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Abstract

Preference optimization, particularly through Reinforcement Learning from Human1

Feedback (RLHF), has achieved significant success in aligning Large Language2

Models (LLMs) to adhere to human intentions. Unlike offline alignment with a3

fixed dataset, online feedback collection from humans or AI on model generations4

typically leads to more capable reward models and better-aligned LLMs through5

an iterative process. However, achieving a globally accurate reward model requires6

systematic exploration to generate diverse responses that span the vast space of nat-7

ural language. Random sampling from standard reward-maximizing LLMs alone is8

insufficient to fulfill this requirement. To address this issue, we propose a bilevel9

objective optimistically biased towards potentially high-reward responses to ac-10

tively explore out-of-distribution regions. By solving the inner-level problem with11

the reparameterized reward function, the resulting algorithm, named Self-Exploring12

Language Models (SELM), eliminates the need for a separate RM and iteratively13

updates the LLM with a straightforward objective. Compared to Direct Prefer-14

ence Optimization (DPO), the SELM objective reduces indiscriminate favor of15

unseen extrapolations and enhances exploration efficiency. Our experimental re-16

sults demonstrate that when finetuned on Zephyr-7B-SFT and Llama-3-8B-Instruct17

models, SELM significantly boosts the performance on instruction-following bench-18

marks such as MT-Bench and AlpacaEval 2.0, as well as various standard academic19

benchmarks in different settings.20

1 Introduction21

Large Language Models (LLMs) have recently achieved significant success largely due to their ability22

to follow instructions with human intent. As the defacto method for aligning LLMs, Reinforcement23

Learning from Human Feedback (RLHF) works by maximizing the reward function, either a separate24

model [43, 5, 18] or reparameterized by the LLM policy [48, 47, 4, 67], which is learned from the25

prompt-response preference data labeled by humans. The key to the success of alignment is the26

response diversity within the preference data, which prevents reward models (RMs) from getting27

stuck in local optima, thereby producing more capable language models.28

Offline alignment methods [48, 53] attempt to manually construct diverse responses for fixed prompts29

[11, 24, 69], which, unfortunately, struggles to span the nearly infinite space of natural language. On30

the other hand, online alignment follows an iterative procedure: sampling responses from the LLM31

and receiving feedback to form new preference data for RM training [43, 21]. The former step helps32

explore out-of-distribution (OOD) regions through randomness in sampling. However, in standard33

online RLHF frameworks, maximizing the expected reward learned from the collected data is the34

only objective for the LLM, sampling from which often leads to responses clustered around local35
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optima. This passive exploration mechanism can suffer from overfitting and premature convergence,36

leaving the potentially high-reward regions unexplored.37
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Figure 1: Intuition of our method. For a fixed prompt
x, a reward model r(x, y) tries to fit the ground-truth
reward r∗(x, y). The blue and green RMs are equally
good when using standard reward-fitting loss Llr, since
the observed preference data (red stars) are fitted
equally well. However, the green RM has a larger
maxy r(x, y) and thus a lower optimistically biased
loss Llr − αmaxy r(x, y). Therefore, the response yu
at which the uncertainty is high can be elicited and then
proceeded for human feedback to reduce uncertainty.

To address this issue, we propose an active exploration method for online alignment that elicits38

novel favorable responses. In its simplest form, an optimism term αmaxy r(x, y) is added to the39

reward-fitting objective (e.g., logistic regression on dataset D), denoted as −Llr, resulting in a bilevel40

optimization objective for the reward model r:41

max
r

max
y

αr(x, y)− Llr(r;D), (1.1)

where α is a hyperparameter controlling the degree of optimism. The intuition is illustrated in Figure42

1. Specifically, minimizing the vanilla reward-fitting loss Llr is likely to give a locally accurate RM43

that overfits the observed data and gets stuck in local minima. Random sampling from this vanilla44

RM may take a long time to explore the OOD regions that contain the best response. By incorporating45

the optimism term, we obtain an RM that both fits the data well and has a large maxy r(x, y). This46

ensures that the greedy response yu from it is either globally optimal when uncertainty in high-reward47

regions is eliminated, or potentially good in unexplored areas where r(x, yu) can be arbitrarily huge48

due to the relaxed reward-fitting loss. Feedback from humans on these responses yu can then reduce49

uncertainty and train a more accurate RM.50

In this paper, we formulate this idea within the context of online direct alignment, where the LLM is51

iteratively updated without a separate RM. We first introduce two modifications to the bilevel RM52

objective in 1.1, namely adding KL constraints and using relative maximum reward. Then we derive53

a simple LLM training objective by applying the closed-form solution of the inner-level problem54

and reparameterizing the reward with the LLM policy. The resulting iterative algorithm is called55

Self-Exploring Language Models (SELM). We show that the policy gradient of SELM is biased56

towards more rewarding areas. Furthermore, by reducing the chance of generating responses that are57

assigned low implicit rewards, SELM mitigates the indiscriminate favoring of unseen extrapolations58

found in DPO [48, 47] and enhances exploration efficiency.59

In experiments, we implement SELM using Zephyr-7B-SFT [56] and Llama-3-8B-Instruct [37]60

as base models. By finetuning solely on the UltraFeedback [11] dataset and using the small-sized61

