28
JacobiConv |35.54+0.85 71.14+0.42 43.55+0.48 89.66+£0.40 68.66+0.65|86.76+0.98 76.42+1.36 89.02+0.39
ALT-APPNP (32.41+1.27 69.13+0.43 43.81+0.37 80.19+0.26 78.6040.62|85.0140.86 73.54+0.60 89.06+0.48
GT 33.86+1.04 86.51+£0.73 51.174+0.66 91.85+£0.76 83.23+0.64|86.76+1.30 75.80+£1.53 87.17+0.58
GraphGPS  |36.53+0.68 87.04+0.58 51.03+£0.60 93.85+0.41 84.81+0.86|86.56+1.01 76.02+1.17 88.94+0.57
GloGNN++ |35.4240.76 59.63+0.69 36.894+0.14 51.08+1.23 73.394+1.17|88.33+1.09 77.22+1.78 89.24+0.39
LRGNN 36.86+0.86 62.29+1.33 36.794+0.49 80.00+£0.00 78.51:+0.38|88.26+1.02 75.19+1.51 89.26+0.62
GloMP-GNN|37.04+0.80 90.21+0.62 53.724+0.41 96.32+0.42 85.11+0.64|87.53+1.32 76.87+1.12 89.72+0.37

Table 2: Ablation Performance (%) of GloMP-GNN on different datasets.

Model Actor Roman Amazon Minesweeper Tolokers | Cora Citeseer Pubmed
(1) w/o GVN 36.12  89.51 52.71 95.05 84.51 86.57  75.84 88.80
(2) w/o GEA 36.80 89.47 52.82 95.11 84.14 86.46  75.21 89.12
3) wiom’ 36.87 86.82 52.72 94.62 84.06 86.31 75.72 89.48
(4) wio m” 36.64  88.53 53.03 95.40 83.74 85.71 75.47 88.95
(5) w/om"’ 3643  88.33 52.12 95.67 83.60 86.92  75.32 88.84
(6) GIoMP-GNN | 37.04  90.21 53.72 96.32 85.11 8753  76.87 89.72

4.4 PERFORMANCES ON DIFFERENT DATASETS

We evaluate different methods on the aforementioned 8 datasets, following the same data splits as |Pe1
et al.| (2019); |[Platonov et al.|(2023)). As shown in Table E} we report the average performance with
the standard deviation on test sets over 10 data splits.

Compared with various state-of-the-art models across homophilic datasets and heterophilic datasets,
GloMP-GNN is the most reliable and effective model across a wide range of datasets, demonstrating
its superiority and robustness. Furthermore, it is observed that traditional GNN methods tend to
outperform methods designed for heterophily on many datasets. This aligns with the issues identified
in [Platonov et al.| (2023), indicating that current heterophilic graph models still have significant
room for improvement. In Tolokers, edges are relatively dense, and the excellent performance of our
model demonstrates the ability of the Global Edge Adaption (GEA) module to adjust edge weights
adaptively. Conversely, in Roman-empire, which has sparser edges, the models that perform well
are those that incorporate global context by allowing nodes to attend to information from distant
parts of the graph, rather than just their immediate neighbors, such as GT and our GloMP-GNN.
This highlights the exceptional capability of our GloMP-GNN in capturing a global perspective
and effectively learning information from distant nodes. These observations from the two datasets
demonstrate the effectiveness of GloMP-GNN in both sparse and dense datasets. In addition, we also
perform time analysis to show the efficiency of GloMP-GNN in Appendix[A.4]

4.5 ABLATION STUDY

To investigate the effectiveness of different components in GloMP-GNN, we further conduct ablation
studies on different variants of our proposed GloMP-GNN. In the message propagation phase, as
shown in Table[2)(1)-(2), when removing GVN and GEA separately, the performance of GloMP-GNN
decreased with different degrees, which demonstrates both GVN and GEA are critical for introducing
global properties in the message-passing mechanism and improve model performance.
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Figure 4: Node classification performances for over-smoothing problems with various depths.

In the feature updating phase, GloMP-GNN updates node features by comprehensively taking into
account messages (i.e., m’, m” and m'”’) from different views. As shown in Table [2|(3)-(5), the
performance of GloMP-GNN decreases with varying degrees when removing any message, which
again illustrates the importance and benefits of our proposed multi-view feature updating mechanism.

