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ABSTRACT

We tackle the task of GAN inversion for 3D generative radiance field, (e.g.,
StyleNeRF). In the inversion task, we aim to learn an inversion function to project
an input image to the latent space of a generator and then synthesize novel views
of the original image based on the latent code. Compared with GAN inversion for
2D generative models, 3D inversion not only needs to 1) preserve the identity of
the input image, but also 2) ensure 3D consistency in generated novel views. This
requires the latent code obtained from the single view image to be invariant across
multiple views. To address this new challenge, we propose a two-stage encoder
for 3D generative NeRF inversion. In the first stage, we introduce a base encoder
that converts the input image to a latent code. To ensure the latent code can be used
to synthesize identity preserving and 3D consistent novel view images, we utilize
identity contrastive learning to train the base encoder. Since collecting real-world
multi-view images of the same identity is expensive, we leverage multi-view im-
ages synthesized by the generator itself for contrastive learning. Second, to better
preserve the identity of the input image, we introduce a residual encoder to refine
the latent code and add finer details to the output image. Through extensive ex-
periments, we demonstrate that our proposed two-stage encoder qualitatively and
quantitatively exhibits superiority over the existing encoders for GAN inversion
in both image reconstruction and novel-view rendering.

1 INTRODUCTION

We aim at tackling GAN inversion of 3D style-based generative radiance fields, which typically com-
bine neural radiance field (NeRF) (Mildenhall et al., 2020) with the generative adversarial network
(GAN) (Goodfellow et al., 2014). GAN inversion ((Zhu et al., 2016)) learns a mapping function
to project an image into the GAN’s latent space. Currently, GAN inversion has been successfully
explored in StyleGANs (Karras et al., 2019; 2020b) (e.g., StyleGANv2) which has been used for
image synthesis, and enables flexible control of the latent space. Several approaches of GAN inver-
sion are capable of inverting the input image into the latent space (i.e., W space) (Jahanian et al.,
2020; Shen et al., 2020; Tewari et al., 2020; Härkönen et al., 2020) or extended latent space (i.e.,
W+ space: concatenation of all W latent code from each layer) (Abdal et al., 2019; 2020; Zhu
et al., 2020; Abdal et al., 2021) for image editing. However, the exploration of GAN inversion is
currently limited to 2D-based GAN and few works have studied the encoder-based GAN inversion
of 3D style-based generative models, as shown in Figure 1.

Recently, 3D style-based generative models using radiance field (i.e., NeRF (Mildenhall et al.,
2020)), such as EG3D (Chan et al., 2022) or StyleNeRF (Gu et al., 2021), have been proposed
for unsupervised generation of multi-view consistent images. Similar to StyleGANs, these NeRFs
learn a controllable W space and enable explicit 3D camera control, using only single-view 2D
training images. To achieve 3D style-based GAN inversion for these models, one straightforward
way is to directly apply the aforementioned 2D inversion methods, by feeding the 2D image and
the corresponding camera poses as inputs, and rendering the corresponding multi-view images (see
Figure 1b). However, there are two main challenges. First, if only existing single-view images are
used to train the inversion method, the predicted latent code only works when generating images
of the same view (camera pose), but fails to generate the high-quality image for novel views, see
Figure 1 (c). To address this issue, we need multi-view images to train the inversion method. How-
ever, this leads to our second challenge: it may be difficult, if not infeasible, to collect sufficient
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Figure 1: Comparison of encoder-based GAN inversion between (a) 2D GAN and (b) 3D gen-
erative NeRF. Compared with 2D GAN, it is challenging to perform 3D generative NeRF inversion
from the single view image since the latent is assumed to be view-invariant. (c) Directly applying
the existing effective 2D inversion approaches (pSp and ReStyle) would lead to distribution mis-
alignment in W+ space.

multi-view images with known camera poses for training. For example, we may need calibrated and
synchronized camera arrays to collect such images.

To learn an inversion function without the use of multi-view images, we propose a framework named
3DE-NeRF to learn a 3D-aware Encoder for style-based NeRFs. 3DE-NeRF is composed of a two-
stage learnable encoder: a base encoder and a residual encoder. First, we introduce a base encoder to
learn the view-invariant latent code in W space based on the observation that W+ is prone to spoil
3D structure (see Figure 5). Moreover, we leverage synthesized images (i.e., using the multi-view
images generated by the model itself) and contrastive learning with the triplet loss to learn a better
view-invariant latent code in W . Second, since the latent code in W space is known to be more
difficult to fully reconstruct the input image compared with W+ (Karras et al., 2020b), we propose
a residual encoder to refine the latent code from the base encoder in W+ space. It adds more fine-
grained details to the generated image, which makes it more consistent with the input image. More
specifically, the residual encoder first takes the concatenation of the generated image from the base
encoder and the input image as inputs and then produces the refined latent residue in W+ space. The
proposed framework allows us to not only learn the view-invariant latent code but to also preserve
the fine-grained details in the final generated image that matches the input image.