PairRM [25] for iterative AI feedback, SELM boosts the performance of Zephyr-7B-SFT and Llama-62

3-8B-Instruct by a large margin on AlpacaEval 2.0 [14] (+16.24% and +11.75% LC win rates)63

and MT-Bench [68] (+2.31 and +0.32). SELM also demonstrates strong performance on standard64

academic benchmarks and achieves higher pairwise LC win rates against the iterative DPO baseline.65

2 Background66

2.1 Large Language Models67

A language model π ∈ ∆X
Y typically takes the prompt x ∈ X as input and outputs the response68

y ∈ Y . Here, X and Y are finite spaces of prompts and responses, respectively. Given the prompt69

x ∈ X , a discrete probability distribution π(· | x) ∈ ∆Y is generated, where ∆Y is the set of discrete70

distributions over Y . Modern recipes for training LLMs consist of pre-training and post-training71

procedures, where during pre-training, LLMs learn to predict the next word on a huge and diverse72

dataset of text sequences in order to understand the underlying patterns and structures of natural73

language in an unsupervised manner. The post-training procedure aims to align better to end tasks74

and human preferences with two phases happening in order: Supervised Fine-Tuning (SFT) and75
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human preference alignment. Here, SFT fine-tunes the pre-trained LLM with supervised learning76

on high-quality data to follow instructions on downstream tasks and obtain a model πSFT. In the77

following of this paper, we focus mainly on preference alignment.78

2.2 Reward Modeling and Preference Optimization79

Reinforcement Learning from Human Feedback (RLHF). Standard RLHF frameworks consist80

of learning a reward model and then optimizing the LLM policy using the learned reward.81

Specifically, a point-wise reward r(x, y) : X × Y → R represents the Elo score [16] of the response82

y given the prompt x. Then the preference distribution can be expressed by the Bradley-Terry model83

that distinguishes between the preferred response yw and the dispreferred response yl given prompt84

x, denoted as yw ≻ yl | x, using the logistic function σ:85

p(yw ≻ yl | x) := Eh

[
1(h prefers yw over yl given x)

]
= σ

(
r(x, yw)− r(x, yl)

)
=

exp
(
r(x, yw)

)
exp
(
r(x, yw)

)
+ exp

(
r(x, yl)

) , (2.1)

where h denotes the human rater and the expectation is over h to account for the randomness of the86

choices of human raters we ask for their preference. When provided a static dataset of N comparisons87

D = {xi, yw,i, yl,i}Ni=1, the parameterized reward model can be learned by minimizing the following88

logistic regression loss:89

Llr(r;D) = −E(x,yw,yl)∼D
[
log σ

(
r(x, yw)− r(x, yl)

)]
. (2.2)

Using the learned reward, the LLM policy π ∈ ∆X
Y is optimized with reinforcement learning (RL) to90

maximize the expected reward while maintaining a small deviation from some base reference policy91

πref, i.e., maximizing the following objective92

J (π;D) = Ex∼D,y∼π(·|x)
[
r(x, y)

]
− βDKL(π ||πref), (2.3)

where β is a hyperparameter and DKL(π ||πref) := Ex∼D[KL(π(· | x) ||πref(· | x))] is the expected93

Kullback-Leibler (KL) divergence. An ideal πref is the policy that helps mitigate the distribution shift94

issue [48, 21] between the true preference distribution and the policy π during the off-policy RL95

training. Since we only have access to the dataset D sampled from the unavailable true preference96

distribution, πref can be obtained by fine-tuning on the preferred responses in D or simply setting97

πref = πSFT and performing RLHF based on the SFT model.98

Direct Alignment from Preference. With the motivation to get rid of a separate reward model,99

which is computationally costly to train, recent works [48, 4, 67, 56, 17] derived the preference loss100

as a function of the policy by changing of variables. Among them, DPO [48] shows that when the BT101

model in (2.1) can perfectly fit the preference, the global optimizers of the RLHF objective in (2.3)102

and the following loss are equivalent:103

LDPO(π;D) = −E(x,yw,yl)∼D

[
log σ

(
β log

π(yw | x)
πref(yw | x)

− β log
π(yl | x)
πref(yl | x)

)]
.