4.6 OVER-SMOOTHING PROBLEM

To validate the ability of GloMP-GNN to mitigate over-smoothing, we compare its performance
with GCN and GCNII on three datasets: Actor, Minesweeper, and Cora. In particular, GCNII is an
approach specially designed to alleviate the over-smoothing issue. As shown in Figure 4] on the
heterophilic Actor dataset, GloMP-GNN shows consistent performance across all layers, whereas
GCN fluctuates, and although GCNII demonstrates moderate stability, its performance is not as strong
as GloMP-GNN. On the heterophilic Minesweeper dataset, GloMP-GNN improves with increasing
depth, while both GCN and GCNII decline, suggesting that GloMP-GNN effectively adapts to deeper
networks. On the homophilic Cora dataset, GloMP-GNN peaks at the 4** layer and maintains high
accuracy with only a slight decline at 64 layers, while GCN exhibits significant drops in performance
as depth increases. In summary, GloMP-GNN consistently alleviates over-smoothing, demonstrating
its effectiveness across various graph structures and evaluation metrics. In addition, we also quantify
the ability of GloMP-GNN to mitigate over-smoothing through Dirichlet Energy [Karhadkar et al.
(2023)), which is shown in Appendix

4.7 CASE STUDY AND VISUALIZATION

Visualization of Node Features. On heterophilic graphs, node features learned in multi-layer
GNNs are prone to over-smoothing. To investigate the ability of GloMP-GNN to solve the over-
smoothing problem, we further conduct experiments on a heterophilic dataset (i.e., Roman-empire).
Specifically, we used t-SNE |Van der Maaten & Hinton| (2008) to visualize node representations
learned on the 64-layer GCN and GloMP-GNN. The results are shown in the Figure[5] It is obvious
that compared to GCN, node representations learned by GloMP-GNN are more discriminative. That
is, intra-class node representations are close together, while inter-class node representations are
far apart. The visualization results illustrate the potential ability of GloMP-GNN to alleviate the
over-smoothing problem in multi-layer graph neural networks on heterophilic graphs.

Case Study on Global Edge Adaption. We also conduct a case study on the edge weight adjustment
process by the Global Edge Adaption (GEA). For the convenience of observation and display, we
have set the number of attention heads to 1 here. Taking the Roman-empire dataset as an example,
as illustrated in Figure[6] each circle represents a node, with the corresponding ID below it. In the
figure, the edge coefficient formed by nodes with node 1 and 2 is been reduced to a value close to
0, even though the original attention coefficient from node 2 to node 1 is relatively high at 0.6469,
likely due to the similarity between their features, as computed in Equation [3] To analyze the reason,
we investigated the 1-order and 2-order neighbors of node 2 and found that none of these neighbors
belong to the same label as node 1. Therefore, the contribution of node 2 to node 1 is minimal.
This demonstrates that GEA is capable of incorporating global information, effectively removing
redundant and detrimental edges, thereby enhancing the accuracy of model learning.
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5 RELATED WORK

In heterophilic graph neural networks, various strategies have been proposed to enhance effective-
ness |Zheng et al.| (2022); Zhu et al.|(2023); Khoshraftar & Anl(2024)). A central approach is ego-
and neighbor-embedding separation, effectively employed by models such as HoGCN [Zhu et al.
(2020) and FSGNN Maurya et al.| (2022). Building on this, HoGCN and TDGNN Wang & Derr
(2021)) aggregate higher-order neighborhood information across layers. Other methods focus on
aggregation strategies, like OrderedGNN |Song et al.| (2023), which aligns the hierarchy of rooted
trees with neuron order, adaptive channel mixing in ACM-GNN [Luan et al.|(2022)), and gated kernels
in GBK-GNN Du et al.|(2022). While these methods enhance the internal structures of GNNs, models
like Geom-GCN |Pei et al.| (2019) and WRGNN |Suresh et al.| (2021) refine the message-passing
mechanisms for heterophilic graphs |Qiu et al.|(2024); Pan & Kang| (2023)), though they often involve
complex, dataset-specific designs, limiting their generalizability. Additionally, spectral methods
like GPR-GNN |Chien et al.| (2020), BernNet He et al.| (2021)), JocabiConv Wang & Zhang| (2022),
ALT Xu et al.[(2023)), and FAGCN Bo et al.|(2021) use signed messages to capture high-frequency
signals. However, these methods may suffer from the “negative times negative equals positive” effect,
which is problematic for multi-class heterophilic graphs|Liang et al.|(2024). More recently, global
information has been incorporated into models, including message-passing-based methods [Li et al.
(2022); Liang et al.|(2024)), and Graph Transformer-based methods |Shi et al.[(2021); [Rampasek et al.
(2022); |Chen et al.|(2023); |Fu et al.|(2024). However, these approaches incorporate global context
through external mechanisms, such as global coefficient matrices or self-attention, without addressing
the inherent limitations of the layer-by-layer structure in the message-passing mechanism.