We verify the effectiveness of the proposed method and its key components using StyleNeRF (Gu
et al., 2021) as the pre-trained generator for GAN inversion. Moreover, to test the generalization
ability of the proposed method, we combine it with the online optimization technique PTI (Roich
et al., 2021) as well as apply it to a different pretrained generator EG3D (Chan et al., 2022) (see
appendix for details). The contributions of this paper are summarized as follows:

• We demonstrate the challenges of GAN inversion for 3D style-based NeRF and the limita-
tions of the current 2D encoder-based models for this task.

• We propose an encoder-based framework named 3DE-NeRF, which consists of a base en-
coder and a residual encoder, to perform GAN inversion for the 3D generative neural radi-
ance field.

• Compared with the existing encoders for GAN inversion, our proposed model achieves
more effective GAN inversion for the 3D generative NeRF and has superior image quality
for rendering novel views.

• Our proposed framework has good generalization to enable online optimization methods
(e.g. PTI) to render novel views and to invert more 3D style-based generators (e.g. EG3D).
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2 RELATED WORKS

Generative Adversarial Network. GANs (Goodfellow et al., 2014) have demonstrated success in
image synthesis and have been extended to a number of works (Zhang et al., 2019; Brock et al., 2018;
Karras et al., 2018). StyleGANs (e.g., StyleGAN (Karras et al., 2019), StyleGAN2 (Karras et al.,
2020b), and StyleGAN2-ada (Karras et al., 2020a)) achieve state-of-the-art image quality and sup-
port different levels of semantic manipulation. In particular, many methods have been proposed for
finding these semantic latent space manipulation using varying levels of supervision. These include
full-supervision in the form of semantic labels (Abdal et al., 2021; Shen et al., 2020; Goetschalckx
et al., 2019) and unsupervised approaches (Wang & Ponce, 2021; Voynov & Babenko, 2020). Some
methods (Härkönen et al., 2020; Tewari et al., 2020; Abdal et al., 2020; Shoshan et al., 2021) also
leverage disentangled properties in the latent space to enable 3D controls. However, most of these
works focus on the rendering of 2D images with 3D controls and are not capable of manipulating
camera poses easily as volumetric rendering (NeRF (Mildenhall et al., 2020)).

Image Synthesis with Generative NeRF. Methods built on implicit functions, e.g.,
NeRF (Mildenhall et al., 2020), have been proposed in (Chan et al., 2021; Schwarz et al., 2020;
Pan et al., 2021). To generate high-resolution images conditioned on the input style latent
code, EG3D (Chan et al., 2022), StyleNeRF (Gu et al., 2021), VolumeGAN (Xu et al., 2022),
StyleSDF (Or-El et al., 2022), and GMPI (Zhao et al., 2022) have been developed to generate multi-
view images with latent and pose control. In addition, some works such as Sofgan (Chen et al.,
2022a) and Sem2NeRF (Chen et al., 2022b) are able to perform multi-view synthesis with NeRF by
taking into multi-view or single-view semantic masks. Among these models, StyleNeRF (Gu et al.,
2021) is able to perform novel-view image synthesis given the style latent code and the camera pose,
and is only relies on MLP layers as the classical NeRF (Mildenhall et al., 2020). To simplify the
analysis of GAN inversion of 3D style-based NeRF, we employ StyleNeRF in our experiments.

GAN inversion. GAN inversion (Zhu et al., 2016) is the process of obtaining a latent code that
can allow the generator to reconstruct the given image. Generally, inversion methods either directly
optimize the latent vector to minimize the loss for a given image (Abdal et al., 2019; 2020; Bau
et al., 2020; Gu et al., 2020), train an encoder on a large number of images to learn a mapping
from an image to a style latent (Alaluf et al., 2021; Guan et al., 2020; Kang et al., 2021; Kim et al.,
2021; Pidhorskyi et al., 2020; Richardson et al., 2021; Tov et al., 2021; Wang et al., 2022), or use a
hybrid approach leveraging both methods (Zhu et al., 2016; 2020). For the encoder-based methods,
pSp (Richardson et al., 2021) proposes a feature pyramid encoder into W+ space. ReStyle (Abdal
et al., 2019) iteratively refines the predicted style latent through a few forward passes. However,
these effective approaches are designed for 2D StyleGAN. Recently, IDE-3D (Sun et al., 2022)
propose inversion approach for 3D neural renderer with semantic masks, which can not generalize
to several pre-trained style-based NeRFs. Here, we would like to design an inversion model which
is generalizable for 3D style-based NeRF inversion.

3 THE PROPOSED APPROACH

3.1 PROBLEM FORMULATION AND OVERVIEW

Inversion of 2D generative model: In the encoder-based 2D GAN inversion, the goal is to train
an encoder E to generate the latent code w1 for the given target image x and minimize the distance
between the input image and the generated image:

min
E

L(x,G(w)), s.t. w = E(x) (1)

where G indicates the generator (i.e., StyleGAN). The objective can be L2 distance, perceptual
distance (LPIPS) (Zhang et al., 2018), or a more sophisticated loss which consists of various recon-
struction losses and regularization terms. We use an encoder to compute a latent code w = E(x) to
minimize the re-construction loss. This allows fast inference without per-input optimization.