3 Self-Exploring Language Models104

3.1 RM-Free Objective for Active Exploration105

In this section, we present several modifications to the optimistically biased objective (1.1) motivated106

in the introduction. Then we derive an RM-free objective for the LLM policy and analyze how active107

exploration works by examining its gradient.108

First, we consider the equivalence of (1.1): maxr −Llr(r;D) + αmaxπ Ey∼π[r(x, y)], where the109

inner π is deterministic when optimal. To account for the change of π relative to the reference policy110

πref, we introduce two modifications: (1) replacing the optimistic bias term maxπ Ey∼π[r(x, y)] with111

maxπ Ey∼π,y′∼πref [r(x, y)− r(x, y′)], and (2) incorporating a KL-divergence loss term between π112

and πref. These changes ensure that the resulting optimistic RM elicits responses with high potential113

unknown to the reference policy πref while minimizing the deviation between π and πref.114
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Formally, for the reward function r, the bilevel optimization problem with optimism is formulated as:115

max
r

−Llr(r;Dt) + αmax
π

(
Ex∼Dt,y∼π(·|x)

y′∼πref(·|x)

[
r(x, y)− r(x, y′)

]
− βDKL(π ||πref)︸ ︷︷ ︸

F(π;r)

)
, (3.1)

where Dt = {xi, y
t
w,i, y

t
l,i}Ni=1 is the associated dataset at iteration t and Llr is the logistic regression116

loss defined in (2.2). The nested optimization in (3.1) can be handled by first solving the inner117

optimization F(π; r) to obtain πr that is optimal under r. The solution is as follows and we defer all118

the derivations in this section to Appendix A.119

πr(y | x) := argmax
π

F(π; r) =
1

Z(x)
πref(y | x) exp

(
r(x, y)/β

)
,

where the partition function Z(x) =
∑

y πref(y|x) exp(r(x, y)/β). By substituting π = πr into120

F(π; r), we can rewrite the bilevel objective in (3.1) as a single-level one:121

max
r

−Llr(r;Dt) + αF(πr; r).

Following the implicit reward formulation in DPO, we reparameterize the reward function with122

θ ∈ Θ as r̂θ(x, y) = β(log πθ(y | x) − log πref(y | x)), which is the optimal solution of (2.3) and123

can express all reward classes consistent with the BT model as proved in [48]. With this change of124

variable, we obtain the RM-free objective for direct preference alignment with optimism:125

max
πθ

−LDPO(πθ;Dt)− αβEx∼D,y∼πref(·|x)
[
log πθ(y | x)

]
. (3.2)

We now analyze how this new objective encourages active exploration. Specifically, we derive the126

gradient of (3.2) with respect to θ as127

−βE(x,yw,yl)∼Dt

[
σ
(
r̂θ(x, yl)− r̂θ(x, yw)

)(
∇θ log πθ(yw | x)−∇θ log πθ(yl | x)

)]
︸ ︷︷ ︸

∇θLDPO(πθ;Dt)

− αβEx∼D,y∼πθ(·|x)
[
exp
(
−r̂θ(x, y)/β

)
∇θ log πθ(y | x)

]
. (3.3)

We note that the second line, corresponding to the gradient of the optimism term, decreases the128

log-likelihood of response y generated by πθ that has a low value of exp(−r̂θ(x, y)/β). Therefore,129

the added optimism term biases the gradient toward parameter regions that can elicit responses y with130

high implicit reward r̂θ, consistent with our intuition outlined in Figure 1.131

This also explains why Eπref [log πθ] is minimized in our objective (3.2), which is equivalent to132

maximizing the KL divergence between πref and πθ, while the reverse KL in the policy optimization133

objective (2.3) is minimized. For the DPO gradient ∇θLDPO(πθ;Dt), the degree of deviation of policy134

πθ from πref only affects the preference estimated with r̂θ. In other words, σ(r̂θ(x, yl)− r̂θ(x, yw))135

is a scalar value and the policy deviation only determines the step size of the policy gradient, instead136

of its direction. On the other hand, our added exploration term directly controls the direction of the137

gradient toward potentially more rewarding areas while still fitting the preference data in Dt. As138

more feedback data is collected iteratively, deviating from the unbiasedly fitted model incurs a higher139

DPO loss, which ultimately dominates our objective at convergence. This mechanism ensures that140

the resulting LLM effectively balances between exploring novel responses and exploiting previously141

observed ones, leading to a more accurate and aligned model.142

3.2 Algorithm143

With the optimistically biased objective derived above, the language model can actively generate144

OOD responses worth exploring. Human or AI feedback follows to reduce the uncertainty in these145

regions. These two steps are executed iteratively to get a more and more aligned model.146

In practice, we split the offline preference dataset into three portions with equal sizes, one for each147

iteration. Besides, we use AI rankers, such as external RMs, to provide feedback on the model-148

generated response and the original chosen, rejected responses. The complete pseudocode of our149

algorithm, named Self-Exploring Language Models (SELM), is outlined in Algorithm 1.150
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Algorithm 1 Self-Exploring Language Models (SELM)
Input: Reference model πref, preference dataset D, online iterations T , optimism coefficient α.
1: for iteration t = 1, 2, . . . , T do
2: Set Dt as the t-th portion of D and generate y ∼ πref(· | x) for each prompt x in Dt.
3: Rank {y, yw, yl} and update Dt to contain the best (chosen) and worst (rejected) responses.
4: Train the LLM πθt = argmaxπθ