Recent analyses have uncovered issues with several widely-used heterophilic graph datasets Platonov:
et al|(2023). For instance, datasets like Squirrel and Chameleon suffer from data leakage due to
duplicate nodes, while smaller datasets such as Cornell, Texas, and Wisconsin face class imbalance
and limited size (fewer than 1K nodes). Additionally, evaluations of heterophilic GNN models on
new, larger datasets (10K-50K nodes) revealed that these advanced models often underperform, even
lagging behind traditional GNNs like GCN [Kipf & Welling| (2016), GAT |Velickovi¢ et al.|(2018)), and
GraphSAGE Hamilton et al.|(2017). Thus, there is a need for more profound analysis to understand
the underlying causes and to develop solutions that are more robust and adaptable for real-world
graph scenarios.

6 CONCLUSION

In this paper, we first conducted both theoretical and empirical analysis of the localized layer-by-layer
nature of the message-passing mechanism. Then, we introduced a Global Message-passing Graph
Neural Network (GloMP-GNN) for heterophilic graphs. By innovatively integrating a structure-based
global propagation and a feature-augmented compensatory update module into the message-passing
framework, GloMP-GNN effectively addresses the issue where messages from high-order but similar
neighbor nodes are often weakened during propagation. We hope that our work will inspire further
research in this direction. In future work, we plan to extend GloMP-GNN to other graph mining
tasks, such as graph classification and downstream tasks like anomaly detection, as well as explore
its potential in handling various types of graph data, such as heterogeneous graphs and hypergraphs.

10



Under review as a conference paper at ICLR 2025

REFERENCES

Mehdi Azabou, Venkataramana Ganesh, Shantanu Thakoor, Chi-Heng Lin, Lakshmi Sathidevi, Ran
Liu, Michal Valko, Petar Velickovi¢, and Eva L Dyer. Half-hop: A graph upsampling approach for
slowing down message passing. In International Conference on Machine Learning, pp. 1341-1360.
PMLR, 2023.

Deyu Bo, Xiao Wang, Chuan Shi, and Huawei Shen. Beyond low-frequency information in graph con-
volutional networks. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 35,
pp- 3950-3957, 2021.

Shaked Brody, Uri Alon, and Eran Yahav. How attentive are graph attention networks? In Interna-
tional Conference on Learning Representations, 2022.

Chen Cai, Truong Son Hy, Rose Yu, and Yusu Wang. On the connection between mpnn and graph
transformer. In International Conference on Machine Learning. PMLR, 2023.

Jinsong Chen, Kaiyuan Gao, Gaichao Li, and Kun He. NAGphormer: A tokenized graph transformer
for node classification in large graphs. In The Eleventh International Conference on Learning
Representations, 2023.

Ming Chen, Zhewei Wei, Zengfeng Huang, Bolin Ding, and Yaliang Li. Simple and deep graph
convolutional networks. In International conference on machine learning, pp. 1725-1735. PMLR,
2020.

Eli Chien, Jianhao Peng, Pan Li, and Olgica Milenkovic. Adaptive universal generalized pagerank
graph neural network. In International Conference on Learning Representations, 2020.

Lun Du, Xiaozhou Shi, Qiang Fu, Xiaojun Ma, Hengyu Liu, Shi Han, and Dongmei Zhang. Gbk-
gnn: Gated bi-kernel graph neural networks for modeling both homophily and heterophily. In
Proceedings of the ACM Web Conference 2022, pp. 1550-1558, 2022.

Moshe Eliasof, Lars Ruthotto, and Eran Treister. Improving graph neural networks with learnable
propagation operators. In International Conference on Machine Learning, pp. 9224-9245. PMLR,
2023.