1latent w ∈ W (Shen et al., 2020) or the extended latent w ∈ W+ (Karras et al., 2020b)
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Figure 2: Overview of our proposed 3D-aware style-based NeRF Encoder: 3DE-NeRF. It con-
sists of two stages: base stage and residual stage, and is trained with feature-level 3D-aware losses
2and image-level reconstruction losses. More details can be referred to the section 3.

Inversion of 3D generative model: For 3D style-based NeRF inversion, we not only need to
reconstruct same-view images but also generate novel views of the same identity:

min
E

n∑
i=0

L(xi, G(w, pi)), s.t. w = E(x0), (2)

where xi, i = 0, 1, .., n represent multi-view images that has the same identity as x0 and pi are the
corresponding camera poses. Minimizing the objective allows the model to learn the view-invariant
latent code ŵ since it maps multi-view images xi (controlled by the pose pi) to the same latent code
w for each set of the training sample. During inference, a single-view image is mapped to the latent
code ŵ which can produce multi-view images of the same identity by changing the poses.
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Figure 3: The process of generating multi-
view images by feeding the same latency code
with different camera poses to StyleNeRF.

Method overview: In order to perform GAN inver-
sion for style-based generative NeRFs, we propose
an encoder-based framework named 3DE-NeRF,
and the overview of the pipeline is presented in Fig-
ure 2. The 3DE-NeRF involves two stages: the base
stage and the residual stage. 1) In base stage, the in-
troduced base encoder Ebase takes an image x as in-
put and produces the style latent code wbase. In or-
der to learn the view-invariant latent code, we lever-
age the multi-view images synthesized by the gen-
erator, shown in Figure 3. This latent code wbase is
optimized to roughly reconstruct the 2D input im-
age x̂base and enable 3D-consistent novel-view ren-
dering. 2) To further minimize the identity gap be-
tween the output and the input images, a residual encoder Eres is introduced to refine the latent code
wbase. It first takes the concatenation of the input image x and the generated image x̂base from the
previous stage as input and learns a residue ∆w+ . Then we can obtain the output style latent code
ŵ = w+

res by adding the residue to w+
base.

3.2 PRELIMINARY OF STYLE-BASED NERF (STYLENERF)

Style-based Neural Radiance Field. Following StyleGANs (Karras et al., 2019; 2020b), StyleN-
eRF (Gu et al., 2021) also introduce the mapping network f which maps noise vectors from a
spherical Gaussian space Z to the style space W . f consists of several MLP layers and the input
style vector w ∈ W can be derived by w = f(z), z ∈ Z . Following the neural rendering mechanism

2Feature-level losses include triplet losses and L1 losses, which can only be applied to synthesized multi-
view images in this work.
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in NeRF (Mildenhall et al., 2020), our model also takes the position u ∈ R3 and viewing direction
d ∈ S2 as inputs, and predicts the density σ(u) ∈ R and view-dependent color c(u, d) ∈ R3.

In order to render the color and density for each coordinate in 3D space with high-
frequency details, StyleNeRF also uses positional embedding with Fourier series: γ(p) =
(sin(20πp), cos(20πp), ..., sin(2L−1πp), cos(2L−1πp)), where the function γ(.) is applied to each
of the three coordinates in u and to the three coordinates of the view direction d. Let us denote the
rendering network by ϕn

w where n indicates the number of MLP layers within and w indicates the
style feature. Each MLP weight matrix is modulated by the latent code w independently. Both the
density and the color can be rendered respectively with:

σw(x) = hσ(ϕ
n
w(γ(u))) cw(u, d) = hc(ϕ

n
w(γ(u)), γ(d)), (3)

where hσ(·) and hc(·) are projection layers.

Volume Rendering with Radiance Fields. Once we have the color and density for each coordi-
nate and view direction, we render the color C(r) for each pixel along that camera ray r(t) = o+ td
passing through the camera center o with volume rendering (Kajiya & Von Herzen, 1984):

Cw(r) =

∫ tf

tn

T (t)σw(r(t))cw(r(t), d)dt,where T (t) = exp(−
∫ t

tn

σw(r(s))ds). (4)

The function T (t) denotes the accumulated transmittance along the ray from tn to t. In practice, the
continuous integration is discretized by accumulating sampled points along the ray. More details
can be obtained in NeRF (Mildenhall et al., 2020) and StyleNeRF (Gu et al., 2021).

3.3 INVERSION OF THE VIEW-INVARIANT LATENT IN W

Unlike 2D GAN inversion which only generates the output image with the same camera pose as
input image, the inversion of 3D generative NeRF has to consider the optimization of unseen views
for the input image. However, the latent code w ∈ W obtained by training on single-view images
may not lead to high-quality novel-view images. See Figure 1 (c).