−LDPO(πθ;Dt)− αEx∼Dt [log πθ(y | x)] and let πref = πθt .
5: end for

3.3 Self-Exploration Reduces Indiscriminate Favor of Unseen Extrapolations151

It has been observed recently [47, 45, 62] that DPO decreases the likelihood of responses generated152

by the reference policy. It is because for any prompt x, at convergence when πθ ̸= πref, it holds that153

Ey∼πref

[
r̂θ(x, y)/β

]
= Ey∼πref

[
log πθ(y | x)− log πref(y | x)

]
= −KL

(
πref(· | x) ||πθ(· | x)

)
< 0,

while at the beginning of training when πθ = πref, the above terms are zero. Thus, the expected154

implicit reward r̂θ as well as the likelihood of πθ will decrease on the reference model’s responses.155

This indicates that DPO stimulates a biased distribution favoring unseen extrapolated responses. In the156

online iterative setting that we consider, the LLM policy generates responses and receives preference157

feedback alternately, where biasing towards OOD regions may sometimes help discover outstanding158

novel responses. However, DPO indiscriminately favors unseen extrapolations and passively explores159

based purely on the randomness inherent in sampling from the LLM. As a consequence, the vast space160

of natural language makes it almost impossible to exhaustively explore all the possible responses and161

identify those that most effectively benefit alignment.162

Next, we demonstrate that SELM mitigates this issue by performing guided exploration. Specifically,163

consider the proposed self-exploration objective in (3.2), which, in addition to the standard DPO loss,164

also minimizes Ex,y∼πref [log πθ(y | x)]. We now investigate how the probability distribution changes165

with this term incorporated.166

Theorem 3.1. For any ρ ∈ Θ in the policy parameter space, let r̂ρ(x, y) = β(log πρ(y|x) −167

log πref(y|x)) be the reparameterized implicit reward. Denote πmin
ρ as the policy that minimizes168

the expected implicit reward under the KL constraint, i.e.,169

πmin
ρ (· | x) := argmin

π
Ex,y∼π(·|x)

[
r̂ρ(x, y)

]
+ βDKL(π ||πρ). (3.4)

Then minimizing Ex,y∼πref [log πθ(y|x)] decreases the likelihood of responses sampled from πmin
ρ :170

min
πθ

Ex,y∼πref(·|x)
[
log πθ(y | x)

]
= min

πθ

Ex,y∼πmin
ρ (·|x)

[
log πθ(y | x)

]
.

The above theorem states that maximizing the divergence between πθ and πref is essentially reducing171

the probability of generating responses with low implicit rewards reparameterized by any policy172

parameter ρ during training. In other words, the policy not only exploits the existing preference data173

but also learns to avoid generating the text y that is assigned a low reward value. This process occurs174

in every iteration with updated reference models. Consequently, responses with high potential rewards175

are selectively preferred and many commonplace responses receive a small probability mass, thus176

mitigating the indiscriminate favoring of unseen responses and improving exploration efficiency.177

4 Related Work178

Data Synthesis for LLMs. A key challenge for fine-tuning language models to align with users’179

intentions lies in the collection of demonstrations, including both the SFT instruction-following expert180

data and the RLHF preference data. Gathering such data from human labelers is expensive, time-181

consuming, and sometimes suffers from variant quality [43, 29]. To address this issue, synthetic data182

[34] has been used for aligning LLMs. One line of work focuses on generating plausible instruction183

prompts for unlabeled data by regarding the target output as instruction-following responses [31,184

58, 27, 54]. Besides, high-quality data can also be distilled from strong models for fine-tuning185

weaker ones [20, 1, 32, 12, 46]. To construct synthetic datasets for offline RLHF, a popular pipeline186

[11, 56, 57, 24, 69] involves selecting responses sampled from various LLMs on a set of prompts in187
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the hope to increase the diversity of the data that can span the whole language space. However, data188

manually collected in such a passive way does not consider what improves the model most through189

its training, leaving the potentially high-reward regions unexplored.190

Iterative Online Preference Optimization Compared to offline RLHF algorithms [48, 67, 4] that191

collect preference datasets ahead of training, online RLHF [43, 21], especially the iterative/batched192

online RLHF [5, 61, 19, 22, 60, 6, 49] has the potential to gather better and better synthetic data as193

the model improves. As a special case, self-alignment language models align their responses with194

desired behaviors, such as model-generated feedback [64, 65, 52]. Unfortunately, the above methods195

still passively explore by relying on the randomness during sampling and easily get stuck at local196

optima and overfit to the current data due to the vast space of natural language. A notable exception197

is [15], which proposed to use ensembles of RMs to approximately measure the uncertainty for198

posterior-sampling active exploration. On the contrary, our method explores based on the optimistic199

bias and does not estimate the uncertainty explicitly, bypassing the need to fit multiple RMs.200

Active Exploration. In fact, active exploration has been widely studied beyond LLMs. Similar to201

[15], most existing sample-efficient RL algorithms first estimate the uncertainty of the environment202

using historical data and then plan with optimism [3, 50, 26], or selecting the optimal action from a203

statistically plausibly set of action values sampled from its posterior distribution [51, 40, 41]. The204

proposed self-exploration objective can be categorized as an optimism-based exploration method.205