Donggqi Fu, Zhigang Hua, Yan Xie, Jin Fang, Si Zhang, Kaan Sancak, Hao Wu, Andrey Malevich, Jin-
grui He, and Bo Long. VCR-graphormer: A mini-batch graph transformer via virtual connections.
In The Twelfth International Conference on Learning Representations, 2024.

Justin Gilmer, Samuel S Schoenholz, Patrick F Riley, Oriol Vinyals, and George E Dahl. Neural
message passing for quantum chemistry. In International conference on machine learning, pp.

1263-1272. PMLR, 2017a.

Justin Gilmer, Samuel S Schoenholz, Patrick F Riley, Oriol Vinyals, and George E Dahl. Neural
message passing for quantum chemistry. In International conference on machine learning, pp.
1263-1272. PMLR, 2017b.

Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning on large graphs. In
Advances in neural information processing systems, volume 30, 2017.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition,

pp. 770-778, 2016.

Mingguo He, Zhewei Wei, Hongteng Xu, et al. Bernnet: Learning arbitrary graph spectral filters via
bernstein approximation. Advances in Neural Information Processing Systems, 34:14239-14251,
2021.

Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong, Hongyu Ren, Bowen Liu, Michele Catasta,

and Jure Leskovec. Open graph benchmark: Datasets for machine learning on graphs. Advances in
neural information processing systems, 33:22118-22133, 2020.

11



Under review as a conference paper at ICLR 2025

Weihua Hu, Matthias Fey, Hongyu Ren, Maho Nakata, Yuxiao Dong, and Jure Leskovec. Ogb-Isc: A
large-scale challenge for machine learning on graphs. NeurIPS, 34, 2021.

Haitao Huang, Hu Tian, Xiaolong Zheng, Xingwei Zhang, Daniel Dajun Zeng, and Fei-Yue Wang.
Cgnn: A compatibility-aware graph neural network for social media bot detection. IEEE Transac-
tions on Computational Social Systems, 2024.

Kedar Karhadkar, Pradeep Kr. Banerjee, and Guido Montufar. FoSR: First-order spectral rewiring
for addressing oversquashing in GNNSs. In The Eleventh International Conference on Learning
Representations, 2023.

Shima Khoshraftar and Aijun An. A survey on graph representation learning methods. ACM
Transactions on Intelligent Systems and Technology, 15(1):1-55, 2024.

D Kingma and J Ba. Adam: A method for stochastic optimization. Proceedings of the 3rd interna-
tional conference for learning representations, 500, 2015.

Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional networks.
In International Conference on Learning Representations, 2016.

Jure Leskovec and Andrej Krevl. Snap datasets: Stanford large network dataset collection, 2014.

Quentin Lhoest, Albert Villanova del Moral, Yacine Jernite, Abhishek Thakur, Patrick von Platen,
Suraj Patil, Julien Chaumond, Mariama Drame, Julien Plu, Lewis Tunstall, et al. Datasets: A
community library for natural language processing. In Proceedings of the 2021 Conference on
Empirical Methods in Natural Language Processing: System Demonstrations, pp. 175-184, 2021.

Xiang Li, Renyu Zhu, Yao Cheng, Caihua Shan, Sigiang Luo, Dongsheng Li, and Weining Qian.
Finding global homophily in graph neural networks when meeting heterophily. In International
Conference on Machine Learning, pp. 13242—-13256. PMLR, 2022.

Langzhang Liang, Xiangjing Hu, Zenglin Xu, Zixing Song, and Irwin King. Predicting global label
relationship matrix for graph neural networks under heterophily. Advances in Neural Information
Processing Systems, 36, 2024.

Tianyu Liu, Yuge Wang, Rex Ying, and Hongyu Zhao. Muse-gnn: learning unified gene representation
from multimodal biological graph data. Advances in neural information processing systems, 36,
2024.

Sitao Luan, Chenqing Hua, Qincheng Lu, Jiaqi Zhu, Mingde Zhao, Shuyuan Zhang, Xiao-Wen
Chang, and Doina Precup. Revisiting heterophily for graph neural networks. Advances in neural
information processing systems, 35:1362—1375, 2022.