In order to learn the 3D-aware latent code w, we introduce a base encoder Ebase that is able to
generate view-invariant latent code. In other words, for multi-view images of the same identity,
we hope Ebase to map them to the same latent code: w

(i)
base = Ebase(x

(i)
j ), where x

(i)
j denotes an

image corresponding to camera pose pj of the identity-i. To ensure this, we can use contrastive
learning to train the encoder. Specifically, we perform contrastive learning with triplet loss Ltri

on the feature vector w, which would maximize the inter-class discrepancy while minimizing intra-
class distinctness. Specifically, for each input image x, we sample a positive image xpos with the
same identity label and a negative image xneg with different identity labels to form a triplet tuple.
Then, the following equations compute the distances between x and xpos/xneg:

dpos = ∥wbase − wbasepos
∥2, dneg = ∥wbase − wbaseneg∥2, (5)

where wbase, wbasepos , and wbaseneg represent the feature vectors of images x, xpos, and xneg,
respectively. With the above definitions, we have the triplet loss Ltri defined as

Ltri(wbase) = max(0,m+ dpos − dneg), (6)

where m > 0 is the margin used to define the distance difference between the positive image pair
dpos and the negative image pair dneg. Contrastive learning requires multi-view images with the
same identities. In reality, collecting such datasets is nontrivial, as it requires synchronized and cal-
ibrated camera arrays. To bypass this, we utilize images synthesized by the generator (i.e., StyleN-
eRF) itself. We can sample latent codes wsyn from a StyleNeRF’s W space, then sample different
camera poses to generate multi-view images of the same identities as xsyn.

Since we have the wsyn latent code for xsyn, we can directly apply an L1 loss between the predicted
wbase and the “ground-truth” wsyn. The feature-level loss for synthesized images is summed up as:

Lbase
feat = Ltri(wbase) + L1(wbase, wsyn), (7)
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On the other hand, we are able to utilize both the real images xreal and synthesized images xsyn to
train the base encoder with image-level loss. We construct the image-level loss using the pixel-wise
L2 loss and LPIPS loss (Zhang et al., 2018). Following pSp (Richardson et al., 2021), we also apply
an identity (ID) similarity loss by employing a pre-trained facial recognition ResNet-IRSE50 (Deng
et al., 2019) to measure the facial identity:

Lbase
img = L2(x̂base, x) + LLPIPS(x̂base, x) + LID(x̂base, x), (8)

where x̂base = G(Ebase(x), p) and p indicates the corresponding camera pose. We use the ground
truth camera poses for synthesized images and camera poses predicted by the off-the-shelf pre-
dictor (Ruiz et al., 2018) for real images. The image-level losses can be summed up as for both
synthesized images and real images. With the image-level loss Lbase

img , the base encoder is able to
learn to reconstruct the synthesized and the real images by back-propagating through the generator.

3.4 REFINEMENT OF THE LATENT IN W+

While w latent code is learned to preserve the 3D structure with our base encoder Ebase, it leads to
poor identity preservation. Thus, we introduce a residual encoder to refine the latent code wbase.

Following previous works for learning the W+ latent instead of W , we first duplicate the base latent
wbase ∈ Rd to w+

base ∈ Rn×d and learn the refined w+
res by adding the learned residue ∆w+ :

w+
res = w+

base +∆w+ and ∆w+ = Eres(x, x̂base), (9)

where w+
res is in the W+ latent space and is capable of better reconstructing the input image using

the generator G. In order to learn the residue ∆w+ , we introduce the residual encoder Eres which
takes the input image x and the previously generated image x̂base as inputs and produces ∆w+ . The
design of the residual stage is similar to the ReStyle (Alaluf et al., 2021) originally proposed for
2D StyleGAN. The difference lies in that Restyle (Alaluf et al., 2021) uses the randomly averaged
w latent code and the corresponding synthesized image as inputs while our Eres uses the outputs
(i,e, wbase and xbase) of the base encoder. Same as the base stage, we employ the same image-level
losses to train the residual encoder:

Lres
img = L2(x̂res, x) + LLPIPS(x̂res, x) + LID(x̂res, x), (10)

where x̂res = G(Eres(x, x̂base), p) and p indicate the corresponding camera poses similar to base
stage. x can either be a real image or a synthetic image. Since we also have ground truth w+

syn from
synthesized images, we can also train the residual encoder using the feature-level L1 loss:

Lres
feat = L1(w

+
res, w

+
syn), (11)

Note that we do not use the triplet loss on the residual latent code w+
res since the large dimension

size of the W+ space (Rn×d) makes the contrastive learning prone to overfitting.

Similar to Restyle (Alaluf et al., 2021), our residual encoder can also perform multiple iterative
refinement using the Equation 9.

The total loss L for training our proposed 3DE-NeRF is summarized as follows:

Ltotal = λbase
feat · Lbase

feat + λbase
img · Lbase

img + λres
feat · Lres

feat + λres
img · Lres

img, (12)

where λbase
feat, λ

base
img , λres

feat and λres
img are the hyper-parameters used to control the weighting of the

corresponding losses.