However, most previous works require the estimation of the upper confidence bound, which is often206

intractable. Ensemble methods [42, 8, 36] can serve as approximations to the uncertainty estimation207

but are still computationally inefficient. MEX [35] proposed to combine estimation and planning in a208

single objective similar to ours and established theoretical guarantees under traditional RL setups.209

5 Experiments210

5.1 Experiment Setup211

We select the UltraFeedback [11] dataset as our training set, which contains 61k preference pairs of212

single-turn conversations. For the ranker providing AI feedback during online alignment, we choose213

the small-sized PairRM (0.4B) [25]. All experiments are conducted on 8xA100 GPUs.214

Due to the absence of performant open-source online direct alignment codebases at the time of this215

study, we first implement an iterative version of DPO as the baseline, adhering to the same steps216

as Algorithm 1 but training the LLM with the standard DPO objective. Then we conduct a grid217

search over hyperparameters, such as the batch size, learning rate, and iteration number, to identify218

the optimal settings for the iterative DPO baseline. Details on the hyperparameters and grid search219

results are provided in Appendix C. We follow these best settings to train SELM for a fair comparison.220

In addition, the top choice for the base models of SELM are LLMs that are finetuned with RLHF221

after SFT, since they are typically more capable than SFT-only and pertrained models. We consider222

two series of LLMs: Zephyr [56] and Llama-3 [37], to demonstrate the robustness of SELM. Since223

the official Zephyr-7B-β model is finetuned with DPO on the same UltraFeedback dataset, to avoid224

overoptimization, we choose Zephyr-7B-SFT1 as the base model and perform 3 iterations of SELM225

after a single iteration of standard DPO training on the first portion of the training data (we refer to226

this model as Zephyr-7B-DPO). For Llama-3-8B-Instruct2 that is already finetuned with RLHF, we227

directly apply 3 iterations of SELM training.228

5.2 Experiment Results229

We first report the performance of SELM and the baselines on the instruction-following chat bench-230

marks AlpacaEval 2.0 [14] and MT-Bench [68] in Table 1. We can observe that for AlpacaEval 2.0,231

SELM significantly boosts Zephyr-7B-SFT and Llama-3-8B-Instruct, achieving length-controlled232

(LC) win rate improvements of +16.24% and +11.75%, respectively. This enhancement results in233

models that are competitive with or even superior to much larger LLMs, such as Yi-34B-Chat [63]234

and Llama-3-70B-Instruct. For the multi-turn MT-Bench, which exhibits higher variance, we report235

1https://huggingface.co/HuggingFaceH4/mistral-7b-sft-beta
2https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct
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AlpacaEval 2.0 MT-Bench
Model LC Win Rate Win Rate Avg. len Avgerage 1st Turn 2nd Turn
Zephyr-7B-SFT 8.01 4.63 916 5.30 5.63 4.97
Zephyr-7B-DPO 15.41 14.44 1752 7.31 7.55 7.07
DPO Iter 1 (Zephyr) 20.53 16.69 1598 7.53 7.81 7.25
DPO Iter 2 (Zephyr) 22.12 19.82 1717 7.55 7.85 7.24
DPO Iter 3 (Zephyr) 22.19 (↑14.18) 19.88 1717 7.46 (↑2.16) 7.85 7.06
SELM Iter 1 (Zephyr) 20.52 17.23 1624 7.53 7.74 7.31
SELM Iter 2 (Zephyr) 21.84 18.78 1665 7.61 7.85 7.38
SELM Iter 3 (Zephyr) 24.25(↑16.24) 21.05 1694 7.61 (↑2.31) 7.74 7.49
Llama-3-8B-Instruct 22.92 22.57 1899 7.93 8.47 7.38
DPO Iter 1 (Llama3-It) 30.89 31.60 1979 8.07 8.44 7.70
DPO Iter 2 (Llama3-It) 33.91 32.95 1939 7.99 8.39 7.60
DPO Iter 3 (Llama3-It) 33.17 (↑10.25) 32.18 1930 8.18 (↑0.25) 8.60 7.77
SELM Iter 1 (Llama3-It) 31.09 30.90 1956 8.09 8.57 7.61
SELM Iter 2 (Llama3-It) 33.53 32.61 1919 8.18 8.69 7.66
SELM Iter 3 (Llama3-It) 34.67 (↑11.75) 34.78 1948 8.25 (↑0.32) 8.53 7.98
SPIN 7.23 6.54 1426 6.54 6.94 6.14
Orca-2.5-SFT 10.76 6.99 1174 6.88 7.72 6.02
DNO (Orca-2.5-SFT) 22.59 24.97 2228 7.48 7.62 7.35
Mistral-7B-Instruct-v0.2 19.39 15.75 1565 7.51 7.78 7.25
SPPO (Mistral-it) 28.53 31.02 2163 7.59 7.84 7.34
Yi-34B-Chat 27.19 21.23 2123 7.90 - -
Llama-3-70B-Instruct 33.17 33.18 1919 9.01 9.21 8.80
GPT-4 Turbo (04/09) 55.02 46.12 1802 9.19 9.38 9.00