Sitao Luan, Chenging Hua, Qincheng Lu, Liheng Ma, Lirong Wu, Xinyu Wang, Minkai Xu, Xiao-Wen
Chang, Doina Precup, Rex Ying, et al. The heterophilic graph learning handbook: Benchmarks,
models, theoretical analysis, applications and challenges. arXiv preprint arXiv:2407.09618, 2024.

Sunil Kumar Maurya, Xin Liu, and Tsuyoshi Murata. Simplifying approach to node classification in
graph neural networks. Journal of Computational Science, 62:101695, 2022.

Luis Miiller, Mikhail Galkin, Christopher Morris, and Ladislav RampéaSek. Attending to graph
transformers. Transactions on Machine Learning Research, 2024. ISSN 2835-8856.

Galileo Namata, Ben London, Lise Getoor, Bert Huang, and U Edu. Query-driven active surveying
for collective classification. In 10th international workshop on mining and learning with graphs,
volume 8, pp. 1, 2012.

Erlin Pan and Zhao Kang. Beyond homophily: Reconstructing structure for graph-agnostic clustering.
In International Conference on Machine Learning, pp. 26868-26877. PMLR, 2023.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An imperative style,
high-performance deep learning library. Advances in neural information processing systems, 32,
2019.

12



Under review as a conference paper at ICLR 2025

Hongbin Pei, Bingzhe Wei, Kevin Chen-Chuan Chang, Yu Lei, and Bo Yang. Geom-gcn: Geometric
graph convolutional networks. In International Conference on Learning Representations, 2019.

Oleg Platonov, Denis Kuznedelev, Michael Diskin, Artem Babenko, and Liudmila Prokhorenkova.
A critical look at the evaluation of gnns under heterophily: Are we really making progress? In
International Conference on Learning Representations, 2023.

Oleg Platonov, Denis Kuznedelev, Artem Babenko, and Liudmila Prokhorenkova. Characterizing
graph datasets for node classification: Homophily-heterophily dichotomy and beyond. Advances
in Neural Information Processing Systems, 36, 2024.

Hao Qian, Hongting Zhou, Qian Zhao, Hao Chen, Hongxiang Yao, Jingwei Wang, Ziqi Liu, Fei
Yu, Zhigiang Zhang, and Jun Zhou. Mdgnn: Multi-relational dynamic graph neural network for
comprehensive and dynamic stock investment prediction. In Proceedings of the AAAI Conference
on Artificial Intelligence, volume 38, pp. 14642—-14650, 2024.

Chenyang Qiu, Guoshun Nan, Tianyu Xiong, Wendi Deng, Di Wang, Zhiyang Teng, Lijuan Sun,
Qimei Cui, and Xiaofeng Tao. Refining latent homophilic structures over heterophilic graphs
for robust graph convolution networks. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 38, pp. 8930-8938, 2024.

Ladislav RampaSek, Michael Galkin, Vijay Prakash Dwivedi, Anh Tuan Luu, Guy Wolf, and Do-
minique Beaini. Recipe for a general, powerful, scalable graph transformer. Advances in Neural
Information Processing Systems, 35:14501-14515, 2022.

Prithviraj Sen, Galileo Namata, Mustafa Bilgic, Lise Getoor, Brian Galligher, and Tina Eliassi-Rad.
Collective classification in network data. Al magazine, 29(3):93-93, 2008.

Yunsheng Shi, Zhengjie Huang, Shikun Feng, Hui Zhong, Wenjin Wang, and Yu Sun. Masked label
prediction: Unified message passing model for semi-supervised classification. In International
Joint Conference on Artificial Intelligence, pp. 1548—1554, 2021.

Yunchong Song, Chenghu Zhou, Xinbing Wang, and Zhouhan Lin. Ordered gnn: Ordering message
passing to deal with heterophily and over-smoothing. In The Eleventh International Conference on
Learning Representations, 2023.

Victor Sreeram and P Agathoklis. On the properties of gram matrix. IEEE Transactions on Circuits
and Systems I: Fundamental Theory and Applications, 41(3):234-237, 1994.

Susheel Suresh, Vinith Budde, Jennifer Neville, Pan Li, and Jianzhu Ma. Breaking the limit of
graph neural networks by improving the assortativity of graphs with local mixing patterns. In
Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp.
1541-1551, 2021.

Laurens Van der Maaten and Geoffrey Hinton. Visualizing data using t-sne. Journal of machine
learning research, 9(11), 2008.