4 EXPERIMENT

4.1 EXPERIMENTAL SETTINGS

Datasets. By default, all our experiments are conducted on human faces and using StyleNeRF (Gu
et al., 2021) as the pretrained generator for GAN inversion. We train the encoder for StyleNeRF us-
ing real images in FFHQ (Karras et al., 2019) (i.e., the same dataset used for StyleNeRF training)
and multi-view synthesized images from StyleNeRF itself. We use the CelebA-HQ test set (Karras
et al., 2018; Liu et al., 2015) for quantitative evaluations. To prevent real human face privacy issues,
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Input W+ Opt. PTI W W+ (pSp) ReStyle (pSp) Ours
Figure 4: Qualitative comparisons on image reconstruction. All of the output images are rendered
using the same camera pose as the input image from the StyleGAN2-Fake dataset.

we do not present the qualitative results on real images (CelebA-HQ) but visualize the results on
the fake images, StyleGAN2-Fake, which has 263 curated images generated and released by Style-
GAN2 (Karras et al., 2020b). The camera poses for all real input are derived using the off-the-shelf
pose estimator: HopeNet (Ruiz et al., 2018) for a fair comparison with previous works. For syn-
thesized images, we use their ground truth camera poses for both training and inference. Moreover,
we will present results on animal faces on AFHQ dataset(Choi et al., 2020) and the results based on
EG3D (trained with FFHQ or AFHQ-cat and its self-generated images) in A.5 of the appendix.

Baselines. Since our 3DE-NeRF is the first 3D-aware encoder for generative style-based NeRFs,
we compare it with several baselines. The first set of baselines are directly built from current state-
of-the-art 2D styleGAN inverters, including pSp (Richardson et al., 2021) and ReStyle (Alaluf et al.,
2021). We also build a baseline encoder for W space inversion. For a fair comparison, all of the
encoder-based competitors are trained on the same dataset, i.e., using both real and synthesized
images. To compare with online optimization methods, we compare our model with latent vector
optimization in W+ (Karras et al., 2020b) and PTI (Roich et al., 2021).

Evaluation settings. We conduct the experiments in two settings: 1) Same-view image recon-
struction and 2) Novel-view image rendering. For the first setting, we visually compare the input
image and the corresponding output image generated from the latent code and the camera pose of the
input image. We also quantitatively evaluate the distance between the input and output images using
the metrics: L2, LPIPS (Zhang et al., 2018), MS-SSIM (Wang et al., 2003), and identity (ID) (Huang
et al., 2020). For the second setting, we qualitatively and quantitatively compare the input image
and the novel views (e.g., −35◦ yaw angle) image generated from its latent code. Since we do not
have the ground-truth to measure the distance, we only quantitatively evaluate the identity (ID) dis-
tance (Huang et al., 2020) with input from different views. We would like to note that, the original
generator (StyleNeRF (Gu et al., 2021)) is trained using the head yaw angle ranging between −17◦

to 17◦ degrees. Based on our observation, the pretrained StyleNeRF itself can only generate images
at most twice the yaw range (i.e., −35◦ ∼ +35◦) before breaking the 3D structure. Thus, we set the
rendering yaw range of our 3DE-NeRF to −35◦ ∼ +35◦ and the default roll angle as 0◦.

4.2 RESULTS OF IMAGE RECONSTRUCTION

In this section, we compare our proposed model with three encoder-based models and two opti-
mization approaches quantitatively (in Table 1) and qualitatively (in Figure 4). As listed in Table 1,
among all encoder-based methods, our proposed method achieves the best results across all four
metrics. For example, it outperforms the 2D StyleGAN encoder, i.e., ReStyle (Or-El et al., 2022),
with a large gap and outperforms the other two baselines even more, which demonstrates that it is
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Method ↓ L2 ↓ LPIPS ↑ MS-SSIM ↑ ID Time (s)↓

Online-based PTI (Roich et al., 2021) 0.03 0.09 0.86 0.67 194.203
W+ Opt. (Karras et al., 2020b) 0.08 0.28 0.65 66.153

Encoder-based

W 0.12 0.31 0.60 0.21 0.105
W+ (pSp) (Richardson et al., 2021) 0.14 0.29 0.63 0.32 0.132
Restyle (pSp) (Alaluf et al., 2021) 0.09 0.27 0.68 0.37 0.454
3DE-NeRF (Ours) 0.05 0.21 0.72 0.55 0.315

Table 1: Quantitative comparison on image reconstruction with online-based (i.e., upper bound
for reconstruction) and encoder-based methods on the CelebA-HQ test dataset.