Table 1: Results on AlpacaEval 2.0 and MT-Bench. Names inside the brackets are the base models
that are aligned based upon. The red arrows indicate the increment or decrement from the base model.
Compared to iterative DPO and other online alignment baselines, SELM gains more improvements
based on the weaker Zephyr-7B-SFT model and achieves superior performance that is competitive
with much larger SOTA models when finetuned from Llama-3-8B-Instruct.

the average scores of SELM and DPO baselines across 3 runs. We observe that SELM improves236

the scores by +2.31 and +0.32, respectively. Furthermore, the proposed method self-explores and237

enhances the model monotonically, with consistent performance improvements in each iteration.238

This validates the robustness of our algorithm. Compared to other iterative post-training algorithms,239

such as SPIN [7], DNO [49], and SPPO [59], SELM gains more improvements on both benchmarks240

when using the weaker base model (Zephyr-7B-SFT), and achieves the best performance when using241

Llama-3-8B-Instruct as the base model.242

Figure 2: Pairwise length-controlled win rates comparison between SELM, iterative DPO, and base
models on the AlpacaEval 2.0 benchmark. Scores represent the LC win rates of the row models
against the column models. Models positioned in higher rows have higher LC win rates against the
base model and thus better performance.

We also conduct pairwise comparisons between SELM, iterative DPO, and the base models to validate243

the effectiveness of our method. The results for AlpacaEval 2.0 are shown in Figure 2. We observe244
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Models GSM8K
(8-s CoT)

HellaSwag
(10-s)

ARC
(25-s)

TruthfulQA
(0-s)

EQ
(0-s)

OBQA
(10-s) Average

Zephyr-7B-SFT 43.8 82.2 57.4 43.6 39.1 35.4 50.3
Zephyr-7B-DPO 47.2 84.5 61.9 45.5 65.2 38.0 57.0
DPO Iter 1 (Zephyr) 45.5 85.2 62.1 52.4 68.4 39.0 58.8
DPO Iter 2 (Zephyr) 44.9 85.4 62.0 53.1 69.3 39.4 59.0
DPO Iter 3 (Zephyr) 43.2 85.2 60.8 52.5 69.1 39.6 58.4
SELM Iter 1 (Zephyr) 46.3 84.8 62.9 52.9 68.8 39.6 59.2
SELM Iter 2 (Zephyr) 46.2 85.4 62.1 53.1 69.3 39.6 59.3
SELM Iter 3 (Zephyr) 43.8 85.4 61.9 52.4 69.9 39.8 58.9
Llama-3-8B-Instruct 76.7 78.6 60.8 51.7 61.8 38.0 61.3
DPO Iter 1 (Llama3-It) 78.5 81.7 63.9 55.5 64.1 42.6 64.4
DPO Iter 2 (Llama3-It) 79.4 81.7 64.4 56.4 64.3 42.6 64.8
DPO Iter 3 (Llama3-It) 80.1 81.7 64.1 56.5 64.1 42.6 64.8
SELM Iter 1 (Llama3-It) 78.7 81.7 64.5 55.4 64.1 42.4 64.5
SELM Iter 2 (Llama3-It) 79.3 81.8 64.7 56.5 64.2 42.6 64.9
SELM Iter 3 (Llama3-It) 80.1 81.8 64.3 56.5 64.2 42.8 65.0
SPIN 44.7 85.9 65.9 55.6 54.4 39.6 57.7
Mistral-7B-Instruct-v0.2 43.4 85.3 63.4 67.5 65.9 41.2 61.1
SPPO (Mistral-it) 42.4 85.6 65.4 70.7 56.5 40.0 60.1

Table 2: Performance comparison between SELM and the baselines on academic multi-choice QA
benchmarks in standard zero-shot, few-shot, and CoT settings. Here, n-s refers to n-shot. The red and
blue texts represent the best and the second-best results.

that with the same number of training iterations and data, SELM consistently outperforms the iterative245

DPO counterpart. Additionally, when using Zephyr-7B-SFT as the base model, SELM outperforms246

iterative DPO even when the latter is trained with twice the data.247

Beyond instruction-following benchmarks, we also evaluate SELM and the baselines on several248

academic benchmarks, including GSM8K [10], HellaSwag [66], ARC challenge [9], TruthfulQA [33],249

EQ-Bench [44], and OpenBookQA (OBQA) [38]. To better reflect the capabilities of LLMs, we adopt250

various settings for these benchmarks, including zero-shot, few-shot, and few-shot Chain-of-Thought251

(CoT) settings. The accuracy results for these multiple-choice QA benchmarks are provided in Table252

2. It can be observed that both our method and the baselines can degrade after the RLHF phase on253

some benchmarks, which is known as the alignment tax [2, 39, 30]. Nevertheless, our method is still254

able to improve the base models on most of the benchmarks and offers the best overall performance.255