Petar Velickovi¢, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Lio, and Yoshua
Bengio. Graph attention networks. In International Conference on Learning Representations,

2018.

Daixin Wang, Zhigiang Zhang, Yeyu Zhao, Kai Huang, Yulin Kang, and Jun Zhou. Financial default
prediction via motif-preserving graph neural network with curriculum learning. In Proceedings of
the 29th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, pp. 2233-2242,
2023.

Minjie Wang, Da Zheng, Zihao Ye, Quan Gan, Mufei Li, Xiang Song, Jinjing Zhou, Chao Ma,
Lingfan Yu, Yu Gai, et al. Deep graph library: A graph-centric, highly-performant package for
graph neural networks. arXiv preprint arXiv:1909.01315, 2019.

Xiyuan Wang and Muhan Zhang. How powerful are spectral graph neural networks. In International
Conference on Machine Learning, pp. 23341-23362. PMLR, 2022.

13



Under review as a conference paper at ICLR 2025

Yu Wang and Tyler Derr. Tree decomposed graph neural network. In Proceedings of the 30th ACM
international conference on information & knowledge management, pp. 2040-2049, 2021.

Yujie Xing, Xiao Wang, Yibo Li, Hai Huang, and Chuan Shi. Less is more: on the over-globalizing
problem in graph transformers. In Forty-first International Conference on Machine Learning,
2024.

Keyulu Xu, Chengtao Li, Yonglong Tian, Tomohiro Sonobe, Ken-ichi Kawarabayashi, and Stefanie
Jegelka. Representation learning on graphs with jumping knowledge networks. In International
conference on machine learning, pp. 5453-5462. PMLR, 2018.

Zhe Xu, Yuzhong Chen, Qinghai Zhou, Yuhang Wu, Menghai Pan, Hao Yang, and Hanghang Tong.
Node classification beyond homophily: Towards a general solution. In Proceedings of the 29th
ACM SIGKDD Conference on Knowledge Discovery and Data Mining, pp. 2862-2873, 2023.

Yujun Yan, Milad Hashemi, Kevin Swersky, Yaoqing Yang, and Danai Koutra. Two sides of the
same coin: Heterophily and oversmoothing in graph convolutional neural networks. In 2022 IEEE
International Conference on Data Mining (ICDM), pp. 1287-1292. IEEE, 2022.

Liang Yang, Mengzhe Li, Liyang Liu, Chuan Wang, Xiaochun Cao, Yuanfang Guo, et al. Diverse
message passing for attribute with heterophily. Advances in Neural Information Processing Systems,
34:4751-4763, 2021.

Yuhao Yang, Chao Huang, Lianghao Xia, Yuxuan Liang, Yanwei Yu, and Chenliang Li. Multi-
behavior hypergraph-enhanced transformer for sequential recommendation. In Proceedings of the
28th ACM SIGKDD conference on knowledge discovery and data mining, pp. 2263-2274, 2022.

Xinyi Zhang, Yanni Xu, Changzhi Jiang, Lian Shen, and Xiangrong Liu. Molemcl: a multi-level
contrastive learning framework for molecular pre-training. Bioinformatics, 40(4):btac164, 2024.

Xin Zheng, Yixin Liu, Shirui Pan, Miao Zhang, Di Jin, and Philip S Yu. Graph neural networks for
graphs with heterophily: A survey. arXiv preprint arXiv:2202.07082, 2022.

Jiong Zhu, Yujun Yan, Lingxiao Zhao, Mark Heimann, Leman Akoglu, and Danai Koutra. Beyond
homophily in graph neural networks: Current limitations and effective designs. Advances in neural
information processing systems, 33:7793-7804, 2020.

Jiong Zhu, Yujun Yan, Mark Heimann, Lingxiao Zhao, Leman Akoglu, and Danai Koutra. Heterophily
and graph neural networks: Past, present and future. IEEE Data Engineering Bulletin, 2023.