Input W+ Opt. PTI W W+ (pSp) ReStyle (pSp) Ours
Figure 5: Qualitative comparisons on novel-view rendering. All of the output images are rendered
using face yaw angle −35◦ degree. The images are from the StyleGAN2-Fake dataset.

not optimal to directly apply 2D encoders to invert 3D style-based NeRFs. Visually, our model also
greatly outperforms all encoder-based methods as shown in Figure 4. For example, although all
models can generate realistic faces due to the pretrained StyleNeRF, our proposed model can bet-
ter reconstruct the input image which is consistent with our quantitative results. To dig deeper, we
observe that although encoding in W achieves the worst image reconstruction results, it has much
better 3D preservation than encoding the latent in W+, which we will discuss in the next section
(see column 5 & 6 vs column 4 in Figure 4 and Figure 5. This is also what motivates us to build our
base encoder to learn latent code in W space rather than W+ space.

Besides encoder-based baselines, we also compare our proposed model with the 2D online opti-
mization methods (see row 2 &3 in Table 1). The online optimization methods are much slower
than encoder-based methods, and in return, their performance for 2D image reconstruction is known
to be the upper bound for that of encoder-based methods (Alaluf et al., 2021; Richardson et al.,
2021). Our model has a small gap (or even better ID metric) compared with the online method W+
Opt. (see Table 1 row 3) while W+ Opt. does not perfectly reconstruct the input image although it
works effectively in 2D StyleGAN. PTI still has the best performance for image reconstruction with
3D style-based NeRF quantitatively and qualitatively. However, we greatly reduced the gap between
encoder-based methods and the online optimization method for same-view image reconstruction.

4.3 RESULTS OF NOVEL-VIEW RENDERING

We present our qualitative result of novel viewing rendering of yaw angle −35◦ degree in Fig-
ure 5, and also compare it with the same encoder-based models and optimization approaches. First,
comparing with encoder-based models for W , W+ using pSp (Richardson et al., 2021) and using
ReStyle (Alaluf et al., 2021), we found that our proposed 3DE-NeRF not only effectively preserves
the fine details and identity from the input image, but also maintains a reasonable 3D shape. Sec-
ond, we observe that while encoding the latent in W+ is more effective than encoding in W in
image reconstruction, it generates inaccurate face angle or loses 3D preservation for novel views

8
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Method
↑ ID

Yaw angle Avg.
−35◦ −17◦ 17◦ 35◦

Online-based PTI (Roich et al., 2021) 0.41 0.46 0.44 0.40 0.43
W+ Opt. (Karras et al., 2020b) 0.23 0.28 0.27 0.22 0.25

Encoder-based

W 0.17 0.19 0.19 0.15 0.18
W+ (pSp) (Richardson et al., 2021) 0.21 0.27 0.31 0.24 0.22
Restyle (pSp) (Alaluf et al., 2021) 0.20 0.35 0.32 0.21 0.27
3DE-NeRF (Ours) 0.49 0.53 0.53 0.50 0.51

Table 2: Quantitative results on novel-view rendering, and comparison with online-based and
encoder-based methods. The results are measured on the CelebHQ test dataset.

(see column 5 & 6). On the other hand, encoding latent in W , though with much worse identity
preservation, has better 3D preservation and correct view-angle. Third, the optimization method
PTI (Roich et al., 2021) though has near-perfect image reconstruction of the same view, it breaks
3D structure when rendering novel views (See column 3 of Figure 4 and Figure 5). Consequently,
compared with all baselines including online optimization and encoder-based models, our proposed
3DE-NeRF achieves superior results in novel-view rendering.

We also benchmark the quantitative results using identity metrics for the selected four yaw head
angles. As shown in Table 2, the score usually decreases when the yaw head pose is more extreme.
Our proposed model achieves the highest ID score among all competitors. The optimization method
PTI (Roich et al., 2021), though has achieved the highest scores in all of the evaluation metrics in
Table 1, also exhibits an inferior ID score to our encoder-based model. To adapt the 2D optimization
method to 3D style-based NeRFs, we observe that, for both PTI and W+ Opt approaches, our
encoder can improve the identity and 3D preservation, especially for novel-view rendering (see
appendix A.3). Results on more novel views rendering for different input images (e.g., different
races, gender, age, and skin tones) can be found in appendix A.4, and our demo video.

4.4 ABLATION STUDIES

Input w/o ℒ𝒇𝒆𝒂𝒕_𝒔𝒚𝒏w/o 𝑥)*+ Oursw/o 𝑥,-./w/o ℒ𝒕𝒓𝒊 w/o ℒ𝟐
Figure 6: Ablation studies on the types of training images and the feature-
level loss.

To further analyze the
effectiveness of es-
sential components of
the proposed method,
we conduct the ex-
periments with one
of them excluded and
present the qualitative
result in Figure 6.
When the synthesized
images xsyn are ex-
cluded (note that the
feature losses Lfeat

will also be excluded
without xsyn), the
style latent generated by our proposed encoders could not preserve the reasonable face structure
(see column 2). When using synthesized images xsyn and only excluding Lfeat, the generated
multi-view images still have artifacts and distortions in the face (see column 3). In addition, we
found that Ltri in Lfeat serves as a more important role for the 3D and identity preservation (see
column 4 vs column 5).Moreover, if the encoders are trained with synthesized images xsyn only
(i.e., w/o xreal), the style latent code is able to preserve view consistency yet still has the loss of
identity preservation compared with the full model (see column 6 vs column 7). These studies
demonstrate that both real images and synthesized images with feature-level losses are significant
to our model.