We note that SELM is one of the instantiations of the proposed self-exploration objective in (1.1), with256

reparameterized reward functions and algorithm-specific designs described in Section 3.2, such as the257

dataset partition and update rule. However, this objective is not restricted to the current implementation258

and can also be directly applied to any other online alignment framework, with or without a separate259

reward model, regardless of differences in algorithm designs. Thus, the proposed method is orthogonal260

to and can be integrated directly into the recent online RLHF workflows [13, 60, 23] that incorporate261

additional delicate designs with carefully curated datasets.262

5.3 Ablation Study263

We first provide ablation studies to better understand the explorative optimism term. We begin by264

investigating the effect of the optimism coefficient α. In Figure 3 (Left), we plot the LC win rates of265

SELM when using Zephyr-7B-SFT as the base model for different α in the AlpacaEval 2.0 benchmark.266

We find that setting a small α, such as 0.0001, leads to very similar behaviors to the iterative DPO267

(α = 0) baseline, while SELM with a large α may become overly optimistic and thus not very268

effective. These results meet our expectations, suggesting that proper values of α are essential for269

achieving the best trade-off between exploration and exploitation.270

Next, we study the difference in reward distributions with varying α and iterations. Specifically, we271

greedily sample from the LLM using prompts from the holdout test set (2k in total) of UltraFeedback272

and generate rewards for these responses with PairRM. We then calculate the fraction of data that lies273

in each partition of reward values. The results for different α values of SELM Iter 2 (Zephyr) are274

shown in Figure 3 (Middle), which indicate that increasing α results in distributions that are more275

concentrated in higher-reward regions.276
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Figure 3: Ablation on the optimism coefficient α and the change of the reward distribution. Left: The
length-controlled win rates of SELM with different α on AlpacaEval 2.0. Middle: Comparison of
reward distributions at iteration 2 with different α. Right: SELM initially explores and then shifts to
higher-reward regions as more training iterations are performed.

Figure 4: Difference of implicit re-
ward between SELM and DPO on
the chosen and rejected responses.
SELM assigns a higher implicit re-
ward than DPO for both responses.

Additionally, Figure 3 (Right) demonstrates that the reward dis-277

tribution shifts to the right (higher) as more training iterations278

are performed. This shift corresponds to an initial exploration279

phase, where the LLM generates uncertain responses of vary-280

ing quality, followed by an exploitation phase as feedback is281

incorporated and more training data is collected.282

We also conduct ablation studies on the implicit reward captured283

by the SELM and DPO models. Recall that for both SELM284

and DPO, the implicit reward takes the form of r̂θ(x, y) =285

β(log πθ(y | x) − log πref(y | x)). We calculate the reward286

difference r̂SELM(x, y) − r̂DPO(x, y) for each prompt x in the287

UltraFeedback holdout test set. Here, we study the implicit288

reward of the good (chosen) and bad (rejected) responses, so289

y = yw or y = yl. We then sort the reward difference and plot290

the results for Zephyr-based models after iteration 1 in Figure291

4. The plot clearly shows that for both chosen and rejected292

responses, SELM produces higher implicit rewards compared293

to DPO, aligning with the proposed optimistically biased self-294

exploration objective.295

6 Conclusion & Future Work296

In this paper, we introduced an active preference elicitation method for the online alignment of large297

language models. By incorporating an optimism term into the reward-fitting objective, the proposed298

bilevel self-exploring objective effectively balances between exploiting observed data and exploring299

potentially high-reward regions. Unlike standard online RLHF algorithms that passively explore the300

response space by sampling from the training LLM, whose sole objective is maximizing the expected301

learned reward, our method actively seeks diverse and high-quality responses. This self-exploration302

mechanism helps mitigate the risk of premature convergence and overfitting when the reward model303

is only locally accurate. To optimize this bilevel objective, we solve the inner-level problem and304

reparameterize the reward with the LLM policy, resulting in a simple yet novel iterative alignment305

algorithm called Self-Exploring Language Models (SELM). Compared to DPO, SELM improves306

the exploration efficiency by selectively favoring responses with high potential rewards rather than307

indiscriminately sampling unseen responses.308

Our experiments, conducted with Zephyr-7B-SFT and Llama-3-8B-Instruct models, demonstrated309

the efficacy of SELM. Finetuning on the UltraFeedback dataset and leveraging PairRM for AI310

feedback, SELM achieved substantial improvements in performance on AlpacaEval 2.0, MT-Bench,311

and academic benchmarks. These results underscore the ability of SELM to enhance the alignment312

and capabilities of large language models by promoting more diverse and high-quality responses.313

Since the proposed technique is orthogonal to the adopted online RLHF workflow, it will be interesting314

to apply our method within more sophisticated alignment frameworks with advanced designs, which315

we would like to leave as future work.316
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A Derivations in Section 3.1505