A APPENDIX

A.1 PROOF OF THEROEMS

Firstly, we describe the formula derivation process of the I-layer GNN X® =
2:1 A=HDXOWE | For simplicity, the o(-) function (i.e., ReLU) is omitted as mentioned

before. Thus, for traditional GNNss,
x () Ox=Dw®

=A
— AD(AU-DX -2 WD) W)

ﬁ A(lfiJrl)X(O) f[ W(i) )
i=1 =1

Then, we prove Theorem [I]

Proof of Theorem[1}
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Table 3: Statistics of the node classification datasets.
Actor Roman Amazon Minesweeper Tolokers Cora Citeseer Pubmed

#Nodes 7,600 22,662 24,492 10,000 11,758 2,708 3,327 19,717
#Edges 26,659 32,927 93,050 39,402 519,000 5,278 4,552 44,324
#Features 931 300 300 7 10 1,433 3,703 500
#Classes 5 18 5 2 2 7 6 3
hedge 0.22 0.05 0.38 0.68 0.59 0.81 0.74 0.80
LI 0.00 0.11 0.04 0.00 0.01 0.59 0.45 0.41

Proof 1 For traditional GNNs,

xgl) =0 Z ciijg.l_l)).
JEN (i)

Here, c;; is the weight coefficient of node j to node i. And for heterophilic graphs, c;; < 1 and don’t
tend to 1.

The influence of a k-order neighbor iy, to node iy in the path P is calculated as:

k—1
P _ -
Cioik - H Cijijia-
j=0

Thus, as k grows, the influence intensity CI, becomes smaller.

ioik
Therefore, we conclude that:
lim CT, =0.

0%
k—oo Ok

A.2 DATASETS DETAILS

In this part, we describe three homophilic datasets and five heterophilic datasets and the heterophily
metric of these datasets. The statistics for these datasets are presented in Table[3]

Homophilic Datasets: Cora, CiteSeer, and PubMed|Namata et al.| (2012); Kipf & Welling| (2016)
are datasets derived from citation networks. In these datasets, nodes symbolize papers, while edges
denote citations between them, and the label of a node indicates the academic subject of the paper.
These datasets are categorized as homophilic datasets.

Heterophilic Datasets: Actor |Pei et al.|(2019) is a subgraph where nodes denote actors and edges
signify co-occurrences on a Wikipedia page. Node features are Wikipedia page keywords, and the
aim is to classify nodes into five categories based on their page content. Roman-empire Lhoest et al.
(2021)); |Platonov et al.|(2023) challenges GNNs with low homophily, sparse links, and long-distance
dependencies. In the dataset, nodes represent words and are connected if they are consecutive or
syntactically related in a sentence. Amazon-ratings Leskovec & Krevl (2014); Platonov et al.| (2023)
is based on the Amazon product co-purchasing network metadata dataset from SNA Datasets. In
the dataset, nodes are products, and edges connect products that are frequently bought together. The
task is to predict the average rating given to a product by reviewers. Minesweeper Platonov et al.
(2023) is a dataset based on the Minesweeper game. The graph is a 100x100 grid where each node
connects to up to eight neighbors. The challenge is to identify the 20% of nodes randomly set as
“mines”. Tolokers Platonov et al.|(2023) comprises nodes symbolizing tolokers (workers) who have
been a part of one of 13 chosen projectsﬂ The dataset aims to predict which tolokers faced bans in a
project.

Heterophily Metric: There are two metrics we used to evaluate the heterophily of datasets. In
general, hegee has been the most often used metric, defined as:

*https://snap.stanford.edu/data/amazon-meta.htm]
3https://github.com/Toloka/ TolokerGraph
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U, V) €EE: Yu = Yo
e = 220 e el (1

where y,, is the label of a node u and £ is the set of edges.

However, hegge is not suitable for datasets with unbalanced classes. Then, the LI metric is introduced
to address these shortcomings. LI quantifies how much information a neighbor’s label gives about
the node’s label, making it more versatile in various graph scenarios. It is defined by:

I(Yus yo)
H(yu) ’

where y,, and y,, are random labels of u and v respectively, H(y, ) represents the entropy of y,,, and
I(yu, y») denotes the mutual information between u and v.

LI = (12)

A.3 DESCRIPTION OF BASELINE

In this part, we describe 18 baselines that we used to compare with our models. And descriptions are
listed as follows:

(1) Deep learning method:

* ResNet|He et al.|(2016) is a deep learning model utilizing residual connections for effective
deep network training. In graphs, it views nodes as independent samples, while ignoring the
graph structure.

(2) Classic GNN methods:

* GCN Kipf & Welling| (2016)) is a semi-supervised graph convolutional network model that
learns node representations by aggregating information from neighbors.