To further analyze the importance of both our base encoder and the residual encoder, we also visu-
alize the output of these two encoders in appendix A.4. To further verify the generalization ability
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of the proposed method, the results of using the EG3D generator and AFHQ animal dataset are
visualized in appendix A.4 and A.5, respectively.

5 CONCLUSION

We have unveiled the challenges of GAN inversion for 3D style-based NeRF and the limitations
of the current 2D encoder-based models through experiments. To tackle the issue, we propose
an encoder-based framework named 3DE-NeRF, which consists of a base encoder and a residual
encoder, to perform GAN inversion for the 3D generative radiance field. Compared with the current
existing encoder-based methods for GAN inversion, our proposed model achieves more effective
GAN inversion for 3D generative NeRF and has satisfactory image quality for rendering novel views.
We also demonstrate that the style latent code generated by our proposed model is able to serve as a
good initial point for online optimization.
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A APPENDIX

A.1 MORE DETAILS OF DATASETS AND SETTINGS

FFHQ The FFHQ (Karras et al., 2019) dataset contains 70,000 face images. It is only used for
training the initial checkpoint for the generator (G) and the encoders in our framework.

CelebA-HQ CelebA-HQ (Karras et al., 2018; Liu et al., 2015) contains 24,183 training face im-
ages and 2,824 testing images. For a fair comparison with previous inversion methods, we only use
the test split 2,824 images for testing. In this paper, since all of the testing images from this dataset
are from the real human face, we did not present the qualitative visualizations for privacy protection.
We only present the quantitative comparisons in the paper.

StyleGAN2-Fake In order to present the rendering results qualitatively without using real faces,
we use the fake yet very realistic faces released by (Karras et al., 2020b). This dataset contains 263
images of resolution 1,024×1,024 of very realistic human faces generated by StyleGAN2 (Karras
et al., 2020b). We present the testing results qualitatively using these images.

AFHQ Besides the experiments of GAN inversion on human faces, we also conduct the experi-
ments on animal faces using AFHQ (Choi et al., 2020) and present the results later in the appendix.
This dataset contains 15,000 high-quality images at 512×512 resolution and includes three cate-
gories of animals which are cats, dogs, and wildlife. Each category has about 5000 images. For
each category, the dataset split around 500 images as a test set and provide all remaining images as
a training set.

A.2 IMPLEMENTATION DETAILS

All training and testing images are resized to size 256 × 256 × 3, denoting width, height, and
channel respectively. The experimental style-based NeRF generator (G) employs the checkpoint
of StyleNeRF (Gu et al., 2021) with dimension 256. The base encoder Ebase employs a series of
residual blocks and 1 linear projection layer. The residual encoder Eres employs the architecture
from pSp (Richardson et al., 2021) and we set the number of residual iterations as 3 in the exper-
iments. We set the dimension of the latent code w as 512 which is the same as the generator and
the number of latent code of w+ as 17 following the checkpoint from StyleNeRF (Gu et al., 2021).
For the hyperparameter for all of the loss functions, all of losses are equally weighted (λbase

feat = 1.0,
λbase
img = 1.0, λres

feat = 1.0 and λres
img = 1.0) for all the experiments. The batch size is set as 32

where 16 is for synthesized images and 16 is for real images. In the 16 synthesized images in each
batch, we sample 4 identity latent wsyn from StyleNeRF (Gu et al., 2021) and each wsyn samples 4
camera poses (randomly and uniformly sample yaw angle in the range −35◦ to +35◦ and roll angle
as 0 for simplicity), which can be formulated into these 16 synthesized images. We optimize the
network using Adam optimizer with the learning rate set as 0.0001. Each experiment is conducted
on 1 Nvidia GPU A100 (80G) with a batch size of 32 and implemented in PyTorch. We now present
more details about the model architecture below:
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Figure 7: Brief overview of the architecture of StyleNeRF (Gu et al., 2021).

Generator (StyleNeRF) StyleNeRF (Gu et al., 2021) has a mapping network and a synthesis
network as StyleGAN (Karras et al., 2019) does. The overview of the network is roughly pre-
sented in Figure 7. For the mapping network, latent codes are sampled from standard Gaussian
distribution and processed by a number of fully connected layers. The synthesis network employs
NeRF++ which consists of a unit sphere for foreground NeRF and a background NeRF using in-
verted sphere parameterization. Two MLPs that represent foreground and background are used
to predict the density. The color prediction is performed using another shared MLP. Each style-
conditioned MLP block consists of an affine transformation layer and a 1×1 convolution layer. The
convolution weights are modulated with the affine-transformed styles and then demodulated for
computation. Leaky-ReLU is used as non-linear activation. We directly utilize the checkpoint pro-
vided by StyleNeRF (Gu et al., 2021) without further change on the network and the pre-trained
weights. More details can be found at (Gu et al., 2021).