We begin by deriving (3.2). The solution for the inner-level optimization problem of (3.1) is as506

follows:507

max
π

F(π; r) = max
π

Ex∼Dt,y∼π(·|x)
y′∼πref(·|x)

[
r(x, y)− r(x, y′)

]
− βDKL(π ||πref)

= Ex∼Dt

[
β logEy∼πref(·|x)

[
exp(r(x, y)/β)

]]
− Ex∼Dt,y′∼πref(·|x)

[
r(x, y′)

]
(A.1)

When the reward r is reparameterized by r̂θ(x, y) = β(log πθ(y | x)− log πref(y | x)), we have that508

the first term in (A.1) is 0. The bilevel objective (3.1) then becomes509

max
r

−Llr(r;Dt)− αEx∼D,y′∼πref(·|x)
[
r(x, y′)

]
.

By reparameterizing the reward with the LLM, we obtain the desired results in (3.2).510

Then we provide the derivation of (3.3). We primarily consider the gradient of the newly incorporated511

term Ex∼D,y∼πref(·|x)[log πθ(y | x)]. Specifically, we have512

∇θEx∼D,y∼πref(·|x)
[
log πθ(y | x)

]
= Ex∼D

[∑
y

πref(y | x)∇θ log πθ(y | x)
]

= Ex∼D,y∼πθ

[πref(y | x)
πθ(y | x)

∇θ log πθ(y | x)
]

= Ex∼D,y∼πθ

[
exp
(
−r̂θ(x.y)/β

)
∇θ log πθ(y | x)

]
.

For the derivation of the DPO gradient ∇θLDPO(πθ;Dt), we refer the readers to [48].513

B Proof of Theorem 3.1514

Proof. The solution to the KL-constrained reward minimization objective (3.4) is515

πmin
ρ (y | x) = πρ(y | x) exp

(
−r̂ρ(x, y)/β

)
/Z(x),

where Z(x) =
∑

y πρ(y | x) exp(−r̂ρ(x, y)/β) = 1. Then we have πmin
ρ (y | x) = πref(y | x), i.e.,516

the reference policy πref achieves the lowest implicit reward reparameterized by any ρ.517

C Experiment Setup518

In experiments, we use the Alignment Handbook [55] framework as our codebase. We find the best519

hyperparameter settings by conducting a grid search over the iteration number, batch size, learning520

rate, and label update rule for the iterative DPO baseline. The results for the Zephyr-based models521

are shown in Figure 5. Specifically, we find that using the same amount of data, updating the model522

too many iterations can lead to instability. So we set the iteration number to 3 for Llama3-It-based523

and Zephyr-based models (excluding the first iteration of DPO training). Besides, we observe that524

choosing different batch sizes has a large effect on the models’ performance and the optimal batch size525

heavily depends on the model architecture. In experiments, we set the batch size to 256 and 128 for526

the Zephyr-based and Llama3-It-based models, respectively. For the learning rate, we consider three527

design choices: cyclic learning rate with constant cycle amplitude, linearly decayed cycle amplitude,528

and decayed cycle amplitude at the last iteration. We find that a decaying cycle amplitude performs529

better than constant amplitudes in general. Thus, for Zephyr-based models, we set the learning to530

5e− 7 for the first three iterations and 1e− 7 for the last iteration. In each iteration, the warmup ratio531

is 0.1. For Llama3-It-based models, we use a linearly decayed learning rate from 5e− 7 to 1e− 7532

within 3 iterations with the same warmup ratio. We also test two update ways for the preference data.533

One is to rank yw, yl, yref and keep the best and worst responses in the updated dataset, which is the534

setting that is described in the main paper. The other is to compare yw and yref and replace the chosen535

or rejected response by yref based on the comparison result. We find that the former design performs536
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Figure 5: Ablation of the iterative DPO baseline. We conduct a grid search over the iteration number,
batch size, learning rate, and designs of the dataset update rule.

better than the latter. We also compared with stepwise DPO [28], which updates the reference model537

at each iteration but uses the original dataset instead of the updated one. This demonstrates that538

exploring and collecting new data is necessary.539

For the proposed SELM method, we follow the above hyperparameter settings for a fair comparison.540

The optimism coefficient α is searched over 0.005, 0.001, 0.0005, and 0.0001 and is selected based541

on the average external reward on the holdout test set of UltraFeedback. We set α = 0.001 for542

Zephyr-based SELM and α = 0.0001 for Llama3-It-based SELM. For training SELM based on other543

models, we recommend setting α = 0.005 or 0.001 as it shows minimal sensitivity to variations.544

15


	Introduction
	Background
	Large Language Models
	Reward Modeling and Preference Optimization

	Self-Exploring Language Models
	RM-Free Objective for Active Exploration
	Algorithm
	Self-Exploration Reduces Indiscriminate Favor of Unseen Extrapolations

	Related Work
	Experiments
	Experiment Setup
	Experiment Results
	Ablation Study

	Conclusion & Future Work
	Derivations in Section 3.1
	Proof of Theorem 3.1
	Experiment Setup