* GraphSAGE Hamilton et al.| (2017) is a framework for inductive representation learning on
large graphs based on sampling algorithms.

* GAT |Velickovic et al.| (2018)) uses attention mechanisms to weigh neighbor contributions,
allowing different neighbors to contribute differently to the node’s new representation.

* GATV2 Brody et al, (2022) improves upon GAT by introducing a more expressive and
flexible dynamic attention mechanism.

(3) Selective information propagation methods:

* H,GCN [Zhu et al.| (2020) integrates ego and neighbor-embedding separation, and higher-
order neighborhoods, showing enhanced performance on heterophilic graphs.

* GBK-GNN Du et al.[(2022) introduces a bi-kernel feature transformation, capturing both
homophily and heterophily properties.

* GCNII |Chen et al. (2020) is an extension of graph convolutional network with initial
residual and identity mapping which can relieve the problem of over-smoothing.

* FSGNN Maurya et al.|(2022) is a GNN model that uses “Soft-Selector” for adaptive feature
choice and “Hop-Normalization” for improved node classification performance.

* OrderedGNN Song et al.|(2023) is a GNN model that aligns the hierarchy of the rooted-tree
of a central node with the ordered neurons in its node representation.

(4) Graph signal-based methods:

* GPR-GNN (Chien et al.[(2020) is a novel GNN architecture that adaptively learns General-
ized PageRank (GPR) weights. It can effectively handle both homophily and heterophily
and prevents feature over-smoothing.

* FAGCN Bo et al,|(2021)) utilizes a self-gating mechanism to adaptively integrate different
signals in message passing, enhancing the adaptability of the model and addressing over-
smoothing problems in various networks.
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* JacobiConv Wang & Zhang| (2022)) is a spectral graph neural network approach that lever-
ages Jacobi polynomial basis.

* ALT-APPNP Xu et al.[(2023) is a structured-based method that decomposes a given graph
and extracts complementary graph signals adaptively for node classification.

(5) Global information-based methods:

* Graph Transformer (GT) [Shi et al.,| (2021) incorporates transformer architecture into
GNN . It uses self-attention mechanisms to capture global information in graph data.

* GraphGPS [Rampasek et al.| (2022) use self-attention mechanisms to capture global in-
formation while combining local message-passing and positional/structural encodings for
improved scalability and performance.

* GloGNN++ |Li et al.|(2022) introduce a global coefficient matrix to capture the correlations
between nodes in each layer.

* LRGNN [Liang et al. (2024) use a global label relationship matrix to replace the aggregation
matrix by solving a robust low-rank matrix approximation problem.

A.4 TIME ANALYSIS

We compare our model with GAT and Graph Transformer (GT) in terms of training time for 1000
epochs across the five largest datasets. As shown in Table[d, GloMP-GNN consistently outperforms
GT in training time, while striking an effective balance between the efficiency of GAT and the broader
information aggregation of GT. GAT achieves the shortest training times due to its local attention
mechanism, which focuses on neighboring nodes, but at the expense of capturing global relationships.
GT incorporates more complex transformations and global attention, leading to longer training times.

Table 4: Training Time Comparison for 1000 Epochs on the Five Largest Datasets.

Model Tolokers Amazon Minesweeper Pubmed Roman
GAT 41s 35s 23s 29s 32s
GT 68s 58s 32s 46s 53s
GloMP-GNN 43s 38s 27s 31s 34s

A.5 FURTHER EXPERIMENTS ON OVER-SMOOTHING

In order to quantify the ability of GloMP-GNN to mitigate over-smoothing problem, we compute the
Dirichlet Energy of 64 layers for GloMP-GNN after training. As shown in Table[5] GloMP-GNN
exhibits significantly higher Dirichlet Energy on the Actor, Minesweeper, and Cora datasets compared
to GCN and GCNII. This indicates that GloMP-GNN better preserves the diversity of node features,
making it more resistant to the over-smoothing problem.

Table 5: Dirichlet Energy of 64 layers for GloMP-GNN after training. The higher energy indicates
that it is less prone to over-smoothing.

Model Actor  Minesweeper Cora
GCN 0.1633 0.0007 0.0791
GCNII 0.3155 0.4312 0.1562
GloMP-GNN | 0.7176 0.5936 0.2782
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