Base Encoder As mentioned earlier, the base encoder Ebase contains 6 residual blocks and 1
linear projection layer. The output of the encoder will be a vector of 512-dimension w latent code.
The network is roughly presented in Figure 8. Since not all of the testing data in the real world has
ground truth pose from the off-the-shelf model, our base encoder can also predict the yaw and roll
angles from the input image while training with the ground-truth pose outputs from the synthesized
images. The output dimension will be 514 (512 plus 2) if the additional task for pose prediction is
added.
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Figure 8: Brief overview of the architecture of base encoder.

Residual Encoder The overview of the network is roughly presented in Figure 9. The encoder
derives the style input latent codes from three intermediate feature maps of spatial resolutions 16 ×
16 (for input index 0 to 2), 32 × 32 (for input index 3 to 6), and 64 × 64 (for index 7 to last one).
Each style vector is obtained from the corresponding feature map using a Map2style block, which is
a convolutional network containing a series of 2-strided convolutions with LeakyReLU activations.
More details can be found at (Richardson et al., 2021).
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Figure 9: Brief overview of the architecture of residual encoder using pSp (Richardson et al., 2021).

A.3 EXTENSION TO SUPPORT ONLINE OPTIMIZATION

In this section, we would like to analyze the effectiveness and the possibility of our encoders for
supporting online optimization. We conduct the experiments of utilizing our model for produc-
ing initial style latent code in both latent vector optimization to W+ (Karras et al., 2020b) and
PTI (Roich et al., 2021). The results and comparison are presented in Figure 10. We can observe
that, for both of the optimization approaches, our encoders improve the identity and 3D preservation
for both image reconstruction and novel-view rendering (−35◦ in the examples).

A.4 MORE ABLATION STUDIES AND RESULTS

The outputs of the base encoder and the residual encoder. To further analyze the importance of
both our base encoder and the residual encoder, we also visualize the output of these two encoders.
The visualization is presented in Figure 11. The output of x̂base can be seen as using the encoding
into W in the fourth column of Figure 5 plus the feature-level loss. Though the generated x̂base has a
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Input Opt. PTIOurs + Opt. Ours + PTIOurs

Figure 10: The effectiveness of our model for online optimization. We utilize the starting latent
produced by our model for Opt. (optimization to W+ (Karras et al., 2020b)) and PTI (Roich et al.,
2021).

Input 𝑥"!"#$ 𝑥"%$# iterative outputs à

Figure 11: Ablation studies on the outputs of each stage. The testing images are from StyleGAN-
Fake.

gap from the input image, it preserves 3D view consistency. Then we can produce the latent code for
generating x̂res on top of x̂base with more fine details. We also demonstrate that our restyle steam
can also be done in several iterations yet does not improve the latent code as much as Restyle (Alaluf
et al., 2021) presented in 2D StyleGAN.

More qualitative results on novel rendering. We present more results on novel view rendering
for different input images in Figure 12. This figure demonstrates the generalization of our encoders
plus the StyleNeRF generator to different races, gender, age, and skin tones.
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Input novel views

Figure 12: More qualitative results using our encoder for novel view rendering on StyleGAN2-Fake.

Generator: StyleNeRF (Gu et al., 2021) vs. EG3D (Chan et al., 2022) To analyze the signifi-
cance of the generators for the GAN inversion, we also compare the results replacing the StyleNeRF
generator with Eg3D using the same input image from Figure 12. EG3D (Chan et al., 2022) is
composed of StyleGAN2 architecture and utilizes tri-plane volume rendering. More details can be
referred to in their paper. We re-train the encoders using the generator EG3D (Chan et al., 2022) and
present the results of novel-view rendering in Figure 14.

17



Under review as a conference paper at ICLR 2023

A.5 MORE EXPERIMENTS WITH AFHQ AND SETTINGS

To analyze the ability of our model on the inversion of animal faces, we conduct the experiments
using AFHQ (Choi et al., 2020). This dataset includes three categories of animals which are cats,
dogs, and wildlife. Since StyleNeRF (Gu et al., 2021) does not release the checkpoint for this dataset,
we train our own checkpoint using the open-source code ourselves which may have sub-optimal
rendering effectiveness. In addition, since we do not have a suitable off-the-shelf pose estimator
for the animals, we additionally train the pose encoder in our base encoder (as shown in Figure 8)
for estimating the camera pose for the animals. We present the results of GAN inversion using our
encoders in Figure 13. In addition, we also present the GAN inversion using the checkpoint of cat (a
subset of AFHQ) released by EG3D (Chan et al., 2022). These two figures show that our framework
is able to perform effective 3D-aware GAN inversion on animal faces.
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Input novel views

Figure 13: Additinal qualitative results using our encoder for novel view rendering on AFHQ. Note
that since the checkpoint of StyleNeRF for AFHQ is not released, we train a sup-optimal checkpoint
ourselves.
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Input novel views

Figure 14: Additinal qualitative results using our encoder for novel view rendering on Cats subset
in AFHQ replacing StyleNeRF with Eg3D as the generator (G).
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